Grundlegende Parsingalgorithmen Einführung und formale Sprachen

Kurt Eberle

k.eberle@lingenio.de

(Viele Folien, Teile von Folien, Materialien von **Helmut Schmid**'s Parsing-Kurs WS14 Tübingen, u.a.)

30. Juli, 2018

Überblick

Organisatorisches

Einführung

Formale Sprachen

Das Wortproblem

Grammatik

Grammatik

Erkenner und Parser

Chomsky Hierarchie

Unterscheidungskriterien

Natürliche Sprache

Ziele

- □ Organisatorisches
- Motivation
- □ Plan
- □ Formale Sprachen

Überblick

Organisatorisches

Einführung

Formale Spracher

Das Wortproblem

Grammatik

Grammatik

Erkenner und Parser

Chomsky Hierarchie

Unterscheidungskriterien

Natürliche Sprache

Zeiten

- **9.15-10.45**
- **▶** 11.00-12.30
- **1**3.00-14.30

Übungen

- Übungsblätter
- ▶ Besprechung (teilweise) im Unterricht (letzte Stunde)

Vorbedingungen

- ► Einführung in CL
- Kenntnisse in Programmierung nicht wirklich notwendig
- ► Eher theoretisch und 'Block & Bleistift'
- Aber: Algorithmen soweit angegeben, dass sie leicht implementiert werden können

Kriterien für einen Schein

- Klausur
- ▶ 17. August?

Kurshomepage

- ► URL: http: //www.cl.uni-heidelberg.de/courses/ss18/parsing/ mehr Material, etwas ausführlicher:
- http://www.sfs.uni-tuebingen.de/~keberle/Parsing/ ParsingHP.html

Überblick

Organisatorisches

Einführung

Formale Spracher

Das Wortproblem

Grammatik

Grammatik

Erkenner und Parser

Chomsky Hierarchie

Unterscheidungskriterien

Natürliche Sprache

Was bedeutet 'Parsing'?

- von Lateinisch 'pars'= 'der Teil'
- 'parsen' = 'in Teile zerlegen'='analysieren'
- \rightarrow Strings/strukturierte Informationen/Sätze in Teile zerlegen!

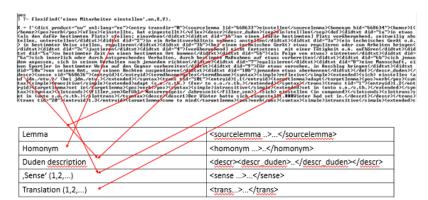
Motivation

Parsing

► Warum?

Motivation

Parsing


- ▶ Warum?
- ▶ Finde Informationsatome und beziehe diese aufeinander
- → Um eine Maschine zu steuern (Programmiersprache)
- → Um den Inhalt kategorial richtig zu erfassen (Lexika, etc.)
- → Um den Inhalt zu 'verstehen' (Natürliche Sprache)

Parsing

Problem

- Mehrdeutigkeit!
 Deshalb: unterscheide Anwendung bezogen auf
- ► Formale Sprachen: nicht mehrdeutig und
- Natürliche Sprachen: mehrdeutig
 - = viel schwieriger

Beispiel: (XML-strukurierter) Lexikoneintrag - nur eine Lesart

Struktur der internen Repräsentation

Beispiel: Natürliche Sprache: mehrere Lesarten

```
l: weil er zwei Tage alte Zeitungen las.
                            Evaluation = 0.1209 ...
Syntactic analysis no. 1.
                   wei1782344(1,7)
                                      subcon.i
           top
           sub.i(n) er206261(2)
                                      noun(pron(pers3), [nom, sg, m, kda | X4], nwh)
                   zwei(3,u)
                                      noun(num,[[[X7]pl]],f,o[X8],X9)
           nad.i
                  tag689060(4)
alt23110(5)
                                      noun(cn,[[[nom|p1],[gen|p1],[acc|p1]],m,o|num],X6)
adj(nMnaFNSnaP,X5)
           anum
                                      noun(cn,[acc,pl,f,na|aj],nwh)
           ob.iČn∑
                   zeitung807082(6)
                                      verb(fin([pers3|sg],past,X1:dcl:nwh))
                   les437118(7.2.6.u)
           sccomp
because he read two days old newspapers.
Syntactic analysis no. 3.
                                 Evaluation = 0.1309 ...
                 wei1782344(1.7)
                                        subcon.i
        top
        subj(n)
                 er206261(2)
                                        noun(pron(pers3), [nom, sg, m, kda | X4], nwh)
                 zwei(3.u)
                                        noun(num,[[[[X5|p1]],f,o|X6],X7)
        nadj
                  tag689060(4)
                                        noun(cn,[acc,pl,m,o!num],nwh)
                  alt23110(5)
                                        adj(nMnaFNSnaP,X10)
                 zeitung807082(6)
                                        noun(cn, [acc,pl,f,nalaj],nwh)
        ob.j₹n>
                  les437118(7.2.6.u)
                                        verb(fin([pers3|sql.past.X1:dcl:nwh))
        sccomp
because he read old newspapers for two days.
```

