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CHAPTER

2 Regular Expressions, Text
Normalization, Edit Distance

User: You are like my father in some ways.
ELIZA: WHAT RESEMBLANCE DO YOU SEE
User: You are not very aggressive but I think you don’t want me to notice that.
ELIZA: WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE
User: You don’t argue with me.
ELIZA: WHY DO YOU THINK I DON’T ARGUE WITH YOU
User: You are afraid of me.
ELIZA: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

Weizenbaum (1966)

The dialogue above is from ELIZA, an early natural language processing sys-ELIZA

tem that could carry on a limited conversation with a user by imitating the responses
of a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple
program that uses pattern matching to recognize phrases like “You are X” and trans-
late them into suitable outputs like “What makes you think I am X?”. This simple
technique succeeds in this domain because ELIZA doesn’t actually need to know
anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is one
of the few dialogue genres where listeners can act as if they know nothing of the
world. Eliza’s mimicry of human conversation was remarkably successful: many
people who interacted with ELIZA came to believe that it really understood them
and their problems, many continued to believe in ELIZA’s abilities even after the
program’s operation was explained to them (Weizenbaum, 1976), and even today
such chatbots are a fun diversion.chatbots

Of course modern conversational agents are much more than a diversion; they
can answer questions, book flights, or find restaurants, functions for which they rely
on a much more sophisticated understanding of the user’s intent, as we will see in
Chapter 29. Nonetheless, the simple pattern-based methods that powered ELIZA
and other chatbots play a crucial role in natural language processing.

We’ll begin with the most important tool for describing text patterns: the regular
expression. Regular expressions can be used to specify strings we might want to
extract from a document, from transforming “You are X” in Eliza above, to defining
strings like $199 or $24.99 for extracting tables of prices from a document.

We’ll then turn to a set of tasks collectively called text normalization, in whichtext
normalization

regular expressions play an important part. Normalizing text means converting it
to a more convenient, standard form. For example, most of what we are going to
do with language relies on first separating out or tokenizing words from running
text, the task of tokenization. English words are often separated from each othertokenization

by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll
are sometimes treated as large words despite the fact that they contain spaces, while
sometimes we’ll need to separate I’m into the two words I and am. For processing
tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc.
Some languages, like Chinese, don’t have spaces between words, so word tokeniza-
tion becomes more difficult.
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Another part of text normalization is lemmatization, the task of determininglemmatization

that two words have the same root, despite their surface differences. For example,
the words sang, sung, and sings are forms of the verb sing. The word sing is the
common lemma of these words, and a lemmatizer maps from all of these to sing.
Lemmatization is essential for processing morphologically complex languages like
Arabic. Stemming refers to a simpler version of lemmatization in which we mainlystemming

just strip suffixes from the end of the word. Text normalization also includes sen-
tence segmentation: breaking up a text into individual sentences, using cues likesentence

segmentation
periods or exclamation points.

Finally, we’ll need to compare words and other strings. We’ll introduce a metric
called edit distance that measures how similar two strings are based on the number
of edits (insertions, deletions, substitutions) it takes to change one string into the
other. Edit distance is an algorithm with applications throughout language process-
ing, from spelling correction to speech recognition to coreference resolution.

2.1 Regular Expressions

SIR ANDREW: Her C’s, her U’s and her T’s: why that?
Shakespeare, Twelfth Night

One of the unsung successes in standardization in computer science has been the
regular expression (RE), a language for specifying text search strings. This prac-regular

expression
tical language is used in every computer language, word processor, and text pro-
cessing tools like the Unix tools grep or Emacs. Formally, a regular expression is
an algebraic notation for characterizing a set of strings. They are particularly use-
ful for searching in texts, when we have a pattern to search for and a corpus ofcorpus

texts to search through. A regular expression search function will search through the
corpus, returning all texts that match the pattern. The corpus can be a single docu-
ment or a collection. For example, the Unix command-line tool grep takes a regular
expression and returns every line of the input document that matches the expression.

A search can be designed to return every match on a line, if there are more than
one, or just the first match. In the following examples we underline the exact part of
the pattern that matches the regular expression and show only the first match. We’ll
show regular expressions delimited by slashes but note that slashes are not part of
the regular expressions.

2.1.1 Basic Regular Expression Patterns
The simplest kind of regular expression is a sequence of simple characters. To search
for woodchuck, we type /woodchuck/. The expression /Buttercup/ matches any
string containing the substring Buttercup; grepwith that expression would return the
line I’m called little Buttercup. The search string can consist of a single character
(like /!/) or a sequence of characters (like /urgl/).

RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucks and lemurs”
/a/ “Mary Ann stopped by Mona’s”
/!/ “You’ve left the burglar behind again!” said Nori

Figure 2.1 Some simple regex searches.
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Regular expressions are case sensitive; lower case /s/ is distinct from upper
case /S/ (/s/ matches a lower case s but not an upper case S). This means that
the pattern /woodchucks/ will not match the string Woodchucks. We can solve this
problem with the use of the square braces [ and ]. The string of characters inside the
braces specifies a disjunction of characters to match. For example, Fig. 2.2 shows
that the pattern /[wW]/ matches patterns containing either w or W.

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.2 The use of the brackets [] to specify a disjunction of characters.

The regular expression /[1234567890]/ specified any single digit. While such
classes of characters as digits or letters are important building blocks in expressions,
they can get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In cases where there is a well-defined sequence asso-
ciated with a set of characters, the brackets can be used with the dash (-) to specify
any one character in a range. The pattern /[2-5]/ specifies any one of the charac-range

ters 2, 3, 4, or 5. The pattern /[b-g]/ specifies one of the characters b, c, d, e, f, or
g. Some other examples are shown in Fig. 2.3.

RE Match Example Patterns Matched
/[A-Z]/ an upper case letter “we should call it ‘Drenched Blossoms’ ”
/[a-z]/ a lower case letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.3 The use of the brackets [] plus the dash - to specify a range.

The square braces can also be used to specify what a single character cannot be,
by use of the caret ˆ. If the caret ˆ is the first symbol after the open square brace [,
the resulting pattern is negated. For example, the pattern /[ˆa]/ matches any single
character (including special characters) except a. This is only true when the caret
is the first symbol after the open square brace. If it occurs anywhere else, it usually
stands for a caret; Fig. 2.4 shows some examples.

RE Match (single characters) Example Patterns Matched
/[ˆA-Z]/ not an upper case letter “Oyfn pripetchik”
/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
/[ˆ\.]/ not a period “our resident Djinn”
/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now”
/aˆb/ the pattern ‘aˆb’ “look up aˆ b now”

Figure 2.4 Uses of the caret ˆ for negation or just to mean ˆ. We discuss below the need to escape the period
by a backslash.

How can we talk about optional elements, like an optional s in woodchuck and
woodchucks? We can’t use the square brackets, because while they allow us to say
“s or S”, they don’t allow us to say “s or nothing”. For this we use the question mark
/?/, which means “the preceding character or nothing”, as shown in Fig. 2.5.

We can think of the question mark as meaning “zero or one instances of the
previous character”. That is, it’s a way of specifying how many of something that
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RE Match Example Patterns Matched
/woodchucks?/ woodchuck or woodchucks “woodchuck”
/colou?r/ color or colour “colour”

Figure 2.5 The question mark ? marks optionality of the previous expression.

we want, something that is very important in regular expressions. For example,
consider the language of certain sheep, which consists of strings that look like the
following:

baa!
baaa!
baaaa!
baaaaa!
. . .

This language consists of strings with a b, followed by at least two a’s, followed
by an exclamation point. The set of operators that allows us to say things like “some
number of as” are based on the asterisk or *, commonly called the Kleene * (gen-Kleene *

erally pronounced “cleany star”). The Kleene star means “zero or more occurrences
of the immediately previous character or regular expression”. So /a*/ means “any
string of zero or more as”. This will match a or aaaaaa, but it will also match Off
Minor since the string Off Minor has zero a’s. So the regular expression for matching
one or more a is /aa*/, meaning one a followed by zero or more as. More complex
patterns can also be repeated. So /[ab]*/ means “zero or more a’s or b’s” (not
“zero or more right square braces”). This will match strings like aaaa or ababab or
bbbb.

For specifying multiple digits (useful for finding prices) we can extend /[0-9]/,
the regular expression for a single digit. An integer (a string of digits) is thus
/[0-9][0-9]*/. (Why isn’t it just /[0-9]*/?)

Sometimes it’s annoying to have to write the regular expression for digits twice,
so there is a shorter way to specify “at least one” of some character. This is the
Kleene +, which means “one or more of the previous character”. Thus, the expres-Kleene +

sion /[0-9]+/ is the normal way to specify “a sequence of digits”. There are thus
two ways to specify the sheep language: /baaa*!/ or /baa+!/.

One very important special character is the period (/./), a wildcard expression
that matches any single character (except a carriage return), as shown in Fig. 2.6.

RE Match Example Matches
/beg.n/ any character between beg and n begin, beg’n, begun

Figure 2.6 The use of the period . to specify any character.

The wildcard is often used together with the Kleene star to mean “any string of
characters”. For example, suppose we want to find any line in which a particular
word, for example, aardvark, appears twice. We can specify this with the regular
expression /aardvark.*aardvark/.

Anchors are special characters that anchor regular expressions to particular placesAnchors

in a string. The most common anchors are the caret ˆ and the dollar sign $. The caret
ˆ matches the start of a line. The pattern /ˆThe/ matches the word The only at the
start of a line. Thus, the caret ˆ has three uses: to match the start of a line, to in-
dicate a negation inside of square brackets, and just to mean a caret. (What are the
contexts that allow grep or Python to know which function a given caret is supposed
to have?) The dollar sign $ matches the end of a line. So the pattern  $ is a useful
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pattern for matching a space at the end of a line, and /ˆThe dog\.$/ matches a
line that contains only the phrase The dog. (We have to use the backslash here since
we want the . to mean “period” and not the wildcard.)

There are also two other anchors: \b matches a word boundary, and \B matches
a non-boundary. Thus, /\bthe\b/ matches the word the but not the word other.
More technically, a “word” for the purposes of a regular expression is defined as any
sequence of digits, underscores, or letters; this is based on the definition of “words”
in programming languages. For example, /\b99\b/ will match the string 99 in
There are 99 bottles of beer on the wall (because 99 follows a space) but not 99 in
There are 299 bottles of beer on the wall (since 99 follows a number). But it will
match 99 in $99 (since 99 follows a dollar sign ($), which is not a digit, underscore,
or letter).

2.1.2 Disjunction, Grouping, and Precedence
Suppose we need to search for texts about pets; perhaps we are particularly interested
in cats and dogs. In such a case, we might want to search for either the string cat or
the string dog. Since we can’t use the square brackets to search for “cat or dog” (why
can’t we say /[catdog]/?), we need a new operator, the disjunction operator, alsodisjunction

called the pipe symbol |. The pattern /cat|dog/ matches either the string cat or
the string dog.

Sometimes we need to use this disjunction operator in the midst of a larger se-
quence. For example, suppose I want to search for information about pet fish for
my cousin David. How can I specify both guppy and guppies? We cannot simply
say /guppy|ies/, because that would match only the strings guppy and ies. This
is because sequences like guppy take precedence over the disjunction operator |.Precedence

To make the disjunction operator apply only to a specific pattern, we need to use the
parenthesis operators ( and ). Enclosing a pattern in parentheses makes it act like
a single character for the purposes of neighboring operators like the pipe | and the
Kleene*. So the pattern /gupp(y|ies)/ would specify that we meant the disjunc-
tion only to apply to the suffixes y and ies.

The parenthesis operator ( is also useful when we are using counters like the
Kleene*. Unlike the | operator, the Kleene* operator applies by default only to
a single character, not to a whole sequence. Suppose we want to match repeated
instances of a string. Perhaps we have a line that has column labels of the form
Column 1 Column 2 Column 3. The expression /Column [0-9]+ */ will not
match any number of columns; instead, it will match a single column followed by
any number of spaces! The star here applies only to the space  that precedes it,
not to the whole sequence. With the parentheses, we could write the expression
/(Column [0-9]+ *)*/ to match the word Column, followed by a number and
optional spaces, the whole pattern repeated any number of times.

This idea that one operator may take precedence over another, requiring us to
sometimes use parentheses to specify what we mean, is formalized by the operator
precedence hierarchy for regular expressions. The following table gives the orderoperator

precedence
of RE operator precedence, from highest precedence to lowest precedence.

Parenthesis ()

Counters * + ? {}

Sequences and anchors the ˆmy end$

Disjunction |

Thus, because counters have a higher precedence than sequences,



2.1 • REGULAR EXPRESSIONS 15

/the*/ matches theeeee but not thethe. Because sequences have a higher prece-
dence than disjunction, /the|any/ matches the or any but not theny.

Patterns can be ambiguous in another way. Consider the expression /[a-z]*/

when matching against the text once upon a time. Since /[a-z]*/ matches zero or
more letters, this expression could match nothing, or just the first letter o, on, onc,
or once. In these cases regular expressions always match the largest string they can;
we say that patterns are greedy, expanding to cover as much of a string as they can.greedy

There are, however, ways to enforce non-greedy matching, using another mean-non-greedy

ing of the ? qualifier. The operator *? is a Kleene star that matches as little text as*?

possible. The operator +? is a Kleene plus that matches as little text as possible.+?

2.1.3 A Simple Example
Suppose we wanted to write a RE to find cases of the English article the. A simple
(but incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins a sentence
and hence is capitalized (i.e., The). This might lead us to the following pattern:

/[tT]he/

But we will still incorrectly return texts with the embedded in other words (e.g.,
other or theology). So we need to specify that we want instances with a word bound-
ary on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of /\b/. We might want this since
/\b/ won’t treat underscores and numbers as word boundaries; but we might want
to find the in some context where it might also have underlines or numbers nearby
(the or the25). We need to specify that we want instances in which there are no
alphabetic letters on either side of the the:

/[ˆa-zA-Z][tT]he[ˆa-zA-Z]/

But there is still one more problem with this pattern: it won’t find the word the
when it begins a line. This is because the regular expression [ˆa-zA-Z], which
we used to avoid embedded instances of the, implies that there must be some single
(although non-alphabetic) character before the the. We can avoid this by specify-
ing that before the the we require either the beginning-of-line or a non-alphabetic
character, and the same at the end of the line:

/(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/

The process we just went through was based on fixing two kinds of errors: false
positives, strings that we incorrectly matched like other or there, and false nega-false positives

tives, strings that we incorrectly missed, like The. Addressing these two kinds offalse negatives

errors comes up again and again in implementing speech and language processing
systems. Reducing the overall error rate for an application thus involves two antag-
onistic efforts:

• Increasing precision (minimizing false positives)
• Increasing recall (minimizing false negatives)
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2.1.4 A More Complex Example
Let’s try out a more significant example of the power of REs. Suppose we want to
build an application to help a user buy a computer on the Web. The user might want
“any machine with more than 6 GHz and 500 GB of disk space for less than $1000”.
To do this kind of retrieval, we first need to be able to look for expressions like 6
GHz or 500 GB or Mac or $999.99. In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular expres-
sion for a dollar sign followed by a string of digits:

/$[0-9]+/

Note that the $ character has a different function here than the end-of-line function
we discussed earlier. Regular expression parsers are in fact smart enough to realize
that $ here doesn’t mean end-of-line. (As a thought experiment, think about how
regex parsers might figure out the function of $ from the context.)

Now we just need to deal with fractions of dollars. We’ll add a decimal point
and two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows $199.99 but not $199. We need to make the cents
optional and to make sure we’re at a word boundary:

/\b$[0-9]+(\.[0-9][0-9])?\b/

How about specifications for processor speed? Here’s a pattern for that:

/\b[0-9]+ *(GHz|[Gg]igahertz)\b/

Note that we use / */ to mean “zero or more spaces” since there might always
be extra spaces lying around. We also need to allow for optional fractions again (5.5
GB); note the use of ? for making the final s optional:

/\b[0-9]+(\.[0-9]+)? *(GB|[Gg]igabytes?)\b/

2.1.5 More Operators
Figure 2.7 shows some aliases for common ranges, which can be used mainly to
save typing. Besides the Kleene * and Kleene + we can also use explicit numbers as
counters, by enclosing them in curly brackets. The regular expression /{3}/ means
“exactly 3 occurrences of the previous character or expression”. So /a\.{24}z/

will match a followed by 24 dots followed by z (but not a followed by 23 or 25 dots
followed by a z).

RE Expansion Match First Matches
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit Blue moon
\w [a-zA-Z0-9_] any alphanumeric/underscore Daiyu
\W [ˆ\w] a non-alphanumeric !!!!
\s [ \r\t\n\f] whitespace (space, tab)
\S [ˆ\s] Non-whitespace in Concord

Figure 2.7 Aliases for common sets of characters.
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A range of numbers can also be specified. So /{n,m}/ specifies from n to m
occurrences of the previous char or expression, and /{n,}/ means at least n occur-
rences of the previous expression. REs for counting are summarized in Fig. 2.8.

RE Match
* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n,} at least n occurrences of the previous char or expression

Figure 2.8 Regular expression operators for counting.

Finally, certain special characters are referred to by special notation based on the
backslash (\) (see Fig. 2.9). The most common of these are the newline characterNewline

\n and the tab character \t. To refer to characters that are special themselves (like
., *, [, and \), precede them with a backslash, (i.e., /\./, /\*/, /\[/, and /\\/).

RE Match First Patterns Matched
\* an asterisk “*” “K*A*P*L*A*N”
\. a period “.” “Dr. Livingston, I presume”
\? a question mark “Why don’t they come and lend a hand?”
\n a newline
\t a tab

Figure 2.9 Some characters that need to be backslashed.

2.1.6 Regular Expression Substitution, Capture Groups, and ELIZA
An important use of regular expressions is in substitutions. For example, the substi-substitution

tution operator s/regexp1/pattern/ used in Python and in Unix commands like
vim or sed allows a string characterized by a regular expression to be replaced by
another string:

s/colour/color/

It is often useful to be able to refer to a particular subpart of the string matching
the first pattern. For example, suppose we wanted to put angle brackets around all
integers in a text, for example, changing the 35 boxes to the <35> boxes. We’d
like a way to refer to the integer we’ve found so that we can easily add the brackets.
To do this, we put parentheses ( and ) around the first pattern and use the number
operator \1 in the second pattern to refer back. Here’s how it looks:

s/([0-9]+)/<\1>/

The parenthesis and number operators can also specify that a certain string or
expression must occur twice in the text. For example, suppose we are looking for
the pattern “the Xer they were, the Xer they will be”, where we want to constrain
the two X’s to be the same string. We do this by surrounding the first X with the
parenthesis operator, and replacing the second X with the number operator \1, as
follows:

/the (.*)er they were, the \1er they will be/
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Here the \1 will be replaced by whatever string matched the first item in paren-
theses. So this will match The bigger they were, the bigger they will be but not The
bigger they were, the faster they will be.

This use of parentheses to store a pattern in memory is called a capture group.capture group

Every time a capture group is used (i.e., parentheses surround a pattern), the re-
sulting match is stored in a numbered register. If you match two different sets ofregister

parentheses, \2 means whatever matched the second capture group. Thus
/the (.*)er they (.*), the \1er we \2/

will match The faster they ran, the faster we ran but not The faster they ran, the
faster we ate. Similarly, the third capture group is stored in \3, the fourth is \4, and
so on.

Parentheses thus have a double function in regular expressions; they are used to
group terms for specifying the order in which operators should apply, and they are
used to capture something in a register. Occasionally we might want to use parenthe-
ses for grouping, but don’t want to capture the resulting pattern in a register. In that
case we use a non-capturing group, which is specified by putting the commandsnon-capturing

group
?: after the open paren, in the form (?: pattern ).
/(?:some|a few) (people|cats) like some \1/

will match some cats like some people but not some people like some a few.
Substitutions and capture groups are very useful in implementing simple chat-

bots like ELIZA (Weizenbaum, 1966). Recall that ELIZA simulates a Rogerian
psychologist by carrying on conversations like the following:

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED

ELIZA works by having a series or cascade of regular expression substitutions
each of which matches and changes some part of the input lines. The first substitu-
tions change all instances of my to YOUR, and I’m to YOU ARE, and so on. The next
set of substitutions matches and replaces other patterns in the input. Here are some
examples:

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions can apply to a given input, substitutions are assigned
a rank and applied in order. Creating patterns is the topic of Exercise 2.3, and we
return to the details of the ELIZA architecture in Chapter 29.

2.1.7 Lookahead assertions
Finally, there will be times when we need to predict the future: look ahead in the
text to see if some pattern matches, but not advance the match cursor, so that we can
then deal with the pattern if it occurs.
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These lookahead assertions make use of the (? syntax that we saw in the previ-lookahead

ous section for non-capture groups. The operator (?= pattern) is true if pattern
occurs, but is zero-width, i.e. the match pointer doesn’t advance. The operatorzero-width

(?! pattern) only returns true if a pattern does not match, but again is zero-width
and doesn’t advance the cursor. Negative lookahead is commonly used when we
are parsing some complex pattern but want to rule out a special case. For example
suppose we want to match, at the beginning of a line, any single word that doesn’t
start with ”Volcano”. We can use negative lookahead to do this:

/(ˆ?!Volcano)[A-Za-z]+/

2.2 Words and Corpora

Before we talk about processing words, we need to decide what counts as a word.
Let’s start by looking at a corpus (plural corpora), a computer-readable collectioncorpus

corpora of text or speech. For example the Brown corpus is a million-word collection of sam-
ples from 500 written texts from different genres (newspaper, fiction, non-fiction,
academic, etc.), assembled at Brown University in 1963–64 (Kučera and Francis,
1967). How many words are in the following Brown sentence?

He stepped out into the hall, was delighted to encounter a water brother.

This sentence has 13 words if we don’t count punctuation marks as words, 15
if we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as
words depends on the task. Punctuation is critical for finding boundaries of things
(commas, periods, colons) and for identifying some aspects of meaning (question
marks, exclamation marks, quotation marks). For some tasks, like part-of-speech
tagging or parsing or speech synthesis, we sometimes treat punctuation marks as if
they were separate words.

The Switchboard corpus of telephone conversations between strangers was col-
lected in the early 1990s; it contains 2430 conversations averaging 6 minutes each,
totaling 240 hours of speech and about 3 million words (Godfrey et al., 1992). Such
corpora of spoken language don’t have punctuation but do introduce other compli-
cations with regard to defining words. Let’s look at one utterance from Switchboard;
an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment

filled pause we consider these to be words? Again, it depends on the application. If we are
building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.
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How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma

the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform

languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token

punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.10 Rough numbers of types and tokens for some corpora. The largest, the Google
N-grams corpus, contains 13 million types, but this count only includes types appearing 40 or
more times, so the true number would be much larger.

Fig. 2.10 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and β are positive constants, and 0< β < 1.

|V |= kNβ (2.1)

The value of β depends on the corpus size and the genre, but at least for the
large corpora in Fig. 2.10, β ranges from .67 to .75. Roughly then we can say that
the vocabulary size for a text goes up significantly faster than the square root of its
length in words.

Another measure of the number of words in the language is the number of lem-
mas instead of wordform types. Dictionaries can help in giving lemma counts; dic-
tionary entries or boldface forms are a very rough upper bound on the number of
lemmas (since some lemmas have multiple boldface forms). The 1989 edition of the
Oxford English Dictionary had 615,000 entries.

2.3 Text Normalization

Before almost any natural language processing of a text, the text has to be normal-
ized. At least three tasks are commonly applied as part of any normalization process:

1. Segmenting/tokenizing words from running text
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2. Normalizing word formats
3. Segmenting sentences in running text.

In the next sections we walk through each of these tasks.

2.3.1 Unix tools for crude tokenization and normalization
Let’s begin with an easy, if somewhat naive version of word tokenization and nor-
malization (and frequency computation) that can be accomplished solely in a single
UNIX command-line, inspired by Church (1994). We’ll make use of some Unix
commands: tr, used to systematically change particular characters in the input;
sort, which sorts input lines in alphabetical order; and uniq, which collapses and
counts adjacent identical lines.

For example let’s begin with the complete words of Shakespeare in one textfile,
sh.txt. We can use tr to tokenize the words by changing every sequence of non-
alphabetic characters to a newline (’A-Za-z’ means alphabetic, the -c option com-
plements to non-alphabet, and the -s option squeezes all sequences into a single
character):

tr -sc ’A-Za-z’ ’\n’ < sh.txt

The output of this command will be:

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

Now that there is one word per line, we can sort the lines, and pass them to uniq

-c which will collapse and count them:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | sort | uniq -c

with the following output:

1945 A

72 AARON

19 ABBESS

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

3 Abbot

...

Alternatively, we can collapse all the upper case to lower case:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c

whose output is
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14725 a

97 aaron

1 abaissiez

10 abandon

2 abandoned

2 abase

1 abash

14 abate

3 abated

3 abatement

...

Now we can sort again to find the frequent words. The -n option to sort means
to sort numerically rather than alphabetically, and the -r option means to sort in
reverse order (highest-to-lowest):

tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c | sort -n -r

The results show that the most frequent words in Shakespeare, as in any other
corpus, are the short function words like articles, pronouns, prepositions:

27378 the

26084 and

22538 i

19771 to

17481 of

14725 a

13826 you

12489 my

11318 that

11112 in

...

Unix tools of this sort can be very handy in building quick word count statistics
for any corpus.

2.3.2 Word Tokenization and Normalization
The simple UNIX tools above were fine for getting rough word statistics but more
sophisticated algorithms are generally necessary for tokenization, the task of seg-tokenization

menting running text into words, and normalization, the task of putting words/tokensnormalization

in a standard format.
While the Unix command sequence just removed all the numbers and punctu-

ation, for most NLP applications we’ll need to keep these in our tokenization. We
often want to break off punctuation as a separate token; commas are a useful piece of
information for parsers, periods help indicate sentence boundaries. But we’ll often
want to keep the punctuation that occurs word internally, in examples like m.p.h,,
Ph.D.. AT&T, cap’n. Special characters and numbers will need to be kept in prices
($45.55) and dates (01/02/06); we don’t want to segment that price into separate to-
kens of “45” and “55”. And there are URLs (http://www.stanford.edu), Twitter
hashtags (#nlproc), or email addresses (someone@cs.colorado.edu).

Number expressions introduce other complications as well; while commas nor-
mally appear at word boundaries, commas are used inside numbers in English, every
three digits: 555,500.50. Languages, and hence tokenization requirements, differ
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on this; many continental European languages like Spanish, French, and German, by
contrast, use a comma to mark the decimal point, and spaces (or sometimes periods)
where English puts commas, for example, 555 500,50.

A tokenizer can also be used to expand clitic contractions that are marked byclitic

apostrophes, for example, converting what’re to the two tokens what are, and
we’re to we are. A clitic is a part of a word that can’t stand on its own, and can only
occur when it is attached to another word. Some such contractions occur in other
alphabetic languages, including articles and pronouns in French (j’ai, l’homme).

Depending on the application, tokenization algorithms may also tokenize mul-
tiword expressions like New York or rock ’n’ roll as a single token, which re-
quires a multiword expression dictionary of some sort. Tokenization is thus inti-
mately tied up with named entity detection, the task of detecting names, dates, and
organizations (Chapter 20).

One commonly used tokenization standard is known as the Penn Treebank to-
kenization standard, used for the parsed corpora (treebanks) released by the Lin-Penn Treebank

tokenization
guistic Data Consortium (LDC), the source of many useful datasets. This standard
separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words to-
gether, and separates out all punctuation:

Input: “The San Francisco-based restaurant,” they said, “doesn’t charge $10”.

Output: “ The San Francisco-based restaurant , ” they

said , “ does n’t charge $ 10 ” .

Tokens can also be normalized, in which a single normalized form is chosen for
words with multiple forms like USA and US or uh-huh and uhhuh. This standard-
ization may be valuable, despite the spelling information that is lost in the normal-
ization process. For information retrieval, we might want a query for US to match a
document that has USA; for information extraction we might want to extract coherent
information that is consistent across differently-spelled instances.

Case folding is another kind of normalization. For tasks like speech recognitioncase folding

and information retrieval, everything is mapped to lower case. For sentiment anal-
ysis and other text classification tasks, information extraction, and machine transla-
tion, by contrast, case is quite helpful and case folding is generally not done (losing
the difference, for example, between US the country and us the pronoun can out-
weigh the advantage in generality that case folding provides).

In practice, since tokenization needs to be run before any other language pro-
cessing, it is important for it to be very fast. The standard method for tokeniza-
tion/normalization is therefore to use deterministic algorithms based on regular ex-
pressions compiled into very efficient finite state automata. Carefully designed de-
terministic algorithms can deal with the ambiguities that arise, such as the fact that
the apostrophe needs to be tokenized differently when used as a genitive marker (as
in the book’s cover), a quotative as in ‘The other class’, she said, or in clitics like
they’re. We’ll discuss this use of automata in Chapter 3.

2.3.3 Word Segmentation in Chinese: the MaxMatch algorithm
Some languages, including Chinese, Japanese, and Thai, do not use spaces to mark
potential word-boundaries, and so require alternative segmentation methods. In Chi-
nese, for example, words are composed of characters known as hanzi. Each charac-hanzi

ter generally represents a single morpheme and is pronounceable as a single syllable.
Words are about 2.4 characters long on average. A simple algorithm that does re-
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markably well for segmenting Chinese, and often used as a baseline comparison for
more advanced methods, is a version of greedy search called maximum match-
ing or sometimes MaxMatch. The algorithm requires a dictionary (wordlist) of themaximum

matching
language.

The maximum matching algorithm starts by pointing at the beginning of a string.
It chooses the longest word in the dictionary that matches the input at the current
position. The pointer is then advanced to the end of that word in the string. If
no word matches, the pointer is instead advanced one character (creating a one-
character word). The algorithm is then iteratively applied again starting from the
new pointer position. Fig. 2.11 shows a version of the algorithm.

function MAXMATCH(sentence, dictionary D) returns word sequence W

if sentence is empty
return empty list

for i← length(sentence) downto 1
firstword = first i chars of sentence
remainder = rest of sentence
if InDictionary(firstword, D)

return list(firstword, MaxMatch(remainder,dictionary) )

# no word was found, so make a one-character word
firstword = first char of sentence
remainder = rest of sentence
return list(firstword, MaxMatch(remainder,dictionary D) )

Figure 2.11 The MaxMatch algorithm for word segmentation.

MaxMatch works very well on Chinese; the following example shows an appli-
cation to a simple Chinese sentence using a simple Chinese lexicon available from
the Linguistic Data Consortium:

Input: 他特别喜欢北京烤鸭 “He especially likes Peking duck”
Output: 他 特别 喜欢 北京烤鸭

He especially likes Peking duck

MaxMatch doesn’t work as well on English. To make the intuition clear, we’ll
create an example by removing the spaces from the beginning of Turing’s famous
quote “We can only see a short distance ahead”, producing “wecanonlyseeashortdis-
tanceahead”. The MaxMatch results are shown below.

Input: wecanonlyseeashortdistanceahead

Output: we canon l y see ash ort distance ahead

On English the algorithm incorrectly chose canon instead of stopping at can,
which left the algorithm confused and having to create single-character words l and
y and use the very rare word ort.

The algorithm works better in Chinese than English, because Chinese has much
shorter words than English. We can quantify how well a segmenter works using a
metric called word error rate. We compare our output segmentation with a perfectword error rate

hand-segmented (‘gold’) sentence, seeing how many words differ. The word error
rate is then the normalized minimum edit distance in words between our output and
the gold: the number of word insertions, deletions, and substitutions divided by the
length of the gold sentence in words; we’ll see in Section 2.4 how to compute edit
distance. Even in Chinese, however, MaxMatch has problems, for example dealing
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with unknown words (words not in the dictionary) or genres that differ a lot from
the assumptions made by the dictionary builder.

The most accurate Chinese segmentation algorithms generally use statistical se-
quence models trained via supervised machine learning on hand-segmented training
sets; we’ll introduce sequence models in Chapter 10.

2.3.4 Lemmatization and Stemming

Lemmatization is the task of determining that two words have the same root, despite
their surface differences. The words am, are, and is have the shared lemma be; the
words dinner and dinners both have the lemma dinner. Representing a word by its
lemma is important for web search, since we want to find pages mentioning wood-
chucks if we search for woodchuck. This is especially important in morphologically
complex languages like Russian, where for example the word Moscow has different
endings in the phrases Moscow, of Moscow, from Moscow, and so on. Lemmatizing
each of these forms to the same lemma will let us find all mentions of Moscow. The
lemmatized form of a sentence like He is reading detective stories would thus be He
be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem

pheme of the word, supplying the main meaning— and affixes—adding “additional”affix

meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or a Spanish word like amaren (‘if in the future they
would love’) into the morphemes amar ‘to love’, 3PL, and future subjunctive. We’ll
introduce morphological parsing in Chapter 3.

The Porter Stemmer

While using finite-state transducers to build a full morphological parser is the most
general way to deal with morphological variation in word forms, we sometimes
make use of simpler but cruder chopping off of affixes. This naive version of mor-
phological analysis is called stemming, and one of the most widely used stemmingstemming

algorithms is the simple and efficient Porter (1980) algorithm. The Porter stemmerPorter stemmer

applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but

an accurate copy, complete in all things-names and heights

and soundings-with the single exception of the red crosses

and the written notes.

produces the following stemmed output:

Thi wa not the map we found in Billi Bone s chest but an

accur copi complet in all thing name and height and sound

with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade

which the output of each pass is fed as input to the next pass; here is a sampling of
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the rules:

ATIONAL → ATE (e.g., relational→ relate)
ING → ε if stem contains vowel (e.g., motoring→ motor)

SSES → SS (e.g., grasses→ grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity

2.3.5 Sentence Segmentation
Sentence segmentation is another important step in text processing. The most use-Sentence

segmentation
ful cues for segmenting a text into sentences are punctuation, like periods, question
marks, exclamation points. Question marks and exclamation points are relatively
unambiguous markers of sentence boundaries. Periods, on the other hand, are more
ambiguous. The period character “.” is ambiguous between a sentence boundary
marker and a marker of abbreviations like Mr. or Inc. The previous sentence that
you just read showed an even more complex case of this ambiguity, in which the final
period of Inc. marked both an abbreviation and the sentence boundary marker. For
this reason, sentence tokenization and word tokenization may be addressed jointly.

In general, sentence tokenization methods work by building a binary classifier
(based on a sequence of rules or on machine learning) that decides if a period is part
of the word or is a sentence-boundary marker. In making this decision, it helps to
know if the period is attached to a commonly used abbreviation; thus, an abbrevia-
tion dictionary is useful.

State-of-the-art methods for sentence tokenization are based on machine learning
and are introduced in later chapters.

2.4 Minimum Edit Distance

Much of natural language processing is concerned with measuring how similar two
strings are. For example in spelling correction, the user typed some erroneous
string—let’s say graffe–and we want to know what the user meant. The user prob-
ably intended a word that is similar to graffe. Among candidate similar words,
the word giraffe, which differs by only one letter from graffe, seems intuitively
to be more similar than, say grail or graf, which differ in more letters. Another
example comes from coreference, the task of deciding whether two strings such as
the following refer to the same entity:

Stanford President John Hennessy

Stanford University President John Hennessy
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Again, the fact that these two strings are very similar (differing by only one word)
seems like useful evidence for deciding that they might be coreferent.

Edit distance gives us a way to quantify both of these intuitions about string sim-
ilarity. More formally, the minimum edit distance between two strings is definedminimum edit

distance
as the minimum number of editing operations (operations like insertion, deletion,
substitution) needed to transform one string into another.

The gap between intention and execution, for example, is 5 (delete an i, substi-
tute e for n, substitute x for t, insert c, substitute u for n). It’s much easier to see
this by looking at the most important visualization for string distances, an alignmentalignment

between the two strings, shown in Fig. 2.12. Given two sequences, an alignment is
a correspondence between substrings of the two sequences. Thus, we say I aligns
with the empty string, N with E, and so on. Beneath the aligned strings is another
representation; a series of symbols expressing an operation list for converting the
top string into the bottom string: d for deletion, s for substitution, i for insertion.

I N T E * N T I O N

| | | | | | | | | |
* E X E C U T I O N

d s s i s

Figure 2.12 Representing the minimum edit distance between two strings as an alignment.
The final row gives the operation list for converting the top string into the bottom string: d for
deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of these operations. The
Levenshtein distance between two sequences is the simplest weighting factor in
which each of the three operations has a cost of 1 (Levenshtein, 1966)—we assume
that the substitution of a letter for itself, for example, t for t, has zero cost. The Lev-
enshtein distance between intention and execution is 5. Levenshtein also proposed
an alternative version of his metric in which each insertion or deletion has a cost of
1 and substitutions are not allowed. (This is equivalent to allowing substitution, but
giving each substitution a cost of 2 since any substitution can be represented by one
insertion and one deletion). Using this version, the Levenshtein distance between
intention and execution is 8.

2.4.1 The Minimum Edit Distance Algorithm
How do we find the minimum edit distance? We can think of this as a search task, in
which we are searching for the shortest path—a sequence of edits—from one string
to another.

n t e n t i o n i n t e c n t i o n i n x e n t i o n

del ins subst

i n t e n t i o n

Figure 2.13 Finding the edit distance viewed as a search problem

The space of all possible edits is enormous, so we can’t search naively. However,
lots of distinct edit paths will end up in the same state (string), so rather than recom-
puting all those paths, we could just remember the shortest path to a state each time
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we saw it. We can do this by using dynamic programming. Dynamic programmingdynamic
programming

is the name for a class of algorithms, first introduced by Bellman (1957), that apply
a table-driven method to solve problems by combining solutions to sub-problems.
Some of the most commonly used algorithms in natural language processing make
use of dynamic programming, such as the Viterbi and forward algorithms (Chap-
ter 9) and the CKY algorithm for parsing (Chapter 12).

The intuition of a dynamic programming problem is that a large problem can
be solved by properly combining the solutions to various sub-problems. Consider
the shortest path of transformed words that represents the minimum edit distance
between the strings intention and execution shown in Fig. 2.14.

n t e n t i o n

i n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

e x e c u t i o n

delete i

substitute n by e

substitute t by x

insert u

substitute n by c

Figure 2.14 Path from intention to execution.

Imagine some string (perhaps it is exention) that is in this optimal path (whatever
it is). The intuition of dynamic programming is that if exention is in the optimal
operation list, then the optimal sequence must also include the optimal path from
intention to exention. Why? If there were a shorter path from intention to exention,
then we could use it instead, resulting in a shorter overall path, and the optimal
sequence wouldn’t be optimal, thus leading to a contradiction.

The minimum edit distance algorithm was named by Wagner and Fischer (1974)minimum edit
distance

but independently discovered by many people (summarized later, in the Historical
Notes section of Chapter 9).

Let’s first define the minimum edit distance between two strings. Given two
strings, the source string X of length n, and target string Y of length m, we’ll define
D(i, j) as the edit distance between X [1..i] and Y [1.. j], i.e., the first i characters of X
and the first j characters of Y . The edit distance between X and Y is thus D(n,m).

We’ll use dynamic programming to compute D(n,m) bottom up, combining so-
lutions to subproblems. In the base case, with a source substring of length i but an
empty target string, going from i characters to 0 requires i deletes. With a target
substring of length j but an empty source going from 0 characters to j characters
requires j inserts. Having computed D(i, j) for small i, j we then compute larger
D(i, j) based on previously computed smaller values. The value of D(i, j) is com-
puted by taking the minimum of the three possible paths through the matrix which
arrive there:

D[i, j] = min

 D[i−1, j]+del-cost(source[i])
D[i, j−1]+ ins-cost(target[ j]))
D[i−1, j−1]+ sub-cost(source[i], target[ j])

If we assume the version of Levenshtein distance in which the insertions and
deletions each have a cost of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have
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a cost of 2 (except substitution of identical letters have zero cost), the computation
for D(i, j) becomes:

D[i, j] = min


D[i−1, j]+1
D[i, j−1]+1

D[i−1, j−1]+
{

2; if source[i] 6= target[ j]
0; if source[i] = target[ j]

(2.2)

The algorithm is summarized in Fig. 2.15; Fig. 2.16 shows the results of applying
the algorithm to the distance between intention and execution with the version of
Levenshtein in Eq. 2.2.

function MIN-EDIT-DISTANCE(source, target) returns min-distance

n←LENGTH(source)
m←LENGTH(target)
Create a distance matrix distance[n+1,m+1]

# Initialization: the zeroth row and column is the distance from the empty string
D[0,0] = 0
for each row i from 1 to n do

D[i,0]←D[i-1,0] + del-cost(source[i])
for each column j from 1 to m do

D[0,j]←D[0, j-1] + ins-cost(target[j])

# Recurrence relation:
for each row i from 1 to n do

for each column j from 1 to m do
D[i, j]←MIN( D[i−1, j] + del-cost(source[i]),

D[i−1, j−1] + sub-cost(source[i], target[j]),
D[i, j−1] + ins-cost(target[j]))

# Termination
return D[n,m]

Figure 2.15 The minimum edit distance algorithm, an example of the class of dynamic
programming algorithms. The various costs can either be fixed (e.g., ∀x, ins-cost(x) = 1)
or can be specific to the letter (to model the fact that some letters are more likely to be in-
serted than others). We assume that there is no cost for substituting a letter for itself (i.e.,
sub-cost(x,x) = 0).

Knowing the minimum edit distance is useful for algorithms like finding poten-
tial spelling error corrections. But the edit distance algorithm is important in another
way; with a small change, it can also provide the minimum cost alignment between
two strings. Aligning two strings is useful throughout speech and language process-
ing. In speech recognition, minimum edit distance alignment is used to compute
the word error rate (Chapter 31). Alignment plays a role in machine translation, in
which sentences in a parallel corpus (a corpus with a text in two languages) need to
be matched to each other.

To extend the edit distance algorithm to produce an alignment, we can start by
visualizing an alignment as a path through the edit distance matrix. Figure 2.17
shows this path with the boldfaced cell. Each boldfaced cell represents an alignment
of a pair of letters in the two strings. If two boldfaced cells occur in the same row,
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Src\Tar # e x e c u t i o n
# 0 1 2 3 4 5 6 7 8 9
i 1 2 3 4 5 6 7 6 7 8

n 2 3 4 5 6 7 8 7 8 7
t 3 4 5 6 7 8 7 8 9 8
e 4 3 4 5 6 7 8 9 10 9
n 5 4 5 6 7 8 9 10 11 10
t 6 5 6 7 8 9 8 9 10 11
i 7 6 7 8 9 10 9 8 9 10
o 8 7 8 9 10 11 10 9 8 9
n 9 8 9 10 11 12 11 10 9 8

Figure 2.16 Computation of minimum edit distance between intention and execution with
the algorithm of Fig. 2.15, using Levenshtein distance with cost of 1 for insertions or dele-
tions, 2 for substitutions.

there will be an insertion in going from the source to the target; two boldfaced cells
in the same column indicate a deletion.

Figure 2.17 also shows the intuition of how to compute this alignment path. The
computation proceeds in two steps. In the first step, we augment the minimum edit
distance algorithm to store backpointers in each cell. The backpointer from a cell
points to the previous cell (or cells) that we came from in entering the current cell.
We’ve shown a schematic of these backpointers in Fig. 2.17, after a similar diagram
in Gusfield (1997). Some cells have multiple backpointers because the minimum
extension could have come from multiple previous cells. In the second step, we
perform a backtrace. In a backtrace, we start from the last cell (at the final row andbacktrace

column), and follow the pointers back through the dynamic programming matrix.
Each complete path between the final cell and the initial cell is a minimum distance
alignment. Exercise 2.7 asks you to modify the minimum edit distance algorithm to
store the pointers and compute the backtrace to output an alignment.

# e x e c u t i o n
# 0 1 2 3 4 5 6 7 8 9
i 1 ↖←↑ 2 ↖←↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖ 6 ← 7 ← 8
n 2 ↖←↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↑ 7 ↖←↑ 8 ↖ 7
t 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖ 7 ←↑ 8 ↖←↑ 9 ↑ 8
e 4 ↖ 3 ← 4 ↖← 5 ← 6 ← 7 ←↑ 8 ↖←↑ 9 ↖←↑ 10 ↑ 9
n 5 ↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↖↑ 10
t 6 ↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖ 8 ← 9 ← 10 ←↑ 11
i 7 ↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↑ 9 ↖ 8 ← 9 ← 10
o 8 ↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↑ 10 ↑ 9 ↖ 8 ← 9
n 9 ↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↖←↑ 12 ↑ 11 ↑ 10 ↑ 9 ↖ 8

Figure 2.17 When entering a value in each cell, we mark which of the three neighboring
cells we came from with up to three arrows. After the table is full we compute an alignment
(minimum edit path) by using a backtrace, starting at the 8 in the lower-right corner and
following the arrows back. The sequence of bold cells represents one possible minimum cost
alignment between the two strings.

While we worked our example with simple Levenshtein distance, the algorithm
in Fig. 2.15 allows arbitrary weights on the operations. For spelling correction, for
example, substitutions are more likely to happen between letters that are next to
each other on the keyboard. We’ll discuss how these weights can be estimated in
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Ch. 5. The Viterbi algorithm, for example, is an extension of minimum edit distance
that uses probabilistic definitions of the operations. Instead of computing the “mini-
mum edit distance” between two strings, Viterbi computes the “maximum probabil-
ity alignment” of one string with another. We’ll discuss this more in Chapter 9.

2.5 Summary

This chapter introduced a fundamental tool in language processing, the regular ex-
pression, and showed how to perform basic text normalization tasks including
word segmentation and normalization, sentence segmentation, and stemming.
We also introduce the important minimum edit distance algorithm for comparing
strings. Here’s a summary of the main points we covered about these ideas:

• The regular expression language is a powerful tool for pattern-matching.
• Basic operations in regular expressions include concatenation of symbols,

disjunction of symbols ([], |, and .), counters (*, +, and {n,m}), anchors
(ˆ, $) and precedence operators ((,)).

• Word tokenization and normalization are generally done by cascades of
simple regular expressions substitutions or finite automata.

• The Porter algorithm is a simple and efficient way to do stemming, stripping
off affixes. It does not have high accuracy but may be useful for some tasks.

• The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed by dynamic programming, which also results in an alignment of
the two strings.

Bibliographical and Historical Notes
Kleene (1951) and (1956) first defined regular expressions and the finite automaton,
based on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build
regular expressions compilers into editors for text searching (Thompson, 1968). His
editor ed included a command “g/regular expression/p”, or Global Regular Expres-
sion Print, which later became the Unix grep utility.

Text normalization algorithms has been applied since the beginning of the field.
One of the earliest widely-used stemmers was Lovins (1968). Stemming was also
applied early to the digital humanities, by Packard (1973), who built an affix-stripping
morphological parser for Ancient Greek. Currently a wide variety of code for tok-
enization and normalization is available, such as the Stanford Tokenizer (http://
nlp.stanford.edu/software/tokenizer.shtml) or specialized tokenizers for
Twitter (O’Connor et al., 2010), or for sentiment (http://sentiment.christopherpotts.
net/tokenizing.html). See Palmer (2012) for a survey of text preprocessing.
While the max-match algorithm we describe is commonly used as a segmentation
baseline in languages like Chinese, higher accuracy algorithms like the Stanford
CRF segmenter, are based on sequence models; see Tseng et al. (2005a) and Chang
et al. (2008). NLTK is an essential tool that offers both useful Python libraries
(http://www.nltk.org) and textbook descriptions (Bird et al., 2009). of many
algorithms including text normalization and corpus interfaces.

http://nlp.stanford.edu/software/tokenizer.shtml
http://nlp.stanford.edu/software/tokenizer.shtml
http://sentiment.christopherpotts.net/tokenizing.html
http://sentiment.christopherpotts.net/tokenizing.html
http://www.nltk.org
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For more on Herdan’s law and Heaps’ Law, see Herdan (1960, p. 28), Heaps
(1978), Egghe (2007) and Baayen (2001); Yasseri et al. (2012) discuss the relation-
ship with other measures of linguistic complexity. For more on edit distance, see the
excellent Gusfield (1997). Our example measuring the edit distance from ‘intention’
to ‘execution’ was adapted from Kruskal (1983). There are various publicly avail-
able packages to compute edit distance, including Unix diff and the NIST sclite

program (NIST, 2005).
In his autobiography Bellman (1984) explains how he originally came up with

the term dynamic programming:

“...The 1950s were not good years for mathematical research. [the]
Secretary of Defense ...had a pathological fear and hatred of the word,
research... I decided therefore to use the word, “programming”. I
wanted to get across the idea that this was dynamic, this was multi-
stage... I thought, let’s ... take a word that has an absolutely precise
meaning, namely dynamic... it’s impossible to use the word, dynamic,
in a pejorative sense. Try thinking of some combination that will pos-
sibly give it a pejorative meaning. It’s impossible. Thus, I thought
dynamic programming was a good name. It was something not even a
Congressman could object to.”

Exercises
2.1 Write regular expressions for the following languages.

1. the set of all alphabetic strings;
2. the set of all lower case alphabetic strings ending in a b;
3. the set of all strings from the alphabet a,b such that each a is immedi-

ately preceded by and immediately followed by a b;

2.2 Write regular expressions for the following languages. By “word”, we mean
an alphabetic string separated from other words by whitespace, any relevant
punctuation, line breaks, and so forth.

1. the set of all strings with two consecutive repeated words (e.g., “Hum-
bert Humbert” and “the the” but not “the bug” or “the big bug”);

2. all strings that start at the beginning of the line with an integer and that
end at the end of the line with a word;

3. all strings that have both the word grotto and the word raven in them
(but not, e.g., words like grottos that merely contain the word grotto);

4. write a pattern that places the first word of an English sentence in a
register. Deal with punctuation.

2.3 Implement an ELIZA-like program, using substitutions such as those described
on page 18. You may choose a different domain than a Rogerian psychologist,
if you wish, although keep in mind that you would need a domain in which
your program can legitimately engage in a lot of simple repetition.

2.4 Compute the edit distance (using insertion cost 1, deletion cost 1, substitution
cost 1) of “leda” to “deal”. Show your work (using the edit distance grid).

2.5 Figure out whether drive is closer to brief or to divers and what the edit dis-
tance is to each. You may use any version of distance that you like.
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2.6 Now implement a minimum edit distance algorithm and use your hand-computed
results to check your code.

2.7 Augment the minimum edit distance algorithm to output an alignment; you
will need to store pointers and add a stage to compute the backtrace.