Ambiguität

'Explosion'

Ambiguitäten können sich multiplizieren!

Syntaktische Ambiguität

i: er kam zwei Tage zu spät, weil er zwei Tage alte Zeitungen las. Syntactic analysis no. 1. Evaluation = 2.33309 ...

```
sub.j(n)
         er206261(1)
                                 noun(pron(pers3), [nom, sg, m, kda | X3], nwh)
top
         komm395620(2,1,u)
                                 verb(fin([pers3|sg],past,ind:dcl:nwh))
noun(num,[[[X17|p]]],f,o|X18],X19)
         zwei(3.u)
nad.i
anum
         tag689060(4)
                                 noun(cn.[[[nom|p1].[gen|p1].[acc|p1]].m.o|num].X16)
         zu814914(5)
                                 qual(pre, X22)
ad.ipre
                                 adv(X15,adv)
         spät649940(6)
vadv
sep(com)
                                 separator
         wei1782344(8,14)
                                 subcon.i
vsubcon.i
         er206261(9)
                                 noun(pron(pers3).[nom.sq.m.kda;X7].nwh)
sub.i(n)
nad.i
         zwei(10,u)
                                 noun(num,[[[X10|p]]],f,o|X11],X12)
anıım
         tag689060(11)
                                 noun(cn,[[[nom:pl],[gen:pl],[acc:pl]],m,o:num],X9)
         alt23110(12)
                                 adj(nMnaFNSnaP, X8)
nad.i
         zeitung807082(13)
                                 noun(cn, [acc,pl,f,nalaj],nwh)
ob.i₹n>
         les437118(14.9.13.u)
                                 verb(fin([pers3|sql.past.X4:dcl:nwh))
sccomp
```

he came two days too late because he read two days old newspapers.

Syntactic analysis no. 3. Evaluation = 2.33409 ...

```
subj(n)
          er206261(1)
                                 noun(pron(pers3),[nom,sg,m,kda;X3],nwh)
                                 verb(fin([pers3|sg],past,ind:dcl:nwh))
top
          komm395620(2,1,u)
                                 noun(num,[[[X16]p1]],f,o;X17],X18)
nad.j
          zwei(3.u)
                                 noun(cn,[[[nom|p1],[gen|p1],[acc|p1]],m,o|num],X15)
anum
          tag689060(4)
                                 qual(pre,X21)
adv(X14,adv)
ad jpre
          zu814914(5)
vadv
          spät649940(6)
sep(com)
                                 separator
vsubcon.j
         wei1782344(8,14)
                                 subconj
         er206261(9)
subj(n)
                                 noun(pron(pers3), [nom, sg, m, kda | X7], nwh)
nadi
          zwei(10.u)
                                 noun(num,[[[[X8|p1]],f,o[X9],X10)
vadv
          tag689060(11)
                                 noun(cn, [acc,pl,m,o!num],nwh)
adj(nMnaFNSnaP,X13)
nad.j
          alt23110(12)
obj(n)
          zeitung807082(13)
                                 noun(cn, [acc, pl,f,nalaj],nwh)
sccomp
          les437118(14.9.13.u)
                                 verb(fin([pers3|sg],past,X4:dcl:nwh))
```

he came two days too late because he read old newspapers for two days.

Syntaktische Ambiguität

```
Syntactic analysis no. 5.
                                Evaluation = 3.43209 ...
                         er206261(1)
                                                  noun(pron(pers3).[nom.sq.m.kda;X3].nwh)
               sub.i(n)
                         komm395620(2,1,u)
                                                  verb(fin([pers3|sgl,past,ind:dcl:nwh))
               top
                                                  noun(num,[[[X17|p]]],f,o|X18],X19)
               nad.i
                         zwei(3.u)
               vadū
                         tag689060(4)
                                                 noun(cn,[acc,p1,m,o|num],nwh)
qual(pre,X16)
adv(X15,adv)
                         zu814914(5)
               ad.ipre
                         spät649940(6)
               vadv
                                                  separator
               sep(com)
               vsubconj wei1782344(8,14)
                                                  subcon.i
                         er206261(9)
               sub.i(n)
                                                  noun(pron(pers3), [nom, sg, m, kda | X71, nwh)
                                                 noun(num, [[[X10|p1]],f,o|X11],X12)
               nad.i
                         zwei(10.u)
               anum
                         tag689060(11)
                                                  noun(cn,[[[nom|p1],[gen|p1],[acc|p1]],m,o|num],X9)
               nad.i
                         alt23110(12)
                                                  adj(nMnaFNSnaP, X8)
               obj(n)
                                                 noun(cn, [acc,p],f,na|aj],nwh)
verb(fin([pers3|sq],past,X4:dcl:nwh))
                         zeitung807082<13>
                         les437118(14.9.13.u)
               sccomp
```

he was late two days because he read two days old newspapers. Syntactic analysis no. 7.

```
subj(n)
         er206261(1)
                                noun(pron(pers3), [nom,sg,m,kda|X3],nwh)
         komm395620(2.1.u)
                                verb(fin([pers3|sg],past,ind:dcl:nwh))
nad.i
         zwei(3,u)
                                noun(num,[[[X16;p]]],f,o;X17],X18)
vadů
         tag689060(4)
                                noun(cn,[acc,pl,m,o!num],nwh)
                                qual(pre,X15)
ad.ipre
         211814914(5)
                                adu(X14.adu)
vadu
         spät649940(6)
                                separator
sep(com)
vsubconj wei1782344(8,14)
                                subcon.j
sub.i(n)
         er206261(9)
                                noun(pron(pers3), [nom, sg, m, kda | X7], nwh)
         zwei(10.u)
                                noun(num,[[[X8|p1]],f.o[X9],X10)
nad.i
uadu
         tag689060(11)
                                noun(cn,[acc,pl,m,o|num],nwh)
         alt23110(12)
                                adj(nMnaFNSnaP, X13)
nad.i
         zeitung807082(13)
ob.i₹n>
                                noun(cn,[acc,pl,f,nalaj],nwh)
sccomp
         les437118(14.9.13.u)
                               verb(fin([pers3|sg],past,X4:dcl:nwh))
```

Evaluation = 3.43309 ...

he was late two days because he read old newspapers for two days.

Natürliche Sprache

Ambiguität

- morphologische Ebene
- syntaktische Ebene
- semantische Ebene
- pragmatische Ebene

Naturliche Sprache

Suchraum ist ein Problem

▶ Versuche den effizientesten Algorithmus zu finden!

Natürliche Sprache

Der Grammatiktyp ist wichtig

Kann ich eine Sprache mit einer

- 'regulären' / 'Kontext-freien' / 'Kontext-sensitiven' Grammatik beschreiben?
- → unterschiedliche Problemklassen für das Erkennungsproblem

Programm

Mo 30.07		
09.15	Einführung & Formale Sprachen	
11.00	Top-Down & Bottom-Up Parsing	
13.00	Tabellen-gesteuertes Parsing: LL Parsing	
Di 31.07		
09.15	Tabellen-gesteuertes Parsing: LR Parsing	
11.00	xLR Erkenner	
13.00	Übungen	
Mi 01.08.		
09.15	Tomita-Parser	
11.00	Chart Parser: CYK	
13.00	Übungen	
Do 02.08		
09.15	Chart Parser: Earley Parser	
11.00	Chart Parser: Left-Corner Parsing	
13.00	Übungen	
Fr 03.08		
09.15	Grammatik-Transformationen, DCGs, Feature Constraints	
11.00	Dependency Grammar Parsing	
13.00	Statistisches Parsing	

Literatur I

- ► Folien auf
 http://www.cl.uni-heidelberg.de/courses/ss18/parsing/
 und ebenfalls dort:
- Skript von Helmut Schmid
- Nederhof/Satta: Tabular Parsing http://arxiv.org/pdf/cs/0404009.pdf
- ► Andreas Kunert: LR(k)-Analyse für Pragmatiker https://amor.cms.hu-berlin.de/~kunert/papers/ lr-analyse/lr.pdf