2.8 Implement the MaxMatch algorithm.

2.9 To test how well your MaxMatch algorithm works, create a test set by remov-
ing spaces from a set of sentences. Implement the Word Error Rate metric (the
number of word insertions + deletions + substitutions, divided by the length
in words of the correct string) and compute the WER for your test set.
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CHAPTER

4 Language Modeling with N-
grams

“You are uniformly charming!” cried he, with a smile of associating and now
and then I bowed and they perceived a chaise and four to wish for.

Random sentence generated from a Jane Austen trigram model

Being able to predict the future is not always a good thing. Cassandra of Troy had
the gift of foreseeing but was cursed by Apollo that her predictions would never be
believed. Her warnings of the destruction of Troy were ignored and to simplify, let’s
just say that things just didn’t go well for her later.

In this chapter we take up the somewhat less fraught topic of predicting words.
What word, for example, is likely to follow

Please turn your homework ...

Hopefully, most of you concluded that a very likely word is in, or possibly over,
but probably not refrigerator or the. In the following sections we will formalize
this intuition by introducing models that assign a probability to each possible next
word. The same models will also serve to assign a probability to an entire sentence.
Such a model, for example, could predict that the following sequence has a much
higher probability of appearing in a text:

all of a sudden I notice three guys standing on the sidewalk

than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

Why would you want to predict upcoming words, or assign probabilities to sen-
tences? Probabilities are essential in any task in which we have to identify words
in noisy, ambiguous input, like speech recognition or handwriting recognition. In
the movie Take the Money and Run, Woody Allen tries to rob a bank with a sloppily
written hold-up note that the teller incorrectly reads as “I have a gub”. As Rus-
sell and Norvig (2002) point out, a language processing system could avoid making
this mistake by using the knowledge that the sequence “I have a gun” is far more
probable than the non-word “I have a gub” or even “I have a gull”.

In spelling correction, we need to find and correct spelling errors like Their
are two midterms in this class, in which There was mistyped as Their. A sentence
starting with the phrase There are will be much more probable than one starting with
Their are, allowing a spellchecker to both detect and correct these errors.

Assigning probabilities to sequences of words is also essential in machine trans-
lation. Suppose we are translating a Chinese source sentence:

他 向 记者 介绍了 主要 内容
He to reporters introduced main content
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As part of the process we might have built the following set of potential rough
English translations:

he introduced reporters to the main contents of the statement
he briefed to reporters the main contents of the statement
he briefed reporters on the main contents of the statement

A probabilistic model of word sequences could suggest that briefed reporters on
is a more probable English phrase than briefed to reporters (which has an awkward
to after briefed) or introduced reporters to (which uses a verb that is less fluent
English in this context), allowing us to correctly select the boldfaced sentence above.

Probabilities are also important for augmentative communication (Newell et al.,
1998) systems. People like the physicist Stephen Hawking who are unable to physi-
cally talk or sign can instead use simple movements to select words from a menu to
be spoken by the system. Word prediction can be used to suggest likely words for
the menu.

Models that assign probabilities to sequences of words are called language mod-
els or LMs. In this chapter we introduce the simplest model that assigns probabilitieslanguage model

LM to sentences and sequences of words, the N-gram. An N-gram is a sequence of N
N-gram words: a 2-gram (or bigram) is a two-word sequence of words like “please turn”,

“turn your”, or ”your homework”, and a 3-gram (or trigram) is a three-word se-
quence of words like “please turn your”, or “turn your homework”. We’ll see how
to use N-gram models to estimate the probability of the last word of an N-gram
given the previous words, and also to assign probabilities to entire sequences. In
a bit of terminological ambiguity, we usually drop the word “model”, and thus the
term N-gram is used to mean either the word sequence itself or the predictive model
that assigns it a probability.

Whether estimating probabilities of next words or of whole sequences, the N-
gram model is one of the most important tools in speech and language processing.

4.1 N-Grams

Let’s begin with the task of computing P(w|h), the probability of a word w given
some history h. Suppose the history h is “its water is so transparent that” and we
want to know the probability that the next word is the:

P(the|its water is so transparent that). (4.1)

One way to estimate this probability is from relative frequency counts: take a
very large corpus, count the number of times we see its water is so transparent that,
and count the number of times this is followed by the. This would be answering the
question “Out of the times we saw the history h, how many times was it followed by
the word w”, as follows:

P(the|its water is so transparent that) =
C(its water is so transparent that the)

C(its water is so transparent that)
(4.2)

With a large enough corpus, such as the web, we can compute these counts and
estimate the probability from Eq. 4.2. You should pause now, go to the web, and
compute this estimate for yourself.



4.1 • N-GRAMS 37

While this method of estimating probabilities directly from counts works fine in
many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the
time, and we won’t always be able to count entire sentences. Even simple extensions
of the example sentence may have counts of zero on the web (such as “Walden
Pond’s water is so transparent that the”).

Similarly, if we wanted to know the joint probability of an entire sequence of
words like its water is so transparent, we could do it by asking “out of all possible
sequences of five words, how many of them are its water is so transparent?” We
would have to get the count of its water is so transparent and divide by the sum of
the counts of all possible five word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce cleverer ways of estimating the proba-
bility of a word w given a history h, or the probability of an entire word sequence W .
Let’s start with a little formalizing of notation. To represent the probability of a par-
ticular random variable Xi taking on the value “the”, or P(Xi = “the”), we will use
the simplification P(the). We’ll represent a sequence of N words either as w1 . . .wn
or wn

1. For the joint probability of each word in a sequence having a particular value
P(X = w1,Y = w2,Z = w3, ...,W = wn) we’ll use P(w1,w2, ...,wn).

Now how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?
One thing we can do is decompose this probability using the chain rule of proba-
bility:

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X2
1 ) . . .P(Xn|Xn−1

1 )

=

n∏
k=1

P(Xk|Xk−1
1 ) (4.3)

Applying the chain rule to words, we get

P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1) . . .P(wn|wn−1
1 )

=

n∏
k=1

P(wk|wk−1
1 ) (4.4)

The chain rule shows the link between computing the joint probability of a se-
quence and computing the conditional probability of a word given previous words.
Equation 4.4 suggests that we could estimate the joint probability of an entire se-
quence of words by multiplying together a number of conditional probabilities. But
using the chain rule doesn’t really seem to help us! We don’t know any way to
compute the exact probability of a word given a long sequence of preceding words,
P(wn|wn−1

1 ). As we said above, we can’t just estimate by counting the number of
times every word occurs following every long string, because language is creative
and any particular context might have never occurred before!

The intuition of the N-gram model is that instead of computing the probability
of a word given its entire history, we can approximate the history by just the last
few words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|wn−1
1 ) by using only the conditional probability of the

preceding word P(wn|wn−1). In other words, instead of computing the probability

P(the|Walden Pond’s water is so transparent that) (4.5)
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we approximate it with the probability

P(the|that) (4.6)

When we use a bigram model to predict the conditional probability of the next
word, we are thus making the following approximation:

P(wn|wn−1
1 )≈ P(wn|wn−1) (4.7)

The assumption that the probability of a word depends only on the previous word
is called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the N-gram (whichN-gram

looks N−1 words into the past).
Thus, the general equation for this N-gram approximation to the conditional

probability of the next word in a sequence is

P(wn|wn−1
1 )≈ P(wn|wn−1

n−N+1) (4.8)

Given the bigram assumption for the probability of an individual word, we can
compute the probability of a complete word sequence by substituting Eq. 4.7 into
Eq. 4.4:

P(wn
1)≈

n∏
k=1

P(wk|wk−1) (4.9)

How do we estimate these bigram or N-gram probabilities? An intuitive way to
estimate probabilities is called maximum likelihood estimation or MLE. We get

maximum
likelihood
estimation

the MLE estimate for the parameters of an N-gram model by getting counts from a
corpus, and normalizing the counts so that they lie between 0 and 1.1normalize

For example, to compute a particular bigram probability of a word y given a
previous word x, we’ll compute the count of the bigram C(xy) and normalize by the
sum of all the bigrams that share the same first word x:

P(wn|wn−1) =
C(wn−1wn)∑

w C(wn−1w)
(4.10)

We can simplify this equation, since the sum of all bigram counts that start with
a given word wn−1 must be equal to the unigram count for that word wn−1 (the reader
should take a moment to be convinced of this):

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll
first need to augment each sentence with a special symbol <s> at the beginning
of the sentence, to give us the bigram context of the first word. We’ll also need a
special end-symbol. </s>2

1 For probabilistic models, normalizing means dividing by some total count so that the resulting prob-
abilities fall legally between 0 and 1.
2 We need the end-symbol to make the bigram grammar a true probability distribution. Without an
end-symbol, the sentence probabilities for all sentences of a given length would sum to one. This model
would define an infinite set of probability distributions, with one distribution per sentence length. See
Exercise 4.5.
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<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .67 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = .5 P(do|I) = 1
3 = .33

For the general case of MLE N-gram parameter estimation:

P(wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(4.12)

Equation 4.12 (like Eq. 4.11) estimates the N-gram probability by dividing the
observed frequency of a particular sequence by the observed frequency of a prefix.
This ratio is called a relative frequency. We said above that this use of relativerelative

frequency
frequencies as a way to estimate probabilities is an example of maximum likelihood
estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood
of the training set T given the model M (i.e., P(T |M)). For example, suppose the
word Chinese occurs 400 times in a corpus of a million words like the Brown corpus.
What is the probability that a random word selected from some other text of, say,
a million words will be the word Chinese? The MLE of its probability is 400

1000000
or .0004. Now .0004 is not the best possible estimate of the probability of Chinese
occurring in all situations; it might turn out that in some other corpus or context
Chinese is a very unlikely word. But it is the probability that makes it most likely
that Chinese will occur 400 times in a million-word corpus. We present ways to
modify the MLE estimates slightly to get better probability estimates in Section 4.4.

Let’s move on to some examples from a slightly larger corpus than our 14-word
example above. We’ll use data from the now-defunct Berkeley Restaurant Project,
a dialogue system from the last century that answered questions about a database
of restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some text-
normalized sample user queries (a sample of 9332 sentences is on the website):

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Figure 4.1 shows the bigram counts from a piece of a bigram grammar from the
Berkeley Restaurant Project. Note that the majority of the values are zero. In fact,
we have chosen the sample words to cohere with each other; a matrix selected from
a random set of seven words would be even more sparse.

Figure 4.2 shows the bigram probabilities after normalization (dividing each cell
in Fig. 4.1 by the appropriate unigram for its row, taken from the following set of
unigram probabilities):

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

Here are a few other useful probabilities:
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i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)

= .25× .33× .0011×0.5×0.68
= = .000031

We leave it as Exercise 4.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger N-5-gram

grams, we’ll need to assume extra context for the contexts to the left and right of the
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sentence end. For example, to compute trigram probabilities at the very beginning of
the sentence, we can use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format
as log probabilities. Since probabilities are (by definition) less than or equal to 1,log

probabilities
the more probabilities we multiply together, the smaller the product becomes. Mul-
tiplying enough N-grams together would result in numerical underflow. By using
log probabilities instead of raw probabilities, we get numbers that are not as small.
Adding in log space is equivalent to multiplying in linear space, so we combine log
probabilities by adding them. The result of doing all computation and storage in log
space is that we only need to convert back into probabilities if we need to report
them at the end; then we can just take the exp of the logprob:

p1× p2× p3× p4 = exp(log p1 + log p2 + log p3 + log p4) (4.13)

4.2 Evaluating Language Models

The best way to evaluate the performance of a language model is to embed it in
an application and measure how much the application improves. Such end-to-end
evaluation is called extrinsic evaluation. Extrinsic evaluation is the only way toextrinsic

evaluation
know if a particular improvement in a component is really going to help the task
at hand. Thus, for speech recognition, we can compare the performance of two
language models by running the speech recognizer twice, once with each language
model, and seeing which gives the more accurate transcription.

Unfortunately, running big NLP systems end-to-end is often very expensive. In-
stead, it would be nice to have a metric that can be used to quickly evaluate potential
improvements in a language model. An intrinsic evaluation metric is one that mea-intrinsic

evaluation
sures the quality of a model independent of any application.

For an intrinsic evaluation of a language model we need a test set. As with
many of the statistical models in our field, the probabilities of an N-gram model
come from the corpus it is trained on, the training set or training corpus. We cantraining set

then measure the quality of an N-gram model by its performance on some unseen
data called the test set or test corpus. We will also sometimes call test sets and othertest set

datasets that are not in our training sets held out corpora because we hold them outheld out

from the training data.
So if we are given a corpus of text and want to compare two different N-gram

models, we divide the data into training and test sets, train the parameters of both
models on the training set, and then compare how well the two trained models fit the
test set.

But what does it mean to “fit the test set”? The answer is simple: whichever
model assigns a higher probability to the test set—meaning it more accurately
predicts the test set—is a better model. Given two probabilistic models, the better
model is the one that has a tighter fit to the test data or that better predicts the details
of the test data, and hence will assign a higher probability to the test data.

Since our evaluation metric is based on test set probability, it’s important not to
let the test sentences into the training set. Suppose we are trying to compute the
probability of a particular “test” sentence. If our test sentence is part of the training
corpus, we will mistakenly assign it an artificially high probability when it occurs
in the test set. We call this situation training on the test set. Training on the test
set introduces a bias that makes the probabilities all look too high, and causes huge
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inaccuracies in perplexity, the probability-based metric we introduce below.
Sometimes we use a particular test set so often that we implicitly tune to its

characteristics. We then need a fresh test set that is truly unseen. In such cases, we
call the initial test set the development test set or, devset. How do we divide ourdevelopment

test
data into training, development, and test sets? We want our test set to be as large
as possible, since a small test set may be accidentally unrepresentative, but we also
want as much training data as possible. At the minimum, we would want to pick
the smallest test set that gives us enough statistical power to measure a statistically
significant difference between two potential models. In practice, we often just divide
our data into 80% training, 10% development, and 10% test. Given a large corpus
that we want to divide into training and test, test data can either be taken from some
continuous sequence of text inside the corpus, or we can remove smaller “stripes”
of text from randomly selected parts of our corpus and combine them into a test set.

4.2.1 Perplexity
In practice we don’t use raw probability as our metric for evaluating language mod-
els, but a variant called perplexity. The perplexity (sometimes called PP for short)perplexity

of a language model on a test set is the inverse probability of the test set, normalized
by the number of words. For a test set W = w1w2 . . .wN ,:

PP(W ) = P(w1w2 . . .wN)
− 1

N (4.14)

= N

√
1

P(w1w2 . . .wN)

We can use the chain rule to expand the probability of W :

PP(W ) = N

√√√√ N∏
i=1

1
P(wi|w1 . . .wi−1)

(4.15)

Thus, if we are computing the perplexity of W with a bigram language model,
we get:

PP(W ) = N

√√√√ N∏
i=1

1
P(wi|wi−1)

(4.16)

Note that because of the inverse in Eq. 4.15, the higher the conditional probabil-
ity of the word sequence, the lower the perplexity. Thus, minimizing perplexity is
equivalent to maximizing the test set probability according to the language model.
What we generally use for word sequence in Eq. 4.15 or Eq. 4.16 is the entire se-
quence of words in some test set. Since this sequence will cross many sentence
boundaries, we need to include the begin- and end-sentence markers <s> and </s>

in the probability computation. We also need to include the end-of-sentence marker
</s> (but not the beginning-of-sentence marker <s>) in the total count of word to-
kens N.

There is another way to think about perplexity: as the weighted average branch-
ing factor of a language. The branching factor of a language is the number of possi-
ble next words that can follow any word. Consider the task of recognizing the digits
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in English (zero, one, two,..., nine), given that each of the 10 digits occurs with equal
probability P = 1

10 . The perplexity of this mini-language is in fact 10. To see that,
imagine a string of digits of length N. By Eq. 4.15, the perplexity will be

PP(W ) = P(w1w2 . . .wN)
− 1

N

= (
1
10

N
)−

1
N

=
1

10

−1

= 10 (4.17)

But suppose that the number zero is really frequent and occurs 10 times more
often than other numbers. Now we should expect the perplexity to be lower since
most of the time the next number will be zero. Thus, although the branching factor
is still 10, the perplexity or weighted branching factor is smaller. We leave this
calculation as an exercise to the reader.

We see in Section 4.7 that perplexity is also closely related to the information-
theoretic notion of entropy.

Finally, let’s look at an example of how perplexity can be used to compare dif-
ferent N-gram models. We trained unigram, bigram, and trigram grammars on 38
million words (including start-of-sentence tokens) from the Wall Street Journal, us-
ing a 19,979 word vocabulary. We then computed the perplexity of each of these
models on a test set of 1.5 million words with Eq. 4.16. The table below shows the
perplexity of a 1.5 million word WSJ test set according to each of these grammars.

Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information the N-gram gives us about the word
sequence, the lower the perplexity (since as Eq. 4.15 showed, perplexity is related
inversely to the likelihood of the test sequence according to the model).

Note that in computing perplexities, the N-gram model P must be constructed
without any knowledge of the test set or any prior knowledge of the vocabulary of
the test set. Any kind of knowledge of the test set can cause the perplexity to be
artificially low. The perplexity of two language models is only comparable if they
use identical vocabularies.

An (intrinsic) improvement in perplexity does not guarantee an (extrinsic) im-
provement in the performance of a language processing task like speech recognition
or machine translation. Nonetheless, because perplexity often correlates with such
improvements, it is commonly used as a quick check on an algorithm. But a model’s
improvement in perplexity should always be confirmed by an end-to-end evaluation
of a real task before concluding the evaluation of the model.

4.3 Generalization and Zeros

The N-gram model, like many statistical models, is dependent on the training corpus.
One implication of this is that the probabilities often encode specific facts about a
given training corpus. Another implication is that N-grams do a better and better job
of modeling the training corpus as we increase the value of N.
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We can visualize both of these facts by borrowing the technique of Shannon
(1951) and Miller and Selfridge (1950) of generating random sentences from dif-
ferent N-gram models. It’s simplest to visualize how this works for the unigram
case. Imagine all the words of the English language covering the probability space
between 0 and 1, each word covering an interval proportional to its frequency. We
choose a random value between 0 and 1 and print the word whose interval includes
this chosen value. We continue choosing random numbers and generating words
until we randomly generate the sentence-final token </s>. We can use the same
technique to generate bigrams by first generating a random bigram that starts with
<s> (according to its bigram probability). Let’s say the second word of that bigram
is w. We next chose a random bigram starting with w (again, drawn according to its
bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7×1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
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shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 4.4 Three sentences randomly generated from three N-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-
lap whatsoever in possible sentences, and little if any overlap even in small phrases.
This stark difference tells us that statistical models are likely to be pretty useless as
predictors if the training sets and the test sets are as different as Shakespeare and
WSJ.

How should we deal with this problem when we build N-gram models? One way
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the
problem of sparsity. For any N-gram that occurred a sufficient number of times,
we might have a good estimate of its probability. But because any corpus is limited,
some perfectly acceptable English word sequences are bound to be missing from it.
That is, we’ll have many cases of putative “zero probability N-grams” that should
really have some non-zero probability. Consider the words that follow the bigram
denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things that don’t ever occur in the training set but do occur inzeros

the test set—are a problem for two reasons. First, their presence means we are
underestimating the probability of all sorts of words that might occur, which will
hurt the performance of any application we want to run on this data.

Second, if the probability of any word in the test set is 0, the entire probability
of the test set is 0. By definition, perplexity is based on the inverse probability of the
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test set. Thus if some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

4.3.1 Unknown Words
The previous section discussed the problem of words whose bigram probability is
zero. But what about words we simply have never seen before?

Sometimes we have a language task in which this can’t happen because we know
all the words that can occur. In such a closed vocabulary system the test set canclosed

vocabulary
only contain words from this lexicon, and there will be no unknown words. This is
a reasonable assumption in some domains, such as speech recognition or machine
translation, where we have a pronunciation dictionary or a phrase table that are fixed
in advance, and so the language model can only use the words in that dictionary or
phrase table.

In other cases we have to deal with words we haven’t seen before, which we’ll
call unknown words, or out of vocabulary (OOV) words. The percentage of OOVOOV

words that appear in the test set is called the OOV rate. An open vocabulary systemopen
vocabulary

is one in which we model these potential unknown words in the test set by adding a
pseudo-word called <UNK>.

There are two common ways to train the probabilities of the unknown word
model <UNK>. The first one is to turn the problem back into a closed vocabulary one
by choosing a fixed vocabulary in advance:

1. Choose a vocabulary (word list) that is fixed in advance.
2. Convert in the training set any word that is not in this set (any OOV word) to

the unknown word token <UNK> in a text normalization step.
3. Estimate the probabilities for <UNK> from its counts just like any other regular

word in the training set.

The second alternative, in situations where we don’t have a prior vocabulary in ad-
vance, is to create such a vocabulary implicitly, replacing words in the training data
by <UNK> based on their frequency. For example we can replace by <UNK> all words
that occur fewer than n times in the training set, where n is some small number, or
equivalently select a vocabulary size V in advance (say 50,000) and choose the top
V words by frequency and replace the rest by UNK. In either case we then proceed
to train the language model as before, treating <UNK> like a regular word.

The exact choice of <UNK> model does have an effect on metrics like perplexity.
A language model can achieve low perplexity by choosing a small vocabulary and
assigning the unknown word a high probability. For this reason, perplexities should
only be compared across language models with the same vocabularies (Buck et al.,
2014).

4.4 Smoothing

What do we do with words that are in our vocabulary (they are not unknown words)
but appear in a test set in an unseen context (for example they appear after a word
they never appeared after in training)? To keep a language model from assigning
zero probability to these unseen events, we’ll have to shave off a bit of probability
mass from some more frequent events and give it to the events we’ve never seen.
This modification is called smoothing or discounting. In this section and the fol-smoothing

discounting
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lowing ones we’ll introduce a variety of ways to do smoothing: add-1 smoothing,
add-k smoothing, Stupid backoff, and Kneser-Ney smoothing.

4.4.1 Laplace Smoothing
The simplest way to do smoothing is to add one to all the bigram counts, before
we normalize them into probabilities. All the counts that used to be zero will now
have a count of 1, the counts of 1 will be 2, and so on. This algorithm is called
Laplace smoothing. Laplace smoothing does not perform well enough to be usedLaplace

smoothing
in modern N-gram models, but it usefully introduces many of the concepts that we
see in other smoothing algorithms, gives a useful baseline, and is also a practical
smoothing algorithm for other tasks like text classification (Chapter 6).

Let’s start with the application of Laplace smoothing to unigram probabilities.
Recall that the unsmoothed maximum likelihood estimate of the unigram probability
of the word wi is its count ci normalized by the total number of word tokens N:

P(wi) =
ci

N

Laplace smoothing merely adds one to each count (hence its alternate name add-
one smoothing). Since there are V words in the vocabulary and each one was incre-add-one

mented, we also need to adjust the denominator to take into account the extra V
observations. (What happens to our P values if we don’t increase the denominator?)

PLaplace(wi) =
ci +1
N +V

(4.18)

Instead of changing both the numerator and denominator, it is convenient to
describe how a smoothing algorithm affects the numerator, by defining an adjusted
count c∗. This adjusted count is easier to compare directly with the MLE counts and
can be turned into a probability like an MLE count by normalizing by N. To define
this count, since we are only changing the numerator in addition to adding 1 we’ll
also need to multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N +V
(4.19)

We can now turn c∗i into a probability P∗i by normalizing by N.
A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c∗, we might describe a smooth-
ing algorithm in terms of a relative discount dc, the ratio of the discounted counts todiscount

the original counts:

dc =
c∗

c

Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Figure 4.5 shows the add-one smoothed counts for the
bigrams in Fig. 4.1.
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i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 4.6 shows the add-one smoothed probabilities for the bigrams in Fig. 4.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.20)

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P∗Laplace(wn|wn−1) =
C(wn−1wn)+1
C(wn−1)+V

(4.21)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 4.22. Figure 4.7 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(4.22)

Note that add-one smoothing has made a very big change to the counts. C(want to)
changed from 608 to 238! We can see this in probability space as well: P(to|want)
decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at
the discount d (the ratio between new and old counts) shows us how strikingly the
counts for each prefix word have been reduced; the discount for the bigram want to
is .39, while the discount for Chinese food is .10, a factor of 10!

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.
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i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P∗Add-k(wn|wn−1) =
C(wn−1wn)+ k
C(wn−1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn−2wn−1) but we have no examples of a
particular trigram wn−2wn−1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn−1). Similarly, if we don’t have counts to compute
P(wn|wn−1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn−2wn−1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a λ :

P̂(wn|wn−2wn−1) = λ1P(wn|wn−2wn−1)

+λ2P(wn|wn−1)

+λ3P(wn) (4.24)
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such that the λ s sum to 1: ∑
i

λi = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each λ weight is
computed by conditioning on the context. This way, if we have particularly accurate
counts for a particular bigram, we assume that the counts of the trigrams based on
this bigram will be more trustworthy, so we can make the λ s for those trigrams
higher and thus give that trigram more weight in the interpolation. Equation 4.26
shows the equation for interpolation with context-conditioned weights:

P̂(wn|wn−2wn−1) = λ1(wn−1
n−2)P(wn|wn−2wn−1)

+λ2(wn−1
n−2)P(wn|wn−1)

+λ3(wn−1
n−2)P(wn) (4.26)

How are these λ values set? Both the simple interpolation and conditional inter-
polation λ s are learned from a held-out corpus. A held-out corpus is an additionalheld-out

training corpus that we use to set hyperparameters like these λ values, by choosing
the λ values that maximize the likelihood of the held-out corpus. That is, we fix
the N-gram probabilities and then search for the λ values that—when plugged into
Eq. 4.24—give us the highest probability of the held-out set. There are various ways
to find this optimal set of λ s. One way is to use the EM algorithm defined in Chap-
ter 9, which is an iterative learning algorithm that converges on locally optimal λ s
(Jelinek and Mercer, 1980).

In a backoff N-gram model, if the N-gram we need has zero counts, we approx-
imate it by backing off to the (N-1)-gram. We continue backing off until we reach a
history that has some counts.

In order for a backoff model to give a correct probability distribution, we have
to discount the higher-order N-grams to save some probability mass for the lowerdiscount

order N-grams. Just as with add-one smoothing, if the higher-order N-grams aren’t
discounted and we just used the undiscounted MLE probability, then as soon as
we replaced an N-gram which has zero probability with a lower-order N-gram, we
would be adding probability mass, and the total probability assigned to all possible
strings by the language model would be greater than 1! In addition to this explicit
discount factor, we’ll need a function α to distribute this probability mass to the
lower order N-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz back-Katz backoff

off we rely on a discounted probability P∗ if we’ve seen this N-gram before (i.e., if
we have non-zero counts). Otherwise, we recursively back off to the Katz probabil-
ity for the shorter-history (N-1)-gram. The probability for a backoff N-gram PBO is
thus computed as follows:

PBO(wn|wn−1
n−N+1) =

 P∗(wn|wn−1
n−N+1), if C(wn

n−N+1)> 0

α(wn−1
n−N+1)PBO(wn|wn−1

n−N+2), otherwise.

(4.27)
Katz backoff is often combined with a smoothing method called Good-Turing.Good-Turing

The combined Good-Turing backoff algorithm involves quite detailed computation
for estimating the Good-Turing smoothing and the P∗ and α values.
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4.5 Kneser-Ney Smoothing

One of the most commonly used and best performing N-gram smoothing methods
is the interpolated Kneser-Ney algorithm (Kneser and Ney 1995, Chen and Good-Kneser-Ney

man 1998).
Kneser-Ney has its roots in a method called absolute discounting. Recall that

discounting of the counts for frequent N-grams is necessary to save some probabil-
ity mass for the smoothing algorithm to distribute to the unseen N-grams.

To see this, we can use a clever idea from Church and Gale (1991). Consider
an N-gram that has count 4. We need to discount this count by some amount. But
how much should we discount it? Church and Gale’s clever idea was to look at a
held-out corpus and just see what the count is for all those bigrams that had count
4 in the training set. They computed a bigram grammar from 22 million words of
AP newswire and then checked the counts of each of these bigrams in another 22
million words. On average, a bigram that occurred 4 times in the first 22 million
words occurred 3.23 times in the next 22 million words. The following table from
Church and Gale (1991) shows these counts for bigrams with c from 0 to 9:

Bigram count in Bigram count in
training set heldout set

0 0.0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Figure 4.8 For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the
counts of these bigrams in a held-out corpus also of 22 million words.

The astute reader may have noticed that except for the held-out counts for 0
and 1, all the other bigram counts in the held-out set could be estimated pretty well
by just subtracting 0.75 from the count in the training set! Absolute discountingAbsolute

discounting
formalizes this intuition by subtracting a fixed (absolute) discount d from each count.
The intuition is that since we have good estimates already for the very high counts, a
small discount d won’t affect them much. It will mainly modify the smaller counts,
for which we don’t necessarily trust the estimate anyway, and Fig. 4.8 suggests that
in practice this discount is actually a good one for bigrams with counts 2 through 9.
The equation for interpolated absolute discounting applied to bigrams:

PAbsoluteDiscounting(wi|wi−1) =
C(wi−1wi)−d∑

v C(wi−1v)
+λ (wi−1)P(wi) (4.28)

The first term is the discounted bigram, and the second term the unigram with an
interpolation weight λ . We could just set all the d values to .75, or we could keep a
separate discount value of 0.5 for the bigrams with counts of 1.



52 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

Kneser-Ney discounting (Kneser and Ney, 1995) augments absolute discount-
ing with a more sophisticated way to handle the lower-order unigram distribution.
Consider the job of predicting the next word in this sentence, assuming we are inter-
polating a bigram and a unigram model.

I can’t see without my reading .

The word glasses seems much more likely to follow here than, say, the word
Kong, so we’d like our unigram model to prefer glasses. But in fact it’s Kong that is
more common, since Hong Kong is a very frequent word. A standard unigram model
will assign Kong a higher probability than glasses. We would like to capture the
intuition that although Kong is frequent, it is mainly only frequent in the phrase Hong
Kong, that is, after the word Hong. The word glasses has a much wider distribution.

In other words, instead of P(w), which answers the question “How likely is
w?”, we’d like to create a unigram model that we might call PCONTINUATION, which
answers the question “How likely is w to appear as a novel continuation?”. How can
we estimate this probability of seeing the word w as a novel continuation, in a new
unseen context? The Kneser-Ney intuition is to base our estimate of PCONTINUATION
on the number of different contexts word w has appeared in, that is, the number of
bigram types it completes. Every bigram type was a novel continuation the first time
it was seen. We hypothesize that words that have appeared in more contexts in the
past are more likely to appear in some new context as well. The number of times a
word w appears as a novel continuation can be expressed as:

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (4.29)

To turn this count into a probability, we normalize by the total number of word
bigram types. In summary:

PCONTINUATION(w) =
|{v : C(vw)> 0}|

|{(u′,w′) : C(u′w′)> 0}|
(4.30)

An alternative metaphor for an equivalent formulation is to use the number of
word types seen to precede w (Eq. 4.29 repeated):

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (4.31)

normalized by the number of words preceding all words, as follows:

PCONTINUATION(w) =
|{v : C(vw)> 0}|∑
w′ |{v : C(vw′)> 0}|

(4.32)

A frequent word (Kong) occurring in only one context (Hong) will have a low
continuation probability.

The final equation for Interpolated Kneser-Ney smoothing for bigrams is then:Interpolated
Kneser-Ney

PKN(wi|wi−1) =
max(C(wi−1wi)−d,0)

C(wi−1)
+λ (wi−1)PCONTINUATION(wi) (4.33)

The λ is a normalizing constant that is used to distribute the probability mass
we’ve discounted.:

λ (wi−1) =
d∑

v C(wi−1v)
|{w : C(wi−1w)> 0}| (4.34)
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The first term d∑
v C(wi−1v) is the normalized discount. The second term |{w : C(wi−1w)> 0}|

is the number of word types that can follow wi−1 or, equivalently, the number of
word types that we discounted; in other words, the number of times we applied the
normalized discount.

The general recursive formulation is as follows:

PKN(wi|wi−1
i−n+1) =

max(cKN(w i
i−n+1)−d,0)∑

v cKN(w i−1
i−n+1v)

+λ (wi−1
i−n+1)PKN(wi|wi−1

i−n+2) (4.35)

where the definition of the count cKN depends on whether we are counting the
highest-order N-gram being interpolated (for example trigram if we are interpolat-
ing trigram, bigram, and unigram) or one of the lower-order N-grams (bigram or
unigram if we are interpolating trigram, bigram, and unigram):

cKN(·) =
{

count(·) for the highest order
continuationcount(·) for lower orders (4.36)

The continuation count is the number of unique single word contexts for ·.
At the termination of the recursion, unigrams are interpolated with the uniform

distribution, where the parameter ε is the empty string:

PKN(w) =
max(cKN(w)−d,0)∑

w′ cKN(w′)
+λ (ε)

1
V

(4.37)

If we want to include an unknown word <UNK>, it’s just included as a regular vo-
cabulary entry with count zero, and hence its probability will be a lambda-weighted
uniform distribution λ (ε)

V .
The best-performing version of Kneser-Ney smoothing is called modified Kneser-

Ney smoothing, and is due to Chen and Goodman (1998). Rather than use a singlemodified
Kneser-Ney

fixed discount d, modified Kneser-Ney uses three different discounts d1, d2, and
d3+ for N-grams with counts of 1, 2 and three or more, respectively. See Chen and
Goodman (1998, p. 19) or Heafield et al. (2013) for the details.

4.6 The Web and Stupid Backoff

By using text from the web, it is possible to build extremely large language mod-
els. In 2006 Google released a very large set of N-gram counts, including N-grams
(1-grams through 5-grams) from all the five-word sequences that appear at least
40 times from 1,024,908,267,229 words of running text on the web; this includes
1,176,470,663 five-word sequences using over 13 million unique words types (Franz
and Brants, 2006). Some examples:
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4-gram Count
serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

Efficiency considerations are important when building language models that use
such large sets of N-grams. Rather than store each word as a string, it is generally
represented in memory as a 64-bit hash number, with the words themselves stored
on disk. Probabilities are generally quantized using only 4-8 bits (instead of 8-byte
floats), and N-grams are stored in reverse tries.

N-grams can also be shrunk by pruning, for example only storing N-grams with
counts greater than some threshold (such as the count threshold of 40 used for the
Google N-gram release) or using entropy to prune less-important N-grams (Stolcke,
1998). Another option is to build approximate language models using techniques
like Bloom filters (Talbot and Osborne 2007, Church et al. 2007). Finally, effi-Bloom filters

cient language model toolkits like KenLM (Heafield 2011, Heafield et al. 2013) use
sorted arrays, efficiently combine probabilities and backoffs in a single value, and
use merge sorts to efficiently build the probability tables in a minimal number of
passes through a large corpus.

Although with these toolkits it is possible to build web-scale language models
using full Kneser-Ney smoothing, Brants et al. (2007) show that with very large lan-
guage models a much simpler algorithm may be sufficient. The algorithm is called
stupid backoff. Stupid backoff gives up the idea of trying to make the languagestupid backoff

model a true probability distribution. There is no discounting of the higher-order
probabilities. If a higher-order N-gram has a zero count, we simply backoff to a
lower order N-gram, weighed by a fixed (context-independent) weight. This algo-
rithm does not produce a probability distribution, so we’ll follow Brants et al. (2007)
in referring to it as S:

S(wi|wi−1
i−k+1) =


count(wi

i−k+1)

count(wi−1
i−k+1)

if count(wi
i−k+1)> 0

λS(wi|wi−1
i−k+2) otherwise

(4.38)

The backoff terminates in the unigram, which has probability S(w)= count(w)
N . Brants

et al. (2007) find that a value of 0.4 worked well for λ .

4.7 Advanced: Perplexity’s Relation to Entropy

We introduced perplexity in Section 4.2.1 as a way to evaluate N-gram models on
a test set. A better N-gram model is one that assigns a higher probability to the
test data, and perplexity is a normalized version of the probability of the test set.
The perplexity measure actually arises from the information-theoretic concept of
cross-entropy, which explains otherwise mysterious properties of perplexity (why
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the inverse probability, for example?) and its relationship to entropy. Entropy is aEntropy

measure of information. Given a random variable X ranging over whatever we are
predicting (words, letters, parts of speech, the set of which we’ll call χ) and with a
particular probability function, call it p(x), the entropy of the random variable X is:

H(X) =−
∑
x∈χ

p(x) log2 p(x) (4.39)

The log can, in principle, be computed in any base. If we use log base 2, the
resulting value of entropy will be measured in bits.

One intuitive way to think about entropy is as a lower bound on the number of
bits it would take to encode a certain decision or piece of information in the optimal
coding scheme.

Consider an example from the standard information theory textbook Cover and
Thomas (1991). Imagine that we want to place a bet on a horse race but it is too
far to go all the way to Yonkers Racetrack, so we’d like to send a short message to
the bookie to tell him which of the eight horses to bet on. One way to encode this
message is just to use the binary representation of the horse’s number as the code;
thus, horse 1 would be 001, horse 2 010, horse 3 011, and so on, with horse 8 coded
as 000. If we spend the whole day betting and each horse is coded with 3 bits, on
average we would be sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed and that we represent it as the prior probability of each horse as follows:

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variable X that ranges over horses gives us a lower
bound on the number of bits and is

H(X) = −
i=8∑
i=1

p(i) log p(i)

= − 1
2 log 1

2−
1
4 log 1

4−
1
8 log 1

8−
1

16 log 1
16−4( 1

64 log 1
64 )

= 2 bits (4.40)

A code that averages 2 bits per race can be built with short encodings for more
probable horses, and longer encodings for less probable horses. For example, we
could encode the most likely horse with the code 0, and the remaining horses as 10,
then 110, 1110, 111100, 111101, 111110, and 111111.

What if the horses are equally likely? We saw above that if we used an equal-
length binary code for the horse numbers, each horse took 3 bits to code, so the
average was 3. Is the entropy the same? In this case each horse would have a
probability of 1

8 . The entropy of the choice of horses is then

H(X) =−
i=8∑
i=1

1
8

log
1
8
=− log

1
8
= 3 bits (4.41)

Until now we have been computing the entropy of a single variable. But most of
what we will use entropy for involves sequences. For a grammar, for example, we
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will be computing the entropy of some sequence of words W = {w0,w1,w2, . . . ,wn}.
One way to do this is to have a variable that ranges over sequences of words. For
example we can compute the entropy of a random variable that ranges over all finite
sequences of words of length n in some language L as follows:

H(w1,w2, . . . ,wn) =−
∑

W n
1 ∈L

p(W n
1 ) log p(W n

1 ) (4.42)

We could define the entropy rate (we could also think of this as the per-wordentropy rate

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(W n
1 ) =−

1
n

∑
W n

1 ∈L

p(W n
1 ) log p(W n

1 ) (4.43)

But to measure the true entropy of a language, we need to consider sequences of
infinite length. If we think of a language as a stochastic process L that produces a
sequence of words, and allow W to represent the sequence of words w1, . . . ,wn, then
L’s entropy rate H(L) is defined as

H(L) = − lim
n→∞

1
n

H(w1,w2, . . . ,wn)

= − lim
n→∞

1
n

∑
W∈L

p(w1, . . . ,wn) log p(w1, . . . ,wn) (4.44)

The Shannon-McMillan-Breiman theorem (Algoet and Cover 1988, Cover and
Thomas 1991) states that if the language is regular in certain ways (to be exact, if it
is both stationary and ergodic),

H(L) = lim
n→∞
−1

n
log p(w1w2 . . .wn) (4.45)

That is, we can take a single sequence that is long enough instead of summing
over all possible sequences. The intuition of the Shannon-McMillan-Breiman the-
orem is that a long-enough sequence of words will contain in it many other shorter
sequences and that each of these shorter sequences will reoccur in the longer se-
quence according to their probabilities.

A stochastic process is said to be stationary if the probabilities it assigns to aStationary

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at time t is the same as the probability distribution
at time t + 1. Markov models, and hence N-grams, are stationary. For example, in
a bigram, Pi is dependent only on Pi−1. So if we shift our time index by x, Pi+x is
still dependent on Pi+x−1. But natural language is not stationary, since as we show
in Chapter 11, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus, our statistical models only give
an approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assump-
tions, we can compute the entropy of some stochastic process by taking a very long
sample of the output and computing its average log probability.

Now we are ready to introduce cross-entropy. The cross-entropy is useful whencross-entropy

we don’t know the actual probability distribution p that generated some data. It
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allows us to use some m, which is a model of p (i.e., an approximation to p). The
cross-entropy of m on p is defined by

H(p,m) = lim
n→∞
−1

n

∑
W∈L

p(w1, . . . ,wn) logm(w1, . . . ,wn) (4.46)

That is, we draw sequences according to the probability distribution p, but sum
the log of their probabilities according to m.

Again, following the Shannon-McMillan-Breiman theorem, for a stationary er-
godic process:

H(p,m) = lim
n→∞
−1

n
logm(w1w2 . . .wn) (4.47)

This means that, as for entropy, we can estimate the cross-entropy of a model
m on some distribution p by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross-entropy useful is that the cross-entropy H(p,m) is an up-
per bound on the entropy H(p). For any model m:

H(p)≤ H(p,m) (4.48)

This means that we can use some simplified model m to help estimate the true en-
tropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross-entropy H(p,m) will be to the true entropy H(p). Thus,
the difference between H(p,m) and H(p) is a measure of how accurate a model is.
Between two models m1 and m2, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be lower than the true entropy, so
a model cannot err by underestimating the true entropy.)

We are finally ready to see the relation between perplexity and cross-entropy as
we saw it in Eq. 4.47. Cross-entropy is defined in the limit, as the length of the
observed word sequence goes to infinity. We will need an approximation to cross-
entropy, relying on a (sufficiently long) sequence of fixed length. This approxima-
tion to the cross-entropy of a model M = P(wi|wi−N+1...wi−1) on a sequence of
words W is

H(W ) =− 1
N

logP(w1w2 . . .wN) (4.49)

The perplexity of a model P on a sequence of words W is now formally defined asperplexity

the exp of this cross-entropy:

Perplexity(W ) = 2H(W )

= P(w1w2 . . .wN)
− 1

N

= N

√
1

P(w1w2 . . .wN)

= N

√√√√ N∏
i=1

1
P(wi|w1 . . .wi−1)

(4.50)
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4.8 Summary

This chapter introduced language modeling and the N-gram, one of the most widely
used tools in language processing.

• Language models offer a way to assign a probability to a sentence or other
sequence of words, and to predict a word from preceding words.

• N-grams are Markov models that estimate words from a fixed window of pre-
vious words. N-gram probabilities can be estimated by counting in a corpus
and normalizing (the maximum likelihood estimate).

• N-gram language models are evaluated extrinsically in some task, or intrin-
sically using perplexity.

• The perplexity of a test set according to a language model is the geometric
mean of the inverse test set probability computed by the model.

• Smoothing algorithms provide a more sophisticated way to estimat the prob-
ability of N-grams. Commonly used smoothing algorithms for N-grams rely
on lower-order N-gram counts through backoff or interpolation.

• Both backoff and interpolation require discounting to create a probability dis-
tribution.

• Kneser-Ney smoothing makes use of the probability of a word being a novel
continuation. The interpolated Kneser-Ney smoothing algorithm mixes a
discounted probability with a lower-order continuation probability.

Bibliographical and Historical Notes
The underlying mathematics of the N-gram was first proposed by Markov (1913),
who used what are now called Markov chains (bigrams and trigrams) to predict
whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a con-
sonant. Markov classified 20,000 letters as V or C and computed the bigram and
trigram probability that a given letter would be a vowel given the previous one or
two letters. Shannon (1948) applied N-grams to compute approximations to English
word sequences. Based on Shannon’s work, Markov models were commonly used in
engineering, linguistic, and psychological work on modeling word sequences by the
1950s. In a series of extremely influential papers starting with Chomsky (1956) and
including Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued
that “finite-state Markov processes”, while a possibly useful engineering heuristic,
were incapable of being a complete cognitive model of human grammatical knowl-
edge. These arguments led many linguists and computational linguists to ignore
work in statistical modeling for decades.

The resurgence of N-gram models came from Jelinek, Mercer, Bahl, and col-
leagues at the IBM Thomas J. Watson Research Center, who were influenced by
Shannon, and Baker at CMU, who was influenced by the work of Baum and col-
leagues. Independently these two labs successfully used N-grams in their speech
recognition systems (Baker 1990, Jelinek 1976, Baker 1975, Bahl et al. 1983, Je-
linek 1990). A trigram model was used in the IBM TANGORA speech recognition
system in the 1970s, but the idea was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of succession and was first
applied as an engineering solution to the zero-frequency problem by Jeffreys (1948)
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based on an earlier Add-K suggestion by Johnson (1932). Problems with the add-
one algorithm are summarized in Gale and Church (1994).

A wide variety of different language modeling and smoothing techniques were
proposed in the 80s and 90s, including Good-Turing discounting—first applied to
the N-gram smoothing at IBM by Katz (Nádas 1984, Church and Gale 1991)—
Witten-Bell discounting (Witten and Bell, 1991), and varieties of class-based N-
gram models that used information about word classes.class-based

N-gram
Starting in the late 1990s, Chen and Goodman produced a highly influential

series of papers with a comparison of different language models (Chen and Good-
man 1996, Chen and Goodman 1998, Chen and Goodman 1999, Goodman 2006).
They performed a number of carefully controlled experiments comparing differ-
ent discounting algorithms, cache models, class-based models, and other language
model parameters. They showed the advantages of Modified Interpolated Kneser-
Ney, which has since become the standard baseline for language modeling, espe-
cially because they showed that caches and class-based models provided only minor
additional improvement. These papers are recommended for any reader with further
interest in language modeling.

Two commonly used toolkits for building language models are SRILM (Stolcke,
2002) and KenLM (Heafield 2011, Heafield et al. 2013). Both are publicly available.
SRILM offers a wider range of options and types of discounting, while KenLM is
optimized for speed and memory size, making it possible to build web-scale lan-
guage models.

The highest accuracy language models at the time of this writing make use of
neural nets. The problem with standard language models is that the number of pa-neural nets

rameters increases exponentially as the N-gram order increases, and N-grams have
no way to generalize from training to test set. Neural networks instead project words
into a continuous space in which words with similar contexts have similar represen-
tations. Both feedforward nets Bengio et al. 2006, Schwenk 2007 and recurrent
nets (Mikolov, 2012) are used.

Other important classes of language models are maximum entropy languagemaximum
entropy

models (Rosenfeld, 1996), based on logistic regression classifiers that use lots of
features to help predict upcoming words. These classifiers can use the standard
features presented in this chapter (i.e., the previous words) but also lots of other
useful predictors, as can other kinds of discriminative language models (Roark et al.,
2007). We’ll introduce logistic regression language modeling when we introduce
classification in Chapter 6.

Another important technique is language model adaptation, where we want toadaptation

combine data from multiple domains (for example we might have less in-domain
training data but more general data that we then need to adapt) (Bulyko et al. 2003,
Bacchiani et al. 2004, Bellegarda 2004, Bacchiani et al. 2006, Hsu 2007, Liu et al. 2013).

Exercises
4.1 Write out the equation for trigram probability estimation (modifying Eq. 4.11).

Now write out all the non-zero trigram probabilities for the I am Sam corpus
on page 39.

4.2 Calculate the probability of the sentence i want chinese food. Give two
probabilities, one using Fig. 4.2, and another using the add-1 smoothed table
in Fig. 4.6.
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4.3 Which of the two probabilities you computed in the previous exercise is higher,
unsmoothed or smoothed? Explain why.

4.4 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

Using a bigram language model with add-one smoothing, what is P(Sam |
am)? Include <s> and </s> in your counts just like any other token.

4.5 Suppose we didn’t use the end-symbol </s>. Train an unsmoothed bigram
grammar on the following training corpus without using the end-symbol </s>:

<s> a b

<s> b b

<s> b a

<s> a a

Demonstrate that your bigram model does not assign a single probability dis-
tribution across all sentence lengths by showing that the sum of the probability
of the four possible 2 word sentences over the alphabet {a,b} is 1.0, and the
sum of the probability of all possible 3 word sentences over the alphabet {a,b}
is also 1.0.

4.6 Suppose we train a trigram language model with add-one smoothing on a
given corpus. The corpus contains V word types. Express a formula for esti-
mating P(w3|w1,w2), where w3 is a word which follows the bigram (w1,w2),
in terms of various N-gram counts and V. Use the notation c(w1,w2,w3) to
denote the number of times that trigram (w1,w2,w3) occurs in the corpus, and
so on for bigrams and unigrams.

4.7 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

If we use linear interpolation smoothing between a maximum-likelihood bi-
gram model and a maximum-likelihood unigram model with λ1 =

1
2 and λ2 =

1
2 , what is P(Sam|am)? Include <s> and </s>\verb in your counts just like
any other token.

4.8 Write a program to compute unsmoothed unigrams and bigrams.

4.9 Run your N-gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two
corpora. What are the differences in the most common unigrams between the
two? How about interesting differences in bigrams?

4.10 Add an option to your program to generate random sentences.

4.11 Add an option to your program to compute the perplexity of a test set.



CHAPTER

5 Spelling Correction and the
Noisy Channel

ALGERNON: But my own sweet Cecily, I have never written you any letters.
CECILY: You need hardly remind me of that, Ernest. I remember only too well
that I was forced to write your letters for you. I wrote always three times a week,
and sometimes oftener.
ALGERNON: Oh, do let me read them, Cecily?
CECILY: Oh, I couldn’t possibly. They would make you far too conceited. The
three you wrote me after I had broken off the engagement are so beautiful, and
so badly spelled, that even now I can hardly read them without crying a little.

Oscar Wilde, The Importance of Being Earnest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about spelling
during the last turn of the century. Gilbert and Sullivan provide many examples. The
Gondoliers’ Giuseppe, for example, worries that his private secretary is “shaky in his
spelling”, while Iolanthe’s Phyllis can “spell every word that she uses”. Thorstein
Veblen’s explanation (in his 1899 classic The Theory of the Leisure Class) was that
a main purpose of the “archaic, cumbrous, and ineffective” English spelling system
was to be difficult enough to provide a test of membership in the leisure class.

Whatever the social role of spelling, we can certainly agree that many more of
us are like Cecily than like Phyllis. Estimates for the frequency of spelling errors
in human-typed text vary from 1-2% for carefully retyping already printed text to
10-15% for web queries.