Literatur II

- Grune/Jacobs: Parsing Techniques: A Practical Guide http://dickgrune.com/Books/PTAPG_1st_Edition/ BookBody.pdf Informatik-orientiert
- ► Aho/Sethi/Ullman: Compilers: Principles, Techniques, and Tools LL- and LR Parsing, Informatik-orientiert
- Jurafsky/Martin: Speech and Language Processing (Draft auf der Webseite) Linguistik-orientiert
- Aho/Ullman: The Theory of Parsing, Translation, and Compiling.
 Vol. 1 (Parsing)
 Grundlagen, Kontext-freie Analyse (ohne Tomita Parser)
- Hopcroft/Ullman: Introduction to Automata Theory, Languages and Computation
 Zu formalen Sprachen

Überblick

Organisatorisches

Einführung

Formale Sprachen
Das Wortproblem
Grammatik

Grammatik

Erkenner und Parser

Chomsky Hierarchie

Unterscheidungskriterien

Natürliche Sprache

Parsing und Formale Sprachen: Grundbegriffe

Was wird geparst?

Strings eines Alphabets

- ▶ Alphabet: set of symbols $\Sigma = \{a, b, c\}$
- \triangleright \sum^n , \sum^* , \sum^+
- ▶ String: $w \in \Sigma^*$ cbaac, baca
- ► Concatenation of strings ww′
- ► Length of a string |w|
- ▶ Empty string ε
- ► (True) prefix/suffix
- ▶ Notation: aⁿb^m

Das Wortproblem

Aufgabe

- ► Gegeben eine formale Grammatik und ein Eingabestring:
- ► Entscheide, ob der String eine Ableitung aus der Grammatik hat
- ► Folgt er aus dem Startsymbol der Grammatik, ist er ein Satz der zur Grammatik gehörenden Sprache
- ► Eine Ableitung ist eine Analyse
- Analysen können als Parse-Bäume oder Regelsequenzen dargestellt werden
- ▶ Es ist möglich, dass ein Satz mehrere Analysen hat

Grammatik

• Grammar: $G = (V, \Sigma, P, S)$

V : finite set of *non-terminal symbols*

 Σ : finite set of *terminal symbols* ($V \cap \Sigma = \emptyset$)

P: finite set of productions (grammar rules)

S: start symbol of the grammar ($S \in V$)

▶ Productions $p \in P$ have the form $\alpha \to \beta$, where $\alpha \in (V \cup \Sigma)^* V (V \cup \Sigma)^*$ and $\beta \in (V \cup \Sigma)^*$

Notational convention:

$$a, a_i \in \Sigma$$
; $A, B, C \in V$; $w, r \in \Sigma^*$; $\alpha, \beta \in (V \cup \Sigma)^*$

Sprache einer Grammatik

Die aus G erzeugte Sprache: L(G)

- Derivability:
 - v is immediately derivable from u ($u \Rightarrow v$), iff $u = \gamma \alpha \delta$, $v = \gamma \beta \delta$ and $\alpha \rightarrow \beta \in P$
 - ▶ v is in n steps derivable from u $(\stackrel{n}{\Rightarrow})$, iff $\exists u_0 \dots u_n : u = u_0 \Rightarrow u_1 \Rightarrow \dots \Rightarrow u_n = v$
 - ▶ v is (in any number of steps) derivable from $u \stackrel{*}{\Rightarrow} v$, iff $u \stackrel{n}{\Rightarrow} v$ for some n > 0.
- ► Sentential form: $\{s \in (V \cup \Sigma)^* \mid S \stackrel{*}{\Rightarrow} s\}$
- ▶ Language generated by G: $L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$
- ► Equivalence of grammars: $G \equiv G' \iff L(G) = L(G')$

Einige Ableitungen I

Derivations

 G_{ab} : $S \rightarrow A B C$, $A \rightarrow a A$, $A \rightarrow a$, $B \rightarrow b B$, $B \rightarrow b$, $C \rightarrow c C$, $C \rightarrow c$ Left-most Right-most S S ABC ABC aABC ABc aaBC AbBc aabBC Abbc aabbC aAbbc aabbc aabbc

Parsing Winter 2013 Chris Culy

Überblick

Organisatorisches

Einführung

Formale Sprachen

Das Wortproblem

Grammatik

Grammatik

Erkenner und Parser

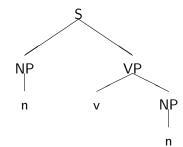
Chomsky Hierarchie

Unterscheidungskriterien

Natürliche Sprache

Erkenner und Parser

- ▶ Recognizer: checks whether $w \in L(G)$
- Parser: additionally prints the parse(s)
- Parse:
 Sequence of rules used in a derivation


 (i.e.: history of derivation)

 N.B. not necessarily displayed graphically
- ► Left-most/right-most parse
- ambiguous/unambiguous grammar (ambiguous: more than one (left-most/right-most) parse)
- ▶ ambiguous/unambiguous language (language L is unambiguous iff exists unambiguous G with L = L(G))

Parse-Baum

(1) S \rightarrow NP VP

- (2) NP \rightarrow a n
- (3) $NP \rightarrow n$
- (4) $VP \rightarrow v NP$

Parse und Parse-Baum

- ▶ Parse = sequence of derivations (+ reference to rule) vs.
- Parse tree (without sequential information)

Überblick

Organisatorisches

Einführung

Formale Spracher

Das Wortproblem

Grammatik

Grammatik

Erkenner und Parser

Chomsky Hierarchie

Unterscheidungskriterien

Natürliche Sprache

Formale Sprachen

Chomsky Hierarchie

- ► Type-0 grammars: $\alpha \rightarrow \beta$ (unrestricted)
- ▶ Type-1 grammars (context sensitive): $\alpha \to \beta$ with $|\alpha| \le |\beta|$ (exception: $S \to \varepsilon$)
- ► **Type-2** grammars (context free): $A \rightarrow \alpha$
- ▶ Type-3 grammars (regular): $A \to wB$ or $A \to w$ (right linear) and $A \to Bw$ or $A \to w$ (left linear) respectively where $w \in \Sigma^*$ (= extended RG vs strict RG: $w = a, A \to \epsilon$)
- ⇒ General phrase structure, Context sensitive, context free, regular languages

Reguläre Grammatiken und Reguläre Ausdrücke

Reguläre Ausdrücke

Given an alphabet of symbols Σ , the following are all and only the *regular expressions* over the alphabet Σ (\cup { \emptyset , ϵ , |, [,], * }):

Reguläre Ausdrücke

```
Sind L(A), L(B), L(C) regulär, so sind: L(A) \& L(B), L(A) - L(B), \neg L(A) regulär.
```

Deshalb können die folgenden Operatoren dazugenommen werden:

```
\begin{array}{ll} \alpha \ \& \ \beta & \text{intersection} \\ \alpha \ \hbox{-} \ \beta & \text{relative complement} \\ \ \ \alpha & \text{complement} \end{array}
```

Reguläre Sprache

Definition

durch regulären Ausdruck

Reguläre Sprache

Definition

- durch regulären Ausdruck
- durch reguläre Grammatik(→syntaktische Definitionen)

Reguläre Sprache

Definition

- durch regulären Ausdruck
- ▶ durch reguläre Grammatik(→syntaktische Definitionen)
- ▶ durch FSA (→prozedurale Definition)

Definition (FSA)

A finite-state automaton is a quintuple $(\Sigma, Q, i, F, \Delta)$ where

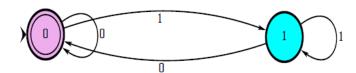
 $ightharpoonup \Sigma$ is a finite set called the alphabet,

Definition (FSA)

- $ightharpoonup \Sigma$ is a finite set called the alphabet,
- Q is a finite set of states,

Definition (FSA)

- $ightharpoonup \Sigma$ is a finite set called the alphabet,
- Q is a finite set of states.
- $i \in Q$ is the initial state,

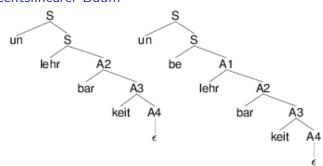

Definition (FSA)

- $ightharpoonup \Sigma$ is a finite set called the alphabet,
- Q is a finite set of states,
- $i \in Q$ is the initial state.
- $ightharpoonup F \subseteq Q$ the set of final states, and

Definition (FSA)

- $ightharpoonup \Sigma$ is a finite set called the alphabet,
- Q is a finite set of states,
- $i \in Q$ is the initial state,
- $ightharpoonup F \subseteq Q$ the set of final states, and
- ▶ $\Delta \subseteq Q \times (\Sigma \cup \epsilon) \times Q$ is the set of edges (the transition relation).