In this chapter we introduce the problem of detecting and correcting spelling
errors. Fixing spelling errors is an integral part of writing in the modern world,
whether this writing is part of texting on a phone, sending email, writing longer
documents, or finding information on the web. Modern spell correctors aren’t perfect
(indeed, autocorrect-gone-wrong is a popular source of amusement on the web) but
they are ubiquitous in pretty much any software that relies on keyboard input.

Spelling correction is often considered from two perspectives. Non-word spelling
correction is the detection and correction of spelling errors that result in non-words
(like graffe for giraffe). By contrast, real word spelling correction is the task of
detecting and correcting spelling errors even if they accidentally result in an actual
word of English (real-word errors). This can happen from typographical errorsreal-word

errors
(insertion, deletion, transposition) that accidentally produce a real word (e.g., there
for three), or cognitive errors where the writer substituted the wrong spelling of a
homophone or near-homophone (e.g., dessert for desert, or piece for peace).

Non-word errors are detected by looking for any word not found in a dictio-
nary. For example, the misspelling graffe above would not occur in a dictionary.
The larger the dictionary the better; modern systems often use enormous dictio-
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naries derived from the web. To correct non-word spelling errors we first generate
candidates: real words that have a similar letter sequence to the error. Candidatecandidates

corrections from the spelling error graffe might include giraffe, graf, gaffe, grail, or
craft. We then rank the candidates using a distance metric between the source and
the surface error. We’d like a metric that shares our intuition that giraffe is a more
likely source than grail for graffe because giraffe is closer in spelling to graffe than
grail is to graffe. The minimum edit distance algorithm from Chapter 2 will play a
role here. But we’d also like to prefer corrections that are more frequent words, or
more likely to occur in the context of the error. The noisy channel model introduced
in the next section offers a way to formalize this intuition.

Real word spelling error detection is a much more difficult task, since any word
in the input text could be an error. Still, it is possible to use the noisy channel to find
candidates for each word w typed by the user, and rank the correction that is most
likely to have been the users original intention.

5.1 The Noisy Channel Model

In this section we introduce the noisy channel model and show how to apply it to
the task of detecting and correcting spelling errors. The noisy channel model was
applied to the spelling correction task at about the same time by researchers at AT&T
Bell Laboratories (Kernighan et al. 1990, Church and Gale 1991) and IBM Watson
Research (Mays et al., 1991).

decoder

 

noisy word
original word

noisy channel

guessed word noisy 1
noisy 2
noisy N

word hyp1
word hyp2
...
word hyp3

Figure 5.1 In the noisy channel model, we imagine that the surface form we see is actually
a “distorted” form of an original word passed through a noisy channel. The decoder passes
each hypothesis through a model of this channel and picks the word that best matches the
surface noisy word.

The intuition of the noisy channel model (see Fig. 5.1) is to treat the misspellednoisy channel

word as if a correctly spelled word had been “distorted” by being passed through a
noisy communication channel.

This channel introduces “noise” in the form of substitutions or other changes to
the letters, making it hard to recognize the “true” word. Our goal, then, is to build a
model of the channel. Given this model, we then find the true word by passing every
word of the language through our model of the noisy channel and seeing which one
comes the closest to the misspelled word.
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This noisy channel model is a kind of Bayesian inference. We see an obser-Bayesian

vation x (a misspelled word) and our job is to find the word w that generated this
misspelled word. Out of all possible words in the vocabulary V we want to find the
word w such that P(w|x) is highest. We use the hat notation ˆ to mean “our estimate
of the correct word”.

ŵ = argmax
w∈V

P(w|x) (5.1)

The function argmaxx f (x) means “the x such that f (x) is maximized”. Equa-argmax

tion 5.1 thus means, that out of all words in the vocabulary, we want the particular
word that maximizes the right-hand side P(w|x).

The intuition of Bayesian classification is to use Bayes’ rule to transform Eq. 5.1
into a set of other probabilities. Bayes’ rule is presented in Eq. 5.2; it gives us a way
to break down any conditional probability P(a|b) into three other probabilities:

P(a|b) = P(b|a)P(a)
P(b)

(5.2)

We can then substitute Eq. 5.2 into Eq. 5.1 to get Eq. 5.3:

ŵ = argmax
w∈V

P(x|w)P(w)
P(x)

(5.3)

We can conveniently simplify Eq. 5.3 by dropping the denominator P(x). Why
is that? Since we are choosing a potential correction word out of all words, we will
be computing P(x|w)P(w)

P(x) for each word. But P(x) doesn’t change for each word; we
are always asking about the most likely word for the same observed error x, which
must have the same probability P(x). Thus, we can choose the word that maximizes
this simpler formula:

ŵ = argmax
w∈V

P(x|w)P(w) (5.4)

To summarize, the noisy channel model says that we have some true underlying
word w, and we have a noisy channel that modifies the word into some possible
misspelled observed surface form. The likelihood or channel model of the noisylikelihood

channel model channel producing any particular observation sequence x is modeled by P(x|w). The
prior probability of a hidden word is modeled by P(w). We can compute the mostprior

probability
probable word ŵ given that we’ve seen some observed misspelling x by multiply-
ing the prior P(w) and the likelihood P(x|w) and choosing the word for which this
product is greatest.

We apply the noisy channel approach to correcting non-word spelling errors by
taking any word not in our spell dictionary, generating a list of candidate words,
ranking them according to Eq. 5.4, and picking the highest-ranked one. We can
modify Eq. 5.4 to refer to this list of candidate words instead of the full vocabulary
V as follows:

ŵ = argmax
w∈C

channel model︷ ︸︸ ︷
P(x|w)

prior︷︸︸︷
P(w) (5.5)

The noisy channel algorithm is shown in Fig. 5.2.
To see the details of the computation of the likelihood and the prior (language

model), let’s walk through an example, applying the algorithm to the example mis-
spelling acress. The first stage of the algorithm proposes candidate corrections by
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function NOISY CHANNEL SPELLING(word x, dict D, lm, editprob) returns correction

if x /∈ D
candidates, edits←All strings at edit distance 1 from x that are ∈ D, and their edit
for each c,e in candidates, edits

channel←editprob(e)
prior← lm(x)
score[c] = log channel + log prior

return argmaxc score[c]

Figure 5.2 Noisy channel model for spelling correction for unknown words.

finding words that have a similar spelling to the input word. Analysis of spelling
error data has shown that the majority of spelling errors consist of a single-letter
change and so we often make the simplifying assumption that these candidates have
an edit distance of 1 from the error word. To find this list of candidates we’ll use
the minimum edit distance algorithm introduced in Chapter 2, but extended so that
in addition to insertions, deletions, and substitutions, we’ll add a fourth type of edit,
transpositions, in which two letters are swapped. The version of edit distance with
transposition is called Damerau-Levenshtein edit distance. Applying all such sin-Damerau-

Levenshtein
gle transformations to acress yields the list of candidate words in Fig. 5.3.

Transformation
Correct Error Position

Error Correction Letter Letter (Letter #) Type
acress actress t — 2 deletion
acress cress — a 0 insertion
acress caress ca ac 0 transposition
acress access c r 2 substitution
acress across o e 3 substitution
acress acres — s 5 insertion
acress acres — s 4 insertion

Figure 5.3 Candidate corrections for the misspelling acress and the transformations that
would have produced the error (after Kernighan et al. (1990)). “—” represents a null letter.

Once we have a set of a candidates, to score each one using Eq. 5.5 requires that
we compute the prior and the channel model.

The prior probability of each correction P(w) is the language model probability
of the word w in context, which can be computed using any language model, from
unigram to trigram or 4-gram. For this example let’s start in the following table by
assuming a unigram language model. We computed the language model from the
404,253,213 words in the Corpus of Contemporary English (COCA).

w count(w) p(w)
actress 9,321 .0000231
cress 220 .000000544
caress 686 .00000170
access 37,038 .0000916
across 120,844 .000299
acres 12,874 .0000318

How can we estimate the likelihood P(x|w), also called the channel model orchannel model
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error model? A perfect model of the probability that a word will be mistyped woulderror model

condition on all sorts of factors: who the typist was, whether the typist was left-
handed or right-handed, and so on. Luckily, we can get a pretty reasonable estimate
of P(x|w) just by looking at local context: the identity of the correct letter itself, the
misspelling, and the surrounding letters. For example, the letters m and n are often
substituted for each other; this is partly a fact about their identity (these two letters
are pronounced similarly and they are next to each other on the keyboard) and partly
a fact about context (because they are pronounced similarly and they occur in similar
contexts).

A simple model might estimate, for example, p(acress|across) just using the
number of times that the letter e was substituted for the letter o in some large corpus
of errors. To compute the probability for each edit in this way we’ll need a confu-
sion matrix that contains counts of errors. In general, a confusion matrix lists theconfusion

matrix
number of times one thing was confused with another. Thus for example a substi-
tution matrix will be a square matrix of size 26×26 (or more generally |A| × |A|,
for an alphabet A) that represents the number of times one letter was incorrectly
used instead of another. Following Kernighan et al. (1990) we’ll use four confusion
matrices.

del[x,y]: count(xy typed as x)
ins[x,y]: count(x typed as xy)
sub[x,y]: count(x typed as y)
trans[x,y]: count(xy typed as yx)

Note that we’ve conditioned the insertion and deletion probabilities on the previ-
ous character; we could instead have chosen to condition on the following character.

Where do we get these confusion matrices? One way is to extract them from
lists of misspellings like the following:

additional: addional, additonal
environments: enviornments, enviorments, enviroments
preceded: preceeded
...

There are lists available on Wikipedia and from Roger Mitton (http://www.
dcs.bbk.ac.uk/˜ROGER/corpora.html) and Peter Norvig (http://norvig.
com/ngrams/). Norvig also gives the counts for each single-character edit that can
be used to directly create the error model probabilities.

An alternative approach used by Kernighan et al. (1990) is to compute the ma-
trices by iteratively using this very spelling error correction algorithm itself. The
iterative algorithm first initializes the matrices with equal values; thus, any character
is equally likely to be deleted, equally likely to be substituted for any other char-
acter, etc. Next, the spelling error correction algorithm is run on a set of spelling
errors. Given the set of typos paired with their predicted corrections, the confusion
matrices can now be recomputed, the spelling algorithm run again, and so on. This
iterative algorithm is an instance of the important EM algorithm (Dempster et al.,
1977), which we discuss in Chapter 9.

Once we have the confusion matrices, we can estimate P(x|w) as follows (where

http://www.dcs.bbk.ac.uk/~ROGER/corpora.html
http://www.dcs.bbk.ac.uk/~ROGER/corpora.html
http://norvig.com/ngrams/
http://norvig.com/ngrams/
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wi is the ith character of the correct word w) and xi is the ith character of the typo x:

P(x|w) =



del[xi−1,wi]

count[xi−1wi]
, if deletion

ins[xi−1,wi]

count[wi−1]
, if insertion

sub[xi,wi]

count[wi]
, if substitution

trans[wi,wi+1]

count[wiwi+1]
, if transposition

(5.6)

Using the counts from Kernighan et al. (1990) results in the error model proba-
bilities for acress shown in Fig. 5.4.

Candidate Correct Error
Correction Letter Letter x|w P(x|w)
actress t - c|ct .000117
cress - a a|# .00000144
caress ca ac ac|ca .00000164
access c r r|c .000000209
across o e e|o .0000093
acres - s es|e .0000321
acres - s ss|s .0000342

Figure 5.4 Channel model for acress; the probabilities are taken from the del[], ins[],
sub[], and trans[] confusion matrices as shown in Kernighan et al. (1990).

Figure 5.5 shows the final probabilities for each of the potential corrections;
the unigram prior is multiplied by the likelihood (computed with Eq. 5.6 and the
confusion matrices). The final column shows the product, multiplied by 109 just for
readability.

Candidate Correct Error
Correction Letter Letter x|w P(x|w) P(w) 109*P(x|w)P(w)
actress t - c|ct .000117 .0000231 2.7
cress - a a|# .00000144 .000000544 0.00078
caress ca ac ac|ca .00000164 .00000170 0.0028
access c r r|c .000000209 .0000916 0.019
across o e e|o .0000093 .000299 2.8
acres - s es|e .0000321 .0000318 1.0
acres - s ss|s .0000342 .0000318 1.0

Figure 5.5 Computation of the ranking for each candidate correction, using the language
model shown earlier and the error model from Fig. 5.4. The final score is multiplied by 109

for readability.

The computations in Fig. 5.5 show that our implementation of the noisy channel
model chooses across as the best correction, and actress as the second most
likely word.

Unfortunately, the algorithm was wrong here; the writer’s intention becomes
clear from the context: . . . was called a “stellar and versatile acress whose com-
bination of sass and glamour has defined her. . . ”. The surrounding words make it
clear that actress and not across was the intended word.
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For this reason, it is important to use larger language models than unigrams.
For example, if we use the Corpus of Contemporary American English to compute
bigram probabilities for the words actress and across in their context using add-one
smoothing, we get the following probabilities:

P(actress|versatile) = .000021
P(across|versatile) = .000021

P(whose|actress) = .0010
P(whose|across) = .000006

Multiplying these out gives us the language model estimate for the two candi-
dates in context:

P(“versatile actress whose”) = .000021∗ .0010 = 210×10−10

P(“versatile across whose”) = .000021∗ .000006 = 1×10−10

Combining the language model with the error model in Fig. 5.5, the bigram noisy
channel model now chooses the correct word actress.

Evaluating spell correction algorithms is generally done by holding out a train-
ing, development and test set from lists of errors like those on the Norvig and Mitton
sites mentioned above.

5.2 Real-word spelling errors

The noisy channel approach can also be applied to detect and correct real-word
spelling errors, errors that result in an actual word of English. This can happen fromreal-word error

detection
typographical errors (insertion, deletion, transposition) that accidentally produce a
real word (e.g., there for three) or because the writer substituted the wrong spelling
of a homophone or near-homophone (e.g., dessert for desert, or piece for peace). A
number of studies suggest that between 25% and 40% of spelling errors are valid
English words as in the following examples (Kukich, 1992):

This used to belong to thew queen. They are leaving in about fifteen minuets to go to her house.
The design an construction of the system will take more than a year.
Can they lave him my messages?
The study was conducted mainly be John Black.

The noisy channel can deal with real-word errors as well. Let’s begin with a
version of the noisy channel model first proposed by Mays et al. (1991) to deal
with these real-word spelling errors. Their algorithm takes the input sentence X =
{x1,x2, . . . ,xk, . . . ,xn}, generates a large set of candidate correction sentences C(X),
then picks the sentence with the highest language model probability.

To generate the candidate correction sentences, we start by generating a set of
candidate words for each input word xi. The candidates, C(xi), include every English
word with a small edit distance from xi. With edit distance 1, a common choice
(Mays et al., 1991), the candidate set for the real word error thew (a rare word
meaning ‘muscular strength’) might be C(thew) = {the, thaw, threw, them, thwe}.
We then make the simplifying assumption that every sentence has only one error.
Thus the set of candidate sentences C(X) for a sentence X = Only two of thew

apples would be:
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only two of thew apples

oily two of thew apples

only too of thew apples

only to of thew apples

only tao of the apples

only two on thew apples

only two off thew apples

only two of the apples

only two of threw apples

only two of thew applies

only two of thew dapples

...

Each sentence is scored by the noisy channel:

Ŵ = argmax
W∈C(X)

P(X |W )P(W ) (5.7)

For P(W ), we can use the trigram probability of the sentence.
What about the channel model? Since these are real words, we need to consider

the possibility that the input word is not an error. Let’s say that the channel proba-
bility of writing a word correctly, P(w|w), is α; we can make different assumptions
about exactly what the value of α is in different tasks; perhaps α is .95, assum-
ing people write 1 word wrong out of 20, for some tasks, or maybe .99 for others.
Mays et al. (1991) proposed a simple model: given a typed word x, let the channel
model P(x|w) be α when x = w, and then just distribute 1−α evenly over all other
candidate corrections C(x):

p(x|w) =


α if x = w

1−α

|C(x)|
if x ∈C(x)

0 otherwise

(5.8)

Now we can replace the equal distribution of 1−α over all corrections in Eq. 5.8;
we’ll make the distribution proportional to the edit probability from the more sophis-
ticated channel model from Eq. 5.6 that used the confusion matrices.

Let’s see an example of this integrated noisy channel model applied to a real
word. Suppose we see the string two of thew. The author might have intended
to type the real word thew (‘muscular strength’). But thew here could also be a
typo for the or some other word. For the purposes of this example let’s consider
edit distance 1, and only the following five candidates the, thaw, threw, and thwe

(a rare name) and the string as typed, thew. We took the edit probabilities from
Norvig’s (2009) analysis of this example. For the language model probabilities, we
used a Stupid Backoff model (Section 4.6) trained on the Google N-grams:

P(the|two of) = 0.476012
P(thew|two of) = 9.95051 ×10−8

P(thaw|two of) = 2.09267 ×10−7

P(threw|two of) = 8.9064 ×10−7

P(them|two of) = 0.00144488
P(thwe|two of) = 5.18681 ×10−9

Here we’ve just computed probabilities for the single phrase two of thew, but
the model applies to entire sentences; so if the example in context was two of thew
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people, we’d need to also multiply in probabilities for P(people|of the), P(people|of
thew), P(people|of threw), and so on.

Following Norvig (2009), we assume that the probability of a word being a typo
in this task is .05, meaning that α = P(w|w) is .95. Fig. 5.6 shows the computation.

x w x|w P(x|w) P(w|wi−2,wi−1) 108P(x|w)P(w|wi−2,wi−1)
thew the ew|e 0.000007 0.48 333
thew thew α=0.95 9.95 ×10−8 9.45
thew thaw e|a 0.001 2.1 ×10−7 0.0209
thew threw h|hr 0.000008 8.9 ×10−7 0.000713
thew thwe ew|we 0.000003 5.2 ×10−9 0.00000156

Figure 5.6 The noisy channel model on 5 possible candidates for thew, with a Stupid Back-
off trigram language model computed from the Google N-gram corpus and the error model
from Norvig (2009).

For the error phrase two of thew, the model correctly picks the as the correction.
But note that a lower error rate might change things; in a task where the probability
of an error is low enough (α is very high), the model might instead decide that the
word thew was what the writer intended.

5.3 Noisy Channel Model: The State of the Art

State of the art implementations of noisy channel spelling correction make a number
of extensions to the simple models we presented above.

First, rather than make the assumption that the input sentence has only a sin-
gle error, modern systems go through the input one word at a time, using the noisy
channel to make a decision for that word. But if we just run the basic noisy chan-
nel system described above on each word, it is prone to overcorrecting, replacing
correct but rare words (for example names) with more frequent words (Whitelaw
et al. 2009, Wilcox-O’Hearn 2014). Modern algorithms therefore need to augment
the noisy channel with methods for detecting whether or not a real word should ac-
tually be corrected. For example state of the art systems like Google’s (Whitelaw
et al., 2009) use a blacklist, forbidding certain tokens (like numbers, punctuation,
and single letter words) from being changed. Such systems are also more cautious
in deciding whether to trust a candidate correction. Instead of just choosing a candi-
date correction if it has a higher probability P(w|x) than the word itself, these more
careful systems choose to suggest a correction w over keeping the non-correction x
only if the difference in probabilities is sufficiently great. The best correction w is
chosen only if:

logP(w|x)− logP(x|x)> θ

Depending on the specific application, spell-checkers may decide to autocorrectautocorrect

(automatically change a spelling to a hypothesized correction) or merely to flag the
error and offer suggestions. This decision is often made by another classifier which
decides whether the best candidate is good enough, using features such as the dif-
ference in log probabilities between the candidates (we’ll introduce algorithms for
classification in the next chapter).

Modern systems also use much larger dictionaries than early systems. Ahmad
and Kondrak (2005) found that a 100,000 word UNIX dictionary only contained
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73% of the word types in their corpus of web queries, missing words like pics,
multiplayer, google, xbox, clipart, and mallorca. For this reason modern systems
often use much larger dictionaries automatically derived from very large lists of
unigrams like the Google N-gram corpus. Whitelaw et al. (2009), for example,
used the most frequently occurring ten million word types in a large sample of web
pages. Because this list will include lots of misspellings, their system requires a
more sophisticated error model. The fact that words are generally more frequent than
their misspellings can be used in candidate suggestion, by building a set of words
and spelling variations that have similar contexts, sorting by frequency, treating the
most frequent variant as the source, and learning an error model from the difference,
whether from web text (Whitelaw et al., 2009) or from query logs (Cucerzan and
Brill, 2004). Words can also be automatically added to the dictionary when a user
rejects a correction, and systems running on phones can automatically add words
from the user’s address book or calendar.

We can also improve the performance of the noisy channel model by changing
how the prior and the likelihood are combined. In the standard model they are just
multiplied together. But often these probabilities are not commensurate; the lan-
guage model or the channel model might have very different ranges. Alternatively
for some task or dataset we might have reason to trust one of the two models more.
Therefore we use a weighted combination, by raising one of the factors to a power
λ :

ŵ = argmax
w∈V

P(x|w)P(w)λ (5.9)

or in log space:

ŵ = argmax
w∈V

logP(x|w)+λ logP(w) (5.10)

We then tune the parameter λ on a development test set.
Finally, if our goal is to do real-word spelling correction only for specific con-

fusion sets like peace/piece, affect/effect, weather/whether, or even grammar cor-confusion sets

rection examples like among/between, we can train supervised classifiers to draw on
many features of the context and make a choice between the two candidates. Such
classifiers can achieve very high accuracy for these specific sets, especially when
drawing on large-scale features from web statistics (Golding and Roth 1999, Lapata
and Keller 2004, Bergsma et al. 2009, Bergsma et al. 2010).

5.3.1 Improved Edit Models: Partitions and Pronunciation
Other recent research has focused on improving the channel model P(t|c). One
important extension is the ability to compute probabilities for multiple-letter trans-
formations. For example Brill and Moore (2000) propose a channel model that (in-
formally) models an error as being generated by a typist first choosing a word, then
choosing a partition of the letters of that word, and then typing each partition, pos-
sibly erroneously. For example, imagine a person chooses the word physical,
then chooses the partition ph y s i c al She would then generate each parti-
tion, possible with errors. For example the probability that she would generate the
string fisikle with partition f i s i k le would be p(f|ph)∗ p(i|y)∗ p(s|s)∗
p(i|i)∗ p(k|k)∗ p(le|al). Unlike the Damerau-Levenshtein edit distance, the Brill-
Moore channel model can thus model edit probabilities like P(f|ph) or P(le|al), or
the high likelihood of P(ent|ant). Furthermore, each edit is conditioned on where
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it is in the word (beginning, middle, end) so instead of P(f|ph) the model actually
estimates P(f|ph,beginning).

More formally, let R be a partition of the typo string x into adjacent (possibly
empty) substrings, and T be a partition of the candidate string. Brill and Moore
(2000) then approximates the total likelihood P(x|w) (e.g., P(fisikle|physical))
by the probability of the single best partition:

P(x|w)≈ max
R,T s.t.|T |=|R|

|R|∑
i=1

P(Ti|Ri,position) (5.11)

The probability of each transform P(Ti|Ri) can be learned from a training set of
triples of an error, the correct string, and the number of times it occurs. For example
given a training pair akgsual/actual, standard minimum edit distance is used to
produce an alignment:

a c t u a l

a k g s u a l

This alignment corresponds to the sequence of edit operations:

a→a, c→k, ε→g t→s, u→u, a→a, l→l

Each nonmatch substitution is then expanded to incorporate up to N additional
edits; For N=2, we would expand c→k to:

ac→ak

c→cg

ac→akg

ct→kgs

Each of these multiple edits then gets a fractional count, and the probability for
each edit α → β is then estimated from counts in the training corpus of triples as
count(α→β )

count(α)
.

Another research direction in channel models is the use of pronunciation in ad-
dition to spelling. Pronunciation is an important feature in some non-noisy-channel
algorithms for spell correction like the GNU aspell algorithm (Atkinson, 2011),aspell

which makes use of the metaphone pronunciation of a word (Philips, 1990). Meta-
phone is a series of rules that map a word to a normalized representation of its
pronunciation. Some example rules:

• “Drop duplicate adjacent letters, except for C.”
• “If the word begins with ‘KN’, ‘GN’, ‘PN’, ‘AE’, ‘WR’, drop the first letter.”
• “Drop ‘B’ if after ‘M’ and if it is at the end of the word”

Aspell works similarly to the channel component of the noisy channel model, finding
all words in the dictionary whose pronunciation string is a short edit distance (1 or
2 pronunciation letters) from the typo, and then scoring this list of candidates by
a metric that combines two edit distances: the pronunciation edit distance and the
weighted letter edit distance.

Pronunciation can also be incorporated directly the noisy channel model. For ex-
ample the Toutanova and Moore (2002) model, like aspell, interpolates two channel
models, one based on spelling and one based on pronunciation. The pronunciation
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function SOUNDEX(name) returns soundex form

1. Keep the first letter of name
2. Drop all occurrences of non-initial a, e, h, i, o, u, w, y.
3. Replace the remaining letters with the following numbers:

b, f, p, v→ 1
c, g, j, k, q, s, x, z→ 2
d, t → 3
l→ 4
m, n→ 5
r→ 6

4. Replace any sequences of identical numbers, only if they derive from two or more
letters that were adjacent in the original name, with a single number (e.g., 666→ 6).
5. Convert to the form Letter Digit Digit Digit by dropping digits past the third
(if necessary) or padding with trailing zeros (if necessary).

Figure 5.7 The Soundex Algorithm

model is based on using letter-to-sound models to translate each input word andletter-to-sound

each dictionary word into a sequences of phones representing the pronunciation ofphones

the word. For example actress and aktress would both map to the phone string
ae k t r ix s. See Chapter 32 on the task of letter-to-sound or grapheme-to-
phoneme.

Some additional string distance functions have been proposed for dealing specif-
ically with names. These are mainly used for the task of deduplication (deciding ifdeduplication

two names in a census list or other namelist are the same) rather than spell-checking.
The Soundex algorithm (Knuth 1973, Odell and Russell 1922) is an older method

used originally for census records for representing people’s names. It has the advan-
tage that versions of the names that are slightly misspelled will still have the same
representation as correctly spelled names. (e.g., Jurafsky, Jarofsky, Jarovsky, and
Jarovski all map to J612). The algorithm is shown in Fig. 5.7.

Instead of Soundex, more recent work uses Jaro-Winkler distance, which isJaro-Winkler

an edit distance algorithm designed for names that allows characters to be moved
longer distances in longer names, and also gives a higher similarity to strings that
have identical initial characters (Winkler, 2006).

Bibliographical and Historical Notes
Algorithms for spelling error detection and correction have existed since at least
Blair (1960). Most early algorithms were based on similarity keys like the Soundex
algorithm (Odell and Russell 1922, Knuth 1973). Damerau (1964) gave a dictionary-
based algorithm for error detection; most error-detection algorithms since then have
been based on dictionaries. Early research (Peterson, 1986) had suggested that
spelling dictionaries might need to be kept small because large dictionaries con-
tain very rare words (wont, veery) that resemble misspellings of other words, but
Damerau and Mays (1989) found that in practice larger dictionaries proved more
helpful. Damerau (1964) also gave a correction algorithm that worked for single
errors.

The idea of modeling language transmission as a Markov source passed through
a noisy channel model was developed very early on by Claude Shannon (1948).
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The idea of combining a prior and a likelihood to deal with the noisy channel was
developed at IBM Research by Raviv (1967), for the similar task of optical char-
acter recognition (OCR). While earlier spell-checkers like Kashyap and Oommen
(1983) had used likelihood-based models of edit distance, the idea of combining a
prior and a likelihood seems not to have been applied to the spelling correction task
until researchers at AT&T Bell Laboratories (Kernighan et al. 1990, Church and
Gale 1991) and IBM Watson Research (Mays et al., 1991) roughly simultaneously
proposed noisy channel spelling correction. Much later, the Mays et al. (1991) algo-
rithm was reimplemented and tested on standard datasets by Wilcox-O’Hearn et al.
(2008), who showed its high performance.

Most algorithms since Wagner and Fischer (1974) have relied on dynamic pro-
gramming.

Recent focus has been on using the web both for language models and for train-
ing the error model, and on incorporating additional features in spelling, like the
pronunciation models described earlier, or other information like parses or semantic
relatedness (Jones and Martin 1997, Hirst and Budanitsky 2005).

See Mitton (1987) for a survey of human spelling errors, and Kukich (1992)
for an early survey of spelling error detection and correction. Norvig (2007) gives
a nice explanation and a Python implementation of the noisy channel model, with
more details and an efficient algorithm presented in Norvig (2009).

Exercises
5.1 Suppose we want to apply add-one smoothing to the likelihood term (channel

model) P(x|w) of a noisy channel model of spelling. For simplicity, pretend
that the only possible operation is deletion. The MLE estimate for deletion
is given in Eq. 5.6, which is P(x|w) = del[xi`1,wi]

count(xi`1wi)
. What is the estimate for

P(x|w) if we use add-one smoothing on the deletion edit model? Assume the
only characters we use are lower case a-z, that there are V word types in our
corpus, and N total characters, not counting spaces.
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CHAPTER

6 Naive Bayes and Sentiment
Classification

Classification lies at the heart of both human and machine intelligence. Deciding
what letter, word, or image has been presented to our senses, recognizing faces or
voices, sorting mail, assigning grades to homeworks, these are all examples of as-
signing a class or category to an input. The potential challenges of this task are
highlighted by the fabulist Jorge Luis Borges (1964), who imagined classifying ani-
mals into:

(a) those that belong to the Emperor, (b) embalmed ones, (c) those that
are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray
dogs, (h) those that are included in this classification, (i) those that
tremble as if they were mad, (j) innumerable ones, (k) those drawn with
a very fine camel’s hair brush, (l) others, (m) those that have just broken
a flower vase, (n) those that resemble flies from a distance.

Many language processing tasks are tasks of classification, although luckily our
classes are much easier to define than those of Borges. In this chapter we present the
naive Bayes algorithms classification, demonstrated on an important classification
problem: text categorization, the task of classifying an entire text by assigning it atext

categorization
label drawn from some set of labels.

We focus on one common text categorization task, sentiment analysis, the ex-sentiment
analysis

traction of sentiment, the positive or negative orientation that a writer expresses
toward some object. A review of a movie, book, or product on the web expresses the
author’s sentiment toward the product, while an editorial or political text expresses
sentiment toward a candidate or political action. Automatically extracting consumer
sentiment is important for marketing of any sort of product, while measuring public
sentiment is important for politics and also for market prediction. The simplest ver-
sion of sentiment analysis is a binary classification task, and the words of the review
provide excellent cues. Consider, for example, the following phrases extracted from
positive and negative reviews of movies and restaurants,. Words like great, richly,
awesome, and pathetic, and awful and ridiculously are very informative cues:

+ ...zany characters and richly applied satire, and some great plot twists
− It was pathetic. The worst part about it was the boxing scenes...
+ ...awesome caramel sauce and sweet toasty almonds. I love this place!
− ...awful pizza and ridiculously overpriced...

Spam detection is another important commercial application, the binary clas-spam detection

sification task of assigning an email to one of the two classes spam or not-spam.
Many lexical and other features can be used to perform this classification. For ex-
ample you might quite reasonably be suspicious of an email containing phrases like
“online pharmaceutical” or “WITHOUT ANY COST” or “Dear Winner”.

Another thing we might want to know about a text is its author. Determining
a text’s author, authorship attribution, and author characteristics like gender, age,authorship

attribution
and native language are text classification tasks that are relevant to the digital hu-
manities, social sciences, and forensics as well as natural language processing.
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Finally, one of the oldest tasks in text classification is assigning a library sub-
ject category or topic label to a text. Deciding whether a research paper concerns
epidemiology or instead, perhaps, embryology, is an important component of infor-
mation retrieval. Various sets of subject categories exist, such as the MeSH (Medical
Subject Headings) thesaurus. In fact, as we will see, subject category classification
is the task for which the naive Bayes algorithm was invented in 1961.

Classification is important far beyond the task of text classification. We’ve al-
ready seen other classification tasks: period disambiguation (deciding if a period is
the end of a sentence or part of a word), word tokenization (deciding if a character
should be a word boundary). Even language modeling can be viewed as classifi-
cation: each word can be thought of as a class, and so predicting the next word is
classifying the context-so-far into a class for each next word. In future chapters we
will see that a part-of-speech tagger classifies each occurrence of a word in a sen-
tence as, e.g., a noun or a verb, and a named-entity tagging system classifies whether
a sequence of words refers to people, organizations, dates, or something else.

The goal of classification is to take a single observation, extract some useful
features, and thereby classify the observation into one of a set of discrete classes.
One method for classifying text is to use hand-written rules. There are many areas
of language processing where hand-written rule-based classifiers constitute a state-
of-the-art system, or at least part of it.

Rules can be fragile, however, as situations or data change over time, and for
some tasks humans aren’t necessarily good at coming up with the rules. Most cases
of classification in language processing are therefore done via supervised machine
learning, and this will be the subject of the remainder of this chapter.

Formally, the task of classification is to take an input x and a fixed set of output
classes Y = y1,y2, ...,yM and return a predicted class y ∈ Y . For text classification,
we’ll sometimes talk about c (for “class”) instead of y as our output variable, and d
(for “document”) instead of x as our input variable. In the supervised situation we
have a training set of N documents that have each been hand-labeled with a class:
(d1,c1), ....,(dN ,cN). Our goal is to learn a classifier that is capable of mapping from
a new document d to its correct class c ∈C. A probabilistic classifier additionally
will tell us the probability of the observation being in the class. This full distribu-
tion over the classes can be useful information for downstream decisions; avoiding
making discrete decisions early on can be useful when combining systems.

Many kinds of machine learning algorithms are used to build classifiers. We
will discuss one in depth in this chapter: multinomial naive Bayes, and one in the
next chapter: multinomial logistic regression, also known as the maximum entropy
or MaxEnt classifier. These exemplify two ways of doing classification. Genera-
tive classifiers like naive Bayes build a model of each class. Given an observation,
they return the class most likely to have generated the observation. Discrimina-
tive classifiers like logistic regression instead learn what features from the input are
most useful to discriminate between the different possible classes. While discrimi-
native systems are often more accurate and hence more commonly used, generative
classifiers still have a role.

Other classifiers commonly used in language processing include support-vector
machines (SVMs), random forests, perceptrons, and neural networks; see the end of
the chapter for pointers.
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6.1 Naive Bayes Classifiers

In this section we introduce the multinomial naive Bayes classifier, so called be-naive Bayes
classifier

cause it is a Bayesian classifier that makes a simplifying (naive) assumption about
how the features interact.

The intuition of the classifier is shown in Fig. 6.1. We represent a text document
as if it were a bag-of-words, that is, an unordered set of words with their positionbag-of-words

ignored, keeping only their frequency in the document. In the example in the figure,
instead of representing the word order in all the phrases like “I love this movie” and
“I would recommend it”, we simply note that the word I occurred 5 times in the
entire excerpt, the word it 6 times, the words love, recommend, and movie once, and
so on.
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I love this movie! It's sweet, 
but with satirical humor. The 
dialogue is great and the 
adventure scenes are fun... 
It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
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Figure 6.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the
words is ignored (the bag of words assumption) and we make use of the frequency of each word.

Naive Bayes is a probabilistic classifier, meaning that for a document d, out of
all classes c ∈C the classifier returns the class ĉ which has the maximum posterior
probability given the document. In Eq. 6.1 we use the hat notation ˆ to mean “ourˆ

estimate of the correct class”.

ĉ = argmax
c∈C

P(c|d) (6.1)

This idea of Bayesian inference has been known since the work of Bayes (1763),Bayesian
inference

and was first applied to text classification by Mosteller and Wallace (1964). The in-
tuition of Bayesian classification is to use Bayes’ rule to transform Eq. 6.1 into other
probabilities that have some useful properties. Bayes’ rule is presented in Eq. 6.2;
it gives us a way to break down any conditional probability P(x|y) into three other
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probabilities:

P(x|y) = P(y|x)P(x)
P(y)

(6.2)

We can then substitute Eq. 6.2 into Eq. 6.1 to get Eq. 6.3:

ĉ = argmax
c∈C

P(c|d) = argmax
c∈C

P(d|c)P(c)
P(d)

(6.3)

We can conveniently simplify Eq. 6.3 by dropping the denominator P(d). This
is possible because we will be computing P(d|c)P(c)

P(d) for each possible class. But P(d)
doesn’t change for each class; we are always asking about the most likely class for
the same document d, which must have the same probability P(d). Thus, we can
choose the class that maximizes this simpler formula:

ĉ = argmax
c∈C

P(c|d) = argmax
c∈C

P(d|c)P(c) (6.4)

We thus compute the most probable class ĉ given some document d by choosing
the class which has the highest product of two probabilities: the prior probabilityprior

probability
of the class P(c) and the likelihood of the document P(d|c):likelihood

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P(d|c)

prior︷︸︸︷
P(c) (6.5)

Without loss of generalization, we can represent a document d as a set of features
f1, f2, ..., fn:

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P( f1, f2, ...., fn|c)

prior︷︸︸︷
P(c) (6.6)

Unfortunately, Eq. 6.6 is still too hard to compute directly: without some sim-
plifying assumptions, estimating the probability of every possible combination of
features (for example, every possible set of words and positions) would require huge
numbers of parameters and impossibly large training sets. Naive Bayes classifiers
therefore make two simplifying assumptions.

The first is the bag of words assumption discussed intuitively above: we assume
position doesn’t matter, and that the word “love” has the same effect on classification
whether it occurs as the 1st, 20th, or last word in the document. Thus we assume
that the features f1, f2, ..., fn only encode word identity and not position.

The second is commonly called the naive Bayes assumption: this is the condi-naive Bayes
assumption

tional independence assumption that the probabilities P( fi|c) are independent given
the class c and hence can be ‘naively’ multiplied as follows:

P( f1, f2, ...., fn|c) = P( f1|c) ·P( f2|c) · ... ·P( fn|c) (6.7)

The final equation for the class chosen by a naive Bayes classifier is thus:

cNB = argmax
c∈C

P(c)
∏
f∈F

P( f |c) (6.8)

To apply the naive Bayes classifier to text, we need to consider word positions,
by simply walking an index through every word position in the document:
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positions ← all word positions in test document

cNB = argmax
c∈C

P(c)
∏

i∈positions

P(wi|c) (6.9)

Naive Bayes calculations, like calculations for language modeling, are done in
log space, to avoid underflow and increase speed. Thus Eq. 6.9 is generally instead
expressed as

cNB = argmax
c∈C

logP(c)+
∑

i∈positions

logP(wi|c) (6.10)

By considering features in log space Eq. 6.10 computes the predicted class as
a linear function of input features. Classifiers that use a linear combination of
the inputs to make a classification decision —like naive Bayes and also logistic
regression— are called linear classifiers.linear

classifiers

6.2 Training the Naive Bayes Classifier

How can we learn the probabilities P(c) and P( fi|c)? Let’s first consider the max-
imum likelihood estimate. We’ll simply use the frequencies in the data. For the
document prior P(c) we ask what percentage of the documents in our training set
are in each class c. Let Nc be the number of documents in our training data with
class c and Ndoc be the total number of documents. Then:

P̂(c) =
Nc

Ndoc
(6.11)

To learn the probability P( fi|c), we’ll assume a feature is just the existence of a
word in the document’s bag of words, and so we’ll want P(wi|c), which we compute
as the fraction of times the word wi appears among all words in all documents of
topic c. We first concatenate all documents with category c into one big “category
c” text. Then we use the frequency of wi in this concatenated document to give a
maximum likelihood estimate of the probability:

P̂(wi|c) =
count(wi,c)∑
w∈V count(w,c)

(6.12)

Here the vocabulary V consists of the union of all the word types in all classes,
not just the words in one class c.

There is a problem, however, with maximum likelihood training. Imagine we
are trying to estimate the likelihood of the word “fantastic” given class positive, but
suppose there are no training documents that both contain the word “fantastic” and
are classified as positive. Perhaps the word “fantastic” happens to occur (sarcasti-
cally?) in the class negative. In such a case the probability for this feature will be
zero:
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P̂(“fantastic”|positive) =
count(“fantastic”,positive)∑

w∈V count(w,positive)
= 0 (6.13)

But since naive Bayes naively multiplies all the feature likelihoods together, zero
probabilities in the likelihood term for any class will cause the probability of the
class to be zero, no matter the other evidence!

The simplest solution is the add-one (Laplace) smoothing introduced in Chap-
ter 4. While Laplace smoothing is usually replaced by more sophisticated smoothing
algorithms in language modeling, it is commonly used in naive Bayes text catego-
rization:

P̂(wi|c) =
count(wi,c)+1∑

w∈V (count(w,c)+1)
=

count(wi,c)+1(∑
w∈V count(w,c)

)
+ |V |

(6.14)

Note once again that it is a crucial that the vocabulary V consists of the union
of all the word types in all classes, not just the words in one class c (try to convince
yourself why this must be true; see the exercise at the end of the chapter).

What do we do about words that occur in our test data but are not in our vocab-
ulary at all because they did not occur in any training document in any class? The
standard solution for such unknown words is to ignore such words—remove them
from the test document and not include any probability for them at all.

Finally, some systems choose to completely ignore another class of words: stop
words, very frequent words like the and a. This can be done by sorting the vocabu-stop words

lary by frequency in the training set, and defining the top 10–100 vocabulary entries
as stop words, or alternatively by using one of the many pre-defined stop word list
available online. Then every instance of these stop words are simply removed from
both training and test documents as if they had never occurred. In most text classi-
fication applications, however, using a stop word list doesn’t improve performance,
and so it is more common to make use of the entire vocabulary and not use a stop
word list.

Fig. 6.2 shows the final algorithm.

6.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 6.11 as Nc
Ndoc

:
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function TRAIN NAIVE BAYES(D, C) returns log P(c) and log P(w|c)

for each class c ∈ C # Calculate P(c) terms
Ndoc = number of documents in D
Nc = number of documents from D in class c

logprior[c]← log
Nc

Ndoc
V←vocabulary of D
bigdoc[c]←append(d) for d ∈ D with class c
for each word w in V # Calculate P(w|c) terms

count(w,c)←# of occurrences of w in bigdoc[c]

loglikelihood[w,c]← log
count(w,c) + 1∑

w′ in V (count (w′,c) + 1)
return logprior, loglikelihood, V

function TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) returns best c

for each class c ∈ C
sum[c]← logprior[c]
for each position i in testdoc

word← testdoc[i]
if word ∈ V

sum[c]←sum[c]+ loglikelihood[word,c]
return argmaxc sum[c]

Figure 6.2 The naive Bayes algorithm, using add-1 smoothing. To use add-α smoothing
instead, change the +1 to +α for loglikelihood counts in training.

P(−) = 3
5

P(+) =
2
5

The word with doesn’t occur in the test set, so we drop it completely (as men-
tioned above, we don’t use unknown word models for naive Bayes). The likelihoods
from the training set for the remaining three words “predictable”, “no”, and “fun”,
are as follows, from Eq. 6.14 (computing the probabilities for the remainder of the
words in the training set is left as Exercise 6.?? (TBD)).

P(“predictable”|−) = 1+1
14+20

P(“predictable”|+) =
0+1

9+20

P(“no”|−) = 1+1
14+20

P(“no”|+) =
0+1

9+20

P(“fun”|−) = 0+1
14+20

P(“fun”|+) =
1+1

9+20

For the test sentence S = “predictable with no fun”, after removing the word
‘with’, the chosen class, via Eq. 6.9, is therefore computed as follows:

P(−)P(S|−) =
3
5
× 2×2×1

343 = 6.1×10−5

P(+)P(S|+) =
2
5
× 1×1×2

293 = 3.2×10−5
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The model thus predicts the class negative for the test sentence.

6.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it often
improves performance to clip the word counts in each document at 1. This variant
is called binary multinominal naive Bayes or binary NB. The variant uses thebinary NB

same Eq. 6.10 except that for each document we remove all duplicate words before
concatenating them into the single big document. Fig. 6.3 shows an example in
which a set of four documents (shortened and text-normalized for this example) are
remapped to binary, with the modified counts shown in the table on the right. The
example is worked without add-1 smoothing to make the differences clearer. Note
that the results counts need not be 1; the word great has a count of 2 even for Binary
NB, because it appears in multiple documents.

Four original documents:

− it was pathetic the worst part was the
boxing scenes

− no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:

− it was pathetic the worst part boxing
scenes

− no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ − + −

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 6.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment to deal with negation
is during text normalization to prepend the prefix NOT to every word after a token
of logical negation (n’t, not, no, never) until the next punctuation mark. Thus the
phrase

didn’t like this movie , but I

becomes
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didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of-
ten in negative document and act as cues for negative sentiment, while words like
NOT bored, NOT dismiss will acquire positive associations. We will return in Chap-
ter 20 to the use of parsing to deal more accurately with the scope relationship be-
tween these negation words and the predicates they modify, but this simple baseline
works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive
and negative word features from sentiment lexicons, lists of words that are pre-sentiment

lexicons
annotated with positive or negative sentiment. Four popular lexicons are the General
Inquirer (Stone et al., 1966), LIWC (Pennebaker et al., 2007), the opinion lexiconGeneral

Inquirer
LIWC of Hu and Liu (2004a) and the MPQA Subjectivity Lexicon (Wilson et al., 2005).

For example the MPQA subjectivity lexicon has 6885 words, 2718 positive and
4912 negative, each marked for whether it is strongly or weakly biased. Some sam-
ples of positive and negative words from the MPQA lexicon include:

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great

− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

Chapter 18 will discuss how these lexicons can be learned automatically.
A common way to use lexicons in the classifier is to use as one feature the total

count of occurrences of any words in the positive lexicon, and as a second feature the
total count of occurrences of words in the negative lexicon. Using just two features
results in classifiers that are much less sparse to small amounts of training data, and
may generalize better.

6.5 Naive Bayes as a Language Model

Naive Bayes classifiers can use any sort of feature: dictionaries, URLs, email ad-
dresses, network features, phrases, parse trees, and so on. But if, as in the previous
section, we use only individual word features, and we use all of the words in the text
(not a subset), then naive Bayes has an important similarity to language modeling.
Specifically, a naive Bayes model can be viewed as a set of class-specific unigram
language models, in which the model for each class instantiates a unigram language
model.

Since the likelihood features from the naive Bayes model assign a probability to
each word P(word|c), the model also assigns a probability to each sentence:

P(s|c) =
∏

i∈positions

P(wi|c) (6.15)

Thus consider a naive Bayes model with the classes positive (+) and negative (-)
and the following model parameters:
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w P(w|+) P(w|-)
I 0.1 0.2
love 0.1 0.001
this 0.01 0.01
fun 0.05 0.005
film 0.1 0.1
... ... ...

Each of the two columns above instantiates a language model that can assign a
probability to the sentence “I love this fun film”:

P(”I love this fun film”|+) = 0.1×0.1×0.01×0.05×0.1 = 0.0000005
P(”I love this fun film”|−) = 0.2×0.001×0.01×0.005×0.1 = .0000000010

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

6.6 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a contingency table like the one shown in Fig. 6.4. Each cell labels acontingency

table
set of possible outcomes. In the spam detection case, for example, true positives are
documents that are indeed spam (indicated by human-created gold labels) and our
system said they were spam. False negatives are documents that are indeed spam
but our system labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it. That’s because accuracy doesn’t work well when
the classes are unbalanced (as indeed they are with spam, which is a large majority
of email, or with tweets, which are mainly not about pie).

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,
while the other 999,900 are tweets about something completely unrelated. Imagine a



84 CHAPTER 6 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn

Figure 6.4 Contingency table

simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true positives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ’no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics: precision
and recall. Precision measures the percentage of the items that the system detectedprecision

(i.e., the system labeled as positive) that are in fact positive (i.e., are positive accord-
ing to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall

correctly identified by the system. Recall is defined as

Recall =
true positives

true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

In practice, we generally combine precision and recall into a single metric called
the F-measure (van Rijsbergen, 1975) , defined as:F-measure

Fβ =
(β 2 +1)PR

β 2P+R

The β parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of β > 1 favor recall, while
values of β < 1 favor precision. When β = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fβ=1 or just F1:F1
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F1 =
2PR

P+R
(6.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(6.17)

and hence F-measure is

F =
1

α
1
P +(1−α) 1

R

or
(

with β
2 =

1−α

α

)
F =

(β 2 +1)PR
β 2P+R

(6.18)

Harmonic mean is used because it is a conservative metric; the harmonic mean of
two values is closer to the minimum of the two values than the arithmetic mean is.
Thus it weighs the lower of the two numbers more heavily.

6.7 More than two classes

Up to now we have been assuming text classification tasks with only two classes.
But lots of classification tasks in language processing have more than two classes.
For sentiment analysis we generally have 3 classes (positive, negative, neutral) and
even more classes are common for tasks like part-of-speech tagging, word sense
disambiguation, semantic role labeling, emotion detection, and so on.

There are two kinds of multi-class classification tasks. In any-of or multi-labelany-of

classification, each document or item can be assigned more than one label. We can
solve any-of classification by building separate binary classifiers for each class c,
trained on positive examples labeled c and negative examples not labeled c. Given
a test document or item d, then each classifier makes their decision independently,
and we may assign multiple labels to d.

More common in language processing is one-of or multinomial classification,one-of
multinomial
classification in which the classes are mutually exclusive and each document or item appears in

exactly one class. Here we again build a separate binary classifier trained on positive
examples from c and negative examples from all other classes. Now given a test
document or item d, we run all the classifiers and choose the label from the classifier
with the highest score. Consider the sample confusion matrix for a hypothetical 3-
way one-of email categorization decision (urgent, normal, spam) shown in Fig. 6.5.

The matrix shows, for example, that the system mistakenly labeled 1 spam doc-
ument as urgent, and we have shown how to compute a distinct precision and recall
value for each class. In order to derive a single metric that tells us how well the
system is doing, we can combine these values in two ways. In macroaveraging, wemacroaveraging

compute the performance for each class, and then average over classes. In microav-
eraging, we collect the decisions for all classes into a single contingency table, andmicroaveraging

then compute precision and recall from that table. Fig. 6.6 shows the contingency
table for each class separately, and shows the computation of microaveraged and
macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in
this case spam), since the counts are pooled. The macroaverage better reflects the
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Figure 6.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2
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Figure 6.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

statistics of the smaller classes, and so is more appropriate when performance on all
the classes is equally important.