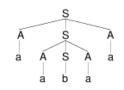
FSA - Example

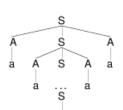

L(G)= { unbelehrbarkeit, lehrbarkeit, unlehrbar, lehrbar, ..}

Chomsky Hierarchy - Examples

```
Regular Languages
\langle G, \Sigma, S, R \rangle
 \Sigma = \{un, be, lehr, bar, keit\},
 \Phi = \{S,A1,A2,A3,A4\},
 S = S.
  R = \{ S \rightarrow un S,
           S \rightarrow lehr A2.
           S \rightarrow be A1.
           A1 \rightarrow lehr A2.
           A2 \rightarrow bar A3.
           A3 \rightarrow \text{keit } A4.
           A3 \rightarrow \epsilon.
           A4 \rightarrow \epsilon}.
```

unbarkeit $\not\in L(G)$


Rechtslinearer Baum



Kontext-freie Sprachen

L =
$$\{a^nba^n \mid n \ge 0\}$$

is not regular!
 $\langle G, \Sigma, S, R \rangle$
 $\Sigma = \{a,b\},$
 $\Phi = \{S,A\},$
 $S = S,$
 $R = \{S \rightarrow ASA,$
 $S \rightarrow b,$
 $A \rightarrow a\}$

Kontext-sensitive Sprachen

```
L = \{a^n b^n c^n \mid n \ge 1\} \text{ ist nicht Kontext-frei!}
\langle G, \Sigma, S, R \rangle
mit
R = \{S \to a S B C, \quad a B \to a b, \\ S \to a B C, \quad b B \to b b, \\ C B \to B C, \quad b C \to b c, \\ c C \to c c\}
a^3 b^3 c^3 = aaabbbccc \in L(G) \text{ gdw. } S \stackrel{*}{\Rightarrow} aaabbbccc
S
\Rightarrow a S B C \Rightarrow a a a b B B C C C
```

⇒ a a S B C B C ⇒ a a a b b B C C C
⇒ a a a B B C B C B C
⇒ a a a B B C C B C
⇒ a a a B B C C C C
⇒ a a a B B C C C C
⇒ a a a b b b c C C

⇒ aaabbbcc c

⇒aaa**BBB**CCC

Sprachen zu allgemeinen Phrasen-Struktur Grammatiken

$$\mathsf{L} = \{a^{2^n} \mid n \ge 1\}$$

ist nicht Kontext-sensitiv!

$$G = \langle \{S, A, B, C, D, E\}, \{a\}, R, S \rangle$$

S
$$\rightarrow$$
 ACaB. CB \rightarrow E. aE \rightarrow Ea. Ca \rightarrow aaC. aD \rightarrow Da. AE \rightarrow ϵ . CB \rightarrow DB. AD \rightarrow AC.

$$a^{2^2} = aaaa \in L(G)$$
 gdw. $S \stackrel{*}{\Rightarrow} aaaa$

Eigenschaften von Grammatiken

- $\triangleright \varepsilon \text{ rule}: A \rightarrow \varepsilon$
- ▶ ε free: $\neg \exists A \in V : A \to \varepsilon$ (Exception: $S \to \varepsilon$)
- cycle free: $\neg \exists A \in V : A \stackrel{+}{\Rightarrow} A$.
- ▶ chain rules: $A \rightarrow B$
- ▶ unreachable non-terminals: $\neg S \stackrel{*}{\Rightarrow} \alpha A\beta$
- ▶ unproductive non-terminals: $\neg \exists w \in \Sigma^* : A \stackrel{*}{\Rightarrow} w$
- ► left-recursive/right-recursive non-terminals: $A \stackrel{+}{\Rightarrow} A \alpha$ bzw. $A \stackrel{+}{\Rightarrow} \alpha A$.
- ► left-recursive/right-recursive Grammars

Eigenschaften von Kontext-freien Grammatiken

Chomsky normal form:

$$\forall p \in P : p = A \rightarrow BC \text{ or } p = A \rightarrow a$$
 (Exception: $S \rightarrow \varepsilon$)

Greibach normal form:

$$\forall p \in P : p = A \rightarrow a\alpha$$

where: $a \in \Sigma$ and $\alpha \in V^*$
(Exception: $S \rightarrow \varepsilon$)

Eigenschaften von Kontext-freien Grammatiken

It can be shown that for all context-free grammars G there is a context-free grammar G' with:

- $\blacktriangleright L(G) = L(G');$
- ▶ G' is ε -free:
- G' does not contain chain rules;
- ▶ *G'* is cycle free;
- G' does not contain unreachable non-terminals;
- G' does not contain unproductive symbols.