6.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section 4.2): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation

our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
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The only problem with cross-validation is that because all the data is used for
testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common
to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. 6.7.
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Figure 6.7 10-fold crossvalidation

6.9 Statistical Significance Testing

In building systems we are constantly comparing the performance of systems. Often
we have added some new bells and whistles to our algorithm and want to compare
the new version of the system to the unaugmented version. Or we want to compare
our algorithm to a previously published one to know which is better.

We might imagine that to compare the performance of two classifiers A and B
all we have to do is look at A and B’s score on the same test set—for example we
might choose to compare macro-averaged F1— and see whether it’s A or B that has
the higher score. But just looking at this one difference isn’t good enough, because
A might have a better performance than B on a particular test set just by chance.

Let’s say we have a test set x of n observations x = x1,x2, ..,xn on which A’s
performance is better than B by δ (x). How can we know if A is really better than B?
To do so we’d need to reject the null hypothesis that A isn’t really better than B andnull hypothesis

this difference δ (x) occurred purely by chance. If the null hypothesis was correct,
we would expect that if we had many test sets of size n and we measured A and B’s
performance on all of them, that on average A might accidentally still be better than
B by this amount δ (x) just by chance.

More formally, if we had a random variable X ranging over test sets, the null
hypothesis H0 expects P(δ (X) > δ (x)|H0), the probability that we’ll see similarly
big differences just by chance, to be high.

If we had all these test sets we could just measure all the δ (x′) for all the x′. If we
found that those deltas didn’t seem to be bigger than δ (x), that is, that p-value(x) was
sufficiently small, less than the standard thresholds of 0.05 or 0.01, then we might
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reject the null hypothesis and agree that δ (x) was a sufficiently surprising difference
and A is really a better algorithm than B. Following Berg-Kirkpatrick et al. (2012)
we’ll refer to P(δ (X)> δ (x)|H0) as p-value(x).

In language processing we don’t generally use traditional statistical approaches
like paired t-tests to compare system outputs because most metrics are not normally
distributed, violating the assumptions of the tests. The standard approach to comput-
ing p-value(x) in natural language processing is to use non-parametric tests like the
bootstrap test (Efron and Tibshirani, 1993)— which we will describe below—or abootstrap test

similar test, approximate randomization (Noreen, 1989). The advantage of theseapproximate
randomization

tests is that they can apply to any metric; from precision, recall, or F1 to the BLEU
metric used in machine translation.

The intuition of the bootstrap is that we can actually create many pseudo test
sets from one sample test set by treating the sample as the population and doing
Monte-Carlo resampling from the sample. The method only makes the assumption
that the sample is representative of the population. Consider a tiny text classification
example with a test set x of 10 documents. The first row of Fig. 6.8 shows the results
of two classifiers (A and B) on this test set, with each document labeled by one of the
four possibilities: (A and B both right, both wrong, A right and B wrong, A wrong
and B right); a slash through a letter (�B) means that that classifier got the answer
wrong. On the first document both A and B get the correct class (AB), while on the
second document A got it right but B got it wrong (A�B). If we assume for simplicity
that our metric is accuracy, A has an accuracy of .70 and B of .50, so δ (x) is .20.
To create each pseudo test set of size N = 10, we repeatedly (10 times) select a cell
from row x with replacement. Fig. 6.8 shows a few examples.

1 2 3 4 5 6 7 8 9 10 A% B% δ ()
x AB A��B AB ��AB A��B ��AB A��B AB ��A��B A��B .70 .50 .20
x∗(1) A��B AB A��B ��AB ��AB A��B ��AB AB ��A��B AB .60 .60 .00
x∗(2) A��B AB ��A��B ��AB ��AB AB ��AB A��B AB AB .60 .70 -.10
...
x∗(b)
Figure 6.8 The bootstrap: Examples of b pseudo test sets being created from an initial true
test set x. Each pseudo test set is created by sampling n = 10 times with replacement; thus an
individual sample is a single cell, a document with its gold label and the correct or incorrect
performance of classifiers A and B.

Now that we have a sampling distribution, we can do statistics. We’d like to
know how often A beats B by more than δ (x) on each x∗(i). But since the x∗(i) were
drawn from x, the expected value of δ (x∗(i)) will lie very close to δ (x). To find
out if A beats B by more than δ (x) on each pseudo test set, we’ll need to shift the
means of these samples by δ (x). Thus we’ll be comparing for each x(i) whether
δ (x(i))> 2δ (x). The full algorithm for the bootstrap is shown in Fig. 6.9.

6.10 Summary

This chapter introduced the naive Bayes model for classification and applied it to
the text categorization task of sentiment analysis.
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function BOOTSTRAP(x, b) returns p-value(x)

Calculate δ (x)
for i = 1 to b do

for j = 1 to n do # Draw a bootstrap sample x∗(i) of size n
Select a member of x at random and add it to x∗(i)

Calculate δ (x∗(i))
for each x∗(i)

s←s + 1 if δ (x∗(i)) > 2δ (x)
p-value(x) ≈ s

b
return p-value(x)

Figure 6.9 The bootstrap algorithm

• Many language processing tasks can be viewed as tasks of classification.
learn to model the class given the observation.

• Text categorization, in which an entire text is assigned a class from a finite set,
comprises such tasks as sentiment analysis, spam detection, email classifi-
cation, and authorship attribution.

• Sentiment analysis classifies a text as reflecting the positive or negative orien-
tation (sentiment) that a writer expresses toward some object.

• Naive Bayes is a generative model that make the bag of words assumption
(position doesn’t matter) and the conditional independence assumption (words
are conditionally independent of each other given the class)

• Naive Bayes with binarized features seems to work better for many text clas-
sification tasks.

Bibliographical and Historical Notes
Multinomial naive Bayes text classification was proposed by Maron (1961) at the
RAND Corporation for the task of assigning subject categories to journal abstracts.
His model introduced most of the features of the modern form presented here, ap-
proximating the classification task with one-of categorization, and implementing
add-δ smoothing and information-based feature selection.

The conditional independence assumptions of naive Bayes and the idea of Bayes-
ian analysis of text seem to have been arisen multiple times. The same year as
Maron’s paper, Minsky (1961) proposed a naive Bayes classifier for vision and other
artificial intelligence problems, and Bayesian techniques were also applied to the
text classification task of authorship attribution by Mosteller and Wallace (1963). It
had long been known that Alexander Hamilton, John Jay, and James Madison wrote
the anonymously-published Federalist papers. in 1787–1788 to persuade New York
to ratify the United States Constitution. Yet although some of the 85 essays were
clearly attributable to one author or another, the authorship of 12 were in dispute
between Hamilton and Madison. Mosteller and Wallace (1963) trained a Bayesian
probabilistic model of the writing of Hamilton and another model on the writings
of Madison, then computed the maximum-likelihood author for each of the disputed
essays. Naive Bayes was first applied to spam detection in Heckerman et al. (1998).

Metsis et al. (2006), Pang et al. (2002), and Wang and Manning (2012) show
that using boolean attributes with multinomial naive Bayes works better than full
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counts. Binary multinomial naive Bayes is sometimes confused with another variant
of naive Bayes that also use a binary representation of whether a term occurs in
a document: Multivariate Bernoulli naive Bayes. The Bernoulli variant instead
estimates P(w|c) as the fraction of documents that contain a term, and includes a
probability for whether a term is not in a document McCallum and Nigam (1998)
and Wang and Manning (2012) show that the multivariate Bernoulli variant of naive
Bayes doesn’t work as well as the multinomial algorithm for sentiment or other text
tasks.

There are a variety of sources covering the many kinds of text classification
tasks. There are a number of good overviews of sentiment analysis, including Pang
and Lee (2008), and Liu and Zhang (2012). Stamatatos (2009) surveys authorship
attribute algorithms. The task of newswire indexing was often used as a test case for
text classification algorithms, based on the Reuters-21578 collection of newswire
articles.

There are a number of good surveys of text classification (Manning et al. 2008,
Aggarwal and Zhai 2012).

More on classification can be found in machine learning textbooks (Hastie et al. 2001,
Witten and Frank 2005, Bishop 2006, Murphy 2012).

Non-parametric methods for computing statistical significance were first intro-
duced into natural language processing in the MUC competition (Chinchor et al.,
1993). Our description of the bootstrap draws on the description in Berg-Kirkpatrick
et al. (2012).

Exercises
6.1 Assume the following likelihoods for each word being part of a positive or

negative movie review, and equal prior probabilities for each class.

pos neg
I 0.09 0.16
always 0.07 0.06
like 0.29 0.06
foreign 0.04 0.15
films 0.08 0.11

What class will Naive bayes assign to the sentence “I always like foreign
films.”?

6.2 Given the following short movie reviews, each labeled with a genre, either
comedy or action:

1. fun, couple, love, love comedy
2. fast, furious, shoot action
3. couple, fly, fast, fun, fun comedy
4. furious, shoot, shoot, fun action
5. fly, fast, shoot, love action

and a new document D:

fast, couple, shoot, fly

compute the most likely class for D. Assume a naive Bayes classifier and use
add-1 smoothing for the likelihoods.
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6.3 Train two models, multinominal naive Bayes and binarized naive Bayes, both
with add-1 smoothing, on the following document counts for key sentiment
words, with positive or negative class assigned as noted.

doc “good” “poor” “great” (class)
d1. 3 0 3 pos
d2. 0 1 2 pos
d3. 1 3 0 neg
d4. 1 5 2 neg
d5. 0 2 0 neg

Use both naive Bayes models to assign a class (pos or neg) to this sentence:

A good, good plot and great characters, but poor acting.

Do the two models agree or disagree?
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CHAPTER

7 Logistic Regression

Numquam ponenda est pluralitas sine necessitate
‘Plurality should never be proposed unless needed’

William of Occam

We turn now to a second algorithm for classification called multinomial lo-
gistic regression, sometimes referred to within language processing as maximum
entropy modeling, MaxEnt for short. Logistic regression belongs to the family ofMaxEnt

classifiers known as the exponential or log-linear classifiers. Like naive Bayes, itlog-linear
classifier

works by extracting some set of weighted features from the input, taking logs, and
combining them linearly (meaning that each feature is multiplied by a weight and
then added up). Technically, logistic regression refers to a classifier that classifies
an observation into one of two classes, and multinomial logistic regression is used
when classifying into more than two classes, although informally and in this chapter
we sometimes use the shorthand logistic regression even when we are talking about
multiple classes.

The most important difference between naive Bayes and logistic regression is
that logistic regression is a discriminative classifier while naive Bayes is a genera-
tive classifier. To see what this means, recall that the job of a probabilistic classifier
is to choose which output label y to assign an input x, choosing the y that maxi-
mizes P(y|x). In the naive Bayes classifier, we used Bayes rule to estimate this best
y indirectly from the likelihood P(x|y) (and the prior P(y)):

ŷ = argmax
y

P(y|x) = argmax
y

P(x|y)P(y) (7.1)

Because of this indirection, naive Bayes is a generative model: a model that isgenerative
model

trained to generate the data x from the class y. The likelihood term P(x|y) expresses
that we are given the class y and are trying to predict which features we expect to see
in the input x. Then we use Bayes rule to compute the probability we really want:
P(y|x).

But why not instead just directly compute P(y|x)? A discriminative modeldiscriminative
model

takes this direct approach, computing P(y|x) by discriminating among the different
possible values of the class y rather than first computing a likelihood:

ŷ = argmax
y

P(y|x) (7.2)

While logistic regression thus differs in the way it estimates probabilities, it is
still like naive Bayes in being a linear classifier. Logistic regression estimates P(y|x)
by extracting some set of features from the input, combining them linearly (multi-
plying each feature by a weight and adding them up), and then applying a function
to this combination.

We can’t, however, just compute P(y|x) directly from features and weights as
follows:
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P(y|x) ?=
N∑

i=1

wi fi (7.3)

?= w · f (7.4)

Stop for a moment to figure out why this doesn’t produce a legal probability. The
problem is that the expression

∑N
i=1 wi fi produces values from −∞ to ∞; nothing in

the equation above forces the output to be a legal probability, that is, to lie between
0 and 1. In fact, since weights are real-valued, the output might even be negative!

We’ll solve this in two ways. First, we’ll wrap the exp function around the
weight-feature dot-product w · f , which will make the values positive, and we’ll
create the proper denominator to make everything a legal probability and sum to
1. While we’re at it, let’s assume now that the target y is a variable that ranges over
different classes; we want to know the probability that it takes on the particular value
of the class c:

p(y = c|x) = p(c|x) =
1
Z

exp
∑

i

wi fi (7.5)

So far we’ve been assuming that the features fi are real-valued, but it is more
common in language processing to use binary-valued features. A feature that takes
on only the values 0 and 1 is called an indicator function. Furthermore, the featuresindicator

function
are not just a property of the observation x, but are instead a property of both the
observation x and the candidate output class c. Thus, in MaxEnt, instead of the
notation fi or fi(x), we use the notation fi(c,x), meaning feature i for a particular
class c for a given observation x:

p(c|x) =
1
Z

exp

(∑
i

wi fi(c,x)

)
(7.6)

Fleshing out the normalization factor Z , and specifying the number of features
as N gives us the final equation for computing the probability of y being of class c
given x in MaxEnt:

p(c|x) =

exp

(
N∑

i=1

wi fi(c,x)

)
∑
c′∈C

exp

(
N∑

i=1

wi fi(c′,x)

) (7.7)

7.1 Features in Multinomial Logistic Regression

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c,

Suppose we are doing text classification, and we would like to know whether to
assign the sentiment class +,−, or 0 (neutral) to a document. Here are five potential
features, representing that the document x contains the word great and the class is
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+ ( f1), contains the word second-rate and the class is − ( f2), and contains the word
no and the class is − ( f3).

f1(c,x) =

{
1 if “great” ∈ x & c =+
0 otherwise

f2(c,x) =

{
1 if “second-rate” ∈ x & c =−
0 otherwise

f3(c,x) =

{
1 if “no” ∈ x & c =−
0 otherwise

f4(c,x) =

{
1 if “enjoy” ∈ x & c =−
0 otherwise

Each of these features has a corresponding weight, which can be positive or
negative. Weight w1(x) indicates the strength of great as a cue for class +, w2(x)
and w3(x) the strength of second-rate and no for the class −. These weights would
likely be positive—logically negative words like no or nothing turn out to be more
likely to occur in documents with negative sentiment (Potts, 2011). Weight w4(x),
the strength of enjoy for −, would likely have a negative weight. We’ll discuss in
the following section how these weights are learned.

Since each feature is dependent on both a property of the observation and the
class being labeled, we would have additional features for the links between great
and the negative class −, or no and the neutral class 0, and so on.

Similar features could be designed for other language processing classification
tasks. For period disambiguation (deciding if a period is the end of a sentence or part
of a word), we might have the two classes EOS (end-of-sentence) and not-EOS and
features like f1 below expressing that the current word is lower case and the class is
EOS (perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following a upper cased word is a likely to be an EOS, but if the word itself is St.
and the previous word is capitalized, then the period is likely part of a shortening of
the word street.

f1(c,x) =

{
1 if “Case(wi) = Lower” & c = EOS
0 otherwise

f2(c,x) =

{
1 if “wi ∈ AcronymDict” & c = EOS
0 otherwise

f3(c,x) =

{
1 if “wi = St.” & “Case(wi−1) = Upper” & c = EOS
0 otherwise

In Chapter 10 we’ll see features for the task of part-of-speech tagging. It’s even
possible to do discriminative language modeling as a classification task. In this case
the set C of classes is the vocabulary of the language, and the task is to predict the
next word using features of the previous words (traditional N-gram contexts). In
that case, the features might look like the following, with a unigram feature for the
word the ( f1) or breakfast ( f2), or a bigram feature for the context word American
predicting breakfast ( f3). We can even create features that are very difficult to create
in a traditional generative language model like predicting the word breakfast if the
previous word ends in the letters -an like Italian, American, or Malaysian ( f4).
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f1(c,x) =

{
1 if “c = the”
0 otherwise

f2(c,x) =

{
1 if “c = breakfast”
0 otherwise

f3(c,x) =

{
1 if “wi−1 = American; & c = breakfast”
0 otherwise

f4(c,x) =

{
1 if “wi−1ends in -an; & c = breakfast”
0 otherwise

The features for the task of discriminative language models make it clear that
we’ll often need large numbers of features. Often these are created automatically
via feature templates, abstract specifications of features. For example a trigramfeature

templates
template might create a feature for every predicted word and pair of previous words
in the training data. Thus the feature space is sparse, since we only have to create a
feature if that n-gram exists in the training set.

The feature is generally created as a hash from the string descriptions. A user
description of a feature as, ”bigram(American breakfast)” is hashed into a unique
integer i that becomes the feature number fi.

7.2 Classification in Multinomial Logistic Regression

In logistic regression we choose a class by using Eq. 8.11 to compute the probability
for each class and then choose the class with the maximum probability.

Fig. 7.1 shows an excerpt from a sample movie review in which the four feature
defined in Eq. 7.8 for the two-class sentiment classification task are all 1, with the
weights set as w1 = 1.9, w2 = .9, w3 = .7, w4 =−.8.

... there are virtually no surprises, and the 
writing is second-rate. So why did I enjoy it 
so much?  For one thing, the cast is great.

0.7

1.9

-0.8

.9- +

--

Figure 7.1 Some features and their weights for the positive and negative classes. Note the
negative weight for enjoy meaning that it is evidence against the class negative −.

Given these 4 features and the input review x, P(+|x) and P(−|x) can be com-
puted with Eq. 8.11:

P(+|x) =
e1.9

e1.9 + e.9+.7−.8
= .82 (7.8)

P(−|x) =
e.9+.7−.8

e1.9 + e.9+.7−.8
= .18 (7.9)
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If the goal is just classification, we can even ignore the denominator and the
exp and just choose the class with the highest dot product between the weights and
features:

ĉ = argmax
c∈C

P(c|x)

= argmax
c∈C

exp
(∑N

i=1 wi fi(c,x)
)

∑
c′∈C exp

(∑N
i=1 wi fi(c′,x)

)
= argmax

c∈C
exp

N∑
i=1

wi fi(c,x)

= argmax
c∈C

N∑
i=1

wi fi(c,x) (7.10)

Computing the actual probability rather than just choosing the best class, how-
ever, is useful when the classifier is embedded in a larger system, as in a sequence
classification domain like part-of-speech tagging (Section 10.5).

Note that while the index in the inner sum of features in Eq. 7.10 ranges over
the entire list of N features, in practice in classification it’s not necessary to look at
every feature, only the non-zero features. For text classification, for example, we
don’t have to consider features of words that don’t occur in the test document.

7.3 Learning Logistic Regression

How are the parameters of the model, the weights w, learned? The intuition is to
choose weights that make the classes of the training examples more likely. Indeed,
logistic regression is trained with conditional maximum likelihood estimation.

conditional
maximum
likelihood
estimation This means we choose the parameters w that maximize the (log) probability of the y

labels in the training data given the observations x.
For an individual training observation x( j) in our training set (we’ll use super-

scripts to refer to individual observations in the training set—this would be each
individual document for text classification) the optimal weights are:

ŵ = argmax
w

logP(y( j)|x( j)) (7.11)

For the entire set of observations in the training set, the optimal weights would
then be:

ŵ = argmax
w

∑
j

logP(y( j)|x( j)) (7.12)

The objective function L that we are maximizing is thus
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L(w) =
∑

j

logP(y( j)|x( j))

=
∑

j

log

exp

(
N∑

i=1

wi fi(y( j),x( j))

)
∑
y′∈Y

exp

(
N∑

i=1

wi fi(y′( j),x( j))

)

=
∑

j

logexp

(
N∑

i=1

wi fi(y( j),x( j))

)
−
∑

j

log
∑
y′∈Y

exp

(
N∑

i=1

wi fi(y′( j),x( j))

)

Finding the weights that maximize this objective turns out to be a convex opti-
mization problem, so we use hill-climbing methods like stochastic gradient ascent,
L-BFGS (Nocedal 1980, Byrd et al. 1995), or conjugate gradient. Such gradient
ascent methods start with a zero weight vector and move in the direction of the gra-
dient, L′(w), the partial derivative of the objective function L(w) with respect to the
weights. For a given feature dimension k, this derivative can be shown to be the
difference between the following two counts:

L′(w) =
∑

j

fk(y( j),x( j))−
∑

j

∑
y′∈Y

P(y′|x( j)) fk(y′( j),x( j)) (7.13)

These two counts turns out to have a very neat interpretation. The first is just the
count of feature fk in the data (the number of times fk is equal to 1). The second is
the expected count of fk, under the probabilities assigned by the current model:

L′(w) =
∑

j

Observed count( fk)−Expected count( fk) (7.14)

Thus in optimal weights for the model the model’s expected feature values match
the actual counts in the data.

7.4 Regularization

There is a problem with learning weights that make the model perfectly match the
training data. If a feature is perfectly predictive of the outcome because it happens
to only occur in one class, it will be assigned a very high weight. The weights for
features will attempt to perfectly fit details of the training set, in fact too perfectly,
modeling noisy factors that just accidentally correlate with the class. This problem
is called overfitting.overfitting

To avoid overfitting a regularization term is added to the objective function inregularization

Eq. 7.13. Instead of the optimization in Eq. 7.12, we optimize the following:

ŵ = argmax
w

∑
j

logP(y( j)|x( j))−αR(w) (7.15)

where R(w), the regularization term, is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly, but uses lots of weights with
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high values to do so, will be penalized more than than a setting that matches the data
a little less well, but does so using smaller weights.

There are two common regularization terms R(w). L2 regularization is a quad-L2
regularization

ratic function of the weight values, named because is uses the (square of the) L2
norm of the weight values. The L2 norm, ||W ||2, is the same as the Euclidean
distance:

R(W ) = ||W ||22 =
N∑

j=1

w2
j (7.16)

The L2 regularized objective function becomes:

ŵ = argmax
w

∑
j

logP(y( j)|x( j))−α

N∑
i=1

w2
i (7.17)

L1 regularization is a linear function of the weight values, named after the L1L1
regularization

norm ||W ||1, the sum of the absolute values of the weights, or Manhattan distance
(the Manhattan distance is the distance you’d have to walk between two points in a
city with a street grid like New York):

R(W ) = ||W ||1 =
N∑

i=1

|wi| (7.18)

The L1 regularized objective function becomes:

ŵ = argmax
w

∑
j

logP(y( j)|x( j))−α

N∑
i=1

|wi| (7.19)

These kinds of regularization come from statistics, where L1 regularization is
called ‘the lasso’ or lasso regression (Tibshirani, 1996) and L2 regression is called
ridge regression, and both are commonly used in language processing. L2 regu-
larization is easier to optimize because of its simple derivative (the derivative of w2

is just 2w), while L1 regularization is more complex (the derivative of |w| is non-
continuous at zero). But where L2 prefers weight vectors with many small weights,
L1 prefers sparse solutions with some larger weights but many more weights set to
zero. Thus L1 regularization leads to much sparser weight vectors, that is, far fewer
features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are
distributed according to a gaussian distribution with mean µ = 0. In a gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance σ ). By using a gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A gaussian for a weight w j is

1√
2πσ2

j

exp

(
−
(w j−µ j)

2

2σ2
j

)
(7.20)
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If we multiply each weight by a gaussian prior on the weight, we are thus maxi-
mizing the following constraint:

ŵ = argmax
w

M∏
j

P(y( j)|x( j))×
N∏

i=1

1√
2πσ2

i

exp

(
−
(wi−µ j)

2

2σ2
j

)
(7.21)

which in log space, with µ = 0, and assuming 2σ2 = 1, corresponds to

ŵ = argmax
w

∑
j

logP(y( j)|x( j))−α

N∑
i=1

w2
i (7.22)

which is in the same form as Eq. 7.17.

7.5 Feature Selection

The regularization technique introduced in the previous section is useful for avoid-
ing overfitting by removing or downweighting features that are unlikely to generalize
well. Many kinds of classifiers, however, including naive Bayes, do not have regu-
larization, and so instead feature selection is used to choose the important featuresfeature

selection
to keep and remove the rest. The basis of feature selection is to assign some metric
of goodness to each feature, rank the features, and keep the best ones. The number
of features to keep is a meta-parameter that can be optimized on a dev set.

Features are generally ranked by how informative they are about the classifica-
tion decision. A very common metric is information gain. Information gain tellsinformation

gain
us how many bits of information the presence of the word gives us for guessing the
class, and can be computed as follows (where ci is the ith class and w̄ means that a
document does not contain the word w):

G(w) = −
C∑

i=1

P(ci) logP(ci)

+P(w)
C∑

i=1

P(ci|w) logP(ci|w)

+P(w̄)
C∑

i=1

P(ci|w̄) logP(ci|w̄) (7.23)

Other metrics for feature selection include χ2, pointwise mutual information,
and GINI index; see Yang and Pedersen (1997) for a comparison and Guyon and
Elisseeff (2003) for a broad introduction survey of feature selection.

While feature selection is important for unregularized classifiers, it is sometimes
also used in regularized classifiers in applications where speed is critical, since it
is often possible to get equivalent performance with orders of magnitude fewer fea-
tures.
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7.6 Choosing a classifier and features

Logistic regression has a number of advantages over naive Bayes. The overly strong
conditional independence assumptions of Naive Bayes mean that if two features are
in fact correlated naive Bayes will multiply them both in as if they were independent,
overestimating the evidence. Logistic regression is much more robust to correlated
features; if two features f1 and f2 are perfectly correlated, regression will simply
assign half the weight to w1 and half to w2.

Thus when there are many correlated features, logistic regression will assign a
more accurate probability than naive Bayes. Despite the less accurate probabilities,
naive Bayes still often makes the correct classification decision. Furthermore, naive
Bayes works extremely well (even better than logistic regression or SVMs) on small
datasets (Ng and Jordan, 2002) or short documents (Wang and Manning, 2012).
Furthermore, naive Bayes is easy to implement and very fast to train. Nonetheless,
algorithms like logistic regression and SVMs generally work better on larger docu-
ments or datasets.

Classifier choice is also influenced by the bias-variance tradeoff. The bias ofbias-variance
tradeoff

bias a classifier indicates how accurate it is at modeling different training sets. The vari-
ance of a classifier indicates how much its decisions are affected by small changesvariance

in training sets. Models with low bias (like SVMs with polynomial or RBF kernels)
are very accurate at modeling the training data. Models with low variance (like naive
Bayes) are likely to come to the same classification decision even from slightly dif-
ferent training data. But low-bias models tend to be so accurate at fitting the training
data that they overfit, and do not generalize well to very different test sets. And
low-variance models tend to generalize so well that they may not have sufficient ac-
curacy. Thus any given model trades off bias and variance. Adding more features
decreases bias by making it possible to more accurately model the training data, but
increases variance because of overfitting. Regularization and feature selection are
ways to improve (lower) the variance of classifier by downweighting or removing
features that are likely to overfit.

In addition to the choice of a classifier, the key to successful classification is the
design of appropriate features. Features are generally designed by examining the
training set with an eye to linguistic intuitions and the linguistic literature on the
domain. A careful error analysis on the training or dev set. of an early version of a
system often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of sentence if
the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions
Some other machine learning models can automatically model the interactions

between features. For tasks where these combinations of features are important
(especially when combination of categorical features and real-valued features might
be helpful), the most useful classifiers may be such classifiers,including Support
Vector Machines (SVMs) with polynomial or RBF kernels, and random forests.SVMs

random forests See the pointers at the end of the chapter.
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7.7 Summary

This chapter introduced multinomial logistic regression (MaxEnt) models for clas-
sification.

• Multinomial logistic regression (also called MaxEnt or the Maximum Entropy
classifier in language processing) is a discriminative model that assigns a class
to an observation by computing a probability from an exponential function of
a weighted set of features of the observation.

• Regularization is important in MaxEnt models for avoiding overfitting.
• Feature selection can be helpful in removing useless features to speed up

training, and is also important in unregularized models for avoiding overfit-
ting.

Bibliographical and Historical Notes
Maximum entropy modeling, including the use of regularization, was first applied to
natural language processing (specifically machine translation) in the early 1990s at
IBM (Berger et al. 1996, Della Pietra et al. 1997), and was soon applied to other NLP
tasks like part-of-speech tagging and parsing (Ratnaparkhi 1996, Ratnaparkhi 1997)
and text classification Nigam et al. (1999). See Chen and Rosenfeld (2000), Good-
man (2004), and Dudı́k et al. (2007) on regularization for maximum entropy models.

More on classification can be found in machine learning textbooks (Hastie et al. 2001,
Witten and Frank 2005, Bishop 2006, Murphy 2012).

Exercises
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CHAPTER

8 Neural Networks and Neural
Language Models

“[M]achines of this character can behave in a very complicated manner when
the number of units is large.”

Alan Turing (1948) “Intelligent Machines”, page 6

Neural networks are an essential computational tool for language processing, and
a very old one. They are called neural because their origins lie in the McCulloch-
Pitts neuron (McCulloch and Pitts, 1943), a simplified model of the human neuron
as a kind of computing element that could be described in terms of propositional
logic. But the modern use in language processing no longer draws on these early
biological inspirations. Instead, a modern neural network is a network of small
computing units, each of which takes a vector of input values and produces a single
output value.

In this chapter we consider a neural net classifier, built by combining units into a
network. As we’ll see, this is called a feed-forward network because the computation
proceeds iteratively from one layer of units to the next. The use of modern neural
nets is often called deep learning, because modern networks are often deep (havedeep learning

deep many hidden layers).
Neural networks share some of the same mathematics and learning architectures

as logistic regression. But neural networks are a more powerful classifier than logis-
tic regression, and indeed a neural network with one hidden layer can be shown to
learn any function.

Neural net classifiers are different from logistic regression in another way. With
logistic regression, we applied the simple and fixed regression classifier to many
different asks by developing many rich kinds of feature templates based on domain
knowledge. When working with neural networks, it is more common to avoid the use
of rich hand-derived features, instead building neural networks that take raw words
as inputs and learn to induce features as part of the process of learning to classify.
This is especially true with nets that are very deep (have many hidden layers), and
for that reason deep neural nets, more than other classifiers, tend to be applied on
large scale problems that offer sufficient data to learn features automatically.

In this chapter we’ll see feedforward networks as classifiers, and apply them to
the simple task of language modeling: assigning probabilities to word sequences
and predicting upcoming words.

In later chapters we’ll introduce many other aspects of neural models. Chap-
ter 9b will introduce recurrent neural networks. Chapter 15 will introduce the
use of neural networks to compute the semantic representations for words called
embeddings. And Chapter 25 and succeeding chapters will introduce the sequence-
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to-sequence or seq2seq model (also called the “encoder-decoder model”) for appli-
cations involving language generation: machine translation, conversational agents,
and summarization.

8.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Thus given a set of inputs x1...xn, a unitbias term

has a set of corresponding weights w1...wn and a bias b, so the weighted sum z can
be represented as:

z = b+
∑

i

wixi (8.1)

Often it’s more convenient to express this weighted sum using vector notation;
recall from linear algebra that a vector is, at heart, just a list or array of numbers.vector

Thus we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input
vector x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (8.2)

As defined in Eq. 8.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

(8.3)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the
tanh, and the rectified linear ReLU) but it’s convenient to start with the sigmoidsigmoid

function:

y = σ(z) =
1

1+ e−z (8.4)

The sigmoid has a number of advantages; it maps the output into the range [0,1],
which is useful in squashing outliers toward 0 or 1. And it’s differentiable, which as
we’ll see in Section 8.4 will be handy for learning. Fig. 8.1 shows a graph.

Substituting the sigmoid equation into Eq. 8.2 gives us the final value for the
output of a neural unit:

y = σ(w · x+b) =
1

1+ exp(−(w · x+b))
(8.5)

Fig. 8.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
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Figure 8.1 The sigmoid function takes a real value and maps it to the range [0,1]. Because
it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1.

value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 8.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vectors and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]
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The resulting output y would be:

y = σ(w · x+b) =
1

1+ e−(w·x+b)
=

1
1+ e−(.5∗.2+.3∗.6+.8∗.1+.5)

= e−0.86 = .42

Other nonlinear functions besides the sigmoid are also commonly used. The
tanh function shown in Fig. 8.3a is a variant of the sigmoid that ranges from -1 totanh

+1:

y =
ez− e−z

ez + e−z (8.6)

The simplest activation function is the rectified linear unit, also called the ReLU,ReLU

shown in Fig. 8.3b. It’s just the same as x when x is positive, and 0 otherwise:

y = max(x,0) (8.7)

(a) (b)

Figure 8.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example the rectifier
function has nice properties that result from it being very close to linear. In the sig-
moid or tanh functions, very high values of z result in values of y that are saturated,saturated

i.e., extremely close to 1, which causes problems for learning. Rectifiers don’t have
this problem, since the output of values close to 1 also approaches 1 in a nice gentle
linear way. By contrast, the tanh function has the nice properties of being smoothly
differentiable and mapping outlier values toward the mean.

8.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. In the next section we take a look at that
intuition.

Consider the very simple task of computing simple logical functions of two in-
puts, like AND, OR, and XOR. As a reminder, here are the truth tables for those
functions:
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AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and no non-linear activation function. The output y of
a perceptron is 0 or 1, and just computed as follows (using the same weight w, input
x, and bias b as in Eq. 8.2):

y =
{

0, if w · x+b≤ 0
1, if w · x+b> 0 (8.8)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 8.4 shows the necessary weights.

x1

x2

+1
-1

1
1

x1

x2

+1
0

1
1

(a) (b)

Figure 8.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = −1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x0 and x1, the perception
equation, w1x1+w2x2+b = 0 is the equation of a line (we can see this by putting
it in the standard linear format: x2 =−(w1/w2)x1−b.) This line acts as a decision
boundary in two-dimensional space in which the output 0 is assigned to all inputsdecision

boundary
lying on one side of the line, and the output 1 to all input points lying on the other
side of the line. If we had more than 2 inputs, the decision boundary becomes a
hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 8.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.
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0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a)  x1 AND x2 b)  x1 OR x2 c)  x1 XOR x2

?

Figure 8.5 The functions AND, OR, and XOR, represented with input x0 on the x-axis and input x1 on the
y axis, Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no
way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig
(2002).

8.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 8.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

Figure 8.6 XOR solution after Goodfellow et al. (2016). There are three ReLU units, in
two layers; we’ve called them h1, h2 (h for “hidden layer”) and y1. As before, the numbers
on the arrows represent the weights w for each unit, and we represent the bias b as a weight
on a unit clamped to +1, with the bias weights/units in gray.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the vector
[0 -1], and we then we apply the rectified linear transformation to give the output
of the h layer as [0 0]. Now we once again multiply by the weights, sum, and add
the bias (0 in this case) resulting in the value 0. The reader should work through the
computation of the remaining 3 possible input pairs to see that the resulting y values
correctly are 1 for the inputs [0 1] and [1 0] and 0 for [0 0] and [1 1].

It’s also instructive to look at the intermediate results, the outputs of the two
hidden nodes h0 and h1. We showed in the previous paragraph that the h vector for
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the inputs x = [0 0] was [0 0]. Fig. 8.7b shows the values of the h layer for all 4
inputs. Notice that hidden representations of the two input points x = [0 1] and x
= [1 0] (the two cases with XOR output = 1) are merged to the single point h = [1
0]. The merger makes it easy to linearly separate the positive and negative cases
of XOR. In other words, we can view the hidden layer of the network is forming a
representation for the input.

0

0 1

1

x0

x1

a) The original x space

0

0 1

1

h0

h1

2

b) The new h space

Figure 8.7 The hidden layer forming a new representation of the input. Here is the rep-
resentation of the hidden layer, h, compared to the original input representation x. Notice
that the input point [0 1] has been collapsed with the input point [1 0], making it possible to
linearly separate the positive and negative cases of XOR. After Goodfellow et al. (2016).

In this example we just stipulated the weights in Fig. 8.6. But for real exam-
ples the weights for neural networks are learned automatically using the error back-
propagation algorithm to be introduced in Section 8.4. That means the hidden layers
will learn to form useful representations. This intuition, that neural networks can au-
tomatically learn useful representations of the input, is one of their key advantages,
and one that we will return to again and again in later chapters.

Note that the solution to the XOR problem requires a network of units with non-
linear activation functions. A network made up of simple linear (perceptron) units
cannot solve the XOR problem. This is because a network formed by many layers
of purely linear units can always be reduced (shown to be computationally identical
to) a single layer of linear units with appropriate weights, and we’ve already shown
(visually, in Fig. 8.5) that a single unit cannot solve the XOR problem.

8.3 Feed-Forward Neural Networks

Let’s now walk through a slightly more formal presentation of the simplest kind of
neural network, the feed-forward network. A feed-forward network is a multilayerfeed-forward

network
network in which the units are connected with no cycles; the outputs from units in
each layer are passed to units in the next higher layer, and no outputs are passed
back to lower layers. (Later we’ll introduce networks with cycles, called recurrent
neural networks.)

For historical reasons multilayer networks, especially feedforward networks, are
sometimes called multi-layer perceptrons (or MLPs); this is a technical misnomer,multi-layer

perceptrons
MLP since the units in modern multilayer networks aren’t perceptrons (perceptrons are
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purely linear, but modern networks are made up of units with non-linearities like
sigmoids), but at some point the name stuck.

Simple feed-forward networks have three kinds of nodes: input units, hidden
units, and output units. Fig. 8.8 shows a picture.

x1 x2

h1 h2

y1

xdin
…

h3
hdh…

+1

b

…
U

W

y2 ydout

Figure 8.8 Caption here

The input units are simply scalar values just as we saw in Fig. 8.2.
The core of the neural network is the hidden layer formed of hidden units,hidden layer

each of which is a neural unit as described in Section 8.1, taking a weighted sum of
its inputs and then applying a non-linearity. In the standard architecture, each layer
is fully-connected, meaning that each unit in each layer takes as input the outputsfully-connected

from all the units in the previous layer, and there is a link between every pair of units
from two adjacent layers. Thus each hidden unit sums over all the input units.

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight wi and bias bi for each unit i into a single weight matrix W and a single
bias vector b for the whole layer (see Fig. 8.8). Each element Wi j of the weight
matrix W represents the weight of the connection from the ith input unit xi to the the
jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now that hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function f (such as the sigmoid, tanh, or rectified linear
activation function defined above).

The output of the hidden layer, the vector h, is thus the following, assuming the
sigmoid function σ :

h = σ(Wx+b) (8.9)

Notice that we’re apply the σ function here to a vector, while in Eq. 8.4 it was
applied to a scalar. We’re thus allowing σ(·), and indeed any activation function
f (·), to apply to a vector element-wise, so f [z1,z2,z3] = [ f (z1), f (z2), f (z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll have din represent the number of inputs, so x is a vector of
real numbers of dimensionality din, or more formally x ∈ Rdin . The hidden layer
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has dimensional dh, so h ∈ Rdh and also b ∈ Rdh (since each hidden unit can take a
different bias value). And the weight matrix W has dimensionality W ∈ Rdh×din .

Take a moment to convince yourself that the matrix multiplication in Eq. 8.9 will
compute the value of each hi j as

∑din
i=1 wi jxi +b j.

As we saw in Section 8.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.
If we are doing multinomial classification, such as assigning a part-of-speech tag, we
might have one output node for each potential part-of-speech, whose output value
is the probability of that part-of-speech, and the values of all the output nodes must
sum to one. The output layer thus gives a probability distribution across the output
nodes.

Let’s see how this happens. Like the hidden layer, the output layer has a weight
matrix (let’s call it U), but it often doesn’t have a bias vector b, so we’ll eliminate
it in our examples here. The weight matrix is multiplied by the input vector (h) to
produce the intermediate output z.

z =Uh

There are dout output nodes, so z ∈ Rdout , weight matrix U has dimensionality
U ∈ Rdout×dh , and element Ui j is the weight from unit j in the hidden layer to unit i
in the output layer.

However, z can’t be the output of the classifier, since it’s a vector of real-valued
numbers, while what we need for classification is a vector of probabilities. There is
a convenient function for normalizing a vector of real values, by which we meannormalizing

converting it to a vector that encodes a probability distribution (all the numbers lie
between 0 and 1 and sum to 1): the softmax function.softmax

For a vector z of dimensionality D, the softmax is defined as:

softmax(zi) =
ezi∑k
j=1 ez j

1≤ i≤ D (8.10)

Thus for example given a vector z=[0.6 1.1 -1.5 1.2 3.2 -1.1], softmax(z) is [
0.055 0.090 0.0067 0.10 0.74 0.010].

You may recall that softmax was exactly what is used to create a probability dis-
tribution from a vector of real-valued numbers (computed from summing weights
times features) in logistic regression in Chapter 7; the equation for computing the
probability of y being of class c given x in multinomial logistic regression was (re-
peated from Eq. 8.11):

p(c|x) =

exp

(
N∑

i=1

wi fi(c,x)

)
∑
c′∈C

exp

(
N∑

i=1

wi fi(c′,x)

) (8.11)
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In other words, we can think of a neural network classifier with one hidden layer
as building a vector h which is a hidden layer representation of the input, and then
running standard logistic regression on the features that the network develops in h.
By contrast, in Chapter 7 the features were mainly designed by hand via feature
templates. So a neural network is like logistic regression, but (a) with many layers,
since a deep neural network is like layer after layer of logistic regression classifiers,
and (b) rather than forming the features by feature templates, the prior layers of the
network induce the feature representations themselves.

Here are the final equations for a feed-forward network with a single hidden
layer, which takes an input vector x, outputs a probability distribution y, and is pa-
rameterized by weight matrices W and U and a bias vector b:

h = σ(Wx+b) (8.12)

z =Uh (8.13)

y = softmax(z) (8.14)

(8.15)

8.4 Training Neural Nets

To train a neural net, meaning to set the weights and biases W and b for each layer,
we use optimization methods like stochastic gradient descent, just as with logistic
regression in Chapter 7.

Let’s use the variable θ to mean all the parameters we need to learn (W and b
for each layer). The intuition of gradient descent is to start with some initial guess
at θ , for example setting all the weights randomly, and then nudge the weights (i.e.
change θ slightly) in a direction that improves our system.

8.4.1 Loss function
If our goal is to move our weights in a way that improves the system, we’ll obviously
need a metric for whether the system has improved or not.

The neural nets we have been describing are supervised classifiers, which means
we know the right answer for each observation in the training set. So our goal is for
the output from the network for each training instance to be as close as possible to
the correct gold label.

Rather than measure how close the system output for each training instance is
to the gold label for that instance we generally instead measure the opposite. We
measure the distance between the system output and the gold output, and we call
this distance the loss or the cost function.loss

cost function So our goal is to define a loss function, and then find a way to minimize this loss.
Imagine a very simple regressor with one output node that computes a real value

of some single input node x. The true value is y, and our network estimates a value
ŷ which it computes via some function f (x). We can express this as:

L(ŷ,y) = How much ŷ differs from the true y (8.16)

or equivalently, but with more details, making transparent the fact that ŷ is com-
puted by a function f that is parameterized by θ :
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L( f (x;θ),y) = How much f (x) differs from the true y (8.17)

A common loss function for such a network (or for the similar case of linear
regression) is the mean-squared error or MSE between the true value y(i) and themean-squared

error
MSE system’s output ŷ(i), the average over the m observations of the square of the error in

ŷ for each one:

LMSE(ŷ,y) =
1
n

m∑
i=1

(ŷ(m)− y(i))2 (8.18)

While mean squared error makes sense for regression tasks, mostly in this chap-
ter we have been considering nets as probabilistic classifiers. For probabilistic classi-
fiers a common loss function—also used in training logistic regression—is the cross
entropy loss, also called the negative log likelihood. Let y be a vector over the Ccross entropy

loss
classes representing the true output probability distribution. Assume this is a hard
classification task, meaning that only one class is the correct one. If the true class
is i, then y is a vector where yi = 1 and y j = 0 ∀ j 6= i. A vector like this, with one
value=1 and the rest 0, is called a one-hot vector. Now let ŷ be the vector output
from the network. The loss is simply the log probability of the correct class:

L(ŷ,y) =− log p(ŷi) (8.19)

Why the negative log probability? A perfect classifier would assign the correct
class i probability 1 and all the incorrect classes probability 0. That means the higher
p(ŷi) (the closer it is to 1), the better the classifier; p(ŷi) is (the closer it is to 0), the
worse the classifier. The negative log of this probability is a beautiful loss metric
since it goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite
loss). This loss function also insures that as probability of the correct answer is
maximized, the probability of all the incorrect answers is minimized; since they all
sum to one, any increase in the probability of the correct answer is coming at the
expense of the incorrect answers.

Given a loss function1 our goal in training is to move the parameters so as to
minimize the loss, finding the minimum of the loss function.

8.4.2 Following Gradients
How shall we find the minimum of this loss function? Gradient descent is a method
that finds a minimum of a function by figuring out in which direction (in the space
of the parameters θ ) the function’s slope is rising the most steeply, and moving in
the opposite direction.

The intuition is that if you are hiking the Grand Canyon and trying to descend
most quickly down to the river you might look around yourself 360 degrees, find
the direction where the ground is sloping the steepest, and walk downhill in that
direction.

Although the algorithm (and the concept of gradient) are designed for direction
vectors, let’s first consider a visualization of the the case where, θ , the parameter of
our system, is just a single scalar, shown in Fig. 8.9.

Given a random initialization of θ at some value θ1, and assuming the loss func-
tion L happened to have the shape in Fig. 8.9, we need the algorithm to tell us

1 See any machine learning textbook for lots of other potential functions like the useful hinge loss.
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whether at the next iteration, we should move left (making θ2 smaller than theta1)
or right (making θ2 bigger than θ1) to reach the minimum.

θ

Loss

(random
 start)

θ1 θmin

slope
of Loss
at θ1 is 

negative

(goal)

Figure 8.9 The first step in iteratively finding the minimum of this loss function, by moving
θ in the reverse direction from the slope of the function. Since the slope is negative, we need
to move θ in a positive direction, to the right.

The gradient descent algorithm answers this question by finding the gradientgradient

of the loss function at the current point and moving in the opposite direction. The
gradient of a function of many variables is a vector pointing in the direction of
greatest change in a function. The gradient is a multi-variable generalization of the
slope, and indeed for a function of one variable like the one in Fig. 8.9, we can
informally think of the gradient as the slope. The dotted line in Fig. 8.9 shows the
slope of this hypothetical loss function at point θ = θ0. You can see that the slope
of this dotted line is negative. Thus to find the minimum, gradient descent tells us to
go in the opposite direction: moving θ in a positive direction.

The magnitude of the amount to move in gradient descent is the value of the
slope d

dθ
f (θ0) weighted by another variable called the learning rate η . A higherlearning rate

(faster) learning rate means that we should move θ more on each step. The change
we make in our parameter is the learning rate times the gradient (or the slope, in our
single-variable example):

θt+1 = θt −η
d

dθ
f (θ0) (8.20)

Now let’s extend the intuition from a function of one variable to many variables,
because we don’t just want to move left or right, we want to know where in the
N-dimensional space (of the N parameters that make up θ ) we should move. Recall
our intuition from standing at the rim of the Grand Canyon. If we are on a mesa
and want to know which direction to walk down, we need a vector that tells us in
which direction we should move. The gradient is just such a vector; it expresses the
directional components of the sharpest slope along each of those N dimensions. If
we’re just imagining the two dimensions of the plane, the gradient might be a vector
with two orthogonal components, each of which tells us how much the ground slopes
in that direction. Fig. 8.10 shows a visualization:

In an actual network θ , the parameter vector, is much longer than 2; it contains
all the weights and biases for the whole network, which can be millions of param-
eters. For each dimension/variable θ j that makes up θ , the gradient will have a



114 CHAPTER 8 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Figure 8.10 Visualization of the gradient vector in two dimensions.

component that tells us the slope with respect to that variable. Essentially we’re ask-
ing: “How much would a small change in that variable θ j influence the loss function
L?”

In each dimension θ j, we express the slope as a partial derivative ∂

∂θ j
of the loss

function. The gradient is then defined as a vector of these partials:

∇θ L( f (x;θ),y)) =


∂

∂θ1
L( f (x;θ),y)

∂

∂θ2
L( f (x;θ),y)

...
∂

∂θm
L( f (x;θ),y)

 (8.21)

The final equation for updating θ based on the gradient is thus

θt+1 = θt −η∇L( f (x;θ),y) (8.22)

8.4.3 Computing the Gradient
Computing the gradient requires the partial derivative of the loss function with re-
spect to each parameter. This can be complex for deep networks, where we are
computing the derivative with respect to weight parameters that appear all the way
back in the very early layers of the network, even though the loss is computed only
at the very end of the network.

The solution to computing this gradient is known as error backpropagationerror back-
propagation

or backprop (Rumelhart et al., 1986), which turns out to be a special case of back-
ward differentiation. In backprop, the loss function is first modeled as a computation
graph, in which each edge is a computation and each node the result of the compu-
tation. The chain rule of differentiation is then used to annotate this graph with the
partial derivatives of the loss function along each edge of the graph. We give a brief
overview of the algorithm in the next subsections; further details can be found in any
machine learning or data-intensive computation textbook.

Computation Graphs

TBD
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Error Back Propagation

TBD

8.4.4 Stochastic Gradient Descent
Once we have computed the gradient, we can use it to train θ . The stochastic gradi-
ent descent algorithm (LeCun et al., 2012) is an online algorithm that computes this
gradient after each training example, and nudges θ in the right direction. Fig. 8.11
shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns θ

# where: L is the loss function
# f is a function parameterized by θ

# x is the set of training inputs x(1), x(2), ..., x(n)

# y is the set of training outputs (labels) y(1), y(2), ..., y(n)

θ←small random values
while not done

Sample a training tuple (x(i), y(i))
Compute the loss L( f (x(i);θ),y(i)) # How far off is f (x(i)) from y(i)?
g←∇θ L( f (x(i);θ),y(i)) # How should we move θ to maximize loss ?
θ←θ − ηk g # go the other way instead

Figure 8.11 The stochastic gradient descent algorithm, after (Goldberg, 2017).

Stochastic gradient descent is called stochastic because it chooses a single ran-
dom example at a time, moving the weights so as to improve performance on that
single example. That can result in very choppy movements, so an alternative version
of the algorithm, minibatch gradient descent, computes the gradient over batches ofminibatch

training instances rather than a single instance.
The learning rate ηk is a parameter that must be adjusted. If it’s too high, the

learner will take steps that are too large, overshooting the minimum of the loss func-
tion. If it’s too low, the learner will take steps that are too small, and take too long to
get to the minimum. It is most common to being the learning rate at a higher value,
and then slowly decrease it, so that it is a function of the iteration k of training.

8.5 Neural Language Models

Now that we’ve introduced neural networks it’s time to see an application. The first
application we’ll consider is language modeling: predicting upcoming words from
prior word context.

Although we have already introduced a perfectly useful language modeling paradigm
(the smoothed N-grams of Chapter 4), neural net-based language models turn out to
have many advantages. Among these are that neural language models don’t need
smoothing, they can handle much longer histories, and they can generalize over
contexts of similar words. Furthermore, neural net language models underlie many
of the models we’ll introduce for generation, summarization, machine translation,
and dialog.



116 CHAPTER 8 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

On the other hand, there is a cost for this improved performance: neural net
language models are strikingly slower to train than traditional language models, and
so for many tasks traditional language modeling is still the right technology.

In this chapter we’ll describe simple feedforward neural language models, first
introduced by Bengio et al. (2003b). We will turn to the recurrent language model,
more commonly used today, in Chapter 9b.

A feedforward neural LM is a standard feedforward network that takes as input
at time t a representation of some number of previous words (wt−1,wt−2, etc) and
outputs a probability distribution over possible next words. Thus, like the traditional
LM the feedforward neural LM approximates the probability of a word given the
entire prior context P(wt |wt−1

1 ) by approximating based on the N previous words:

P(wt |wt−1
1 )≈ P(wt |wt−1

t−N+1) (8.23)

In the following examples we’ll use a 4-gram example, so we’ll show a net to
estimate the probability P(wt = i|wt−1,wt−2,wt−3).

8.5.1 Embeddings
The insight of neural language models is in how to represent the prior context. Each
word is represented as a vector of real numbers of of dimension d; d tends to lie
between 50 and 500, depending on the system. These vectors for each words are
called embeddings, because we represent a word as being embedded in a vectorembeddings

space. By contrast, in many traditional NLP applications, a word is represented as a
string of letters, or an index in a vocabulary list.

Why represent a word as a vector of 50 numbers? Vectors turn out to be a
really powerful representation for words, because a distributed representation allows
words that have similar meanings, or similar grammatical properties, to have similar
vectors. As we’ll see in Chapter 15, embedding that are learned for words like
“cat” and “dog”— words with similar meaning and parts of speech—will be similar
vectors. That will allow us to generalize our language models in ways that wasn’t
possible with traditional N-gram models.

For example, suppose we’ve seen this sentence in training:

I have to make sure when I get home to feed the cat.

and then in our test set we are trying to predict what comes after the prefix “I forgot
when I got home to feed the”.

A traditional N-gram model will predict “cat”. But suppose we’ve never seen
the word “dog” after the words ”feed the”. A traditional LM won’t expect “dog”.
But by representing words as vectors, and assuming the vector for “cat” is similar to
the vector for “dog”, a neural LM, even if it’s never seen “feed the dog”, will assign
a reasonably high probability to “dog” as well as “cat”, merely because they have
similar vectors.

Representing words as embeddings vectors is central to modern natural language
processing, and is generally referred to as the vector space model of meaning. We
will go into lots of details on the different kinds of embeddings in Chapter 15 and
Chapter 152.

Let’s set aside—just for a few pages—the question of how these embeddings
are learned. Imagine that we had an embedding dictionary E that gives us, for each
word in our vocabulary V , the vector for that word.

Fig. 8.12 shows a sketch of this simplified FFNNLM with N=3; we have a mov-
ing window at time t with a one-hot vector representing each of the 3 previous words
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(words wt−1, wt−2, and wt−3). These 3 vectors are concatenated together to produce
x, the input layer of a neural network whose output is a softmax with a probability
distribution over words. Thus y42, the value of output node 42 is the probability of
the next word wt being V42, the vocabulary word with index 42.

h1 h2

y1

h3 hdh…

…

U

W

y42 y|V|

Projection layer 1⨉3d
concatenated embeddings

for context words

Hidden layer

Output layer P(w|u) …

in thehole... ...ground there lived

word 42
embedding for

word 35
embedding for 

word 9925
embedding for 

word 45180

wt-1wt-2 wtwt-3

dh⨉3d

1⨉dh

|V|⨉dh P(wt=V42|wt-3,wt-2,wt-3)

1⨉|V|

Figure 8.12 A simplified view of a feedforward neural language model moving through a text. At each
timestep t the network takes the 3 context words, converts each to a d-dimensional embeddings, and concate-
nates the 3 embeddings together to get the 1×Nd unit input layer x for the network. These units are multiplied
by a weight matrix W and bias vector b and then an activation function to produce a hidden layer h, which is
then multiplied by another weight matrix U . (For graphic simplicity we don’t show b in this and future pictures).
Finally, a softmax output layer predicts at each node i the probability that the next word wt will be vocabulary
word Vi. (This picture is simplified because it assumes we just look up in a dictionary table E the “embedding
vector”, a d-dimensional vector representing each word, but doesn’t yet show us how these embeddings are
learned.)

The model shown in Fig. 8.12 is quite sufficient, assuming we learn the em-
beddings separately by a method like the word2vec methods of Chapter 152. The
method of using another algorithm to learn the embedding representations we use
for input words is called pretraining. If those pretrained embeddings are sufficientpretraining

for your purposes, then this is all you need.
However, often we’d like to learn the embeddings simultaneously with training

the network. This is true when whatever task the network is designed for (sentiment
classification, or translation, or parsing) places strong constraints on what makes a
good representation.

Let’s therefore show an architecture that allows the embeddings to be learned.
To do this, we’ll add an extra layer to the network, and propagate the error all the
way back to the embedding vectors, starting with embeddings with random values
and slowly moving toward sensible representations.

For this to work at the input layer, instead of pre-trained embeddings, we’re
going to represent each of the N previous words as a one-hot vector of length |V |, i.e.,
with one dimension for each word in the vocabulary. A one-hot vector is a vectorone-hot vector

that has one element equal to 1—in the dimension corresponding to that word’s
index in the vocabulary— while all the other elements are set to zero.
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Thus in a one-hot representation for the word “toothpaste”, supposing it happens
to have index 5 in the vocabulary, x5 is one and and xi = 0 ∀i 6= 5, as shown here:

[0 0 0 0 1 0 0 ... 0 0 0 0]

1 2 3 4 5 6 7 ... ... |V|

h1 h2

y1

h3 hdh…

…

U

W

y42 y|V|

Projection layer 1⨉3d

Hidden layer

Output layer 
P(w|context)

…

in thehole... ...ground there lived

word 42

wt-1wt-2 wtwt-3

dh⨉3d

1⨉dh

|V|⨉dh

P(wt=V42|wt-3,wt-2,wt-3)

1⨉|V|

Input layer
one-hot vectors

index
word 35

0 0 1 00

1 |V|35

0 0 1 00

1 |V|45180

0 0 1 00

1 |V|9925

0 0

index 
word 9925

index 
word 45180

E

1⨉|V|

d⨉|V| E is shared
across words

Figure 8.13 learning all the way back to embeddings. notice that the embedding matrix E is shared among
the 3 context words.

Fig. 8.13 shows the additional layers needed to learn the embeddings during LM
training. Here the N=3 context words are represented as 3 one-hot vectors, fully
connected to the embedding layer via 3 instantiations of the E embedding matrix.
Note that we don’t want to learn separate weight matrices for mapping each of the 3
previous words to the projection layer, we want one single embedding dictionary E
that’s shared among these three. That’s because over time, many different words will
appear as wt−2 or wt−1, and we’d like to just represent each word with one vector,
whichever context position it appears in. The embedding weight matrix E thus has
a row for each word, each a vector of d dimensions, and hence has dimensionality
V ×d.

Let’s walk through the forward pass of Fig. 8.13.

1. Select three embeddings from E: Given the three previous words, we look
up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider wt−3. The one-hot vector for ‘the’ is (index 35) is
multiplied by the embedding matrix E, to give the first part of the first hidden
layer, called the projection layer. Since each row of the input matrix E is justprojection layer

an embedding for a word, and the input is a one-hot columnvector xi for word
Vi, the projection layer for input w will be Exi = ei, the embedding for word i.
We now concatenate the three embeddings for the context words.
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2. Multiply by W: We now multiply by W (and add b) and pass through the
rectified linear (or other) activation function to get the hidden layer h.

3. Multiply by U: h is now multiplied by U
4. Apply softmax: After the softmax, each node i in the output layer estimates

the probability P(wt = i|wt−1,wt−2,wt−3)

In summary, if we use e to represent the projection layer, formed by concatenat-
ing the 3 embedding for the three context vectors, the equations for a neural language
model become:

e = (Ex1,Ex2, ...,Ex) (8.24)

h = σ(We+b) (8.25)

z =Uh (8.26)

y = softmax(z) (8.27)

8.5.2 Training the neural language model
To train the model, i.e. to set all the parameters θ = E,W,U,b, we use the SGD al-
gorithm of Fig. 8.11, with error back propagation to compute the gradient. Training
thus not only sets the weights W and U of the network, but also as we’re predicting
upcoming words, we’re learning the embeddings E for each words that best predict
upcoming words.

Generally training proceedings by taking as input a very long text, concatenating
all the sentences, start with random weights, and then iteratively moving through the
text predicting each word wt . At each word wt , the categorial cross-entropy (negative
log likelihood) loss is:

L =− log p(wt |wt−1, ...,wt−n+1) (8.28)

The gradient is computed for this loss by differentiation:

θt+1 = θt −η
∂ log p(wt |wt−1, ...,wt−n+1)

∂θ
(8.29)

And then backpropagated through U , W , b, E.

8.6 Summary

• Neural networks are built out of neural units, originally inspired by human
neurons but now simple an abstract computational device.

• Each neural unit multiplies input values by a weight vector, adds a bias, and
then applies a non-linear activation function like sigmoid, tanh, or rectified
linear.

• In a fully-connected, feedforward network, each unit in layer i is connected
to each unit in layer i+1, and there are no cycles.

• The power of neural networks comes from the ability of early layers to learn
representations that can be utilized by later layers in the network.

• Neural networks are trained by optimization algorithms like stochastic gra-
dient descent.
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• Error back propagation is used to compute the gradients of the loss function
for a network.

• Neural language modeling uses a network as a probabilistic classifier, to
compute the probability of the next word given the previous N word.

• Neural language models make use of embeddings, dense vectors of between
50 and 500 dimensions that represent words in the input vocabulary.

Bibliographical and Historical Notes
The origins of neural networks lie in the 1940s McCulloch-Pitts neuron (McCul-
loch and Pitts, 1943), a simplified model of the human neuron as a kind of com-
puting element that could be described in terms of propositional logic. By the late
1950s and early 1960s, a number of labs (including Frank Rosenblatt at Cornell and
Bernard Widrow at Stanford) developed research into neural networks; this phase
saw the development of the perceptron (Rosenblatt, 1958), and the transformation
of the threshold into a bias, a notation we still use (Widrow and Hoff, 1960).

The field of neural networks declined after it was shown that a single perceptron
unit was unable to model functions as simple as XOR (Minsky and Papert, 1969).
While some small amount of work continued during the next two decades, a major
revival for the field didn’t come until the 1980s, when practical tools for building
deeper networks like error back propagation became widespread (Rumelhart et al.,
1986). During the 1980s a wide variety of neural network and related architectures
were developed, particularly for applications in psychology and cognitive science
(Rumelhart and McClelland 1986b, McClelland and Elman 1986, Rumelhart and
McClelland 1986a,Elman 1990), for which the term connectionist or parallel dis-connectionist

tributed processing was often used (Feldman and Ballard 1982, Smolensky 1988).
Many of the principles and techniques developed in this period are foundational
to modern work, including the idea of distributed representations (Hinton, 1986),
of recurrent networks (Elman, 1990), and the use of tensors for compositionality
(Smolensky, 1990).

By the 1990s larger neural networks began to be applied to many practical lan-
guage processing tasks as well, like handwriting recognition (LeCun et al. 1989,
LeCun et al. 1990) and speech recognition (Morgan and Bourlard 1989, Morgan
and Bourlard 1990). By the early 2000s, improvements in computer hardware and
advances in optimization and training techniques made it possible to train even larger
and deeper networks, leading to the modern term deep learning (Hinton et al. 2006,
Bengio et al. 2007). We cover more related history in Chapter 9b.

There are a number of excellent books on the subject. Goldberg (2017) has a
superb and comprehensive coverage of neural networks for natural language pro-
cessing. For neural networks in general see Goodfellow et al. (2016) and Nielsen
(2015).

The description in this chapter has been quite high-level, and there are many
details of neural network training and architecture that are necessary to successfully
train models. For example various forms of regularization are used to prevent over-
fitting, including dropout: randomly dropping some units and their conntectionsdropout

from the network during training (Hinton et al. 2012, Srivastava et al. 2014). Faster
optimization methods than vanilla stochastic gradient descent are often used, such
as Adam (Kingma and Ba, 2015).
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Since neural networks training and decoding require significant numbers of vec-
tor operations, modern systems are often trained using vector-based GPUs (Graphic
Processing Units). A number of software engineering tools are widely available
including TensorFlow (Abadi et al., 2015) and others.
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CHAPTER

9 Hidden Markov Models

Her sister was called Tatiana.
For the first time with such a name

the tender pages of a novel,
we’ll whimsically grace.

Pushkin, Eugene Onegin, in the Nabokov translation

Alexander Pushkin’s novel in verse, Eugene Onegin, serialized in the early 19th cen-
tury, tells of the young dandy Onegin, his rejection of the love of young Tatiana, his
duel with his friend Lenski, and his later regret for both mistakes. But the novel is
mainly beloved for its style and structure rather than its plot. Among other inter-
esting structural innovations, the novel is written in a form now known as the One-
gin stanza, iambic tetrameter with an unusual rhyme scheme. These elements have
caused complications and controversy in its translation into other languages. Many
of the translations have been in verse, but Nabokov famously translated it strictly
literally into English prose. The issue of its translation and the tension between
literal and verse translations have inspired much commentary—see, for example,
Hofstadter (1997).

In 1913, A. A. Markov asked a less controversial question about Pushkin’s text:
could we use frequency counts from the text to help compute the probability that the
next letter in sequence would be a vowel? In this chapter we introduce a descendant
of Markov’s model that is a key model for language processing, the hidden Markov
model or HMM.

The HMM is a sequence model. A sequence model or sequence classifier is asequence model

model whose job is to assign a label or class to each unit in a sequence, thus mapping
a sequence of observations to a sequence of labels. An HMM is a probabilistic
sequence model: given a sequence of units (words, letters, morphemes, sentences,
whatever), they compute a probability distribution over possible sequences of labels
and choose the best label sequence.

Sequence labeling tasks come up throughout speech and language processing,
a fact that isn’t too surprising if we consider that language consists of sequences
at many representational levels. These include part-of-speech tagging (Chapter 10)
named entity tagging (Chapter 20), and speech recognition (Chapter 31) among oth-
ers.

In this chapter we present the mathematics of the HMM, beginning with the
Markov chain and then including the main three constituent algorithms: the Viterbi
algorithm, the Forward algorithm, and the Baum-Welch or EM algorithm for unsu-
pervised (or semi-supervised) learning. In the following chapter we’ll see the HMM
applied to the task of part-of-speech tagging.
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9.1 Markov Chains

The hidden Markov model is one of the most important machine learning models
in speech and language processing. To define it properly, we need to first introduce
the Markov chain, sometimes called the observed Markov model. Markov chains
and hidden Markov models are both extensions of the finite automata of Chapter 3.
Recall that a weighted finite automaton is defined by a set of states and a set of
transitions between states, with each arc associated with a weight. A Markov chainMarkov chain

is a special case of a weighted automaton in which weights are probabilities (the
probabilities on all arcs leaving a node must sum to 1) and in which the input se-
quence uniquely determines which states the automaton will go through. Because
it can’t represent inherently ambiguous problems, a Markov chain is only useful for
assigning probabilities to unambiguous sequences.

Start0 End4

WARM3HOT1

COLD2

a22

a02

a11

a12

a03

a01

a21

a13

a33

a24

a14

a23 a34

a32

a31

Start0 End4

white3is1

snow2

a22

a02

a11

a12

a03

a01

a21

a13

a33

a24

a14a31

a34

a32a23

(a) (b)

Figure 9.1 A Markov chain for weather (a) and one for words (b). A Markov chain is specified by the
structure, the transition between states, and the start and end states.

Figure 9.1a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. Fig-
ure 9.1b shows another simple example of a Markov chain for assigning a probability
to a sequence of words w1...wn. This Markov chain should be familiar; in fact, it
represents a bigram language model. Given the two models in Fig. 9.1, we can as-
sign a probability to any sequence from our vocabulary. We go over how to do this
shortly.

First, let’s be more formal and view a Markov chain as a kind of probabilistic
graphical model: a way of representing probabilistic assumptions in a graph. A
Markov chain is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a01a02 . . .an1 . . .ann a transition probability matrix A, each ai j rep-

resenting the probability of moving from state i
to state j, s.t.

∑n
j=1 ai j = 1 ∀i

q0,qF a special start state and end (final) state that are
not associated with observations

Figure 9.1 shows that we represent the states (including start and end states) as
nodes in the graph, and the transitions as edges between nodes.

A Markov chain embodies an important assumption about these probabilities. In
a first-order Markov chain, the probability of a particular state depends only on theFirst-order

Markov chain
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previous state:

Markov Assumption: P(qi|q1...qi−1) = P(qi|qi−1) (9.1)

Note that because each ai j expresses the probability p(q j|qi), the laws of prob-
ability require that the values of the outgoing arcs from a given state must sum to
1:

n∑
j=1

ai j = 1 ∀i (9.2)

An alternative representation that is sometimes used for Markov chains doesn’t
rely on a start or end state, instead representing the distribution over initial states and
accepting states explicitly:

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i. Some
states j may have π j = 0, meaning that they cannot be initial
states. Also,

∑n
i=1 πi = 1

QA = {qx,qy...} a set QA⊂ Q of legal accepting states

Thus, the probability of state 1 being the first state can be represented either as
a01 or as π1. Note that because each πi expresses the probability p(qi|START ), all
the π probabilities must sum to 1:

n∑
i=1

πi = 1 (9.3)

Before you go on, use the sample probabilities in Fig. 9.2b to compute the prob-
ability of each of the following sequences:

(9.4) hot hot hot hot
(9.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 9.2b?

9.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of events that we can observe in the world. In many cases, however, the events
we are interested in may not be directly observable in the world. For example, in
Chapter 10we’ll introduce the task of part-of-speech tagging, assigning tags like
Noun and Verb to words.

we didn’t observe part-of-speech tags in the world; we saw words and had to in-
fer the correct tags from the word sequence. We call the part-of-speech tags hidden
because they are not observed. The same architecture comes up in speech recogni-
tion; in that case we see acoustic events in the world and have to infer the presence
of “hidden” words that are the underlying causal source of the acoustics. A hidden
Markov model (HMM) allows us to talk about both observed events (like wordsHidden

Markov model
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(a) (b)

Figure 9.2 Another representation of the same Markov chain for weather shown in Fig. 9.1.
Instead of using a special start state with a01 transition probabilities, we use the π vector,
which represents the distribution over starting state probabilities. The figure in (b) shows
sample probabilities.

that we see in the input) and hidden events (like part-of-speech tags) that we think
of as causal factors in our probabilistic model.

To exemplify these models, we’ll use a task conceived of by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for
the summer of 2007, but you do find Jason Eisner’s diary, which lists how many ice
creams Jason ate every day that summer. Our goal is to use these observations to
estimate the temperature every day. We’ll simplify this weather task by assuming
there are only two kinds of days: cold (C) and hot (H). So the Eisner task is as
follows:

Given a sequence of observations O, each observation an integer cor-
responding to the number of ice creams eaten on a given day, figure
out the correct ‘hidden’ sequence Q of weather states (H or C) which
caused Jason to eat the ice cream.

Let’s begin with a formal definition of a hidden Markov model, focusing on how
it differs from a Markov chain. An HMM is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j rep-

resenting the probability of moving from state i
to state j, s.t.

∑n
j=1 ai j = 1 ∀i

O = o1o2 . . .oT a sequence of T observations, each one drawn
from a vocabulary V = v1,v2, ...,vV

B = bi(ot) a sequence of observation likelihoods, also
called emission probabilities, each expressing
the probability of an observation ot being gen-
erated from a state i

q0,qF a special start state and end (final) state that are
not associated with observations, together with
transition probabilities a01a02 . . .a0n out of the
start state and a1F a2F . . .anF into the end state

As we noted for Markov chains, an alternative representation that is sometimes
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used for HMMs doesn’t rely on a start or end state, instead representing the distri-
bution over initial and accepting states explicitly. We don’t use the π notation in this
textbook, but you may see it in the literature1:

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i. Some
states j may have π j = 0, meaning that they cannot be initial
states. Also,

∑n
i=1 πi = 1

QA = {qx,qy...} a set QA⊂ Q of legal accepting states

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi−1) = P(qi|qi−1) (9.6)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT ) = P(oi|qi) (9.7)

Figure 9.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

start0

COLD2HOT1

B2
P(1 | COLD)          .5
P(2 | COLD)    =    .4
P(3 | COLD)          .1

.2

.8

.5.6

.4

.3

P(1 | HOT)          .2
P(2 | HOT)    =    .4
P(3 | HOT)          .4

B1

end3

.1

.1

Figure 9.3 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

Notice that in the HMM in Fig. 9.3, there is a (non-zero) probability of transition-
ing between any two states. Such an HMM is called a fully connected or ergodic
HMM. Sometimes, however, we have HMMs in which many of the transitions be-Ergodic HMM

tween states have zero probability. For example, in left-to-right (also called Bakis)Bakis network

HMMs, the state transitions proceed from left to right, as shown in Fig. 9.4. In a
Bakis HMM, no transitions go from a higher-numbered state to a lower-numbered
state (or, more accurately, any transitions from a higher-numbered state to a lower-
numbered state have zero probability). Bakis HMMs are generally used to model
temporal processes like speech; we show more of them in Chapter 31.

1 It is also possible to have HMMs without final states or explicit accepting states. Such HMMs define a
set of probability distributions, one distribution per observation sequence length, just as language models
do when they don’t have explicit end symbols. This isn’t a problem since for most tasks in speech and
language processing the lengths of the observations are fixed.
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Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM λ = (A,B) and an observation se-
quence O, determine the likelihood P(O|λ ).

Problem 2 (Decoding): Given an observation sequence O and an HMM λ =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the ice-cream eating HMM in Fig. 9.3, what is the probability of
the sequence 3 1 3? More formally:

Computing Likelihood: Given an HMM λ = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|λ ).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the
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sequence of observations have the same length.2

Given this one-to-one mapping and the Markov assumptions expressed in Eq. 9.6,
for a particular hidden state sequence Q = q0,q1,q2, ...,qT and an observation se-
quence O = o1,o2, ...,oT , the likelihood of the observation sequence is

P(O|Q) =

T∏
i=1

P(oi|qi) (9.8)

The computation of the forward probability for our ice-cream observation 3 1 3
from one possible hidden state sequence hot hot cold is shown in Eq. 9.9. Figure 9.5
shows a graphic representation of this computation.

P(3 1 3|hot hot cold) = P(3|hot)×P(1|hot)×P(3|cold) (9.9)

coldhot

3

.4

hot

1 3

.2 .1

Figure 9.5 The computation of the observation likelihood for the ice-cream events 3 1 3
given the hidden state sequence hot hot cold.

But of course, we don’t actually know what the hidden state (weather) sequence
was. We’ll need to compute the probability of ice-cream events 3 1 3 instead by
summing over all possible weather sequences, weighted by their probability. First,
let’s compute the joint probability of being in a particular weather sequence Q and
generating a particular sequence O of ice-cream events. In general, this is

P(O,Q) = P(O|Q)×P(Q) =

T∏
i=1

P(oi|qi)×
T∏

i=1

P(qi|qi−1) (9.10)

The computation of the joint probability of our ice-cream observation 3 1 3 and
one possible hidden state sequence hot hot cold is shown in Eq. 9.11. Figure 9.6
shows a graphic representation of this computation.

P(3 1 3,hot hot cold) = P(hot|start)×P(hot|hot)×P(cold|hot)
×P(3|hot)×P(1|hot)×P(3|cold) (9.11)

Now that we know how to compute the joint probability of the observations
with a particular hidden state sequence, we can compute the total probability of the
observations just by summing over all possible hidden state sequences:

P(O) =
∑

Q

P(O,Q) =
∑

Q

P(O|Q)P(Q) (9.12)

2 In a variant of HMMs called segmental HMMs (in speech recognition) or semi-HMMs (in text pro-
cessing) this one-to-one mapping between the length of the hidden state sequence and the length of the
observation sequence does not hold.
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Figure 9.6 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,

P(3 1 3) = P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

For an HMM with N hidden states and an observation sequence of T observa-
tions, there are NT possible hidden sequences. For real tasks, where N and T are
both large, NT is a very large number, so we cannot compute the total observation
likelihood by computing a separate observation likelihood for each hidden state se-
quence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient
O(N2T ) algorithm called the forward algorithm. The forward algorithm is a kindForward

algorithm
of dynamic programming algorithm, that is, an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence. The
forward algorithm computes the observation probability by summing over the prob-
abilities of all possible hidden state paths that could generate the observation se-
quence, but it does so efficiently by implicitly folding each of these paths into a
single forward trellis.

Figure 9.7 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequence hot hot cold.

Each cell of the forward algorithm trellis αt( j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton λ . The value
of each cell αt( j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

αt( j) = P(o1,o2 . . .ot ,qt = j|λ ) (9.13)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability αt( j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value αt( j) is computed as

αt( j) =
N∑

i=1

αt−1(i)ai jb j(ot) (9.14)

The three factors that are multiplied in Eq. 9.14 in extending the previous paths
to compute the forward probability at time t are

αt−1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j
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Figure 9.7 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1
3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions.
The figure shows the computation of αt( j) for two states at two time steps. The computation in each cell
follows Eq. 9.14: αt( j) =

∑N
i=1 αt−1(i)ai jb j(ot). The resulting probability expressed in each cell is Eq. 9.13:

αt( j) = P(o1,o2 . . .ot ,qt = j|λ ).

Consider the computation in Fig. 9.7 of α2(2), the forward probability of being at
time step 2 in state 2 having generated the partial observation 3 1. We compute by ex-
tending the α probabilities from time step 1, via two paths, each extension consisting
of the three factors above: α1(1)×P(H|H)×P(1|H) and α1(2)×P(H|C)×P(1|H).

Figure 9.8 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in
Fig. 9.9 and a statement of the definitional recursion here.

1. Initialization:

α1( j) = a0 jb j(o1) 1≤ j ≤ N (9.15)

2. Recursion (since states 0 and F are non-emitting):

αt( j) =
N∑

i=1

αt−1(i)ai jb j(ot); 1≤ j ≤ N,1< t ≤ T (9.16)

3. Termination:

P(O|λ ) = αT (qF) =

N∑
i=1

αT (i)aiF (9.17)
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Figure 9.8 Visualizing the computation of a single element αt(i) in the trellis by summing
all the previous values αt−1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot+1). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for αt(i). Start and end states are not shown.

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]
for each state s from 1 to N do ; initialization step

forward[s,1]←a0,s ∗ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]←
N∑

s′=1

forward[s′, t−1] ∗ as′,s ∗ bs(ot)

forward[qF ,T]←
N∑

s=1

forward[s,T ] ∗ as,qF ; termination step

return forward[qF ,T ]

Figure 9.9 The forward algorithm. We’ve used the notation forward[s, t] to represent αt(s).

9.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder

best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM λ = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .
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We might propose to find the best sequence as follows: For each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm
and compute the likelihood of the observation sequence given that hidden state se-
quence. Then we could choose the hidden state sequence with the maximum obser-
vation likelihood. It should be clear from the previous section that we cannot do this
because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programmingViterbi

algorithm
that makes uses of a dynamic programming trellis. Viterbi also strongly resembles
another dynamic programming variant, the minimum edit distance algorithm of
Chapter 3.
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Figure 9.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of vt( j) for two states at two time steps. The computation in each
cell follows Eq. 9.19: vt( j) = max1≤i≤N−1 vt−1(i) ai j b j(ot). The resulting probability expressed in each cell is
Eq. 9.18: vt( j) = P(q0,q1, . . . ,qt−1,o1,o2, . . . ,ot ,qt = j|λ ).

Figure 9.10 shows an example of the Viterbi trellis for computing the best hid-
den state sequence for the observation sequence 3 1 3. The idea is to process the
observation sequence left to right, filling out the trellis. Each cell of the trellis, vt( j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q0,q1, ...,qt−1, given
the automaton λ . The value of each cell vt( j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt( j) = max
q0,q1,...,qt−1

P(q0,q1...qt−1,o1,o2 . . .ot ,qt = j|λ ) (9.18)
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Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q0,q1,...,qt−1
. Like other dynamic programming al-

gorithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time t−1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state q j at time t, the value vt( j) is computed as

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot) (9.19)

The three factors that are multiplied in Eq. 9.19 for extending the previous paths
to compute the Viterbi probability at time t are

vt−1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1]←a0,s ∗ bs(o1)
backpointer[s,1]←0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′, t−1] ∗ as′,s

viterbi[qF ,T ]← N
max

s=1
viterbi[s,T ] ∗ as,qF ; termination step

backpointer[qF ,T ]← N
argmax

s=1
viterbi[s,T ] ∗ as,qF ; termination step

return the backtrace path by following backpointers to states back in
time from backpointer[qF ,T ]

Figure 9.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an
observation sequence and an HMM λ = (A,B), the algorithm returns the state path through
the HMM that assigns maximum likelihood to the observation sequence. Note that states 0
and qF are non-emitting.

Figure 9.11 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the forward algorithm except that it takes the max over the
previous path probabilities whereas the forward algorithm takes the sum. Note also
that the Viterbi algorithm has one component that the forward algorithm doesn’t
have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. 9.12, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi

backtrace
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Figure 9.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1( j) = a0 jb j(o1) 1≤ j ≤ N (9.20)

bt1( j) = 0 (9.21)

2. Recursion (recall that states 0 and qF are non-emitting):

vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1< t ≤ T (9.22)

btt( j) =
N

argmax
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1< t ≤ T (9.23)

3. Termination:

The best score: P∗= vT (qF) =
N

max
i=1

vT (i)∗aiF (9.24)

The start of backtrace: qT∗= btT (qF) =
N

argmax
i=1

vT (i)∗aiF (9.25)

9.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,
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Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

The input to such a learning algorithm would be an unlabeled sequence of ob-
servations O and a vocabulary of potential hidden states Q. Thus, for the ice cream
task, we would start with a sequence of observations O = {1,3,2, ...,} and the set of
hidden states H and C. For the part-of-speech tagging task we introduce in the next
chapter, we would start with a sequence of word observations O = {w1,w2,w3 . . .}
and a set of hidden states corresponding to parts of speech Noun, Verb, Adjective,...
and so on.

The standard algorithm for HMM training is the forward-backward, or Baum-Forward-
backward

Welch algorithm (Baum, 1972), a special case of the Expectation-MaximizationBaum-Welch

or EM algorithm (Dempster et al., 1977). The algorithm will let us train both theEM

transition probabilities A and the emission probabilities B of the HMM. Crucially,
EM is an iterative algorithm. It works by computing an initial estimate for the
probabilities, then using those estimates to computing a better estimate, and so on,
iteratively improving the probabilities that it learns.

Let us begin by considering the much simpler case of training a Markov chain
rather than a hidden Markov model. Since the states in a Markov chain are ob-
served, we can run the model on the observation sequence and directly see which
path we took through the model and which state generated each observation symbol.
A Markov chain of course has no emission probabilities B (alternatively, we could
view a Markov chain as a degenerate hidden Markov model where all the b proba-
bilities are 1.0 for the observed symbol and 0 for all other symbols). Thus, the only
probabilities we need to train are the transition probability matrix A.

We get the maximum likelihood estimate of the probability ai j of a particular
transition between states i and j by counting the number of times the transition was
taken, which we could call C(i→ j), and then normalizing by the total count of all
times we took any transition from state i:

ai j =
C(i→ j)∑

q∈Q C(i→ q)
(9.26)

We can directly compute this probability in a Markov chain because we know
which states we were in. For an HMM, we cannot compute these counts directly
from an observation sequence since we don’t know which path of states was taken
through the machine for a given input. The Baum-Welch algorithm uses two neat
intuitions to solve this problem. The first idea is to iteratively estimate the counts.
We will start with an estimate for the transition and observation probabilities and
then use these estimated probabilities to derive better and better probabilities. The
second idea is that we get our estimated probabilities by computing the forward
probability for an observation and then dividing that probability mass among all the
different paths that contributed to this forward probability.

To understand the algorithm, we need to define a useful probability related to the
forward probability and called the backward probability.Backward

probability
The backward probability β is the probability of seeing the observations from

time t +1 to the end, given that we are in state i at time t (and given the automaton
λ ):

βt(i) = P(ot+1,ot+2 . . .oT |qt = i,λ ) (9.27)

It is computed inductively in a similar manner to the forward algorithm.
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1. Initialization:

βT (i) = aiF , 1≤ i≤ N (9.28)

2. Recursion (again since states 0 and qF are non-emitting):

βt(i) =
N∑

j=1

ai j b j(ot+1) βt+1( j), 1≤ i≤ N,1≤ t < T (9.29)

3. Termination:

P(O|λ ) = αT (qF) = β1(q0) =

N∑
j=1

a0 j b j(o1) β1( j) (9.30)

Figure 9.13 illustrates the backward induction step.

ot+1
ot

ai1

ai2

aiN

ai3

b1(ot+1)

βt(i)= Σj βt+1(j) aij  bj(ot+1) 

q1

q2

q3

qN

q1

qi

q2

q1

q2

ot-1

q3

qN

βt+1(N)

βt+1(3)

βt+1(2)

βt+1(1)

b2(ot+1)
b3(ot+1)

bN(ot+1)

Figure 9.13 The computation of βt(i) by summing all the successive values βt+1( j)
weighted by their transition probabilities ai j and their observation probabilities b j(ot+1). Start
and end states not shown.

We are now ready to understand how the forward and backward probabilities can
help us compute the transition probability ai j and observation probability bi(ot) from
an observation sequence, even though the actual path taken through the machine is
hidden.

Let’s begin by seeing how to estimate âi j by a variant of Eq. 9.26:

âi j =
expected number of transitions from state i to state j

expected number of transitions from state i
(9.31)

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transition i→ j was taken at a particular point
in time t in the observation sequence. If we knew this probability for each particular
time t, we could sum over all times t to estimate the total count for the transition
i→ j.

More formally, let’s define the probability ξt as the probability of being in state
i at time t and state j at time t +1, given the observation sequence and of course the
model:

ξt(i, j) = P(qt = i,qt+1 = j|O,λ ) (9.32)
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To compute ξt , we first compute a probability which is similar to ξt , but differs
in including the probability of the observation; note the different conditioning of O
from Eq. 9.32:

not-quite-ξt(i, j) = P(qt = i,qt+1 = j,O|λ ) (9.33)

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1) 

si sj

βt+1(j)

Figure 9.14 Computation of the joint probability of being in state i at time t and state j at
time t + 1. The figure shows the various probabilities that need to be combined to produce
P(qt = i,qt+1 = j,O|λ ): the α and β probabilities, the transition probability ai j and the
observation probability b j(ot+1). After Rabiner (1989) which is c©1989 IEEE.

Figure 9.14 shows the various probabilities that go into computing not-quite-ξt :
the transition probability for the arc in question, the α probability before the arc, the
β probability after the arc, and the observation probability for the symbol just after
the arc. These four are multiplied together to produce not-quite-ξt as follows:

not-quite-ξt(i, j) = αt(i)ai jb j(ot+1)βt+1( j) (9.34)

To compute ξt from not-quite-ξt , we follow the laws of probability and divide
by P(O|λ ), since

P(X |Y,Z) = P(X ,Y |Z)
P(Y |Z)

(9.35)

The probability of the observation given the model is simply the forward proba-
bility of the whole utterance (or alternatively, the backward probability of the whole
utterance), which can thus be computed in a number of ways:

P(O|λ ) = αT (qF) = βT (q0) =

N∑
j=1

αt( j)βt( j) (9.36)

So, the final equation for ξt is

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)

αT (qF)
(9.37)

The expected number of transitions from state i to state j is then the sum over
all t of ξ . For our estimate of ai j in Eq. 9.31, we just need one more thing: the total
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expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

∑T−1
t=1 ξt(i, j)∑T−1

t=1
∑N

k=1 ξt(i,k)
(9.38)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(9.39)

For this, we will need to know the probability of being in state j at time t, which
we will call γt( j):

γt( j) = P(qt = j|O,λ ) (9.40)

Once again, we will compute this by including the observation sequence in the
probability:

γt( j) =
P(qt = j,O|λ )

P(O|λ )
(9.41)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure 9.15 The computation of γt( j), the probability of being in state j at time t. Note
that γ is really a degenerate case of ξ and hence this figure is like a version of Fig. 9.14 with
state i collapsed with state j. After Rabiner (1989) which is c©1989 IEEE.

As Fig. 9.15 shows, the numerator of Eq. 9.41 is just the product of the forward
probability and the backward probability:

γt( j) =
αt( j)βt( j)

P(O|λ )
(9.42)

We are ready to compute b. For the numerator, we sum γt( j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the
denominator, we sum γt( j) over all time steps t. The result is the percentage of the
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times that we were in state j and saw symbol vk (the notation
∑T

t=1s.t.Ot=vk
means

“sum over all t for which the observation at time t was vk”):

b̂ j(vk) =

∑T
t=1s.t.Ot=vk

γt( j)∑T
t=1 γt( j)

(9.43)

We now have ways in Eq. 9.38 and Eq. 9.43 to re-estimate the transition A and
observation B probabilities from an observation sequence O, assuming that we al-
ready have a previous estimate of A and B.

These re-estimations form the core of the iterative forward-backward algorithm.
The forward-backward algorithm (Fig. 9.16) starts with some initial estimate of the
HMM parameters λ = (A,B). We then iteratively run two steps. Like other cases of
the EM (expectation-maximization) algorithm, the forward-backward algorithm has
two steps: the expectation step, or E-step, and the maximization step, or M-step.E-step

M-step In the E-step, we compute the expected state occupancy count γ and the expected
state transition count ξ from the earlier A and B probabilities. In the M-step, we use
γ and ξ to recompute new A and B probabilities.

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step

γt( j) =
αt( j)βt( j)

αT (qF )
∀ t and j

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)

αT (qF )
∀ t, i, and j

M-step

âi j =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

N∑
k=1

ξt(i,k)

b̂ j(vk) =

T∑
t=1s.t. Ot=vk

γt( j)

T∑
t=1

γt( j)

return A, B

Figure 9.16 The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsu-
pervised learning of the A and B parameters, in practice the initial conditions are
very important. For this reason the algorithm is often given extra information. For
example, for speech recognition, in practice the HMM structure is often set by hand,
and only the emission (B) and (non-zero) A transition probabilities are trained from a
set of observation sequences O. Section ?? in Chapter 31 also discusses how initial A
and B estimates are derived in speech recognition. We also show that for speech the
forward-backward algorithm can be extended to inputs that are non-discrete (“con-
tinuous observation densities”).
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9.6 Summary

This chapter introduced the hidden Markov model for probabilistic sequence clas-
sification.

• Hidden Markov models (HMMs) are a way of relating a sequence of obser-
vations to a sequence of hidden classes or hidden states that explain the
observations.

• The process of discovering the sequence of hidden states, given the sequence
of observations, is known as decoding or inference. The Viterbi algorithm is
commonly used for decoding.

• The parameters of an HMM are the A transition probability matrix and the B
observation likelihood matrix. Both can be trained with the Baum-Welch or
forward-backward algorithm.

Bibliographical and Historical Notes
As we discussed at the end of Chapter 4, Markov chains were first used by Markov
(1913, 2006), to predict whether an upcoming letter in Pushkin’s Eugene Onegin
would be a vowel or a consonant.

The hidden Markov model was developed by Baum and colleagues at the Insti-
tute for Defense Analyses in Princeton (Baum and Petrie, 1966; Baum and Eagon,
1967).

The Viterbi algorithm was first applied to speech and language processing in
the context of speech recognition by Vintsyuk (1968) but has what Kruskal (1983)
calls a “remarkable history of multiple independent discovery and publication”.3

Kruskal and others give at least the following independently-discovered variants of
the algorithm published in four separate fields:

Citation Field
Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

The use of the term Viterbi is now standard for the application of dynamic pro-
gramming to any kind of probabilistic maximization problem in speech and language
processing. For non-probabilistic problems (such as for minimum edit distance), the
plain term dynamic programming is often used. Forney, Jr. (1973) wrote an early
survey paper that explores the origin of the Viterbi algorithm in the context of infor-
mation and communications theory.

Our presentation of the idea that hidden Markov models should be characterized
by three fundamental problems was modeled after an influential tutorial by Rabiner
(1989), which was itself based on tutorials by Jack Ferguson of IDA in the 1960s.
Jelinek (1997) and Rabiner and Juang (1993) give very complete descriptions of the

3 Seven is pretty remarkable, but see page ?? for a discussion of the prevalence of multiple discovery.
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forward-backward algorithm as applied to the speech recognition problem. Jelinek
(1997) also shows the relationship between forward-backward and EM. See also the
description of HMMs in other textbooks such as Manning and Schütze (1999).

Exercises
9.1 Implement the Forward algorithm and run it with the HMM in Fig. 9.3 to com-

pute the probability of the observation sequences 331122313 and 331123312.
Which is more likely?

9.2 Implement the Viterbi algorithm and run it with the HMM in Fig. 9.3 to com-
pute the most likely weather sequences for each of the two observation se-
quences above, 331122313 and 331123312.

9.3 Extend the HMM tagger you built in Exercise 10.5 by adding the ability to
make use of some unlabeled data in addition to your labeled training corpus.
First acquire a large unlabeled (i.e., no part-of-speech tags) corpus. Next, im-
plement the forward-backward training algorithm. Now start with the HMM
parameters you trained on the training corpus in Exercise 10.5; call this model
M0. Run the forward-backward algorithm with these HMM parameters to la-
bel the unsupervised corpus. Now you have a new model M1. Test the perfor-
mance of M1 on some held-out labeled data.

9.4 As a generalization of the previous homework, implement Jason Eisner’s HMM
tagging homework available from his webpage. His homework includes a
corpus of weather and ice-cream observations, a corpus of English part-of-
speech tags, and a very hand spreadsheet with exact numbers for the forward-
backward algorithm that you can compare against.
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CHAPTER

10 Part-of-Speech Tagging

Conjunction Junction, what’s your function?
Bob Dorough, Schoolhouse Rock, 1973

A gnostic was seated before a grammarian. The grammarian said, ‘A word must
be one of three things: either it is a noun, a verb, or a particle.’ The gnostic tore his
robe and cried, ‘Alas! Twenty years of my life and striving and seeking have gone to
the winds, for I laboured greatly in the hope that there was another word outside of
this. Now you have destroyed my hope.’ Though the gnostic had already attained the
word which was his purpose, he spoke thus in order to arouse the grammarian.

Rumi (1207–1273), The Discourses of Rumi, Translated by A. J. Arberry

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (exact author-
ship being understandably difficult to be sure of with texts of this vintage), wrote a
grammatical sketch of Greek (a “technē”) that summarized the linguistic knowledge
of his day. This work is the source of an astonishing proportion of modern linguistic
vocabulary, including words like syntax, diphthong, clitic, and analogy. Also in-
cluded are a description of eight parts-of-speech: noun, verb, pronoun, preposition,parts-of-speech

adverb, conjunction, participle, and article. Although earlier scholars (including
Aristotle as well as the Stoics) had their own lists of parts-of-speech, it was Thrax’s
set of eight that became the basis for practically all subsequent part-of-speech de-
scriptions of Greek, Latin, and most European languages for the next 2000 years.

Schoolhouse Rock was a popular series of 3-minute musical animated clips first
aired on television in 1973. The series was designed to inspire kids to learn multi-
plication tables, grammar, basic science, and history. The Grammar Rock sequence,
for example, included songs about parts-of-speech, thus bringing these categories
into the realm of popular culture. As it happens, Grammar Rock was remarkably
traditional in its grammatical notation, including exactly eight songs about parts-of-
speech. Although the list was slightly modified from Thrax’s original, substituting
adjective and interjection for the original participle and article, the astonishing dura-
bility of the parts-of-speech through two millenia is an indicator of both the impor-
tance and the transparency of their role in human language. Nonetheless, eight isn’t
very many and more recent part-of-speech tagsets have many more word classes,tagset

like the 45 tags used by the Penn Treebank (Marcus et al., 1993).
Parts-of-speech (also known as POS, word classes, or syntactic categories)POS

are useful because of the large amount of information they give about a word and
its neighbors. Knowing whether a word is a noun or a verb tells us a lot about
likely neighboring words (nouns are preceded by determiners and adjectives, verbs
by nouns) and about the syntactic structure around the word (nouns are generally part
of noun phrases), which makes part-of-speech tagging an important component of
syntactic parsing (Chapter 12). Parts of speech are useful features for finding named
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entities like people or organizations in text and other information extraction tasks
(Chapter 20). Parts-of-speech influence the possible morphological affixes and so
can influence stemming for informational retrieval, and can help in summarization
for improving the selection of nouns or other important words from a document. A
word’s part of speech is important for producing pronunciations in speech synthesis
and recognition. The word content, for example, is pronounced CONtent when it is
a noun and conTENT when it is an adjective (Chapter 32).

This chapter focuses on computational methods for assigning parts-of-speech to
words, part-of-speech tagging. After summarizing English word classes and thepart-of-speech

tagging
standard Penn tagset, we introduce two algorithms for tagging: the Hidden Markov
Model (HMM) and the Maximum Entropy Markov Model (MEMM).

10.1 (Mostly) English Word Classes

Until now we have been using part-of-speech terms like noun and verb rather
freely. In this section we give a more complete definition of these and other classes.
While word classes do have semantic tendencies—adjectives, for example, often
describe properties and nouns people— parts-of-speech are traditionally defined in-
stead based on syntactic and morphological function, grouping words that have sim-
ilar neighboring words (their distributional properties) or take similar affixes (their
morphological properties).

Parts-of-speech can be divided into two broad supercategories: closed classclosed class

types and open class types. Closed classes are those with relatively fixed member-open class

ship, such as prepositions—new prepositions are rarely coined. By contrast, nouns
and verbs are open classes—new nouns and verbs like iPhone or to fax are contin-
ually being created or borrowed. Any given speaker or corpus may have different
open class words, but all speakers of a language, and sufficiently large corpora,
likely share the set of closed class words. Closed class words are generally function
words like of, it, and, or you, which tend to be very short, occur frequently, andfunction word

often have structuring uses in grammar.
Four major open classes occur in the languages of the world: nouns, verbs,

adjectives, and adverbs. English has all four, although not every language does.
The syntactic class noun includes the words for most people, places, or things, butnoun

others as well. Nouns include concrete terms like ship and chair, abstractions like
bandwidth and relationship, and verb-like terms like pacing as in His pacing to and
fro became quite annoying. What defines a noun in English, then, are things like its
ability to occur with determiners (a goat, its bandwidth, Plato’s Republic), to take
possessives (IBM’s annual revenue), and for most but not all nouns to occur in the
plural form (goats, abaci).

Open class nouns fall into two classes. Proper nouns, like Regina, Colorado,proper noun

and IBM, are names of specific persons or entities. In English, they generally aren’t
preceded by articles (e.g., the book is upstairs, but Regina is upstairs). In written
English, proper nouns are usually capitalized. The other class, common nouns arecommon noun

divided in many languages, including English, into count nouns and mass nouns.count noun
mass noun Count nouns allow grammatical enumeration, occurring in both the singular and plu-

ral (goat/goats, relationship/relationships) and they can be counted (one goat, two
goats). Mass nouns are used when something is conceptualized as a homogeneous
group. So words like snow, salt, and communism are not counted (i.e., *two snows
or *two communisms). Mass nouns can also appear without articles where singular
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count nouns cannot (Snow is white but not *Goat is white).
The verb class includes most of the words referring to actions and processes,verb

including main verbs like draw, provide, and go. English verbs have inflections
(non-third-person-sg (eat), third-person-sg (eats), progressive (eating), past partici-
ple (eaten)). While many researchers believe that all human languages have the cat-
egories of noun and verb, others have argued that some languages, such as Riau In-
donesian and Tongan, don’t even make this distinction (Broschart 1997; Evans 2000;
Gil 2000) .

The third open class English form is adjectives, a class that includes many termsadjective

for properties or qualities. Most languages have adjectives for the concepts of color
(white, black), age (old, young), and value (good, bad), but there are languages
without adjectives. In Korean, for example, the words corresponding to English
adjectives act as a subclass of verbs, so what is in English an adjective “beautiful”
acts in Korean like a verb meaning “to be beautiful”.

The final open class form, adverbs, is rather a hodge-podge, both semanticallyadverb

and formally. In the following sentence from Schachter (1985) all the italicized
words are adverbs:

Unfortunately, John walked home extremely slowly yesterday

What coherence the class has semantically may be solely that each of these
words can be viewed as modifying something (often verbs, hence the name “ad-
verb”, but also other adverbs and entire verb phrases). Directional adverbs or loca-
tive adverbs (home, here, downhill) specify the direction or location of some action;locative

degree adverbs (extremely, very, somewhat) specify the extent of some action, pro-degree

cess, or property; manner adverbs (slowly, slinkily, delicately) describe the mannermanner

of some action or process; and temporal adverbs describe the time that some ac-temporal

tion or event took place (yesterday, Monday). Because of the heterogeneous nature
of this class, some adverbs (e.g., temporal adverbs like Monday) are tagged in some
tagging schemes as nouns.

The closed classes differ more from language to language than do the open
classes. Some of the important closed classes in English include:

prepositions: on, under, over, near, by, at, from, to, with
determiners: a, an, the
pronouns: she, who, I, others
conjunctions: and, but, or, as, if, when
auxiliary verbs: can, may, should, are
particles: up, down, on, off, in, out, at, by
numerals: one, two, three, first, second, third

Prepositions occur before noun phrases. Semantically they often indicate spatialpreposition

or temporal relations, whether literal (on it, before then, by the house) or metaphor-
ical (on time, with gusto, beside herself), but often indicate other relations as well,
like marking the agent in (Hamlet was written by Shakespeare,

A particle resembles a preposition or an adverb and is used in combination withparticle

a verb. Particles often have extended meanings that aren’t quite the same as the
prepositions they resemble, as in the particle over in she turned the paper over.