Überblick

Organisatorisches

Einführung

Formale Spracher

Das Wortproblem

Grammatik

Grammatik

Erkenner und Parser

Chomsky Hierarchie

Unterscheidungskriterien

Natürliche Sprache

Sprachen - Unterscheidungskriterien

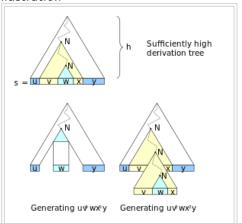
Pumping Lemma

▶ Notwendige Bedingung für reguläre Sprachen

$$\forall L \in \mathcal{L}_3. \ \exists n \in \mathbb{N}. \ \forall z \in L. \ |z| \geq n \implies \exists u, v, w. \ z = u \cdot v \cdot w \land \\ |uv| \leq n \land \\ |v| > 0 \land \\ \forall i \in \mathbb{N}_0. \ u \cdot v^i \cdot w \in L$$

Sprachen - Unterscheidungskriterien

Pumping Lemma


► Entsprechend für Kontext-freie Sprachen

```
\forall L \subseteq \Sigma^*. (context_free(L) \Rightarrow \exists p \ge 1. \forall s \in L. (|s| \ge p \Rightarrow \exists u.v.w.x.y \in \Sigma^*. (s = uvwxy \land |vwx| \le p \land |vx| \ge 1 \land \forall n \ge 0. uv^nwx^ny \in L)))
```

Sprachen - Unterscheidungskriterien

Pumping Lemma

Illustration

Überblick

Organisatorisches

Einführung

Formale Spracher

Das Wortproblem

Grammatik

Grammatik

Erkenner und Parser

Chomsky Hierarchie

Unterscheidungskriterien

Natürliche Sprache

Unterscheidung

- syntaktisch korrekt
- semantisch korrekt
- pragmatisch korrekt

Beispiele

- der Hund jagt die Katze
- ▶ jagt der Hund die Katze
- ▶ (*)jagt der die Hund Katze
- ▶ (*) der Hund jagst die Katze
- ▶ (*)(?) Colorless green ideas sleep furiously (Chomsky 57)
- ▶ (*)(?) The king of France is bald (Russell)

Sascha Brawer:

http://www.brawer.ch/prolog/sprachenhierarchie.pdf

Sind natürliche Sprachen regulär?

Endliche Automaten als Grammatikformalismus?

♦ Das Englische besitzt Strukturen der Art $ux^n vy^n w$:

A white male hired another white male

A white male whom a white male hired hired another white male

A white male whom a white male whom a white male hired hired another white male

A white male whom a white male whom a white male whom a white male hired hired hired another white male

- $\bullet u =$ "A white male"
- x = "whom a white male"
- v =
- v = "hired"

Annahme

- Kontext-freier Kern /Syntax)
- ▶ Aber

Offene Frage

Zürich-Deutsch

- (1) ... mer em Hans es huus hälfed aastriiche ... we Hans-DAT the house-ACC helped paint '... we helped Hans paint the house.'
- (2) ... mer de Hans es huus lönd aastriiche ... we Hans-ACC the house-ACC let paint ... we let Hans paint the house'
- (3) ...*mer em Hans es huus lönd aastriiche ... we Hans-DAT the house-ACC let paint '... we let Hans paint the house.'

Zürichdeutsch ist nicht kontextfrei

Wird Zürichdeutsch mit der regulären Sprache

De Jan säit, dass mer Akk.-Obj.* Dat.-Obj.* es Huus händ wele Akk.-V* Dat.-V* aastriiche.

geschnitten, ergibt sich die Sprache

De Jan säit, dass mer Akk.-Obj.ⁿ Dat.-Obj.^m es Huus händ wele Akk.-Vⁿ Dat.-V^m aastrijche.

Es ist beweisbar, ...

- dass diese Sprache nicht kontextfrei ist.
- Also kann die ursprüngliche Sprache, Zürichdeutsch, auch nicht kontextfrei sein.