When a verb and a particle behave as a single syntactic and/or semantic unit, we
call the combination a phrasal verb. Phrasal verbs cause widespread problems withphrasal verb

natural language processing because they often behave as a semantic unit with a non-
compositional meaning— one that is not predictable from the distinct meanings of
the verb and the particle. Thus, turn down means something like ‘reject’, rule out
means ‘eliminate’, find out is ‘discover’, and go on is ‘continue’.
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A closed class that occurs with nouns, often marking the beginning of a noun
phrase, is the determiner. One small subtype of determiners is the article: Englishdeterminer

article has three articles: a, an, and the. Other determiners include this and that (this chap-
ter, that page). A and an mark a noun phrase as indefinite, while the can mark it
as definite; definiteness is a discourse property (Chapter 23). Articles are quite fre-
quent in English; indeed, the is the most frequently occurring word in most corpora
of written English, and a and an are generally right behind.

Conjunctions join two phrases, clauses, or sentences. Coordinating conjunc-conjunctions

tions like and, or, and but join two elements of equal status. Subordinating conjunc-
tions are used when one of the elements has some embedded status. For example,
that in “I thought that you might like some milk” is a subordinating conjunction
that links the main clause I thought with the subordinate clause you might like some
milk. This clause is called subordinate because this entire clause is the “content” of
the main verb thought. Subordinating conjunctions like that which link a verb to its
argument in this way are also called complementizers.complementizer

Pronouns are forms that often act as a kind of shorthand for referring to somepronoun

noun phrase or entity or event. Personal pronouns refer to persons or entities (you,personal

she, I, it, me, etc.). Possessive pronouns are forms of personal pronouns that in-possessive

dicate either actual possession or more often just an abstract relation between the
person and some object (my, your, his, her, its, one’s, our, their). Wh-pronounswh

(what, who, whom, whoever) are used in certain question forms, or may also act as
complementizers (Frida, who married Diego. . . ).

A closed class subtype of English verbs are the auxiliary verbs. Cross-linguist-auxiliary

ically, auxiliaries mark certain semantic features of a main verb, including whether
an action takes place in the present, past, or future (tense), whether it is completed
(aspect), whether it is negated (polarity), and whether an action is necessary, possi-
ble, suggested, or desired (mood).

English auxiliaries include the copula verb be, the two verbs do and have, alongcopula

with their inflected forms, as well as a class of modal verbs. Be is called a copulamodal

because it connects subjects with certain kinds of predicate nominals and adjectives
(He is a duck). The verb have is used, for example, to mark the perfect tenses (I
have gone, I had gone), and be is used as part of the passive (We were robbed) or
progressive (We are leaving) constructions. The modals are used to mark the mood
associated with the event or action depicted by the main verb: can indicates ability
or possibility, may indicates permission or possibility, must indicates necessity. In
addition to the perfect have mentioned above, there is a modal verb have (e.g., I have
to go), which is common in spoken English.

English also has many words of more or less unique function, including inter-
jections (oh, hey, alas, uh, um), negatives (no, not), politeness markers (please,interjection

negative thank you), greetings (hello, goodbye), and the existential there (there are two on
the table) among others. These classes may be distinguished or lumped together as
interjections or adverbs depending on the purpose of the labeling.

10.2 The Penn Treebank Part-of-Speech Tagset

While there are many lists of parts-of-speech, most modern language processing
on English uses the 45-tag Penn Treebank tagset (Marcus et al., 1993), shown in
Fig. 10.1. This tagset has been used to label a wide variety of corpora, including the
Brown corpus, the Wall Street Journal corpus, and the Switchboard corpus.
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Tag Description Example Tag Description Example
CC coordin. conjunction and, but, or SYM symbol +,%, &
CD cardinal number one, two TO “to” to
DT determiner a, the UH interjection ah, oops
EX existential ‘there’ there VB verb base form eat
FW foreign word mea culpa VBD verb past tense ate
IN preposition/sub-conj of, in, by VBG verb gerund eating
JJ adjective yellow VBN verb past participle eaten
JJR adj., comparative bigger VBP verb non-3sg pres eat
JJS adj., superlative wildest VBZ verb 3sg pres eats
LS list item marker 1, 2, One WDT wh-determiner which, that
MD modal can, should WP wh-pronoun what, who
NN noun, sing. or mass llama WP$ possessive wh- whose
NNS noun, plural llamas WRB wh-adverb how, where
NNP proper noun, sing. IBM $ dollar sign $
NNPS proper noun, plural Carolinas # pound sign #
PDT predeterminer all, both “ left quote ‘ or “
POS possessive ending ’s ” right quote ’ or ”
PRP personal pronoun I, you, he ( left parenthesis [, (, {, <
PRP$ possessive pronoun your, one’s ) right parenthesis ], ), }, >
RB adverb quickly, never , comma ,
RBR adverb, comparative faster . sentence-final punc . ! ?
RBS adverb, superlative fastest : mid-sentence punc : ; ... – -
RP particle up, off

Figure 10.1 Penn Treebank part-of-speech tags (including punctuation).

Parts-of-speech are generally represented by placing the tag after each word,
delimited by a slash, as in the following examples:

(10.1) The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN
other/JJ topics/NNS ./.

(10.2) There/EX are/VBP 70/CD children/NNS there/RB
(10.3) Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN

’s/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.

Example (10.1) shows the determiners the and a, the adjectives grand and other,
the common nouns jury, number, and topics, and the past tense verb commented.
Example (10.2) shows the use of the EX tag to mark the existential there construc-
tion in English, and, for comparison, another use of there which is tagged as an
adverb (RB). Example (10.3) shows the segmentation of the possessive morpheme
’s a passive construction, ‘were reported’, in which reported is marked as a past par-
ticiple (VBN). Note that since New England Journal of Medicine is a proper noun,
the Treebank tagging chooses to mark each noun in it separately as NNP, including
journal and medicine, which might otherwise be labeled as common nouns (NN).

Corpora labeled with parts-of-speech like the Treebank corpora are crucial train-
ing (and testing) sets for statistical tagging algorithms. Three main tagged corpora
are consistently used for training and testing part-of-speech taggers for English (see
Section 10.7 for other languages). The Brown corpus is a million words of samplesBrown

from 500 written texts from different genres published in the United States in 1961.
The WSJ corpus contains a million words published in the Wall Street Journal inWSJ

1989. The Switchboard corpus consists of 2 million words of telephone conver-Switchboard

sations collected in 1990-1991. The corpora were created by running an automatic
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part-of-speech tagger on the texts and then human annotators hand-corrected each
tag.

There are some minor differences in the tagsets used by the corpora. For example
in the WSJ and Brown corpora, the single Penn tag TO is used for both the infinitive
to (I like to race) and the preposition to (go to the store), while in the Switchboard
corpus the tag TO is reserved for the infinitive use of to, while the preposition use is
tagged IN:

Well/UH ,/, I/PRP ,/, I/PRP want/VBP to/TO go/VB to/IN a/DT restaurant/NN

Finally, there are some idiosyncracies inherent in any tagset. For example, be-
cause the Penn 45 tags were collapsed from a larger 87-tag tagset, the original
Brown tagset, some potential useful distinctions were lost. The Penn tagset was
designed for a treebank in which sentences were parsed, and so it leaves off syntac-
tic information recoverable from the parse tree. Thus for example the Penn tag IN is
used for both subordinating conjunctions like if, when, unless, after:

after/IN spending/VBG a/DT day/NN at/IN the/DT beach/NN

and prepositions like in, on, after:

after/IN sunrise/NN

Tagging algorithms assume that words have been tokenized before tagging. The
Penn Treebank and the British National Corpus split contractions and the ’s-genitive
from their stems:

would/MD n’t/RB
children/NNS ’s/POS

Indeed, the special Treebank tag POS is used only for the morpheme ’s, which
must be segmented off during tokenization.

Another tokenization issue concerns multipart words. The Treebank tagset as-
sumes that tokenization of words like New York is done at whitespace. The phrase
a New York City firm is tagged in Treebank notation as five separate words: a/DT
New/NNP York/NNP City/NNP firm/NN. The C5 tagset for the British National Cor-
pus, by contrast, allow prepositions like “in terms of” to be treated as a single word
by adding numbers to each tag, as in in/II31 terms/II32 of/II33.

10.3 Part-of-Speech Tagging

Part-of-speech tagging (tagging for short) is the process of assigning a part-of-tagging

speech marker to each word in an input text. Because tags are generally also applied
to punctuation, tokenization is usually performed before, or as part of, the tagging
process: separating commas, quotation marks, etc., from words and disambiguating
end-of-sentence punctuation (period, question mark, etc.) from part-of-word punc-
tuation (such as in abbreviations like e.g. and etc.)

The input to a tagging algorithm is a sequence of words and a tagset, and the
output is a sequence of tags, a single best tag for each word as shown in the examples
on the previous pages.

Tagging is a disambiguation task; words are ambiguous —have more than oneambiguous

possible part-of-speech— and the goal is to find the correct tag for the situation. For
example, the word book can be a verb (book that flight) or a noun (as in hand me
that book.
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That can be a determiner (Does that flight serve dinner) or a complementizer
(I thought that your flight was earlier). The problem of POS-tagging is to resolveresolution

these ambiguities, choosing the proper tag for the context. Part-of-speech tagging is
thus one of the many disambiguation tasks in language processing.disambiguation

How hard is the tagging problem? And how common is tag ambiguity? Fig. 10.2
shows the answer for the Brown and WSJ corpora tagged using the 45-tag Penn
tagset. Most word types (80-86%) are unambiguous; that is, they have only a sin-
gle tag (Janet is always NNP, funniest JJS, and hesitantly RB). But the ambiguous
words, although accounting for only 14-15% of the vocabulary, are some of the
most common words of English, and hence 55-67% of word tokens in running text
are ambiguous. Note the large differences across the two genres, especially in token
frequency. Tags in the WSJ corpus are less ambiguous, presumably because this
newspaper’s specific focus on financial news leads to a more limited distribution of
word usages than the more general texts combined into the Brown corpus.

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 10.2 The amount of tag ambiguity for word types in the Brown and WSJ corpora,
from the Treebank-3 (45-tag) tagging. These statistics include punctuation as words, and
assume words are kept in their original case.

Some of the most ambiguous frequent words are that, back, down, put and set;
here are some examples of the 6 different parts-of-speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP about debt
I was twenty-one back/RB then

Still, even many of the ambiguous tokens are easy to disambiguate. This is
because the different tags associated with a word are not equally likely. For ex-
ample, a can be a determiner or the letter a (perhaps as part of an acronym or an
initial). But the determiner sense of a is much more likely. This idea suggests a
simplistic baseline algorithm for part of speech tagging: given an ambiguous word,
choose the tag which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).

How good is this baseline? A standard way to measure the performance of part-
of-speech taggers is accuracy: the percentage of tags correctly labeled on a human-accuracy

labeled test set. One commonly used test set is sections 22-24 of the WSJ corpus. If
we train on the rest of the WSJ corpus and test on that test set, the most-frequent-tag
baseline achieves an accuracy of 92.34%.

By contrast, the state of the art in part-of-speech tagging on this dataset is around
97% tag accuracy, a performance that is achievable by a number of statistical algo-
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rithms including HMMs, MEMMs and other log-linear models, perceptrons, and
probably also rule-based systems—see the discussion at the end of the chapter. See
Section 10.7 on other languages and genres.

10.4 HMM Part-of-Speech Tagging

In this section we introduce the use of the Hidden Markov Model for part-of-speech
tagging. The HMM defined in the previous chapter was quite powerful, including a
learning algorithm— the Baum-Welch (EM) algorithm—that can be given unlabeled
data and find the best mapping of labels to observations. However when we apply
HMM to part-of-speech tagging we generally don’t use the Baum-Welch algorithm
for learning the HMM parameters. Instead HMMs for part-of-speech tagging are
trained on a fully labeled dataset—a set of sentences with each word annotated with
a part-of-speech tag—setting parameters by maximum likelihood estimates on this
training data.

Thus the only algorithm we will need from the previous chapter is the Viterbi
algorithm for decoding, and we will also need to see how to set the parameters from
training data.

10.4.1 The basic equation of HMM Tagging
Let’s begin with a quick reminder of the intuition of HMM decoding. The goal
of HMM decoding is to choose the tag sequence that is most probable given the
observation sequence of n words wn

1:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1) (10.4)

by using Bayes’ rule to instead compute:

t̂n
1 = argmax

tn
1

P(wn
1|tn

1 )P(t
n
1 )

P(wn
1)

(10.5)

Furthermore, we simplify Eq. 10.5 by dropping the denominator P(wn
1):

t̂n
1 = argmax

tn
1

P(wn
1|tn

1 )P(t
n
1 ) (10.6)

HMM taggers make two further simplifying assumptions. The first is that the
probability of a word appearing depends only on its own tag and is independent of
neighboring words and tags:

P(wn
1|tn

1 ) ≈
n∏

i=1

P(wi|ti) (10.7)

The second assumption, the bigram assumption, is that the probability of a tag
is dependent only on the previous tag, rather than the entire tag sequence;

P(tn
1 ) ≈

n∏
i=1

P(ti|ti−1) (10.8)
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Plugging the simplifying assumptions from Eq. 10.7 and Eq. 10.8 into Eq. 10.6
results in the following equation for the most probable tag sequence from a bigram
tagger, which as we will soon see, correspond to the emission probability and tran-
sition probability from the HMM of Chapter 9.

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1)≈ argmax
tn
1

n∏
i=1

emission︷ ︸︸ ︷
P(wi|ti)

transition︷ ︸︸ ︷
P(ti|ti−1) (10.9)

10.4.2 Estimating probabilities
Let’s walk through an example, seeing how these probabilities are estimated and
used in a sample tagging task, before we return to the Viterbi algorithm.

In HMM tagging, rather than using the full power of HMM EM learning, the
probabilities are estimated just by counting on a tagged training corpus. For this
example we’ll use the tagged WSJ corpus. The tag transition probabilities P(ti|ti−1)
represent the probability of a tag given the previous tag. For example, modal verbs
like will are very likely to be followed by a verb in the base form, a VB, like race,
so we expect this probability to be high. The maximum likelihood estimate of a
transition probability is computed by counting, out of the times we see the first tag
in a labeled corpus, how often the first tag is followed by the second

P(ti|ti−1) =
C(ti−1, ti)
C(ti−1)

(10.10)

In the WSJ corpus, for example, MD occurs 13124 times of which it is followed
by VB 10471, for an MLE estimate of

P(V B|MD) =
C(MD,V B)

C(MD)
=

10471
13124

= .80 (10.11)

The emission probabilities, P(wi|ti), represent the probability, given a tag (say
MD), that it will be associated with a given word (say will). The MLE of the emis-
sion probability is

P(wi|ti) =
C(ti,wi)

C(ti)
(10.12)

Of the 13124 occurrences of MD in the WSJ corpus, it is associated with will 4046
times:

P(will|MD) =
C(MD,will)

C(MD)
=

4046
13124

= .31 (10.13)

For those readers who are new to Bayesian modeling, note that this likelihood
term is not asking “which is the most likely tag for the word will?” That would be
the posterior P(MD|will). Instead, P(will|MD) answers the slightly counterintuitive
question “If we were going to generate a MD, how likely is it that this modal would
be will?”

The two kinds of probabilities from Eq. 10.9, the transition (prior) probabilities
like P(V B|MD) and the emission (likelihood) probabilities like P(will|MD), corre-
spond to the A transition probabilities, and B observation likelihoods of the HMM.
Figure 10.3 illustrates some of the the A transition probabilities for three states in an
HMM part-of-speech tagger; the full tagger would have one state for each tag.

Figure 10.4 shows another view of these three states from an HMM tagger, fo-
cusing on the word likelihoods B. Each hidden state is associated with a vector of
likelihoods for each observation word.
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Start0 End4

NN3VB1

MD2

a22

a02

a11

a12

a03

a01

a21

a13

a33

a24

a14

a32

a23

a31

a34

Figure 10.3 A piece of the Markov chain corresponding to the hidden states of the HMM.
The A transition probabilities are used to compute the prior probability.

Start0 End4

NN3VB1

MD2

P("aardvark" | NN)
...
P(“will” | NN)
...
P("the" | NN)
...
P(“back” | NN)
...
P("zebra" | NN)

P("aardvark" | VB)
...
P(“will” | VB)
...
P("the" | VB)
...
P(“back” | VB)
...
P("zebra" | VB)

P("aardvark" | MD)
...
P(“will” | MD)
...
P("the" | MD)
...
P(“back” | MD)
...
P("zebra" | MD)

B3B1

B2

Figure 10.4 Some of the B observation likelihoods for the HMM in the previous figure.
Each state (except the non-emitting start and end states) is associated with a vector of proba-
bilities, one likelihood for each possible observation word.

10.4.3 Working through an example
Let’s now work through an example of computing the best sequence of tags that
corresponds to the following sequence of words

(10.14) Janet will back the bill

The correct series of tags is:

(10.15) Janet/NNP will/MD back/VB the/DT bill/NN

Let the HMM be defined by the two tables in Fig. 10.5 and Fig. 10.6.
Figure 10.5 lists the ai j probabilities for transitioning between the hidden states

(part-of-speech tags).
Figure 10.6 expresses the bi(ot) probabilities, the observation likelihoods of

words given tags. This table is (slightly simplified) from counts in the WSJ cor-
pus. So the word Janet only appears as an NNP, back has 4 possible parts of speech,
and the word the can appear as a determiner or as an NNP (in titles like “Somewhere
Over the Rainbow” all words are tagged as NNP).
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NNP MD VB JJ NN RB DT
<s> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322 0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

Figure 10.5 The A transition probabilities P(ti|ti−1) computed from the WSJ corpus with-
out smoothing. Rows are labeled with the conditioning event; thus P(V B|MD) is 0.7968.

Janet will back the bill
NNP 0.000032 0 0 0.000048 0
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0.000097 0
NN 0 0.000200 0.000223 0.000006 0.002337
RB 0 0 0.010446 0 0
DT 0 0 0 0.506099 0

Figure 10.6 Observation likelihoods B computed from the WSJ corpus without smoothing.

NNP

Janet will back the bill

NN

MD

VB

RB

VB

JJ

NN

NNP

DT

NN

VB

Figure 10.7 A schematic of the tagging task for the sample sentence, showing the ambigu-
ities for each word and the correct tag sequence as the highlighted path through the hidden
states.

Figure 10.7 shows a schematic of the possible tags for each word and the correct
final tag sequence.

For the reader’s convenience Fig. 10.8 repeats the pseudocode for the Viterbi
algorithm from Chapter 9. The Viterbi algorithm sets up a probability matrix, with
one column for each observation t and one row for each state in the state graph.
Each column thus has a cell for each state qi in the single combined automaton for
the four words.

The algorithm first creates N = 5 state columns, the first for the observation of
the first word Janet, the second for will, and so on. We begin in the first column by
setting the Viterbi value in each cell to the product of the transition probability (into
it from the start state) and the observation probability (of the first word); the reader
should find this in Fig. 10.9.
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function VITERBI(observations of len T,state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1]←a0,s ∗ bs(o1)
backpointer[s,1]←0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′, t−1] ∗ as′,s

viterbi[qF ,T]← N
max

s=1
viterbi[s,T ] ∗ as,qF ; termination step

backpointer[qF ,T]← N
argmax

s=1
viterbi[s,T ] ∗ as,qF ; termination step

return the backtrace path by following backpointers to states back in time from
backpointer[qF ,T ]

Figure 10.8 Viterbi algorithm for finding optimal sequence of tags. Given an observation
sequence and an HMM λ = (A,B), the algorithm returns the state path through the HMM
that assigns maximum likelihood to the observation sequence. Note that states 0 and qF are
non-emitting.

Then we move on, column by column; for every state in column 1, we compute
the probability of moving into each state in column 2, and so on. For each state q j at
time t, we compute the value viterbi[s, t] by taking the maximum over the extensions
of all the paths that lead to the current cell, using the following equation:

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot) (10.16)

Recall from Chapter 9 that the three factors that are multiplied in Eq. 10.16 for
extending the previous paths to compute the Viterbi probability at time t are

vt−1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

In Fig. 10.9, each cell of the trellis in the column for the word Janet is com-
puted by multiplying the previous probability at the start state (1.0), the transition
probability from the start state to the tag for that cell, and the observation likelihood
of the word Janet given the tag for that cell. Most of the cells in the column are
zero since the word Janet cannot be any of those tags. Next, each cell in the will
column gets updated with the maximum probability path from the previous column.
We have shown the values for the MD, VB, and NN cells. Each cell gets the max
of the 7 values from the previous column, multiplied by the appropriate transition
probability; as it happens in this case, most of them are zero from the previous col-
umn. The remaining value is multiplied by the relevant transition probability, and
the (trivial) max is taken. In this case the final value, .0000002772, comes from the
NNP state at the previous column. The reader should fill in the rest of the trellis in
Fig. 10.9 and backtrace to reconstruct the correct state sequence NNP MD VB DT
NN. (Exercise 10.??).
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Figure 10.9 The first few entries in the individual state columns for the Viterbi algorithm. Each cell keeps
the probability of the best path so far and a pointer to the previous cell along that path. We have only filled out
columns 1 and 2; to avoid clutter most cells with value 0 are left empty. The rest is left as an exercise for the
reader. After the cells are filled in, backtracing from the end state, we should be able to reconstruct the correct
state sequence NNP MD VB DT NN.

10.4.4 Extending the HMM Algorithm to Trigrams
Practical HMM taggers have a number of extensions of this simple model. One
important missing feature is a wider tag context. In the tagger described above the
probability of a tag depends only on the previous tag:

P(tn
1 ) ≈

n∏
i=1

P(ti|ti−1) (10.17)

In practice we use more of the history, letting the probability of a tag depend on
the two previous tags:

P(tn
1 ) ≈

n∏
i=1

P(ti|ti−1, ti−2) (10.18)

Extending the algorithm from bigram to trigram taggers gives a small (perhaps a
half point) increase in performance, but conditioning on two previous tags instead of
one requires a significant change to the Viterbi algorithm. For each cell, instead of
taking a max over transitions from each cell in the previous column, we have to take
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a max over paths through the cells in the previous two columns, thus considering N2

rather than N hidden states at every observation.
In addition to increasing the context window, state-of-the-art HMM taggers like

Brants (2000) have a number of other advanced features. One is to let the tagger
know the location of the end of the sentence by adding dependence on an end-of-
sequence marker for tn+1. This gives the following equation for part-of-speech tag-
ging:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1)≈ argmax
tn
1

[
n∏

i=1

P(wi|ti)P(ti|ti−1, ti−2)

]
P(tn+1|tn) (10.19)

In tagging any sentence with Eq. 10.19, three of the tags used in the context will
fall off the edge of the sentence, and hence will not match regular words. These tags,
t−1, t0, and tn+1, can all be set to be a single special ‘sentence boundary’ tag that is
added to the tagset, which assumes sentences boundaries have already been marked.

One problem with trigram taggers as instantiated in Eq. 10.19 is data sparsity.
Any particular sequence of tags ti−2, ti−1, ti that occurs in the test set may simply
never have occurred in the training set. That means we cannot compute the tag
trigram probability just by the maximum likelihood estimate from counts, following
Eq. 10.20:

P(ti|ti−1, ti−2) =
C(ti−2, ti−1, ti)
C(ti−2, ti−1)

(10.20)

Just as we saw with language modeling, many of these counts will be zero
in any training set, and we will incorrectly predict that a given tag sequence will
never occur! What we need is a way to estimate P(ti|ti−1, ti−2) even if the sequence
ti−2, ti−1, ti never occurs in the training data.

The standard approach to solving this problem is the same interpolation idea
we saw in language modeling: estimate the probability by combining more robust,
but weaker estimators. For example, if we’ve never seen the tag sequence PRP VB
TO, and so can’t compute P(TO|PRP,VB) from this frequency, we still could rely
on the bigram probability P(TO|VB), or even the unigram probability P(TO). The
maximum likelihood estimation of each of these probabilities can be computed from
a corpus with the following counts:

Trigrams P̂(ti|ti−1, ti−2) =
C(ti−2, ti−1, ti)
C(ti−2, ti−1)

(10.21)

Bigrams P̂(ti|ti−1) =
C(ti−1, ti)
C(ti−1)

(10.22)

Unigrams P̂(ti) =
C(ti)

N
(10.23)

The standard way to combine these three estimators to estimate the trigram
probability P(ti|ti−1, ti−2)? is via linear interpolation. We estimate the probability
P(ti|ti−1ti−2) by a weighted sum of the unigram, bigram, and trigram probabilities:

P(ti|ti−1ti−2) = λ3P̂(ti|ti−1ti−2)+λ2P̂(ti|ti−1)+λ1P̂(ti) (10.24)

We require λ1 +λ2 +λ3 = 1, ensuring that the resulting P is a probability dis-
tribution. These λ s are generally set by an algorithm called deleted interpolationdeleted

interpolation
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(Jelinek and Mercer, 1980): we successively delete each trigram from the training
corpus and choose the λ s so as to maximize the likelihood of the rest of the corpus.
The deletion helps to set the λ s in such a way as to generalize to unseen data and
not overfit the training corpus. Figure 10.10 gives a deleted interpolation algorithm
for tag trigrams.

function DELETED-INTERPOLATION(corpus) returns λ1,λ2,λ3

λ1←0
λ2←0
λ3←0
foreach trigram t1, t2, t3 with C(t1, t2, t3)> 0

depending on the maximum of the following three values
case C(t1,t2,t3)−1

C(t1,t2)−1 : increment λ3 by C(t1, t2, t3)

case C(t2,t3)−1
C(t2)−1 : increment λ2 by C(t1, t2, t3)

case C(t3)−1
N−1 : increment λ1 by C(t1, t2, t3)

end
end
normalize λ1,λ2,λ3
return λ1,λ2,λ3

Figure 10.10 The deleted interpolation algorithm for setting the weights for combining
unigram, bigram, and trigram tag probabilities. If the denominator is 0 for any case, we
define the result of that case to be 0. N is the total number of tokens in the corpus. After
Brants (2000).

10.4.5 Unknown Words
words people
never use —
could be
only I
know them

Ishikawa Takuboku 1885–1912

To achieve high accuracy with part-of-speech taggers, it is also important to have
a good model for dealing with unknown words. Proper names and acronyms areunknown

words
created very often, and even new common nouns and verbs enter the language at a
surprising rate. One useful feature for distinguishing parts of speech is wordshape:
words starting with capital letters are likely to be proper nouns (NNP).

But the strongest source of information for guessing the part-of-speech of un-
known words is morphology. Words that end in -s are likely to be plural nouns
(NNS), words ending with -ed tend to be past participles (VBN), words ending with
-able tend to be adjectives (JJ), and so on. One way to take advantage of this is
to store for each final letter sequence (for simplicity referred to as word suffixes)
the statistics of which tag they were associated with in training. The method of
Samuelsson (1993) and Brants (2000), for example, considers suffixes of up to ten
letters, computing for each suffix of length i the probability of the tag ti given the
suffix letters:

P(ti|ln−i+1 . . . ln) (10.25)
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They use back-off to smooth these probabilities with successively shorter and
shorter suffixes. To capture the fact that unknown words are unlikely to be closed-
class words like prepositions, we can compute suffix probabilities only from the
training set for words whose frequency in the training set is ≤ 10, or alternately can
train suffix probabilities only on open-class words. Separate suffix tries are kept for
capitalized and uncapitalized words.

Finally, because Eq. 10.25 gives a posterior estimate p(ti|wi), we can compute
the likelihood p(wi|ti) that HMMs require by using Bayesian inversion (i.e., using
Bayes rule and computation of the two priors P(ti) and P(ti|ln−i+1 . . . ln)).

In addition to using capitalization information for unknown words, Brants (2000)
also uses capitalization for known words by adding a capitalization feature to each
tag. Thus, instead of computing P(ti|ti−1, ti−2) as in Eq. 10.21, the algorithm com-
putes the probability P(ti,ci|ti−1,ci−1, ti−2,ci−2). This is equivalent to having a cap-
italized and uncapitalized version of each tag, essentially doubling the size of the
tagset.

Combining all these features, a state-of-the-art trigram HMM like that of Brants
(2000) has a tagging accuracy of 96.7% on the Penn Treebank.

10.5 Maximum Entropy Markov Models

We turn now to a second sequence model, the maximum entropy Markov model
or MEMM. The MEMM is a sequence model adaptation of the MaxEnt (multino-MEMM

mial logistic regression) classifier. Because it is based on logistic regression, the
MEMM is a discriminative sequence model. By contrast, the HMM is a genera-discriminative

tive sequence model.generative

Let the sequence of words be W = wn
1 and the sequence of tags T = tn

1 . In an
HMM to compute the best tag sequence that maximizes P(T |W ) we rely on Bayes’
rule and the likelihood P(W |T ):

T̂ = argmax
T

P(T |W )

= argmax
T

P(W |T )P(T )

= argmax
T

∏
i

P(wordi|tagi)
∏

i

P(tagi|tagi−1) (10.26)

In an MEMM, by contrast, we compute the posterior P(T |W ) directly, training
it to discriminate among the possible tag sequences:

T̂ = argmax
T

P(T |W )

= argmax
T

∏
i

P(ti|wi, ti−1) (10.27)

We could do this by training a logistic regression classifier to compute the single
probability P(ti|wi, ti−1). Fig. 10.11 shows the intuition of the difference via the
direction of the arrows; HMMs compute likelihood (observation word conditioned
on tags) but MEMMs compute posterior (tags conditioned on observation words).
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will

MD VB DT NN

Janet back the bill

NNP

will

MD VB DT NN

Janet back the bill

NNP

Figure 10.11 A schematic view of the HMM (top) and MEMM (bottom) representation of
the probability computation for the correct sequence of tags for the back sentence. The HMM
computes the likelihood of the observation given the hidden state, while the MEMM computes
the posterior of each state, conditioned on the previous state and current observation.

10.5.1 Features in a MEMM
Oops. We lied in Eq. 10.27. We actually don’t build MEMMs that condition just on
wi and ti−1. In fact, an MEMM conditioned on just these two features (the observed
word and the previous tag), as shown in Fig. 10.11 and Eq. 10.27 is no more accurate
than the generative HMM model and in fact may be less accurate.

The reason to use a discriminative sequence model is that discriminative models
make it easier to incorporate a much wider variety of features. Because in HMMs
all computation is based on the two probabilities P(tag|tag) and P(word|tag), if we
want to include some source of knowledge into the tagging process, we must find
a way to encode the knowledge into one of these two probabilities. We saw in the
previous section that it was possible to model capitalization or word endings by
cleverly fitting in probabilities like P(capitalization|tag), P(suffix|tag), and so on
into an HMM-style model. But each time we add a feature we have to do a lot of
complicated conditioning which gets harder and harder as we have more and more
such features and, as we’ll see, there are lots more features we can add. Figure 10.12
shows a graphical intuition of some of these additional features.

will

MD VB

Janet back the bill

NNP

<s>

wi wi+1wi-1

ti-1ti-2

wi-1

Figure 10.12 An MEMM for part-of-speech tagging showing the ability to condition on
more features.

A basic MEMM part-of-speech tagger conditions on the observation word it-
self, neighboring words, and previous tags, and various combinations, using feature
templates like the following:templates

〈ti,wi−2〉,〈ti,wi−1〉,〈ti,wi〉,〈ti,wi+1〉,〈ti,wi+2〉
〈ti, ti−1〉,〈ti, ti−2, ti−1〉,

〈ti, ti−1,wi〉,〈ti,wi−1,wi〉〈ti,wi,wi+1〉, (10.28)
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Recall from Chapter 7 that feature templates are used to automatically populate
the set of features from every instance in the training and test set. Thus our exam-
ple Janet/NNP will/MD back/VB the/DT bill/NN, when wi is the word back, would
generate the following features:

ti = VB and wi−2 = Janet
ti = VB and wi−1 = will
ti = VB and wi = back
ti = VB and wi+1 = the
ti = VB and wi+2 = bill
ti = VB and ti−1 = MD
ti = VB and ti−1 = MD and ti−2 = NNP
ti = VB and wi = back and wi+1 = the

Also necessary are features to deal with unknown words, expressing properties
of the word’s spelling or shape:

wi contains a particular prefix (from all prefixes of length ≤ 4)
wi contains a particular suffix (from all suffixes of length ≤ 4)
wi contains a number
wi contains an upper-case letter
wi contains a hyphen
wi is all upper case
wi’s word shape
wi’s short word shape
wi is upper case and has a digit and a dash (like CFC-12)
wi is upper case and followed within 3 words by Co., Inc., etc.

Word shape features are used to represent the abstract letter pattern of the wordword shape

by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to ’d’, and retaining
punctuation. Thus for example I.M.F would map to X.X.X. and DC10-30 would
map to XXdd-dd. A second class of shorter word shape features is also used. In these
features consecutive character types are removed, so DC10-30 would be mapped to
Xd-d but I.M.F would still map to X.X.X. For example the word well-dressed would
generate the following non-zero valued feature values:

prefix(wi) = w

prefix(wi) = we

prefix(wi) = wel

prefix(wi) = well

suffix(wi) = ssed

suffix(wi) = sed

suffix(wi) = ed

suffix(wi) = d

has-hyphen(wi)
word-shape(wi) = xxxx-xxxxxxx

short-word-shape(wi) = x-x

Features for known words, like the templates in Eq. 10.28, are computed for ev-
ery word seen in the training set. The unknown word features can also be computed
for all words in training, or only on rare training words whose frequency is below
some threshold.

The result of the known-word templates and word-signature features is a very
large set of features. Generally a feature cutoff is used in which features are thrown
out if they have count < 5 in the training set.
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Given this large set of features, the most likely sequence of tags is then computed
by a MaxEnt model that combines these features of the input word wi, its neighbors
within l words wi+l

i−l , and the previous k tags t i−1
i−k as follows:

T̂ = argmax
T

P(T |W )

= argmax
T

∏
i

P(ti|wi+l
i−l , t

i−1
i−k )

= argmax
T

∏
i

exp

(∑
i

wi fi(ti,wi+l
i−l , t

i−1
i−k )

)
∑

t ′∈tagset
exp

(∑
i

wi fi(t ′,wi+l
i−l , t

i−1
i−k )

) (10.29)

10.5.2 Decoding and Training MEMMs
We’re now ready to see how to use the MaxEnt classifier to solve the decoding
problem by finding the most likely sequence of tags described in Eq. 10.29.

The simplest way to turn the MaxEnt classifier into a sequence model is to build
a local classifier that classifies each word left to right, making a hard classification
of the first word in the sentence, then a hard decision on the the second word, and
so on. This is called a greedy decoding algorithm, because we greedily choose thegreedy

best tag for each word, as shown in Fig. 10.13.

function GREEDY MEMM DECODING(words W, model P) returns tag sequence T

for i = 1 to length(W)
t̂i = argmax

t ′∈ T
P(t ′ | wi+l

i−l , t
i−1
i−k )

Figure 10.13 In greedy decoding we make a hard decision to choose the best tag left to
right.

The problem with the greedy algorithm is that by making a hard decision on each
word before moving on to the next word, the classifier cannot temper its decision
with information from future decisions. Although greedy algorithm is very fast, and
we do use it in some applications when it has sufficient accuracy, in general this hard
decision causes sufficient drop in performance that we don’t use it.

Instead we decode an MEMM with the Viterbi algorithm just as we did with theViterbi

HMM, thus finding the sequence of part-of-speech tags that is optimal for the whole
sentence.

Let’s see an example. For pedagogical purposes, let’s assume for this example
that our MEMM is only conditioning on the previous tag ti−1 and observed word
wi. Concretely, this involves filling an N×T array with the appropriate values for
P(ti|ti−1,wi), maintaining backpointers as we proceed. As with HMM Viterbi, when
the table is filled, we simply follow pointers back from the maximum value in the
final column to retrieve the desired set of labels. The requisite changes from the
HMM-style application of Viterbi have to do only with how we fill each cell. Recall
from Eq. 9.22 that the recursive step of the Viterbi equation computes the Viterbi
value of time t for state j as
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vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1< t ≤ T (10.30)

which is the HMM implementation of

vt( j) =
N

max
i=1

vt−1(i) P(s j|si) P(ot |s j) 1≤ j ≤ N,1< t ≤ T (10.31)

The MEMM requires only a slight change to this latter formula, replacing the a
and b prior and likelihood probabilities with the direct posterior:

vt( j) =
N

max
i=1

vt−1(i) P(s j|si,ot) 1≤ j ≤ N,1< t ≤ T (10.32)

Figure 10.14 shows an example of the Viterbi trellis for an MEMM applied to
the ice-cream task from Section 9.4. Recall that the task is figuring out the hidden
weather (hot or cold) from observed numbers of ice creams eaten in Jason Eisner’s
diary. Figure 10.14 shows the abstract Viterbi probability calculation, assuming that
we have a MaxEnt model that computes P(si|si−1,oi) for us.
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Figure 10.14 Inference from ice-cream eating computed by an MEMM instead of an HMM. The Viterbi
trellis for computing the best path through the hidden state space for the ice-cream eating events 3 1 3, modified
from the HMM figure in Fig. 9.10.

Learning in MEMMs relies on the same supervised learning algorithms we pre-
sented for logistic regression. Given a sequence of observations, feature functions,
and corresponding hidden states, we train the weights so as maximize the log-
likelihood of the training corpus. As with logistic regression, regularization is im-
portant, and all modern systems use L1 or L2 regularization.
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10.6 Bidirectionality

The one problem with the MEMM and HMM models as presented is that they are
exclusively run left-to-right. While the Viterbi algorithm still allows present deci-
sions to be influenced indirectly by future decisions, it would help even more if a
decision about word wi could directly use information about future tags ti+1 and ti+2.

Adding bidirectionality has another useful advantage. MEMMs have a theoret-
ical weakness, referred to alternatively as the label bias or observation bias prob-label bias

observation
bias lem (Lafferty et al. 2001, Toutanova et al. 2003). These are names for situations

when one source of information is ignored because it is explained away by another
source. Consider an example from (Toutanova et al., 2003), the sequence will/NN
to/TO fight/VB. The tag TO is often preceded by NN but rarely by modals (MD),
and so that tendency should help predict the correct NN tag for will. But the previ-
ous transition P(twill |〈s〉) prefers the modal, and because P(TO|to, twill) is so close
to 1 regardless of twill the model cannot make use of the transition probability and
incorrectly chooses MD. The strong information that to must have the tag TO has ex-
plained away the presence of TO and so the model doesn’t learn the importance of
the previous NN tag for predicting TO. Bidirectionality helps the model by making
the link between TO available when tagging the NN.

One way to implement bidirectionality is to switch to a much more powerful
model called a Conditional Random Field or CRF, which we will introduce inCRF

Chapter 20. But CRFs are much more expensive computationally than MEMMs and
don’t work any better for tagging, and so are not generally used for this task.

Instead, other ways are generally used to add bidirectionality. The Stanford tag-
ger uses a bidirectional version of the MEMM called a cyclic dependency networkStanford tagger

(Toutanova et al., 2003).
Alternatively, any sequence model can be turned into a bidirectional model by

using multiple passes. For example, the first pass would use only part-of-speech fea-
tures from already-disambiguated words on the left. In the second pass, tags for all
words, including those on the right, can be used. Alternately, the tagger can be run
twice, once left-to-right and once right-to-left. In greedy decoding, for each word
the classifier chooses the highest-scoring of the tag assigned by the left-to-right and
right-to-left classifier. In Viterbi decdoing, the classifier chooses the higher scoring
of the two sequences (left-to-right or right-to-left). Multiple-pass decoding is avail-
able in publicly available toolkits like the SVMTool system (Giménez and Marquez,SVMTool

2004), a tagger that applies an SVM classifier instead of a MaxEnt classifier at each
position, but similarly using Viterbi (or greedy) decoding to implement a sequence
model.

10.7 Part-of-Speech Tagging for Other Languages

The HMM and MEMM speech tagging algorithms have been applied to tagging in
many languages besides English. For languages similar to English, the methods
work well as is; tagger accuracies for German, for example, are close to those for
English. Augmentations become necessary when dealing with highly inflected or
agglutinative languages with rich morphology like Czech, Hungarian and Turkish.

These productive word-formation processes result in a large vocabulary for these
languages: a 250,000 word token corpus of Hungarian has more than twice as many
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word types as a similarly sized corpus of English (Oravecz and Dienes, 2002), while
a 10 million word token corpus of Turkish contains four times as many word types
as a similarly sized English corpus (Hakkani-Tür et al., 2002). Large vocabular-
ies mean many unknown words, and these unknown words cause significant per-
formance degradations in a wide variety of languages (including Czech, Slovene,
Estonian, and Romanian) (Hajič, 2000).

Highly inflectional languages also have much more information than English
coded in word morphology, like case (nominative, accusative, genitive) or gender
(masculine, feminine). Because this information is important for tasks like pars-
ing and coreference resolution, part-of-speech taggers for morphologically rich lan-
guages need to label words with case and gender information. Tagsets for morpho-
logically rich languages are therefore sequences of morphological tags rather than a
single primitive tag. Here’s a Turkish example, in which the word izin has three pos-
sible morphological/part-of-speech tags and meanings (Hakkani-Tür et al., 2002):

1. Yerdeki izin temizlenmesi gerek. iz + Noun+A3sg+Pnon+Gen

The trace on the floor should be cleaned.

2. Üzerinde parmak izin kalmiş iz + Noun+A3sg+P2sg+Nom

Your finger print is left on (it).

3. Içeri girmek için izin alman gerekiyor. izin + Noun+A3sg+Pnon+Nom

You need a permission to enter.

Using a morphological parse sequence like Noun+A3sg+Pnon+Gen as the part-
of-speech tag greatly increases the number of parts-of-speech, and so tagsets can
be 4 to 10 times larger than the 50–100 tags we have seen for English. With such
large tagsets, each word needs to be morphologically analyzed (using a method from
Chapter 3, or an extensive dictionary) to generate the list of possible morphological
tag sequences (part-of-speech tags) for the word. The role of the tagger is then
to disambiguate among these tags. This method also helps with unknown words
since morphological parsers can accept unknown stems and still segment the affixes
properly.

Different problems occur with languages like Chinese in which words are not
segmented in the writing system. For Chinese part-of-speech tagging word segmen-
tation (Chapter 2) is therefore generally applied before tagging. It is also possible
to build sequence models that do joint segmentation and tagging. Although Chinese
words are on average very short (around 2.4 characters per unknown word com-
pared with 7.7 for English) the problem of unknown words is still large, although
while English unknown words tend to be proper nouns in Chinese the majority of
unknown words are common nouns and verbs because of extensive compounding.
Tagging models for Chinese use similar unknown word features to English, includ-
ing character prefix and suffix features, as well as novel features like the radicals
of each character in a word. One standard unknown feature for Chinese is to build
a dictionary in which each character is listed with a vector of each part-of-speech
tags that it occurred with in any word in the training set. The vectors of each of the
characters in a word are then used as a feature in classification (Tseng et al., 2005b).

10.8 Summary

This chapter introduced the idea of parts-of-speech and part-of-speech tagging.
The main ideas:



164 CHAPTER 10 • PART-OF-SPEECH TAGGING

• Languages generally have a relatively small set of closed class words that are
often highly frequent, generally act as function words, and can be ambiguous
in their part-of-speech tags. Open-class words generally include various kinds
of nouns, verbs, adjectives. There are a number of part-of-speech coding
schemes, based on tagsets of between 40 and 200 tags.

• Part-of-speech tagging is the process of assigning a part-of-speech label to
each of a sequence of words.

• Two common approaches to sequence modeling are a generative approach,
HMM tagging, and a discriminative approach, MEMM tagging.

• The probabilities in HMM taggers are estimated, not using EM, but directly by
maximum likelihood estimation on hand-labeled training corpora. The Viterbi
algorithm is used to find the most likely tag sequence

• Maximum entropy Markov model or MEMM taggers train logistic regres-
sion models to pick the best tag given an observation word and its context and
the previous tags, and then use Viterbi to choose the best sequence of tags
for the sentence. More complex augmentions of the MEMM exist, like the
Conditional Random Field (CRF) tagger.

• Modern taggers are generally run bidirectionally.

Bibliographical and Historical Notes
What is probably the earliest part-of-speech tagger was part of the parser in Zellig
Harris’s Transformations and Discourse Analysis Project (TDAP), implemented be-
tween June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962),
although earlier systems had used part-of-speech information in dictionaries. TDAP
used 14 hand-written rules for part-of-speech disambiguation; the use of part-of-
speech tag sequences and the relative frequency of tags for a word prefigures all
modern algorithms. The parser, whose implementation essentially corresponded
a cascade of finite-state transducers, was reimplemented (Joshi and Hopely 1999;
Karttunen 1999).

The Computational Grammar Coder (CGC) of Klein and Simmons (1963) had
three components: a lexicon, a morphological analyzer, and a context disambigua-
tor. The small 1500-word lexicon listed only function words and other irregular
words. The morphological analyzer used inflectional and derivational suffixes to as-
sign part-of-speech classes. These were run over words to produce candidate parts-
of-speech which were then disambiguated by a set of 500 context rules by relying
on surrounding islands of unambiguous words. For example, one rule said that be-
tween an ARTICLE and a VERB, the only allowable sequences were ADJ-NOUN,
NOUN-ADVERB, or NOUN-NOUN. The CGC algorithm reported 90% accuracy
on applying a 30-tag tagset to a corpus of articles.

The TAGGIT tagger (Greene and Rubin, 1971) was based on the Klein and Sim-
mons (1963) system, using the same architecture but increasing the size of the dic-
tionary and the size of the tagset to 87 tags. TAGGIT was applied to the Brown
corpus and, according to Francis and Kučera (1982, p. 9), accurately tagged 77% of
the corpus; the remainder of the Brown corpus was then tagged by hand.

All these early algorithms were based on a two-stage architecture in which a
dictionary was first used to assign each word a list of potential parts-of-speech and
in the second stage large lists of hand-written disambiguation rules winnow down
this list to a single part of speech for each word.
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Soon afterwards the alternative probabilistic architectures began to be developed.
Probabilities were used in tagging by Stolz et al. (1965) and a complete probabilis-
tic tagger with Viterbi decoding was sketched by Bahl and Mercer (1976). The
Lancaster-Oslo/Bergen (LOB) corpus, a British English equivalent of the Brown
corpus, was tagging in the early 1980’s with the CLAWS tagger (Marshall 1983;
Marshall 1987; Garside 1987), a probabilistic algorithm that can be viewed as a
simplified approximation to the HMM tagging approach. The algorithm used tag
bigram probabilities, but instead of storing the word likelihood of each tag, the algo-
rithm marked tags either as rare (P(tag|word)< .01) infrequent (P(tag|word)< .10)
or normally frequent (P(tag|word)> .10).

DeRose (1988) developed an algorithm that was almost the HMM approach, in-
cluding the use of dynamic programming, although computing a slightly different
probability: P(t|w)P(w) instead of P(w|t)P(w). The same year, the probabilistic
PARTS tagger of Church (1988), (1989) was probably the first implemented HMM
tagger, described correctly in Church (1989), although Church (1988) also described
the computation incorrectly as P(t|w)P(w) instead of P(w|t)P(w). Church (p.c.) ex-
plained that he had simplified for pedagogical purposes because using the probability
P(t|w) made the idea seem more understandable as “storing a lexicon in an almost
standard form”.

Later taggers explicitly introduced the use of the hidden Markov model (Ku-
piec 1992; Weischedel et al. 1993; Schütze and Singer 1994). Merialdo (1994)
showed that fully unsupervised EM didn’t work well for the tagging task and that
reliance on hand-labeled data was important. Charniak et al. (1993) showed the im-
portance of the most frequent tag baseline; the 92.3% number we give above was
from Abney et al. (1999). See Brants (2000) for many implementation details of a
state-of-the-art HMM tagger.

Ratnaparkhi (1996) introduced the MEMM tagger, called MXPOST, and the
modern formulation is very much based on his work.

The idea of using letter suffixes for unknown words is quite old; the early Klein
and Simmons (1963) system checked all final letter suffixes of lengths 1-5. The
probabilistic formulation we described for HMMs comes from Samuelsson (1993).
The unknown word features described on page 159 come mainly from (Ratnaparkhi,
1996), with augmentations from Toutanova et al. (2003) and Manning (2011).

State of the art taggers are based on a number of models developed just after the
turn of the last century, including (Collins, 2002) which used the the perceptron algo-
rithm, Toutanova et al. (2003) using a bidirectional log-linear model, and (Giménez
and Marquez, 2004) using SVMs. HMM (Brants 2000; Thede and Harper 1999)
and MEMM tagger accuracies are likely just a tad lower.

An alternative modern formalism, the English Constraint Grammar systems (Karls-
son et al. 1995; Voutilainen 1995; Voutilainen 1999), uses a two-stage formalism
much like the very early taggers from the 1950s and 1960s. A very large morpho-
logical analyzer with tens of thousands of English word stems entries is used to
return all possible parts-of-speech for a word, using a rich feature-based set of tags.
So the word occurred is tagged with the options 〈 V PCP2 SV 〉 and 〈 V PAST
VFIN SV 〉, meaning it can be a participle (PCP2) for an intransitive (SV) verb, or
a past (PAST) finite (VFIN) form of an intransitive (SV) verb. A large set of 3,744
constraints are then applied to the input sentence to rule out parts-of-speech that are
inconsistent with the context. For example here’s one rule for the ambiguous word
that, that eliminates all tags except the ADV (adverbial intensifier) sense (this is the
sense in the sentence it isn’t that odd):
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ADVERBIAL-THAT RULE

Given input: “that”
if

(+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier */
(+2 SENT-LIM); /* and following which is a sentence boundary, */
(NOT -1 SVOC/A); /* and the previous word is not a verb like */

/* ‘consider’ which allows adjs as object complements */
then eliminate non-ADV tags
else eliminate ADV tag

The combination of the extensive morphological analyzer and carefully writ-
ten constraints leads to a very high accuracy for the constraint grammar algorithm
(Samuelsson and Voutilainen, 1997).

Manning (2011) investigates the remaining 2.7% of errors in a state-of-the-art
tagger, the bidirectional MEMM-style model described above (Toutanova et al.,
2003). He suggests that a third or half of these remaining errors are due to errors or
inconsistencies in the training data, a third might be solvable with richer linguistic
models, and for the remainder the task is underspecified or unclear.

The algorithms presented in the chapter rely heavily on in-domain training data
hand-labeled by experts. Much recent work in part-of-speech tagging focuses on
ways to relax this assumption. Unsupervised algorithms for part-of-speech tagging
cluster words into part-of-speech-like classes (Schütze 1995; Clark 2000; Gold-
water and Griffiths 2007; Berg-Kirkpatrick et al. 2010; Sirts et al. 2014) ; see
Christodoulopoulos et al. (2010) for a summary. Many algorithms focus on com-
bining labeled and unlabeled data, for example by co-training (Clark et al. 2003;
Søgaard 2010). Assigning tags to text from very different genres like Twitter textTwitter

can involve adding new tags for URLS (URL), username mentions (USR), retweets
(RT), and hashtags (HT), normalization of non-standard words, and bootstrapping
to employ unsupervised data (Derczynski et al., 2013).

Readers interested in the history of parts-of-speech should consult a history of
linguistics such as Robins (1967) or Koerner and Asher (1995), particularly the ar-
ticle by Householder (1995) in the latter. Sampson (1987) and Garside et al. (1997)
give a detailed summary of the provenance and makeup of the Brown and other
tagsets.

Exercises
10.1 Find one tagging error in each of the following sentences that are tagged with

the Penn Treebank tagset:

1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

10.2 Use the Penn Treebank tagset to tag each word in the following sentences
from Damon Runyon’s short stories. You may ignore punctuation. Some of
these are quite difficult; do your best.

1. It is a nice night.
2. This crap game is over a garage in Fifty-second Street. . .
3. . . . Nobody ever takes the newspapers she sells . . .
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4. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a
mournful voice.

5. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which is
a dish I am very fond of, . . .

6. When a guy and a doll get to taking peeks back and forth at each other,
why there you are indeed.

10.3 Now compare your tags from the previous exercise with one or two friend’s
answers. On which words did you disagree the most? Why?

10.4 Implement the “most likely tag” baseline. Find a POS-tagged training set,
and use it to compute for each word the tag that maximizes p(t|w). You will
need to implement a simple tokenizer to deal with sentence boundaries. Start
by assuming that all unknown words are NN and compute your error rate on
known and unknown words. Now write at least five rules to do a better job of
tagging unknown words, and show the difference in error rates.

10.5 Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus.
First split the corpus into a training set and test set. From the labeled train-
ing set, train the transition and observation probabilities of the HMM tagger
directly on the hand-tagged data. Then implement the Viterbi algorithm from
this chapter and Chapter 9 so that you can label an arbitrary test sentence.
Now run your algorithm on the test set. Report its error rate and compare its
performance to the most frequent tag baseline.

10.6 Do an error analysis of your tagger. Build a confusion matrix and investigate
the most frequent errors. Propose some features for improving the perfor-
mance of your tagger on these errors.
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CHAPTER

11 Formal Grammars of English

The study of grammar has an ancient pedigree; Panini’s grammar of Sanskrit was
written over two thousand years ago and is still referenced today in teaching San-
skrit. Despite this history, knowledge of grammar and syntax remains spotty at best.
In this chapter, we make a preliminary stab at addressing some of these gaps in our
knowledge of grammar and syntax, as well as introducing some of the formal mech-
anisms that are available for capturing this knowledge in a computationally useful
manner.

The word syntax comes from the Greek sýntaxis, meaning “setting out togetherSyntax

or arrangement”, and refers to the way words are arranged together. We have seen
various syntactic notions in previous chapters. The regular languages introduced in
Chapter 2 offered a simple way to represent the ordering of strings of words, and
Chapter 4 showed how to compute probabilities for these word sequences. Chap-
ter 10 showed that part-of-speech categories could act as a kind of equivalence class
for words. This chapter and the ones that follow introduce a variety of syntactic phe-
nomena as well as form models of syntax and grammar that go well beyond these
simpler approaches.

The bulk of this chapter is devoted to the topic of context-free grammars. Context-
free grammars are the backbone of many formal models of the syntax of natural
language (and, for that matter, of computer languages). As such, they are integral to
many computational applications, including grammar checking, semantic interpreta-
tion, dialogue understanding, and machine translation. They are powerful enough to
express sophisticated relations among the words in a sentence, yet computationally
tractable enough that efficient algorithms exist for parsing sentences with them (as
we show in Chapter 12). In Chapter 13, we show that adding probability to context-
free grammars gives us a powerful model of disambiguation. And in Chapter 20 we
show how they provide a systematic framework for semantic interpretation.

In addition to an introduction to this grammar formalism, this chapter also pro-
vides a brief overview of the grammar of English. To illustrate our grammars, we
have chosen a domain that has relatively simple sentences, the Air Traffic Informa-
tion System (ATIS) domain (Hemphill et al., 1990). ATIS systems were an early
example of spoken language systems for helping book airline reservations. Users
try to book flights by conversing with the system, specifying constraints like I’d like
to fly from Atlanta to Denver.

11.1 Constituency

The fundamental notion underlying the idea of constituency is that of abstraction —
groups of words behaving as a single units, or constituents. A significant part of
developing a grammar involves discovering the inventory of constituents present in
the language.
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How do words group together in English? Consider the noun phrase, a sequenceNoun phrase

of words surrounding at least one noun. Here are some examples of noun phrases
(thanks to Damon Runyon):

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they three parties from Brooklyn

What evidence do we have that these words group together (or “form constituents”)?
One piece of evidence is that they can all appear in similar syntactic environments,
for example, before a verb.

three parties from Brooklyn arrive. . .
a high-class spot such as Mindy’s attracts. . .
the Broadway coppers love. . .
they sit

But while the whole noun phrase can occur before a verb, this is not true of each
of the individual words that make up a noun phrase. The following are not grammat-
ical sentences of English (recall that we use an asterisk (*) to mark fragments that
are not grammatical English sentences):

*from arrive. . . *as attracts. . .
*the is. . . *spot sat. . .

Thus, to correctly describe facts about the ordering of these words in English, we
must be able to say things like “Noun Phrases can occur before verbs”.

Other kinds of evidence for constituency come from what are called preposed orPreposed

postposed constructions. For example, the prepositional phrase on September sev-Postposed

enteenth can be placed in a number of different locations in the following examples,
including at the beginning (preposed) or at the end (postposed):

On September seventeenth, I’d like to fly from Atlanta to Denver
I’d like to fly on September seventeenth from Atlanta to Denver
I’d like to fly from Atlanta to Denver on September seventeenth

But again, while the entire phrase can be placed differently, the individual words
making up the phrase cannot be

*On September, I’d like to fly seventeenth from Atlanta to Denver
*On I’d like to fly September seventeenth from Atlanta to Denver
*I’d like to fly on September from Atlanta to Denver seventeenth

See Radford (1988) for further examples of groups of words behaving as a single
constituent.

11.2 Context-Free Grammars

The most widely used formal system for modeling constituent structure in English
and other natural languages is the Context-Free Grammar, or CFG. Context-CFG

free grammars are also called Phrase-Structure Grammars, and the formalism
is equivalent to Backus-Naur Form, or BNF. The idea of basing a grammar on
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constituent structure dates back to the psychologist Wilhelm Wundt (1900) but was
not formalized until Chomsky (1956) and, independently, Backus (1959).

A context-free grammar consists of a set of rules or productions, each of whichRules

expresses the ways that symbols of the language can be grouped and ordered to-
gether, and a lexicon of words and symbols. For example, the following productionsLexicon

express that an NP (or noun phrase) can be composed of either a ProperNoun orNP

a determiner (Det) followed by a Nominal; a Nominal in turn can consist of one or
more Nouns.

NP → Det Nominal
NP → ProperNoun

Nominal → Noun | Nominal Noun

Context-free rules can be hierarchically embedded, so we can combine the pre-
vious rules with others, like the following, that express facts about the lexicon:

Det → a
Det → the

Noun → flight

The symbols that are used in a CFG are divided into two classes. The symbols
that correspond to words in the language (“the”, “nightclub”) are called terminalTerminal

symbols; the lexicon is the set of rules that introduce these terminal symbols. The
symbols that express abstractions over these terminals are called non-terminals. InNon-terminal

each context-free rule, the item to the right of the arrow (→) is an ordered list of one
or more terminals and non-terminals; to the left of the arrow is a single non-terminal
symbol expressing some cluster or generalization. Notice that in the lexicon, the
non-terminal associated with each word is its lexical category, or part-of-speech,
which we defined in Chapter 10.

A CFG can be thought of in two ways: as a device for generating sentences
and as a device for assigning a structure to a given sentence. We saw this same
dualism in our discussion of finite-state transducers in Chapter 3. Viewing a CFG
as a generator, we can read the→ arrow as “rewrite the symbol on the left with the
string of symbols on the right”.

So starting from the symbol: NP
we can use our first rule to rewrite NP as: Det Nominal
and then rewrite Nominal as: Det Noun
and finally rewrite these parts-of-speech as: a flight

We say the string a flight can be derived from the non-terminal NP. Thus, a CFG
can be used to generate a set of strings. This sequence of rule expansions is called a
derivation of the string of words. It is common to represent a derivation by a parseDerivation

tree (commonly shown inverted with the root at the top). Figure 11.1 shows the treeParse tree

representation of this derivation.
In the parse tree shown in Fig. 11.1, we can say that the node NP dominatesDominates

all the nodes in the tree (Det, Nom, Noun, a, flight). We can say further that it
immediately dominates the nodes Det and Nom.

The formal language defined by a CFG is the set of strings that are derivable
from the designated start symbol. Each grammar must have one designated startStart symbol

symbol, which is often called S. Since context-free grammars are often used to define
sentences, S is usually interpreted as the “sentence” node, and the set of strings that
are derivable from S is the set of sentences in some simplified version of English.
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NP

Nom

Noun

flight

Det

a

Figure 11.1 A parse tree for “a flight”.

Let’s add a few additional rules to our inventory. The following rule expresses
the fact that a sentence can consist of a noun phrase followed by a verb phrase:Verb phrase

S → NP VP I prefer a morning flight

A verb phrase in English consists of a verb followed by assorted other things;
for example, one kind of verb phrase consists of a verb followed by a noun phrase:

VP → Verb NP prefer a morning flight

Or the verb may be followed by a noun phrase and a prepositional phrase:

VP → Verb NP PP leave Boston in the morning

Or the verb phrase may have a verb followed by a prepositional phrase alone:

VP → Verb PP leaving on Thursday

A prepositional phrase generally has a preposition followed by a noun phrase.
For example, a common type of prepositional phrase in the ATIS corpus is used to
indicate location or direction:

PP → Preposition NP from Los Angeles

The NP inside a PP need not be a location; PPs are often used with times and
dates, and with other nouns as well; they can be arbitrarily complex. Here are ten
examples from the ATIS corpus:

to Seattle on these flights
in Minneapolis about the ground transportation in Chicago
on Wednesday of the round trip flight on United Airlines
in the evening of the AP fifty seven flight
on the ninth of July with a stopover in Nashville

Figure 11.2 gives a sample lexicon, and Fig. 11.3 summarizes the grammar rules
we’ve seen so far, which we’ll call L0. Note that we can use the or-symbol | to
indicate that a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We
start with S, expand it to NP VP, then choose a random expansion of NP (let’s say, to
I), and a random expansion of VP (let’s say, to Verb NP), and so on until we generate
the string I prefer a morning flight. Figure 11.4 shows a parse tree that represents a
complete derivation of I prefer a morning flight.

It is sometimes convenient to represent a parse tree in a more compact format
called bracketed notation; here is the bracketed representation of the parse tree ofBracketed

notation
Fig. 11.4:
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Noun→ flights | breeze | trip | morning
Verb→ is | prefer | like | need | want | fly

Adjective→ cheapest | non-stop | first | latest
| other | direct

Pronoun→ me | I | you | it
Proper-Noun→ Alaska | Baltimore | Los Angeles

| Chicago | United | American
Determiner→ the | a | an | this | these | that
Preposition→ from | to | on | near

Conjunction→ and | or | but

Figure 11.2 The lexicon for L0.

Grammar Rules Examples
S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles

Figure 11.3 The grammar for L0, with example phrases for each rule.

(11.1) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

A CFG like that of L0 defines a formal language. We saw in Chapter 2 that a for-
mal language is a set of strings. Sentences (strings of words) that can be derived by a
grammar are in the formal language defined by that grammar, and are called gram-
matical sentences. Sentences that cannot be derived by a given formal grammar areGrammatical

not in the language defined by that grammar and are referred to as ungrammatical.Ungrammatical

This hard line between “in” and “out” characterizes all formal languages but is only
a very simplified model of how natural languages really work. This is because de-
termining whether a given sentence is part of a given natural language (say, English)
often depends on the context. In linguistics, the use of formal languages to model
natural languages is called generative grammar since the language is defined byGenerative

grammar
the set of possible sentences “generated” by the grammar.

11.2.1 Formal Definition of Context-Free Grammar

We conclude this section with a quick, formal description of a context-free gram-
mar and the language it generates. A context-free grammar G is defined by four
parameters: N, Σ, R, S (technically this is a “4-tuple”).
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Figure 11.4 The parse tree for “I prefer a morning flight” according to grammar L0.

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β ,

where A is a non-terminal,
β is a string of symbols from the infinite set of strings (Σ∪N)∗

S a designated start symbol and a member of N

For the remainder of the book we adhere to the following conventions when dis-
cussing the formal properties of context-free grammars (as opposed to explaining
particular facts about English or other languages).

Capital letters like A, B, and S Non-terminals
S The start symbol
Lower-case Greek letters like α , β , and γ Strings drawn from (Σ∪N)∗
Lower-case Roman letters like u, v, and w Strings of terminals

A language is defined through the concept of derivation. One string derives an-
other one if it can be rewritten as the second one by some series of rule applications.
More formally, following Hopcroft and Ullman (1979),

if A→ β is a production of R and α and γ are any strings in the set
(Σ∪N)∗, then we say that αAγ directly derives αβγ , or αAγ ⇒ αβγ .Directly derives

Derivation is then a generalization of direct derivation:

Let α1, α2, . . . , αm be strings in (Σ∪N)∗,m≥ 1, such that

α1⇒ α2,α2⇒ α3, . . . ,αm−1⇒ αm

We say that α1 derives αm, or α1
∗⇒ αm.Derives

We can then formally define the language LG generated by a grammar G as the
set of strings composed of terminal symbols that can be derived from the designated
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start symbol S.
LG = {w|w is in Σ∗ and S ∗⇒ w}

The problem of mapping from a string of words to its parse tree is called syn-
tactic parsing; we define algorithms for parsing in Chapter 12.Syntactic

parsing

11.3 Some Grammar Rules for English

In this section, we introduce a few more aspects of the phrase structure of English;
for consistency we will continue to focus on sentences from the ATIS domain. Be-
cause of space limitations, our discussion is necessarily limited to highlights. Read-
ers are strongly advised to consult a good reference grammar of English, such as
Huddleston and Pullum (2002).

11.3.1 Sentence-Level Constructions
In the small grammar L0, we provided only one sentence-level construction for
declarative sentences like I prefer a morning flight. Among the large number of
constructions for English sentences, four are particularly common and important:
declaratives, imperatives, yes-no questions, and wh-questions.

Sentences with declarative structure have a subject noun phrase followed byDeclarative

a verb phrase, like “I prefer a morning flight”. Sentences with this structure have
a great number of different uses that we follow up on in Chapter 29. Here are a
number of examples from the ATIS domain:

I want a flight from Ontario to Chicago
The flight should be eleven a.m. tomorrow
The return flight should leave at around seven p.m.

Sentences with imperative structure often begin with a verb phrase and haveImperative

no subject. They are called imperative because they are almost always used for
commands and suggestions; in the ATIS domain they are commands to the system.

Show the lowest fare
Give me Sunday’s flights arriving in Las Vegas from New York City
List all flights between five and seven p.m.

We can model this sentence structure with another rule for the expansion of S:

S → VP

Sentences with yes-no question structure are often (though not always) used toYes-no question

ask questions; they begin with an auxiliary verb, followed by a subject NP, followed
by a VP. Here are some examples. Note that the third example is not a question at
all but a request; Chapter 29 discusses the uses of these question forms to perform
different pragmatic functions such as asking, requesting, or suggesting.

Do any of these flights have stops?
Does American’s flight eighteen twenty five serve dinner?
Can you give me the same information for United?

Here’s the rule:

S → Aux NP VP
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The most complex sentence-level structures we examine here are the various wh-
structures. These are so named because one of their constituents is a wh-phrase, thatWh-phrase

is, one that includes a wh-word (who, whose, when, where, what, which, how, why).Wh-word

These may be broadly grouped into two classes of sentence-level structures. The
wh-subject-question structure is identical to the declarative structure, except that
the first noun phrase contains some wh-word.

What airlines fly from Burbank to Denver?
Which flights depart Burbank after noon and arrive in Denver by six p.m?
Whose flights serve breakfast?

Here is a rule. Exercise 11.7 discusses rules for the constituents that make up the
Wh-NP.

S → Wh-NP VP

In the wh-non-subject-question structure, the wh-phrase is not the subject of theWh-non-subject
question

sentence, and so the sentence includes another subject. In these types of sentences
the auxiliary appears before the subject NP, just as in the yes-no question structures.
Here is an example followed by a sample rule:

What flights do you have from Burbank to Tacoma Washington?

S → Wh-NP Aux NP VP

Constructions like the wh-non-subject-question contain what are called long-
distance dependencies because the Wh-NP what flights is far away from the predi-Long-distance

dependencies
cate that it is semantically related to, the main verb have in the VP. In some models
of parsing and understanding compatible with the grammar rule above, long-distance
dependencies like the relation between flights and have are thought of as a semantic
relation. In such models, the job of figuring out that flights is the argument of have
is done during semantic interpretation. In other models of parsing, the relationship
between flights and have is considered to be a syntactic relation, and the grammar is
modified to insert a small marker called a trace or empty category after the verb.
We return to such empty-category models when we introduce the Penn Treebank on
page 182.

11.3.2 Clauses and Sentences
Before we move on, we should clarify the status of the S rules in the grammars we
just described. S rules are intended to account for entire sentences that stand alone
as fundamental units of discourse. However, S can also occur on the right-hand side
of grammar rules and hence can be embedded within larger sentences. Clearly then,
there’s more to being an S than just standing alone as a unit of discourse.

What differentiates sentence constructions (i.e., the S rules) from the rest of the
grammar is the notion that they are in some sense complete. In this way they corre-
spond to the notion of a clause, which traditional grammars often describe as form-Clause

ing a complete thought. One way of making this notion of “complete thought” more
precise is to say an S is a node of the parse tree below which the main verb of the S
has all of its arguments. We define verbal arguments later, but for now let’s just see
an illustration from the tree for I prefer a morning flight in Fig. 11.4 on page 173.
The verb prefer has two arguments: the subject I and the object a morning flight.
One of the arguments appears below the VP node, but the other one, the subject NP,
appears only below the S node.
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11.3.3 The Noun Phrase
Our L0 grammar introduced three of the most frequent types of noun phrases that
occur in English: pronouns, proper nouns and the NP→Det Nominal construction.
The central focus of this section is on the last type since that is where the bulk of
the syntactic complexity resides. These noun phrases consist of a head, the central
noun in the noun phrase, along with various modifiers that can occur before or after
the head noun. Let’s take a close look at the various parts.

The Determiner

Noun phrases can begin with simple lexical determiners, as in the following exam-
ples:

a stop the flights this flight
those flights any flights some flights

The role of the determiner in English noun phrases can also be filled by more
complex expressions, as follows:

United’s flight
United’s pilot’s union
Denver’s mayor’s mother’s canceled flight

In these examples, the role of the determiner is filled by a possessive expression
consisting of a noun phrase followed by an ’s as a possessive marker, as in the
following rule.

Det → NP ′s

The fact that this rule is recursive (since an NP can start with a Det) helps us
model the last two examples above, in which a sequence of possessive expressions
serves as a determiner.

Under some circumstances determiners are optional in English. For example,
determiners may be omitted if the noun they modify is plural:

(11.2) Show me flights from San Francisco to Denver on weekdays

As we saw in Chapter 10, mass nouns also don’t require determination. Recall that
mass nouns often (not always) involve something that is treated like a substance
(including e.g., water and snow), don’t take the indefinite article “a”, and don’t tend
to pluralize. Many abstract nouns are mass nouns (music, homework). Mass nouns
in the ATIS domain include breakfast, lunch, and dinner:

(11.3) Does this flight serve dinner?

Exercise 11.?? asks the reader to represent this fact in the CFG formalism.

The Nominal

The nominal construction follows the determiner and contains any pre- and post-
head noun modifiers. As indicated in grammar L0, in its simplest form a nominal
can consist of a single noun.

Nominal → Noun

As we’ll see, this rule also provides the basis for the bottom of various recursive
rules used to capture more complex nominal constructions.
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Before the Head Noun

A number of different kinds of word classes can appear before the head noun (theCardinal
numbers

“postdeterminers”) in a nominal. These include cardinal numbers, ordinal num-
bers, quantifiers, and adjectives. Examples of cardinal numbers:Ordinal

numbers
Quantifiers

two friends one stop

Ordinal numbers include first, second, third, and so on, but also words like next,
last, past, other, and another:

the first one the next day the second leg
the last flight the other American flight

Some quantifiers (many, (a) few, several) occur only with plural count nouns:

many fares

Adjectives occur after quantifiers but before nouns.

a first-class fare a non-stop flight
the longest layover the earliest lunch flight

Adjectives can also be grouped into a phrase called an adjective phrase or AP.Adjective
phrase

APs can have an adverb before the adjective (see Chapter 10 for definitions of ad-
jectives and adverbs):

the least expensive fare

After the Head Noun

A head noun can be followed by postmodifiers. Three kinds of nominal postmodi-
fiers are common in English:

prepositional phrases all flights from Cleveland
non-finite clauses any flights arriving after eleven a.m.
relative clauses a flight that serves breakfast

common in the ATIS corpus since they are used to mark the origin and destina-
tion of flights.

Here are some examples of prepositional phrase postmodifiers, with brackets
inserted to show the boundaries of each PP; note that two or more PPs can be strung
together within a single NP:

all flights [from Cleveland] [to Newark]
arrival [in San Jose] [before seven p.m.]
a reservation [on flight six oh six] [from Tampa] [to Montreal]

Here’s a new nominal rule to account for postnominal PPs:

Nominal → Nominal PP

The three most common kinds of non-finite postmodifiers are the gerundive (-Non-finite

ing), -ed, and infinitive forms.
Gerundive postmodifiers are so called because they consist of a verb phrase thatGerundive

begins with the gerundive (-ing) form of the verb. Here are some examples:

any of those [leaving on Thursday]
any flights [arriving after eleven a.m.]
flights [arriving within thirty minutes of each other]
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We can define the Nominals with gerundive modifiers as follows, making use of
a new non-terminal GerundVP:

Nominal → Nominal GerundVP

We can make rules for GerundVP constituents by duplicating all of our VP pro-
ductions, substituting GerundV for V.

GerundVP → GerundV NP

| GerundV PP | GerundV | GerundV NP PP

GerundV can then be defined as

GerundV → being | arriving | leaving | . . .

The phrases in italics below are examples of the two other common kinds of
non-finite clauses, infinitives and -ed forms:

the last flight to arrive in Boston
I need to have dinner served
Which is the aircraft used by this flight?

A postnominal relative clause (more correctly a restrictive relative clause), is
a clause that often begins with a relative pronoun (that and who are the most com-Relative

pronoun
mon). The relative pronoun functions as the subject of the embedded verb in the
following examples:

a flight that serves breakfast
flights that leave in the morning
the one that leaves at ten thirty five

We might add rules like the following to deal with these:

Nominal → Nominal RelClause

RelClause → (who | that) VP

The relative pronoun may also function as the object of the embedded verb, as
in the following example; we leave for the reader the exercise of writing grammar
rules for more complex relative clauses of this kind.

the earliest American Airlines flight that I can get

Various postnominal modifiers can be combined, as the following examples
show:

a flight [from Phoenix to Detroit] [leaving Monday evening]
evening flights [from Nashville to Houston] [that serve dinner]
a friend [living in Denver] [that would like to visit me here in Washington DC]

Before the Noun Phrase

Word classes that modify and appear before NPs are called predeterminers. ManyPredeterminers

of these have to do with number or amount; a common predeterminer is all:

all the flights all flights all non-stop flights

The example noun phrase given in Fig. 11.5 illustrates some of the complexity
that arises when these rules are combined.
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NP

NP

Nom
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Nom

PP

to Tampa
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from Denver
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the

PreDet

all

Figure 11.5 A parse tree for “all the morning flights from Denver to Tampa leaving before 10”.

11.3.4 The Verb Phrase
The verb phrase consists of the verb and a number of other constituents. In the
simple rules we have built so far, these other constituents include NPs and PPs and
combinations of the two:

VP → Verb disappear
VP → Verb NP prefer a morning flight
VP → Verb NP PP leave Boston in the morning
VP → Verb PP leaving on Thursday

Verb phrases can be significantly more complicated than this. Many other kinds
of constituents, such as an entire embedded sentence, can follow the verb. These are
called sentential complements:Sentential

complements

You [VP [V said [S you had a two hundred sixty six dollar fare]]
[VP [V Tell] [NP me] [S how to get from the airport in Philadelphia to down-
town]]
I [VP [V think [S I would like to take the nine thirty flight]]

Here’s a rule for these:

VP → Verb S

Similarly, another potential constituent of the VP is another VP. This is often the
case for verbs like want, would like, try, intend, need:

I want [VP to fly from Milwaukee to Orlando]
Hi, I want [VP to arrange three flights]
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Frame Verb Example
/0 eat, sleep I ate
NP prefer, find, leave Find [NP the flight from Pittsburgh to Boston]
NP NP show, give Show [NP me] [NP airlines with flights from Pittsburgh]
PPfrom PPto fly, travel I would like to fly [PP from Boston] [PP to Philadelphia]
NP PPwith help, load Can you help [NP me] [PP with a flight]
VPto prefer, want, need I would prefer [VPto to go by United airlines]
VPbrst can, would, might I can [VPbrst go from Boston]
S mean Does this mean [S AA has a hub in Boston]

Figure 11.6 Subcategorization frames for a set of example verbs.

While a verb phrase can have many possible kinds of constituents, not every
verb is compatible with every verb phrase. For example, the verb want can be used
either with an NP complement (I want a flight . . . ) or with an infinitive VP comple-
ment (I want to fly to . . . ). By contrast, a verb like find cannot take this sort of VP
complement (* I found to fly to Dallas).

This idea that verbs are compatible with different kinds of complements is a very
old one; traditional grammar distinguishes between transitive verbs like find, whichTransitive

take a direct object NP (I found a flight), and intransitive verbs like disappear,Intransitive

which do not (*I disappeared a flight).
Where traditional grammars subcategorize verbs into these two categories (tran-Subcategorize

sitive and intransitive), modern grammars distinguish as many as 100 subcategories.
We say that a verb like find subcategorizes for an NP, and a verb like want sub-Subcategorizes

for
categorizes for either an NP or a non-finite VP. We also call these constituents the
complements of the verb (hence our use of the term sentential complement above).Complements

So we say that want can take a VP complement. These possible sets of complements
are called the subcategorization frame for the verb. Another way of talking aboutSubcategorization

frame
the relation between the verb and these other constituents is to think of the verb as
a logical predicate and the constituents as logical arguments of the predicate. So we
can think of such predicate-argument relations as FIND(I, A FLIGHT) or WANT(I, TO
FLY). We talk more about this view of verbs and arguments in Chapter 19 when we
talk about predicate calculus representations of verb semantics. Subcategorization
frames for a set of example verbs are given in Fig. 11.6.

We can capture the association between verbs and their complements by making
separate subtypes of the class Verb (e.g., Verb-with-NP-complement, Verb-with-Inf-
VP-complement, Verb-with-S-complement, and so on):

Verb-with-NP-complement → find | leave | repeat | . . .
Verb-with-S-complement → think | believe | say | . . .

Verb-with-Inf-VP-complement → want | try | need | . . .

Each VP rule could then be modified to require the appropriate verb subtype:

VP → Verb-with-no-complement disappear
VP → Verb-with-NP-comp NP prefer a morning flight
VP → Verb-with-S-comp S said there were two flights

A problem with this approach is the significant increase in the number of rules
and the associated loss of generality.
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11.3.5 Coordination
The major phrase types discussed here can be conjoined with conjunctions like and,Conjunctions

or, and but to form larger constructions of the same type. For example, a coordinateCoordinate

noun phrase can consist of two other noun phrases separated by a conjunction:

Please repeat [NP [NP the flights] and [NP the costs]]
I need to know [NP [NP the aircraft] and [NP the flight number]]

Here’s a rule that allows these structures:

NP → NP and NP

Note that the ability to form coordinate phrases through conjunctions is often
used as a test for constituency. Consider the following examples, which differ from
the ones given above in that they lack the second determiner.

Please repeat the [Nom [Nom flights] and [Nom costs]]
I need to know the [Nom [Nom aircraft] and [Nom flight number]]

The fact that these phrases can be conjoined is evidence for the presence of the
underlying Nominal constituent we have been making use of. Here’s a new rule for
this:

Nominal → Nominal and Nominal

The following examples illustrate conjunctions involving VPs and Ss.

What flights do you have [VP [VP leaving Denver] and [VP arriving in
San Francisco]]
[S [S I’m interested in a flight from Dallas to Washington] and [S I’m
also interested in going to Baltimore]]

The rules for VP and S conjunctions mirror the NP one given above.

VP → VP and VP

S → S and S

Since all the major phrase types can be conjoined in this fashion, it is also pos-
sible to represent this conjunction fact more generally; a number of grammar for-
malisms such as GPSG ((Gazdar et al., 1985)) do this using metarules such as theMetarules

following:

X → X and X

This metarule simply states that any non-terminal can be conjoined with the same
non-terminal to yield a constituent of the same type. Of course, the variable X
must be designated as a variable that stands for any non-terminal rather than a non-
terminal itself.

11.4 Treebanks

Sufficiently robust grammars consisting of context-free grammar rules can be used
to assign a parse tree to any sentence. This means that it is possible to build a
corpus where every sentence in the collection is paired with a corresponding parse
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tree. Such a syntactically annotated corpus is called a treebank. Treebanks playTreebank

an important role in parsing, as we discuss in Chapter 12, as well as in linguistic
investigations of syntactic phenomena.

A wide variety of treebanks have been created, generally through the use of
parsers (of the sort described in the next two chapters) to automatically parse each
sentence, followed by the use of humans (linguists) to hand-correct the parses. The
Penn Treebank project (whose POS tagset we introduced in Chapter 10) has pro-Penn Treebank

duced treebanks from the Brown, Switchboard, ATIS, and Wall Street Journal cor-
pora of English, as well as treebanks in Arabic and Chinese. Other treebanks include
the Prague Dependency Treebank for Czech, the Negra treebank for German, and
the Susanne treebank for English.

11.4.1 Example: The Penn Treebank Project
Figure 11.7 shows sentences from the Brown and ATIS portions of the Penn Tree-
bank.1 Note the formatting differences for the part-of-speech tags; such small dif-
ferences are common and must be dealt with in processing treebanks. The Penn
Treebank part-of-speech tagset was defined in Chapter 10. The use of LISP-style
parenthesized notation for trees is extremely common and resembles the bracketed
notation we saw earlier in (11.1). For those who are not familiar with it we show a
standard node-and-line tree representation in Fig. 11.8.

((S

(NP-SBJ (DT That)

(JJ cold) (, ,)

(JJ empty) (NN sky) )

(VP (VBD was)

(ADJP-PRD (JJ full)

(PP (IN of)

(NP (NN fire)

(CC and)

(NN light) ))))

(. .) ))

((S

(NP-SBJ The/DT flight/NN )

(VP should/MD

(VP arrive/VB

(PP-TMP at/IN

(NP eleven/CD a.m/RB ))

(NP-TMP tomorrow/NN )))))

(a) (b)

Figure 11.7 Parsed sentences from the LDC Treebank3 version of the Brown (a) and ATIS
(b) corpora.

Figure 11.9 shows a tree from the Wall Street Journal. This tree shows an-
other feature of the Penn Treebanks: the use of traces (-NONE- nodes) to markTraces

long-distance dependencies or syntactic movement. For example, quotations oftenSyntactic
movement

follow a quotative verb like say. But in this example, the quotation “We would have
to wait until we have collected on those assets” precedes the words he said. An
empty S containing only the node -NONE- marks the position after said where the
quotation sentence often occurs. This empty node is marked (in Treebanks II and
III) with the index 2, as is the quotation S at the beginning of the sentence. Such
co-indexing may make it easier for some parsers to recover the fact that this fronted
or topicalized quotation is the complement of the verb said. A similar -NONE- node

1 The Penn Treebank project released treebanks in multiple languages and in various stages; for ex-
ample, there were Treebank I (Marcus et al., 1993), Treebank II (Marcus et al., 1994), and Treebank III
releases of English treebanks. We use Treebank III for our examples.
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Figure 11.8 The tree corresponding to the Brown corpus sentence in the previous figure.

marks the fact that there is no syntactic subject right before the verb to wait; instead,
the subject is the earlier NP We. Again, they are both co-indexed with the index 1.

( (S (‘‘ ‘‘)

(S-TPC-2

(NP-SBJ-1 (PRP We) )

(VP (MD would)

(VP (VB have)

(S

(NP-SBJ (-NONE- *-1) )

(VP (TO to)

(VP (VB wait)

(SBAR-TMP (IN until)

(S

(NP-SBJ (PRP we) )

(VP (VBP have)

(VP (VBN collected)

(PP-CLR (IN on)

(NP (DT those)(NNS assets)))))))))))))

(, ,) (’’ ’’)

(NP-SBJ (PRP he) )

(VP (VBD said)

(S (-NONE- *T*-2) ))

(. .) ))

Figure 11.9 A sentence from the Wall Street Journal portion of the LDC Penn Treebank.
Note the use of the empty -NONE- nodes.

The Penn Treebank II and Treebank III releases added further information to
make it easier to recover the relationships between predicates and arguments. Cer-
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Grammar Lexicon
S→ NP VP . PRP→ we | he
S→ NP VP DT→ the | that | those
S→ “ S ” , NP VP . JJ→ cold | empty | full
S→ -NONE- NN→ sky | fire | light | flight | tomorrow
NP→ DT NN NNS→ assets
NP→ DT NNS CC→ and
NP→ NN CC NN IN→ of | at | until | on
NP→ CD RB CD→ eleven
NP→ DT JJ , JJ NN RB→ a.m.
NP→ PRP VB→ arrive | have | wait
NP→ -NONE- VBD→ was | said
VP→MD VP VBP→ have
VP→ VBD ADJP VBN→ collected
VP→ VBD S MD→ should | would
VP→ VBN PP TO→ to
VP→ VB S
VP→ VB SBAR
VP→ VBP VP
VP→ VBN PP
VP→ TO VP
SBAR→ IN S
ADJP→ JJ PP
PP→ IN NP

Figure 11.10 A sample of the CFG grammar rules and lexical entries that would be ex-
tracted from the three treebank sentences in Fig. 11.7 and Fig. 11.9.

tain phrases were marked with tags indicating the grammatical function of the phrase
(as surface subject, logical topic, cleft, non-VP predicates) its presence in particular
text categories (headlines, titles), and its semantic function (temporal phrases, lo-
cations) (Marcus et al. 1994, Bies et al. 1995). Figure 11.9 shows examples of the
-SBJ (surface subject) and -TMP (temporal phrase) tags. Figure 11.8 shows in addi-
tion the -PRD tag, which is used for predicates that are not VPs (the one in Fig. 11.8
is an ADJP). We’ll return to the topic of grammatical function when we consider
dependency grammars and parsing in Chapter 14.

11.4.2 Treebanks as Grammars
The sentences in a treebank implicitly constitute a grammar of the language repre-
sented by the corpus being annotated. For example, from the three parsed sentences
in Fig. 11.7 and Fig. 11.9, we can extract each of the CFG rules in them. For sim-
plicity, let’s strip off the rule suffixes (-SBJ and so on). The resulting grammar is
shown in Fig. 11.10.

The grammar used to parse the Penn Treebank is relatively flat, resulting in very
many and very long rules. For example, among the approximately 4,500 different
rules for expanding VPs are separate rules for PP sequences of any length and every
possible arrangement of verb arguments:

VP → VBD PP
VP → VBD PP PP
VP → VBD PP PP PP
VP → VBD PP PP PP PP
VP → VB ADVP PP
VP → VB PP ADVP
VP → ADVP VB PP
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as well as even longer rules, such as

VP → VBP PP PP PP PP PP ADVP PP

which comes from the VP marked in italics:

This mostly happens because we go from football in the fall to lifting in the
winter to football again in the spring.

Some of the many thousands of NP rules include

NP → DT JJ NN
NP → DT JJ NNS
NP → DT JJ NN NN
NP → DT JJ JJ NN
NP → DT JJ CD NNS
NP → RB DT JJ NN NN
NP → RB DT JJ JJ NNS
NP → DT JJ JJ NNP NNS
NP → DT NNP NNP NNP NNP JJ NN
NP → DT JJ NNP CC JJ JJ NN NNS
NP → RB DT JJS NN NN SBAR
NP → DT VBG JJ NNP NNP CC NNP
NP → DT JJ NNS , NNS CC NN NNS NN
NP → DT JJ JJ VBG NN NNP NNP FW NNP
NP → NP JJ , JJ ‘‘ SBAR ’’ NNS

The last two of those rules, for example, come from the following two noun phrases:

[DT The] [JJ state-owned] [JJ industrial] [VBG holding] [NN company] [NNP Instituto]
[NNP Nacional] [FW de] [NNP Industria]
[NP Shearson’s] [JJ easy-to-film], [JJ black-and-white] “[SBAR Where We Stand]”
[NNS commercials]

Viewed as a large grammar in this way, the Penn Treebank III Wall Street Journal
corpus, which contains about 1 million words, also has about 1 million non-lexical
rule tokens, consisting of about 17,500 distinct rule types.

Various facts about the treebank grammars, such as their large numbers of flat
rules, pose problems for probabilistic parsing algorithms. For this reason, it is com-
mon to make various modifications to a grammar extracted from a treebank. We
discuss these further in Chapter 13.

11.4.3 Heads and Head Finding
We suggested informally earlier that syntactic constituents could be associated with
a lexical head; N is the head of an NP, V is the head of a VP. This idea of a head for
each constituent dates back to Bloomfield (1914). It is central to constituent-based
grammar formalisms such as Head-Driven Phrase Structure Grammar (Pollard and
Sag, 1994), as well as the dependency-based approaches to grammar we’ll discuss
in Chapter 14. Heads and head-dependent relations have also come to play a central
role in computational linguistics with their use in probabilistic parsing (Chapter 13)
and in dependency parsing (Chapter 14).

In one simple model of lexical heads, each context-free rule is associated with
a head (Charniak 1997, Collins 1999). The head is the word in the phrase that is
grammatically the most important. Heads are passed up the parse tree; thus, each
non-terminal in a parse tree is annotated with a single word, which is its lexical head.
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S(dumped)

VP(dumped)

PP(into)

NP(bin)

NN(bin)

bin

DT(a)

a

P

into

NP(sacks)

NNS(sacks)
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VBD(dumped)

dumped

NP(workers)

NNS(workers)

workers

Figure 11.11 A lexicalized tree from Collins (1999).

Figure 11.11 shows an example of such a tree from Collins (1999), in which each
non-terminal is annotated with its head.

For the generation of such a tree, each CFG rule must be augmented to identify
one right-side constituent to be the head daughter. The headword for a node is
then set to the headword of its head daughter. Choosing these head daughters is
simple for textbook examples (NN is the head of NP) but is complicated and indeed
controversial for most phrases. (Should the complementizer to or the verb be the
head of an infinite verb-phrase?) Modern linguistic theories of syntax generally
include a component that defines heads (see, e.g., (Pollard and Sag, 1994)).

An alternative approach to finding a head is used in most practical computational
systems. Instead of specifying head rules in the grammar itself, heads are identified
dynamically in the context of trees for specific sentences. In other words, once
a sentence is parsed, the resulting tree is walked to decorate each node with the
appropriate head. Most current systems rely on a simple set of hand-written rules,
such as a practical one for Penn Treebank grammars given in Collins (1999) but
developed originally by Magerman (1995). For example, the rule for finding the
head of an NP is as follows (Collins, 1999, p. 238):

• If the last word is tagged POS, return last-word.
• Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS,

or JJR.
• Else search from left to right for the first child which is an NP.
• Else search from right to left for the first child which is a $, ADJP, or PRN.
• Else search from right to left for the first child which is a CD.
• Else search from right to left for the first child which is a JJ, JJS, RB or QP.
• Else return the last word

Selected other rules from this set are shown in Fig. 11.12. For example, for VP
rules of the form VP→ Y1 · · · Yn, the algorithm would start from the left of Y1 · · ·
Yn looking for the first Yi of type TO; if no TOs are found, it would search for the
first Yi of type VBD; if no VBDs are found, it would search for a VBN, and so on.
See Collins (1999) for more details.
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Parent Direction Priority List
ADJP Left NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS

SBAR RB
ADVP Right RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
PRN Left
PRT Right RP
QP Left $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
S Left TO IN VP S SBAR ADJP UCP NP
SBAR Left WHNP WHPP WHADVP WHADJP IN DT S SQ SINV SBAR FRAG
VP Left TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP
Figure 11.12 Selected head rules from Collins (1999). The set of head rules is often called a head percola-
tion table.

11.5 Grammar Equivalence and Normal Form

A formal language is defined as a (possibly infinite) set of strings of words. This
suggests that we could ask if two grammars are equivalent by asking if they gener-
ate the same set of strings. In fact, it is possible to have two distinct context-free
grammars generate the same language.

We usually distinguish two kinds of grammar equivalence: weak equivalence
and strong equivalence. Two grammars are strongly equivalent if they generate the
same set of strings and if they assign the same phrase structure to each sentence
(allowing merely for renaming of the non-terminal symbols). Two grammars are
weakly equivalent if they generate the same set of strings but do not assign the same
phrase structure to each sentence.

It is sometimes useful to have a normal form for grammars, in which each ofNormal form

the productions takes a particular form. For example, a context-free grammar is in
Chomsky normal form (CNF) (Chomsky, 1963) if it is ε-free and if in additionChomsky

normal form
each production is either of the form A→ B C or A→ a. That is, the right-hand side
of each rule either has two non-terminal symbols or one terminal symbol. Chomsky
normal form grammars are binary branching, that is they have binary trees (downBinary

branching
to the prelexical nodes). We make use of this binary branching property in the CKY
parsing algorithm in Chapter 12.

Any context-free grammar can be converted into a weakly equivalent Chomsky
normal form grammar. For example, a rule of the form

A → B C D

can be converted into the following two CNF rules (Exercise 11.8 asks the reader to
formulate the complete algorithm):

A → B X

X → C D

Sometimes using binary branching can actually produce smaller grammars. For
example, the sentences that might be characterized as

VP -> VBD NP PP*

are represented in the Penn Treebank by this series of rules:

VP → VBD NP PP

VP → VBD NP PP PP



188 CHAPTER 11 • FORMAL GRAMMARS OF ENGLISH

VP → VBD NP PP PP PP

VP → VBD NP PP PP PP PP

...

but could also be generated by the following two-rule grammar:

VP → VBD NP PP

VP → VP PP

The generation of a symbol A with a potentially infinite sequence of symbols B with
a rule of the form A → A B is known as Chomsky-adjunction.Chomsky-

adjunction

11.6 Lexicalized Grammars

The approach to grammar presented thus far emphasizes phrase-structure rules while
minimizing the role of the lexicon. However, as we saw in the discussions of
agreement, subcategorization, and long distance dependencies, this approach leads
to solutions that are cumbersome at best, yielding grammars that are redundant,
hard to manage, and brittle. To overcome these issues, numerous alternative ap-
proaches have been developed that all share the common theme of making bet-
ter use of the lexicon. Among the more computationally relevant approaches are
Lexical-Functional Grammar (LFG) (Bresnan, 1982), Head-Driven Phrase Structure
Grammar (HPSG) (Pollard and Sag, 1994), Tree-Adjoining Grammar (TAG) (Joshi,
1985), and Combinatory Categorial Grammar (CCG). These approaches differ with
respect to how lexicalized they are — the degree to which they rely on the lexicon
as opposed to phrase structure rules to capture facts about the language.

The following section provides an introduction to CCG, a heavily lexicalized
approach motivated by both syntactic and semantic considerations, which we will
return to in Chapter 19. Chapter 14 discusses dependency grammars, an approach
that eliminates phrase-structure rules entirely.

11.6.1 Combinatory Categorial Grammar
In this section, we provide an overview of categorial grammar (Ajdukiewicz 1935,Categorial

grammar
Bar-Hillel 1953), an early lexicalized grammar model, as well as an important mod-
ern extension, combinatory categorial grammar, or CCG (Steedman 1996,Steed-

Combinatory
categorial
grammar

man 1989,Steedman 2000).
The categorial approach consists of three major elements: a set of categories,

a lexicon that associates words with categories, and a set of rules that govern how
categories combine in context.

Categories

Categories are either atomic elements or single-argument functions that return a cat-
egory as a value when provided with a desired category as argument. More formally,
we can define C , a set of categories for a grammar as follows:

• A ⊆ C , where A is a given set of atomic elements
• (X/Y), (X\Y) ∈ C , if X, Y ∈ C

The slash notation shown here is used to define the functions in the grammar.
It specifies the type of the expected argument, the direction it is expected be found,
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and the type of the result. Thus, (X/Y) is a function that seeks a constituent of type
Y to its right and returns a value of X; (X\Y) is the same except it seeks its argument
to the left.

The set of atomic categories is typically very small and includes familiar el-
ements such as sentences and noun phrases. Functional categories include verb
phrases and complex noun phrases among others.

The Lexicon

The lexicon in a categorial approach consists of assignments of categories to words.
These assignments can either be to atomic or functional categories, and due to lexical
ambiguity words can be assigned to multiple categories. Consider the following
sample lexical entries.

flight : N

Miami : NP

cancel : (S\NP)/NP

Nouns and proper nouns like flight and Miami are assigned to atomic categories,
reflecting their typical role as arguments to functions. On the other hand, a transitive
verb like cancel is assigned the category (S\NP)/NP: a function that seeks an NP on
its right and returns as its value a function with the type (S\NP). This function can,
in turn, combine with an NP on the left, yielding an S as the result. This captures the
kind of subcategorization information discussed in Section 11.3.4, however here the
information has a rich, computationally useful, internal structure.

Ditransitive verbs like give, which expect two arguments after the verb, would
have the category ((S\NP)/NP)/NP: a function that combines with an NP on its
right to yield yet another function corresponding to the transitive verb (S\NP)/NP
category such as the one given above for cancel.

Rules

The rules of a categorial grammar specify how functions and their arguments com-
bine. The following two rule templates constitute the basis for all categorial gram-
mars.

X/Y Y ⇒ X (11.4)

Y X\Y ⇒ X (11.5)

The first rule applies a function to its argument on the right, while the second
looks to the left for its argument. We’ll refer to the first as forward function appli-
cation, and the second as backward function application. The result of applying
either of these rules is the category specified as the value of the function being ap-
plied.

Given these rules and a simple lexicon, let’s consider an analysis of the sentence
United serves Miami. Assume that serves is a transitive verb with the category
(S\NP)/NP and that United and Miami are both simple NPs. Using both forward
and backward function application, the derivation would proceed as follows:

United serves Miami

NP (S\NP)/NP NP
>

S\NP
<

S
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Categorial grammar derivations are illustrated growing down from the words,
rule applications are illustrated with a horizontal line that spans the elements in-
volved, with the type of the operation indicated at the right end of the line. In this
example, there are two function applications: one forward function application indi-
cated by the > that applies the verb serves to the NP on its right, and one backward
function application indicated by the < that applies the result of the first to the NP
United on its left.

With the addition of another rule, the categorial approach provides a straight-
forward way to implement the coordination metarule described earlier on page 181.
Recall that English permits the coordination of two constituents of the same type,
resulting in a new constituent of the same type. The following rule provides the
mechanism to handle such examples.

X CONJ X ⇒ X (11.6)

This rule states that when two constituents of the same category are separated by a
constituent of type CONJ they can be combined into a single larger constituent of
the same type. The following derivation illustrates the use of this rule.

We flew to Geneva and drove to Chamonix

NP (S\NP)/PP PP/NP NP CONJ (S\NP)/PP PP/NP NP
> >

PP PP
> >

S\NP S\NP
<Φ>

S\NP
<

S

Here the two S\NP constituents are combined via the conjunction operator <Φ>

to form a larger constituent of the same type, which can then be combined with the
subject NP via backward function application.

These examples illustrate the lexical nature of the categorial grammar approach.
The grammatical facts about a language are largely encoded in the lexicon, while the
rules of the grammar are boiled down to a set of three rules. Unfortunately, the basic
categorial approach does not give us any more expressive power than we had with
traditional CFG rules; it just moves information from the grammar to the lexicon. To
move beyond these limitations CCG includes operations that operate over functions.

The first pair of operators permit us to compose adjacent functions.

X/Y Y/Z ⇒ X/Z (11.7)

Y\Z X\Y ⇒ X\Z (11.8)

The first rule, called forward composition, can be applied to adjacent con-Forward
composition

stituents where the first is a function seeking an argument of type Y to its right, and
the second is a function that providesY as a result. This rule allows us to compose
these two functions into a single one with the type of the first constituent and the
argument of the second. Although the notation is a little awkward, the second rule,
backward composition is the same, except that we’re looking to the left instead ofBackward

composition
to the right for the relevant arguments. Both kinds of composition are signalled by a
B in CCG diagrams, accompanied by a < or > to indicate the direction.

The next operator is type raising. Type raising elevates simple categories to theType raising

status of functions. More specifically, type raising takes a category and converts
it to function that seeks as an argument a function that takes the original category
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as its argument. The following schema show two versions of type raising: one for
arguments to the right, and one for the left.

X ⇒ T/(T\X) (11.9)

X ⇒ T\(T/X) (11.10)

The category T in these rules can correspond to any of the atomic or functional
categories already present in the grammar.

A particularly useful example of type raising transforms a simple NP argument
in subject position to a function that can compose with a following VP. To see how
this works, let’s revisit our earlier example of United serves Miami. Instead of clas-
sifying United as an NP which can serve as an argument to the function attached to
serve, we can use type raising to reinvent it as a function in its own right as follows.

NP ⇒ S/(S\NP)

Combining this type-raised constituent with the forward composition rule (11.7)
permits the following alternative to our previous derivation.

United serves Miami

NP (S\NP)/NP NP
>T

S/(S\NP)
>B

S/NP
>

S
By type raising United to S/(S\NP), we can compose it with the transitive verb
serves to yield the (S/NP) function needed to complete the derivation.

There are several interesting things to note about this derivation. First, is it
provides a left-to-right, word-by-word derivation that more closely mirrors the way
humans process language. This makes CCG a particularly apt framework for psy-
cholinguistic studies. Second, this derivation involves the use of an intermediate
unit of analysis, United serves, that does not correspond to a traditional constituent
in English. This ability to make use of such non-constituent elements provides CCG
with the ability to handle the coordination of phrases that are not proper constituents,
as in the following example.

(11.11) We flew IcelandAir to Geneva and SwissAir to London.

Here, the segments that are being coordinated are IcelandAir to Geneva and
SwissAir to London, phrases that would not normally be considered constituents, as
can be seen in the following standard derivation for the verb phrase flew IcelandAir
to Geneva.

flew IcelandAir to Geneva

(VP/PP)/NP NP PP/NP NP
> >

VP/PP PP
>

VP
In this derivation, there is no single constituent that corresponds to IcelandAir

to Geneva, and hence no opportunity to make use of the <Φ> operator. Note that
complex CCG categories can can get a little cumbersome, so we’ll use VP as a
shorthand for (S\NP) in this and the following derivations.

The following alternative derivation provides the required element through the
use of both backward type raising (11.10) and backward function composition (11.8).



192 CHAPTER 11 • FORMAL GRAMMARS OF ENGLISH

flew IcelandAir to Geneva

(V P/PP)/NP NP PP/NP NP
<T >

(V P/PP)\((V P/PP)/NP) PP
<T

V P\(V P/PP)
<B

V P\((V P/PP)/NP)
<

V P
Applying the same analysis to SwissAir to London satisfies the requirements

for the <Φ> operator, yielding the following derivation for our original example
(11.11).

flew IcelandAir to Geneva and SwissAir to London

(V P/PP)/NP NP PP/NP NP CONJ NP PP/NP NP
<T > <T >

(V P/PP)\((V P/PP)/NP) PP (V P/PP)\((V P/PP)/NP) PP
<T <T

V P\(V P/PP) V P\(V P/PP)
< <

V P\((V P/PP)/NP) V P\((V P/PP)/NP)
<Φ>

V P\((V P/PP)/NP)
<

V P

Finally, let’s examine how these advanced operators can be used to handle long-
distance dependencies (also referred to as syntactic movement or extraction). As
mentioned in Section 11.3.1, long-distance dependencies arise from many English
constructions including wh-questions, relative clauses, and topicalization. What
these constructions have in common is a constituent that appears somewhere dis-
tant from its usual, or expected, location. Consider the following relative clause as
an example.

the flight that United diverted

Here, divert is a transitive verb that expects two NP arguments, a subject NP to its
left and a direct object NP to its right; its category is therefore (S\NP)/NP. However,
in this example the direct object the flight has been “moved” to the beginning of the
clause, while the subject United remains in its normal position. What is needed is a
way to incorporate the subject argument, while dealing with the fact that the flight is
not in its expected location.

The following derivation accomplishes this, again through the combined use of
type raising and function composition.

the flight that United diverted

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP
As we saw with our earlier examples, the first step of this derivation is type raising
United to the category S/(S\NP) allowing it to combine with diverted via forward
composition. The result of this composition is S/NP which preserves the fact that we
are still looking for an NP to fill the missing direct object. The second critical piece
is the lexical category assigned to the word that: (NP\NP)/(S/NP). This function
seeks a verb phrase missing an argument to its right, and transforms it into an NP
seeking a missing element to its left, precisely where we find the flight.
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CCGBank

As with phrase-structure approaches, treebanks play an important role in CCG-
based approaches to parsing. CCGBank (Hockenmaier and Steedman, 2007) is the
largest and most widely used CCG treebank. It was created by automatically trans-
lating phrase-structure trees from the Penn Treebank via a rule-based approach. The
method produced successful translations of over 99% of the trees in the Penn Tree-
bank resulting in 48,934 sentences paired with CCG derivations. It also provides
a lexicon of 44,000 words with over 1200 categories. Chapter 13 will discuss how
these resources can be used to train CCG parsers.

11.7 Summary

This chapter has introduced a number of fundamental concepts in syntax through
the use of context-free grammars.

• In many languages, groups of consecutive words act as a group or a con-
stituent, which can be modeled by context-free grammars (which are also
known as phrase-structure grammars).

• A context-free grammar consists of a set of rules or productions, expressed
over a set of non-terminal symbols and a set of terminal symbols. Formally,
a particular context-free language is the set of strings that can be derived
from a particular context-free grammar.

• A generative grammar is a traditional name in linguistics for a formal lan-
guage that is used to model the grammar of a natural language.

• There are many sentence-level grammatical constructions in English; declar-
ative, imperative, yes-no question, and wh-question are four common types;
these can be modeled with context-free rules.

• An English noun phrase can have determiners, numbers, quantifiers, and
adjective phrases preceding the head noun, which can be followed by a num-
ber of postmodifiers; gerundive VPs, infinitives VPs, and past participial
VPs are common possibilities.

• Subjects in English agree with the main verb in person and number.

• Verbs can be subcategorized by the types of complements they expect. Sim-
ple subcategories are transitive and intransitive; most grammars include
many more categories than these.

• Treebanks of parsed sentences exist for many genres of English and for many
languages. Treebanks can be searched with tree-search tools.

• Any context-free grammar can be converted to Chomsky normal form, in
which the right-hand side of each rule has either two non-terminals or a single
terminal.

• Lexicalized grammars place more emphasis on the structure of the lexicon,
lessening the burden on pure phrase-structure rules.

• Combinatorial categorial grammar (CCG) is an important computationally
relevant lexicalized approach.
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Bibliographical and Historical Notes

[The origin of the idea of phrasal constituency, cited in Percival (1976)]:
den sprachlichen Ausdruck für die willkürliche
Gliederung einer Gesammtvorstellung in ihre

in logische Beziehung zueinander gesetzten Bestandteile’
[the linguistic expression for the arbitrary division of a total idea

into its constituent parts placed in logical relations to one another]
W. Wundt

According to Percival (1976), the idea of breaking up a sentence into a hierar-
chy of constituents appeared in the Völkerpsychologie of the groundbreaking psy-
chologist Wilhelm Wundt (Wundt, 1900). Wundt’s idea of constituency was taken
up into linguistics by Leonard Bloomfield in his early book An Introduction to the
Study of Language (Bloomfield, 1914). By the time of his later book, Language
(Bloomfield, 1933), what was then called “immediate-constituent analysis” was a
well-established method of syntactic study in the United States. By contrast, tra-
ditional European grammar, dating from the Classical period, defined relations be-
tween words rather than constituents, and European syntacticians retained this em-
phasis on such dependency grammars, the subject of Chapter 14.

American Structuralism saw a number of specific definitions of the immediate
constituent, couched in terms of their search for a “discovery procedure”: a method-
ological algorithm for describing the syntax of a language. In general, these attempt
to capture the intuition that “The primary criterion of the immediate constituent is the
degree in which combinations behave as simple units” (Bazell, 1966, p. 284). The
most well known of the specific definitions is Harris’ idea of distributional similarity
to individual units, with the substitutability test. Essentially, the method proceeded
by breaking up a construction into constituents by attempting to substitute simple
structures for possible constituents—if a substitution of a simple form, say, man,
was substitutable in a construction for a more complex set (like intense young man),
then the form intense young man was probably a constituent. Harris’s test was the
beginning of the intuition that a constituent is a kind of equivalence class.

The first formalization of this idea of hierarchical constituency was the phrase-
structure grammar defined in Chomsky (1956) and further expanded upon (and
argued against) in Chomsky (1957) and Chomsky (1975). From this time on, most
generative linguistic theories were based at least in part on context-free grammars or
generalizations of them (such as Head-Driven Phrase Structure Grammar (Pollard
and Sag, 1994), Lexical-Functional Grammar (Bresnan, 1982), Government and
Binding (Chomsky, 1981), and Construction Grammar (Kay and Fillmore, 1999),
inter alia); many of these theories used schematic context-free templates known as
X-bar schemata, which also relied on the notion of syntactic head.X-bar

schemata
Shortly after Chomsky’s initial work, the context-free grammar was reinvented

by Backus (1959) and independently by Naur et al. (1960) in their descriptions of
the ALGOL programming language; Backus (1996) noted that he was influenced by
the productions of Emil Post and that Naur’s work was independent of his (Backus’)
own. (Recall the discussion on page ?? of multiple invention in science.) After this
early work, a great number of computational models of natural language processing
were based on context-free grammars because of the early development of efficient
algorithms to parse these grammars (see Chapter 12).
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As we have already noted, grammars based on context-free rules are not ubiqui-
tous. Various classes of extensions to CFGs are designed specifically to handle long-
distance dependencies. We noted earlier that some grammars treat long-distance-
dependent items as being related semantically but not syntactically; the surface syn-
tax does not represent the long-distance link (Kay and Fillmore 1999, Culicover and
Jackendoff 2005). But there are alternatives.

One extended formalism is Tree Adjoining Grammar (TAG) (Joshi, 1985).
The primary TAG data structure is the tree, rather than the rule. Trees come in two
kinds: initial trees and auxiliary trees. Initial trees might, for example, represent
simple sentential structures, and auxiliary trees add recursion into a tree. Trees are
combined by two operations called substitution and adjunction. The adjunction
operation handles long-distance dependencies. See Joshi (1985) for more details.
An extension of Tree Adjoining Grammar, called Lexicalized Tree Adjoining Gram-
mars is discussed in Chapter 13. Tree Adjoining Grammar is a member of the family
of mildly context-sensitive languages.

We mentioned on page 182 another way of handling long-distance dependencies,
based on the use of empty categories and co-indexing. The Penn Treebank uses
this model, which draws (in various Treebank corpora) from the Extended Standard
Theory and Minimalism (Radford, 1997).

Readers interested in the grammar of English should get one of the three large
reference grammars of English: Huddleston and Pullum (2002), Biber et al. (1999),
and Quirk et al. (1985). Another useful reference is McCawley (1998).

There are many good introductory textbooks on syntax from different perspec-
tives. Sag et al. (2003) is an introduction to syntax from a generative perspective,Generative

focusing on the use of phrase-structure rules, unification, and the type hierarchy in
Head-Driven Phrase Structure Grammar. Van Valin, Jr. and La Polla (1997) is an
introduction from a functional perspective, focusing on cross-linguistic data and onFunctional

the functional motivation for syntactic structures.

Exercises
11.1 Draw tree structures for the following ATIS phrases:

1. Dallas
2. from Denver
3. after five p.m.
4. arriving in Washington
5. early flights
6. all redeye flights
7. on Thursday
8. a one-way fare
9. any delays in Denver

11.2 Draw tree structures for the following ATIS sentences:

1. Does American airlines have a flight between five a.m. and six a.m.?
2. I would like to fly on American airlines.
3. Please repeat that.
4. Does American 487 have a first-class section?
5. I need to fly between Philadelphia and Atlanta.
6. What is the fare from Atlanta to Denver?
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7. Is there an American airlines flight from Philadelphia to Dallas?

11.3 Assume a grammar that has many VP rules for different subcategorizations,
as expressed in Section 11.3.4, and differently subcategorized verb rules like
Verb-with-NP-complement. How would the rule for postnominal relative clauses
(11.4) need to be modified if we wanted to deal properly with examples like
the earliest flight that you have? Recall that in such examples the pronoun
that is the object of the verb get. Your rules should allow this noun phrase but
should correctly rule out the ungrammatical S *I get.

11.4 Does your solution to the previous problem correctly model the NP the earliest
flight that I can get? How about the earliest flight that I think my mother
wants me to book for her? Hint: this phenomenon is called long-distance
dependency.

11.5 Write rules expressing the verbal subcategory of English auxiliaries; for ex-
ample, you might have a rule verb-with-bare-stem-VP-complement→ can.

11.6 NPs like Fortune’s office or my uncle’s marks are called possessive or genitivePossessive

Genitive noun phrases. We can model possessive noun phrases by treating the sub-NP
like Fortune’s or my uncle’s as a determiner of the following head noun. Write
grammar rules for English possessives. You may treat ’s as if it were a separate
word (i.e., as if there were always a space before ’s).

11.7 Page 175 discussed the need for a Wh-NP constituent. The simplest Wh-NP
is one of the Wh-pronouns (who, whom, whose, which). The Wh-words what
and which can be determiners: which four will you have?, what credit do you
have with the Duke? Write rules for the different types of Wh-NPs.

11.8 Write an algorithm for converting an arbitrary context-free grammar into Chom-
sky normal form.
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12 Syntactic Parsing

We introduced parsing in Chapter 3 as a combination of recognizing an input string
and assigning a structure to it. Syntactic parsing, then, is the task of recognizing a
sentence and assigning a syntactic structure to it. This chapter focuses on the kind of
structures assigned by context-free grammars of the kind described in Chapter 11.
Since they are based on a purely declarative formalism, context-free grammars don’t
specify how the parse tree for a given sentence should be computed. We therefore
need to specify algorithms that employ these grammars to efficiently produce correct
trees.

Parse trees are directly useful in applications such as grammar checking in
word-processing systems: a sentence that cannot be parsed may have grammatical
errors (or at least be hard to read). More typically, however, parse trees serve as an
important intermediate stage of representation for semantic analysis (as we show in
Chapter 20) and thus play an important role in applications like question answering
and information extraction. For example, to answer the question

What books were written by British women authors before 1800?

we’ll need to know that the subject of the sentence was what books and that the by-
adjunct was British women authors to help us figure out that the user wants a list of
books (and not a list of authors).

Before presenting any algorithms, we begin by discussing how the ambiguity
arises again in this context and the problems it presents. The section that fol-
lows then presents the Cocke-Kasami-Younger (CKY) algorithm (Kasami 1965,
Younger 1967), the standard dynamic programming approach to syntactic parsing.
Recall that we’ve already seen several applications of dynamic programming algo-
rithms in earlier chapters — Minimum-Edit-Distance, Viterbi, and Forward. Finally,
we discuss partial parsing methods, for use in situations in which a superficial syn-
tactic analysis of an input may be sufficient.

12.1 Ambiguity

One morning I shot an elephant in my pajamas.
How he got into my pajamas I don’t know.

Groucho Marx, Animal Crackers, 1930

Ambiguity is perhaps the most serious problem faced by syntactic parsers. Chap-
ter 10 introduced the notions of part-of-speech ambiguity and part-of-speech dis-
ambiguation. Here, we introduce a new kind of ambiguity, called structural ambi-
guity, which arises from many commonly used rules in phrase-structure grammars.Structural

ambiguity
To illustrate the issues associated with structural ambiguity, we’ll make use of a new
toy grammar L1, shown in Figure 12.1, which consists of the L0 grammar from the
last chapter augmented with a few additional rules.
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Grammar Lexicon
S → NP VP Det → that | this | the | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | NWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 12.1 The L1 miniature English grammar and lexicon.

Structural ambiguity occurs when the grammar can assign more than one parse
to a sentence. Groucho Marx’s well-known line as Captain Spaulding in Animal
Crackers is ambiguous because the phrase in my pajamas can be part of the NP
headed by elephant or a part of the verb phrase headed by shot. Figure 12.2 illus-
trates these two analyses of Marx’s line using rules from L1.

Structural ambiguity, appropriately enough, comes in many forms. Two common
kinds of ambiguity are attachment ambiguity and coordination ambiguity.

A sentence has an attachment ambiguity if a particular constituent can be at-Attachment
ambiguity

tached to the parse tree at more than one place. The Groucho Marx sentence is
an example of PP-attachment ambiguity. Various kinds of adverbial phrases are
also subject to this kind of ambiguity. For instance, in the following example the
gerundive-VP flying to Paris can be part of a gerundive sentence whose subject is
the Eiffel Tower or it can be an adjunct modifying the VP headed by saw:

(12.1) We saw the Eiffel Tower flying to Paris.

In coordination ambiguity different sets of phrases can be conjoined by a con-Coordination
ambiguity

junction like and. For example, the phrase old men and women can be bracketed as
[old [men and women]], referring to old men and old women, or as [old men] and
[women], in which case it is only the men who are old.

These ambiguities combine in complex ways in real sentences. A program that
summarized the news, for example, would need to be able to parse sentences like
the following from the Brown corpus:

(12.2) President Kennedy today pushed aside other White House business to
devote all his time and attention to working on the Berlin crisis address he
will deliver tomorrow night to the American people over nationwide
television and radio.

This sentence has a number of ambiguities, although since they are semantically
unreasonable, it requires a careful reading to see them. The last noun phrase could be
parsed [nationwide [television and radio]] or [[nationwide television] and radio].
The direct object of pushed aside should be other White House business but could
also be the bizarre phrase [other White House business to devote all his time and
attention to working] (i.e., a structure like Kennedy affirmed [his intention to propose



12.2 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 199

S

VP

NP

Nominal

PP

in my pajamas

Nominal

Noun
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Det
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Verb

shot

NP
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I

S
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VP
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Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

Figure 12.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

a new budget to address the deficit]). Then the phrase on the Berlin crisis address he
will deliver tomorrow night to the American people could be an adjunct modifying
the verb pushed. A PP like over nationwide television and radio could be attached
to any of the higher VPs or NPs (e.g., it could modify people or night).

The fact that there are many grammatically correct but semantically unreason-
able parses for naturally occurring sentences is an irksome problem that affects all
parsers. Ultimately, most natural language processing systems need to be able to
choose a single correct parse from the multitude of possible parses through a process
of syntactic disambiguation. Effective disambiguation algorithms require statisti-Syntactic

disambiguation
cal, semantic, and contextual knowledge sources that vary in how well they can be
integrated into parsing algorithms.

Fortunately, the CKY algorithm presented in the next section is designed to effi-
ciently handle structural ambiguities of the kind we’ve been discussing. And as we’ll
see in Chapter 13, there are straightforward ways to integrate statistical techniques
into the basic CKY framework to produce highly accurate parsers.

12.2 CKY Parsing: A Dynamic Programming Approach

The previous section introduced some of the problems associated with ambiguous
grammars. Fortunately, dynamic programming provides a powerful framework for
addressing these problems, just as it did with the Minimum Edit Distance, Viterbi,
and Forward algorithms. Recall that dynamic programming approaches systemati-
cally fill in tables of solutions to sub-problems. When complete, the tables contain
the solution to all the sub-problems needed to solve the problem as a whole. In
the case of syntactic parsing, these sub-problems represent parse trees for all the
constituents detected in the input.

The dynamic programming advantage arises from the context-free nature of our
grammar rules — once a constituent has been discovered in a segment of the input
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we can record its presence and make it available for use in any subsequent derivation
that might require it. This provides both time and storage efficiencies since subtrees
can be looked up in a table, not reanalyzed. This section presents the Cocke-Kasami-
Younger (CKY) algorithm, the most widely used dynamic-programming based ap-
proach to parsing. Related approaches include the Earley algorithm (Earley, 1970)
and chart parsing (Kaplan 1973, Kay 1982).

12.2.1 Conversion to Chomsky Normal Form
We begin our investigation of the CKY algorithm by examining the requirement
that grammars used with it must be in Chomsky Normal Form (CNF). Recall from
Chapter 11 that grammars in CNF are restricted to rules of the form A → B C or
A → w. That is, the right-hand side of each rule must expand either to two non-
terminals or to a single terminal. Restricting a grammar to CNF does not lead to
any loss in expressiveness, since any context-free grammar can be converted into
a corresponding CNF grammar that accepts exactly the same set of strings as the
original grammar.

Let’s start with the process of converting a generic CFG into one represented in
CNF. Assuming we’re dealing with an ε-free grammar, there are three situations we
need to address in any generic grammar: rules that mix terminals with non-terminals
on the right-hand side, rules that have a single non-terminal on the right-hand side,
and rules in which the length of the right-hand side is greater than 2.

The remedy for rules that mix terminals and non-terminals is to simply introduce
a new dummy non-terminal that covers only the original terminal. For example, a
rule for an infinitive verb phrase such as INF-VP → to VP would be replaced by the
two rules INF-VP → TO VP and TO → to.

Rules with a single non-terminal on the right are called unit productions. WeUnit
productions

can eliminate unit productions by rewriting the right-hand side of the original rules
with the right-hand side of all the non-unit production rules that they ultimately lead
to. More formally, if A ∗⇒ B by a chain of one or more unit productions and B→ γ

is a non-unit production in our grammar, then we add A→ γ for each such rule in
the grammar and discard all the intervening unit productions. As we demonstrate
with our toy grammar, this can lead to a substantial flattening of the grammar and a
consequent promotion of terminals to fairly high levels in the resulting trees.

Rules with right-hand sides longer than 2 are normalized through the introduc-
tion of new non-terminals that spread the longer sequences over several new rules.
Formally, if we have a rule like

A → B C γ

we replace the leftmost pair of non-terminals with a new non-terminal and introduce
a new production result in the following new rules:

A → X1 γ

X1 → B C

In the case of longer right-hand sides, we simply iterate this process until the of-
fending rule has been replaced by rules of length 2. The choice of replacing the
leftmost pair of non-terminals is purely arbitrary; any systematic scheme that results
in binary rules would suffice.

In our current grammar, the rule S → Aux NP VP would be replaced by the two
rules S → X1 VP and X1 → Aux NP.



12.2 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 201

L1 Grammar L1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP
Figure 12.3 L1 Grammar and its conversion to CNF. Note that although they aren’t shown
here, all the original lexical entries from L1 carry over unchanged as well.

The entire conversion process can be summarized as follows:

1. Copy all conforming rules to the new grammar unchanged.
2. Convert terminals within rules to dummy non-terminals.
3. Convert unit-productions.
4. Make all rules binary and add them to new grammar.

Figure 12.3 shows the results of applying this entire conversion procedure to
the L1 grammar introduced earlier on page 198. Note that this figure doesn’t show
the original lexical rules; since these original lexical rules are already in CNF, they
all carry over unchanged to the new grammar. Figure 12.3 does, however, show
the various places where the process of eliminating unit productions has, in effect,
created new lexical rules. For example, all the original verbs have been promoted to
both VPs and to Ss in the converted grammar.

12.2.2 CKY Recognition
With our grammar now in CNF, each non-terminal node above the part-of-speech
level in a parse tree will have exactly two daughters. A two-dimensional matrix can
be used to encode the structure of an entire tree. For a sentence of length n, we will
work with the upper-triangular portion of an (n+1)× (n+1) matrix. Each cell [i, j]
in this matrix contains the set of non-terminals that represent all the constituents that
span positions i through j of the input. Since our indexing scheme begins with 0,
it’s natural to think of the indexes as pointing at the gaps between the input words
(as in 0 Book 1 that 2 flight 3). It follows then that the cell that represents the entire
input resides in position [0,n] in the matrix.
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Since each non-terminal entry in our table has two daughters in the parse, it fol-
lows that for each constituent represented by an entry [i, j], there must be a position
in the input, k, where it can be split into two parts such that i < k < j. Given such
a position k, the first constituent [i,k] must lie to the left of entry [i, j] somewhere
along row i, and the second entry [k, j] must lie beneath it, along column j.

To make this more concrete, consider the following example with its completed
parse matrix, shown in Fig. 13.4.

(12.3) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each input word
in the input. The subsequent diagonals above that superdiagonal contain constituents
that cover all the spans of increasing length in the input.

Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,VP,X2 S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Figure 12.4 Completed parse table for Book the flight through Houston.

Given this setup, CKY recognition consists of filling the parse table in the right
way. To do this, we’ll proceed in a bottom-up fashion so that at the point where
we are filling any cell [i, j], the cells containing the parts that could contribute to
this entry (i.e., the cells to the left and the cells below) have already been filled.
The algorithm given in Fig. 12.5 fills the upper-triangular matrix a column at a time
working from left to right, with each column filled from bottom to top, as the right
side ofFig. 13.4 illustrates. This scheme guarantees that at each point in time we
have all the information we need (to the left, since all the columns to the left have
already been filled, and below since we’re filling bottom to top). It also mirrors on-
line parsing since filling the columns from left to right corresponds to processing
each word one at a time.

The outermost loop of the algorithm given in Fig. 12.5 iterates over the columns,
and the second loop iterates over the rows, from the bottom up. The purpose of the
innermost loop is to range over all the places where a substring spanning i to j in
the input might be split in two. As k ranges over the places where the string can be
split, the pairs of cells we consider move, in lockstep, to the right along row i and
down along column j. Figure 12.6 illustrates the general case of filling cell [i, j]. At
each such split, the algorithm considers whether the contents of the two cells can be
combined in a way that is sanctioned by a rule in the grammar. If such a rule exists,
the non-terminal on its left-hand side is entered into the table.
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function CKY-PARSE(words, grammar) returns table

for j← from 1 to LENGTH(words) do
for all {A | A → words[ j] ∈ grammar}

table[ j−1, j]← table[ j−1, j] ∪ A
for i← from j−2 downto 0 do

for k← i+1 to j−1 do
for all {A | A → BC ∈ grammar and B ∈ table[i,k] and C ∈ table[k, j]}

table[i,j]← table[i,j] ∪ A

Figure 12.5 The CKY algorithm.

...

...

[0,n]

[i,i+1] [i,i+2] [i,j-2] [i,j-1]

[i+1,j]

[i+2,j]

[j-1,j]

[j-2,j]

[i,j]

...

[0,1]

[n-1, n]

Figure 12.6 All the ways to fill the [i, j]th cell in the CKY table.

Figure 12.7 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to add
an entry to the table. Note that the action in cell [0,5] indicates the presence of three
alternative parses for this input, one where the PP modifies the flight, one where
it modifies the booking, and one that captures the second argument in the original
VP→ Verb NP PP rule, now captured indirectly with the VP→ X2 PP rule.



204 CHAPTER 12 • SYNTACTIC PARSING

Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,VP,X2

Det NP

Nominal,
Noun

Nominal

Prep

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,
VP,
X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

S2, VP
S3

S1,VP, X2

Figure 12.7 Filling the cells of column 5 after reading the word Houston.
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12.2.3 CKY Parsing
The algorithm given in Fig. 12.5 is a recognizer, not a parser; for it to succeed, it
simply has to find an S in cell [0,n]. To turn it into a parser capable of returning all
possible parses for a given input, we can make two simple changes to the algorithm:
the first change is to augment the entries in the table so that each non-terminal is
paired with pointers to the table entries from which it was derived (more or less as
shown in Fig. 12.7), the second change is to permit multiple versions of the same
non-terminal to be entered into the table (again as shown in Fig. 12.7). With these
changes, the completed table contains all the possible parses for a given input. Re-
turning an arbitrary single parse consists of choosing an S from cell [0,n] and then
recursively retrieving its component constituents from the table.

Of course, returning all the parses for a given input may incur considerable cost
since an exponential number of parses may be associated with a given input. In such
cases, returning all the parses will have an unavoidable exponential cost. Looking
forward to Chapter 13, we can also think about retrieving the best parse for a given
input by further augmenting the table to contain the probabilities of each entry. Re-
trieving the most probable parse consists of running a suitably modified version of
the Viterbi algorithm from Chapter 10 over the completed parse table.

12.2.4 CKY in Practice
Finally, we should note that while the restriction to CNF does not pose a prob-
lem theoretically, it does pose some non-trivial problems in practice. Obviously, as
things stand now, our parser isn’t returning trees that are consistent with the grammar
given to us by our friendly syntacticians. In addition to making our grammar devel-
opers unhappy, the conversion to CNF will complicate any syntax-driven approach
to semantic analysis.

One approach to getting around these problems is to keep enough information
around to transform our trees back to the original grammar as a post-processing step
of the parse. This is trivial in the case of the transformation used for rules with length
greater than 2. Simply deleting the new dummy non-terminals and promoting their
daughters restores the original tree.

In the case of unit productions, it turns out to be more convenient to alter the ba-
sic CKY algorithm to handle them directly than it is to store the information needed
to recover the correct trees. Exercise 12.3 asks you to make this change. Many of
the probabilistic parsers presented in Chapter 13 use the CKY algorithm altered in
just this manner. Another solution is to adopt a more complex dynamic program-
ming solution that simply accepts arbitrary CFGs. The next section presents such an
approach.

12.3 Partial Parsing

Many language processing tasks do not require complex, complete parse trees for all
inputs. For these tasks, a partial parse, or shallow parse, of input sentences mayPartial parse

Shallow parse be sufficient. For example, information extraction systems generally do not extract
all the possible information from a text: they simply identify and classify the seg-
ments in a text that are likely to contain valuable information. Similarly, information
retrieval systems may index texts according to a subset of the constituents found in
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them.
There are many different approaches to partial parsing. Some make use of cas-

cades of FSTs, of the kind discussed in Chapter 3, to produce tree-like represen-
tations. These approaches typically produce flatter trees than the ones we’ve been
discussing in this chapter and the previous one. This flatness arises from the fact
that FST cascade approaches generally defer decisions that may require semantic or
contextual factors, such as prepositional phrase attachments, coordination ambigu-
ities, and nominal compound analyses. Nevertheless, the intent is to produce parse
trees that link all the major constituents in an input.

An alternative style of partial parsing is known as chunking. Chunking isChunking

the process of identifying and classifying the flat, non-overlapping segments of a
sentence that constitute the basic non-recursive phrases corresponding to the ma-
jor parts-of-speech found in most wide-coverage grammars. This set typically in-
cludes noun phrases, verb phrases, adjective phrases, and prepositional phrases; in
other words, the phrases that correspond to the content-bearing parts-of-speech. Of
course, not all applications require the identification of all of these categories; in-
deed, the most common chunking task is to simply find all the base noun phrases in
a text.

Since chunked texts lack a hierarchical structure, a simple bracketing notation is
sufficient to denote the location and the type of the chunks in a given example. The
following example illustrates a typical bracketed notation.
(12.4) [NP The morning flight] [PP from] [NP Denver] [VP has arrived.]
This bracketing notation makes clear the two fundamental tasks that are involved
in chunking: finding the non-overlapping extents of the chunks and assigning the
correct label to the discovered chunks.

Note that in this example all the words are contained in some chunk. This will
not be the case in all chunking applications. Many words in any input will often fall
outside of any chunk, for example, in systems searching for base NPs in their inputs,
as in the following:
(12.5) [NP The morning flight] from [NP Denver] has arrived.

The details of what constitutes a syntactic base phrase for any given system
varies according to the syntactic theories underlying the system and whether the
phrases are being derived from a treebank. Nevertheless, some standard guidelines
are followed in most systems. First and foremost, base phrases of a given type do
not recursively contain any constituents of the same type. Eliminating this kind
of recursion leaves us with the problem of determining the boundaries of the non-
recursive phrases. In most approaches, base phrases include the headword of the
phrase, along with any pre-head material within the constituent, while crucially ex-
cluding any post-head material. Eliminating post-head modifiers from the major
categories automatically removes the need to resolve attachment ambiguities. Note
that this exclusion does lead to certain oddities, such as PPs and VPs often consist-
ing solely of their heads. Thus, our earlier example a flight from Indianapolis to
Houston on NWA is reduced to the following:
(12.6) [NP a flight] [PP from] [NP Indianapolis][PP to][NP Houston][PP on][NP

NWA]

12.3.1 Machine Learning-Based Approaches to Chunking
State-of-the-art approaches to chunking use supervised machine learning to train a
chunker by using annotated data as a training set. As described earlier in Chapter 9,
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we can view this task as one of sequence labeling, where a classifier is trained to
label each element of the input sequence. Any of the standard approaches to training
classifiers apply to this problem.

The first step in such an approach is to cast the chunking process in a way that
is amenable to sequence labeling. A particularly fruitful approach has been to treat
chunking as a tagging task similar to part-of-speech tagging (Ramshaw and Marcus,
1995). In this approach, a small tagset simultaneously encodes both the segmenta-
tion and the labeling of the chunks in the input. The standard way to do this is called
IOB tagging and is accomplished by introducing tags to represent the beginning (B)IOB tagging

and internal (I) parts of each chunk, as well as those elements of the input that are
outside (O) any chunk. Under this scheme, the size of the tagset is (2n+1), where
n is the number of categories to be classified. The following example shows the
bracketing notation of (12.4) on page 206 reframed as a tagging task:

(12.7) The
B NP

morning
I NP

flight
I NP

from
B PP

Denver
B NP

has
B VP

arrived
I VP

The same sentence with only the base-NPs tagged illustrates the role of the O tags.

(12.8) The
B NP

morning
I NP

flight
I NP

from
O

Denver
B NP

has
O

arrived.
O

Notice that there is no explicit encoding of the end of a chunk in this scheme; the
end of any chunk is implicit in any transition from an I or B to a B or O tag. This
encoding reflects the notion that when sequentially labeling words, it is generally
easier (at least in English) to detect the beginning of a new chunk than it is to know
when a chunk has ended. Not surprisingly, a variety of other tagging schemes rep-
resent chunks in subtly different ways, including some that explicitly mark the end
of constituents. Tjong Kim Sang and Veenstra (1999) describe three variations on
this basic tagging scheme and investigate their performance on a variety of chunking
tasks.

Given such a scheme, building a chunker consists of training a classifier to la-
bel each word of an input sentence with one of the IOB tags from the tagset. Of
course, training requires training data consisting of the phrases of interest delimited
and marked with the appropriate category. The direct approach is to annotate a rep-
resentative corpus. Unfortunately, annotation efforts can be both expensive and time
consuming. It turns out that the best place to find such data for chunking is in an
existing treebank such as the Penn Treebank described in Chapter 11.

Such treebanks provide a complete parse for each corpus sentence, allowing base
syntactic phrases to be extracted from the parse constituents. To find the phrases
we’re interested in, we just need to know the appropriate non-terminal names in the
corpus. Finding chunk boundaries requires finding the head and then including the
material to the left of the head, ignoring the text to the right. This is somewhat
error-prone since it relies on the accuracy of the head-finding rules described in
Chapter 11.

Having extracted a training corpus from a treebank, we must now cast the train-
ing data into a form that’s useful for training classifiers. In this case, each input
can be represented as a set of features extracted from a context window that sur-
rounds the word to be classified. Using a window that extends two words before
and two words after the word being classified seems to provide reasonable perfor-
mance. Features extracted from this window include the words themselves, their
parts-of-speech, and the chunk tags of the preceding inputs in the window.
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B_NP I_NP ?      

The flight from Denver has arrived  

Classifier

DT NN NN IN NNP

Corresponding feature representation

The, DT, B_NP, morning, NN, I_NP, flight, NN, from, IN, Denver, NNP

Label

I_NP

morning

Figure 12.8 A sequential-classifier-based approach to chunking. The chunker slides a context window over
the sentence, classifying words as it proceeds. At this point, the classifier is attempting to label flight. Features
derived from the context typically include the words, part-of-speech tags as well as the previously assigned
chunk tags.

Figure 12.8 illustrates this scheme with the example given earlier. During train-
ing, the classifier would be provided with a training vector consisting of the values
of 13 features; the two words to the left of the decision point, their parts-of-speech
and chunk tags, the word to be tagged along with its part-of-speech, the two words
that follow along with their parts-of speech, and finally the correct chunk tag, in this
case, I NP. During classification, the classifier is given the same vector without the
answer and assigns the most appropriate tag from its tagset.

12.3.2 Chunking-System Evaluations

As with the evaluation of part-of-speech taggers, the evaluation of chunkers pro-
ceeds by comparing chunker output with gold-standard answers provided by human
annotators. However, unlike part-of-speech tagging, word-by-word accuracy mea-
sures are not appropriate. Instead, chunkers are evaluated according to the notions of
precision, recall, and the F-measure borrowed from the field of information retrieval.

Precision measures the percentage of system-provided chunks that were correct.Precision

Correct here means that both the boundaries of the chunk and the chunk’s label are
correct. Precision is therefore defined as

Precision: = Number of correct chunks given by system
Total number of chunks given by system

Recall measures the percentage of chunks actually present in the input that wereRecall

correctly identified by the system. Recall is defined as

Recall: = Number of correct chunks given by system
Total number of actual chunks in the text

The F-measure (van Rijsbergen, 1975) provides a way to combine these twoF-measure
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measures into a single metric. The F-measure is defined as

Fβ =
(β 2 +1)PR

β 2P+R

The β parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of β > 1 favor recall, while
values of β < 1 favor precision. When β = 1, precision and recall are equally bal-
anced; this is sometimes called Fβ=1 or just F1:

F1 =
2PR

P+R
(12.9)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(12.10)

and hence F-measure is

F =
1

α
1
P +(1−α) 1

R

or
(

with β
2 =

1−α

α

)
F =

(β 2 +1)PR
β 2P+R

(12.11)

Statistical significance results on sequence labeling tasks such as chunking can
be computed using matched-pair tests such as McNemar’s test, or variants such
as the Matched-Pair Sentence Segment Word Error (MAPSSWE) test described on
page ??.

Factors limiting the performance of current systems include part-of-speech tag-
ging accuracy, inconsistencies in the training data introduced by the process of ex-
tracting chunks from parse trees, and difficulty resolving ambiguities involving con-
junctions. Consider the following examples that involve pre-nominal modifiers and
conjunctions.

(12.12) [NP Late arrivals and departures] are commonplace during winter.

(12.13) [NP Late arrivals] and [NP cancellations] are commonplace during winter.

In the first example, late is shared by both arrivals and departures, yielding a
single long base-NP. In the second example, late is not shared and modifies arrivals
alone, thus yielding two base-NPs. Distinguishing these two situations, and others
like them, requires access to semantic and context information unavailable to current
chunkers.

12.4 Summary

The two major ideas introduced in this chapter are those of parsing and partial
parsing. Here’s a summary of the main points we covered about these ideas:

• Structural ambiguity is a significant problem for parsers. Common sources
of structural ambiguity include PP-attachment, coordination ambiguity,
and noun-phrase bracketing ambiguity.
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• Dynamic programming parsing algorithms, such as CKY, use a table of
partial parses to efficiently parse ambiguous sentences.

• CKY restricts the form of the grammar to Chomsky normal form (CNF).
• Many practical problems, including information extraction problems, can be

solved without full parsing.
• Partial parsing and chunking are methods for identifying shallow syntactic

constituents in a text.
• State-of-the-art methods for partial parsing use supervised machine learning

techniques.

Bibliographical and Historical Notes
Writing about the history of compilers, Knuth notes:

In this field there has been an unusual amount of parallel discovery of
the same technique by people working independently.

Well, perhaps not unusual, if multiple discovery is the norm (see page ??). But
there has certainly been enough parallel publication that this history errs on the side
of succinctness in giving only a characteristic early mention of each algorithm; the
interested reader should see Aho and Ullman (1972).

Bottom-up parsing seems to have been first described by Yngve (1955), who
gave a breadth-first, bottom-up parsing algorithm as part of an illustration of a ma-
chine translation procedure. Top-down approaches to parsing and translation were
described (presumably independently) by at least Glennie (1960), Irons (1961), and
Kuno and Oettinger (1963). Dynamic programming parsing, once again, has a his-
tory of independent discovery. According to Martin Kay (personal communication),
a dynamic programming parser containing the roots of the CKY algorithm was first
implemented by John Cocke in 1960. Later work extended and formalized the algo-
rithm, as well as proving its time complexity (Kay 1967,Younger 1967,Kasami 1965).
The related well-formed substring table (WFST) seems to have been indepen-WFST

dently proposed by Kuno (1965) as a data structure that stores the results of all pre-
vious computations in the course of the parse. Based on a generalization of Cocke’s
work, a similar data structure had been independently described in Kay 1967, Kay 1973.
The top-down application of dynamic programming to parsing was described in
Earley’s Ph.D. dissertation (Earley 1968, Earley 1970). Sheil (1976) showed the
equivalence of the WFST and the Earley algorithm. Norvig (1991) shows that the
efficiency offered by dynamic programming can be captured in any language with a
memoization function (such as in LISP) simply by wrapping the memoization oper-
ation around a simple top-down parser.

While parsing via cascades of finite-state automata had been common in the
early history of parsing (Harris, 1962), the focus shifted to full CFG parsing quite
soon afterward. Church (1980) argued for a return to finite-state grammars as a
processing model for natural language understanding; other early finite-state parsing
models include Ejerhed (1988). Abney (1991) argued for the important practical role
of shallow parsing. Much recent work on shallow parsing applies machine learning
to the task of learning the patterns; see, for example, Ramshaw and Marcus (1995),
Argamon et al. (1998), Munoz et al. (1999).
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The classic reference for parsing algorithms is Aho and Ullman (1972); although
the focus of that book is on computer languages, most of the algorithms have been
applied to natural language. A good programming languages textbook such as Aho
et al. (1986) is also useful.

Exercises
12.1 Implement the algorithm to convert arbitrary context-free grammars to CNF.

Apply your program to the L1 grammar.

12.2 Implement the CKY algorithm and test it with your converted L1 grammar.

12.3 Rewrite the CKY algorithm given in Fig. 12.5 on page 203 so that it can accept
grammars that contain unit productions.

12.4 Discuss the relative advantages and disadvantages of partial versus full pars-
ing.

12.5 Discuss how to augment a parser to deal with input that may be incorrect, for
example, containing spelling errors or mistakes arising from automatic speech
recognition.
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CHAPTER

13 Statistical Parsing

The characters in Damon Runyon’s short stories are willing to bet “on any propo-
sition whatever”, as Runyon says about Sky Masterson in The Idyll of Miss Sarah
Brown, from the probability of getting aces back-to-back to the odds against a man
being able to throw a peanut from second base to home plate. There is a moral here
for language processing: with enough knowledge we can figure the probability of
just about anything. The last two chapters have introduced sophisticated models of
syntactic structure and its parsing. Here, we show that it is possible to build proba-
bilistic models of syntactic knowledge and use some of this probabilistic knowledge
to build efficient probabilistic parsers.

One crucial use of probabilistic parsing is to solve the problem of disambigua-
tion. Recall from Chapter 12 that sentences on average tend to be syntactically
ambiguous because of phenomena like coordination ambiguity and attachment
ambiguity. The CKY parsing algorithm can represent these ambiguities in an effi-
cient way but is not equipped to resolve them. A probabilistic parser offers a solution
to the problem: compute the probability of each interpretation and choose the most
probable interpretation. Thus, due to the prevalence of ambiguity, most modern
parsers used for natural language understanding tasks (semantic analysis, summa-
rization, question-answering, machine translation) are of necessity probabilistic.

The most commonly used probabilistic grammar formalism is the probabilistic
context-free grammar (PCFG), a probabilistic augmentation of context-free gram-
mars in which each rule is associated with a probability. We introduce PCFGs in the
next section, showing how they can be trained on Treebank grammars and how they
can be parsed. We present the most basic parsing algorithm for PCFGs, which is the
probabilistic version of the CKY algorithm that we saw in Chapter 12.

We then show a number of ways that we can improve on this basic probability
model (PCFGs trained on Treebank grammars). One method of improving a trained
Treebank grammar is to change the names of the non-terminals. By making the
non-terminals sometimes more specific and sometimes more general, we can come
up with a grammar with a better probability model that leads to improved parsing
scores. Another augmentation of the PCFG works by adding more sophisticated
conditioning factors, extending PCFGs to handle probabilistic subcategorization
information and probabilistic lexical dependencies.

Heavily lexicalized grammar formalisms such as Lexical-Functional Grammar
(LFG) (Bresnan, 1982), Head-Driven Phrase Structure Grammar (HPSG) (Pollard
and Sag, 1994), Tree-Adjoining Grammar (TAG) (Joshi, 1985), and Combinatory
Categorial Grammar (CCG) pose additional problems for probabilistic parsers. Sec-
tion 13.7 introduces the task of supertagging and the use of heuristic search methods
based on the A* algorithm in the context of CCG parsing.

Finally, we describe the standard techniques and metrics for evaluating parsers
and discuss some relevant psychological results on human parsing.
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13.1 Probabilistic Context-Free Grammars

The simplest augmentation of the context-free grammar is the Probabilistic Context-
Free Grammar (PCFG), also known as the Stochastic Context-Free GrammarPCFG

(SCFG), first proposed by Booth (1969). Recall that a context-free grammar G isSCFG

defined by four parameters (N, Σ, R, S); a probabilistic context-free grammar is also
defined by four parameters, with a slight augmentation to each of the rules in R:

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β [p],

where A is a non-terminal,
β is a string of symbols from the infinite set of strings (Σ∪N)∗,
and p is a number between 0 and 1 expressing P(β |A)

S a designated start symbol

That is, a PCFG differs from a standard CFG by augmenting each rule in R with
a conditional probability:

A→ β [p] (13.1)

Here p expresses the probability that the given non-terminal A will be expanded
to the sequence β . That is, p is the conditional probability of a given expansion β

given the left-hand-side (LHS) non-terminal A. We can represent this probability as

P(A→ β )

or as
P(A→ β |A)

or as
P(RHS|LHS)

Thus, if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1: ∑

β

P(A→ β ) = 1

Figure 13.1 shows a PCFG: a probabilistic augmentation of the L1 miniature
English CFG grammar and lexicon. Note that the probabilities of all of the expan-
sions of each non-terminal sum to 1. Also note that these probabilities were made
up for pedagogical purposes. A real grammar has a great many more rules for each
non-terminal; hence, the probabilities of any particular rule would tend to be much
smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentencesConsistent

in the language equals 1. Certain kinds of recursive rules cause a grammar to be
inconsistent by causing infinitely looping derivations for some sentences. For ex-
ample, a rule S→ S with probability 1 would lead to lost probability mass due to
derivations that never terminate. See Booth and Thompson (1973) for more details
on consistent and inconsistent grammars.
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Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | flight [.30]
S → VP [.05] | meal [.015] | money [.05]
NP → Pronoun [.35] | flight [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | NWA [.40]
VP → Verb [.35] Aux → does [.60] | can [40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 13.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. 12.1. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

How are PCFGs used? A PCFG can be used to estimate a number of useful
probabilities concerning a sentence and its parse tree(s), including the probability of
a particular parse tree (useful in disambiguation) and the probability of a sentence
or a piece of a sentence (useful in language modeling). Let’s see how this works.

13.1.1 PCFGs for Disambiguation
A PCFG assigns a probability to each parse tree T (i.e., each derivation) of a sen-
tence S. This attribute is useful in disambiguation. For example, consider the two
parses of the sentence “Book the dinner flight” shown in Fig. 13.2. The sensible
parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi→ RHSi:

P(T,S) =
n∏

i=1

P(RHSi|LHSi) (13.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T ). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T )P(S|T ) (13.3)
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But since a parse tree includes all the words of the sentence, P(S|T ) is 1. Thus,

P(T,S) = P(T )P(S|T ) = P(T ) (13.4)

S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S → VP .05 S → VP .05
VP → Verb NP .20 VP → Verb NP NP .10
NP → Det Nominal .20 NP → Det Nominal .20
Nominal → Nominal Noun .20 NP → Nominal .15
Nominal → Noun .75 Nominal → Noun .75

Nominal → Noun .75
Verb → book .30 Verb → book .30
Det → the .60 Det → the .60
Noun → dinner .10 Noun → dinner .10
Noun → flight .40 Noun → flight .40

Figure 13.2 Two parse trees for an ambiguous sentence. The transitive parse on the left
corresponds to the sensible meaning “Book a flight that serves dinner”, while the ditransitive
parse on the right corresponds to the nonsensical meaning “Book a flight on behalf of ‘the
dinner’ ”.

We can compute the probability of each of the trees in Fig. 13.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 13.2a (call it Tle f t ) and the right tree (Fig. 13.2b or Tright )
can be computed as follows:

P(Tle f t) = .05∗ .20∗ .20∗ .20∗ .75∗ .30∗ .60∗ .10∗ .40 = 2.2×10−6

P(Tright) = .05∗ .10∗ .20∗ .15∗ .75∗ .75∗ .30∗ .60∗ .10∗ .40 = 6.1×10−7

We can see that the left (transitive) tree in Fig. 13.2 has a much higher probability
than the ditransitive tree on the right. Thus, this parse would correctly be chosen by
a disambiguation algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.Yield
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Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T |S) (13.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus lead-
ing to

T̂ (S) = argmax
T s.t.S=yield(T )

P(T,S)
P(S)

(13.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be
a constant for each tree, so we can eliminate it:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T,S) (13.7)

Furthermore, since we showed above that P(T,S) = P(T ), the final equation
for choosing the most likely parse neatly simplifies to choosing the parse with the
highest probability:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T ) (13.8)

13.1.2 PCFGs for Language Modeling
A second attribute of a PCFG is that it assigns a probability to the string of words
constituting a sentence. This is important in language modeling, whether for use
in speech recognition, machine translation, spelling correction, augmentative com-
munication, or other applications. The probability of an unambiguous sentence is
P(T,S) = P(T ) or just the probability of the single parse tree for that sentence. The
probability of an ambiguous sentence is the sum of the probabilities of all the parse
trees for the sentence:

P(S) =
∑

T s.t.S=yield(T )
P(T,S) (13.9)

=
∑

T s.t.S=yield(T )
P(T ) (13.10)

An additional feature of PCFGs that is useful for language modeling is their
ability to assign a probability to substrings of a sentence. For example, suppose we
want to know the probability of the next word wi in a sentence given all the words
we’ve seen so far w1, ...,wi−1. The general formula for this is

P(wi|w1,w2, ...,wi−1) =
P(w1,w2, ...,wi−1,wi)

P(w1,w2, ...,wi−1)
(13.11)

We saw in Chapter 4 a simple approximation of this probability using N-grams,
conditioning on only the last word or two instead of the entire context; thus, the
bigram approximation would give us

P(wi|w1,w2, ...,wi−1)≈
P(wi−1,wi)

P(wi−1)
(13.12)
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But the fact that the N-gram model can only make use of a couple words of
context means it is ignoring potentially useful prediction cues. Consider predicting
the word after in the following sentence from Chelba and Jelinek (2000):

(13.13) the contract ended with a loss of 7 cents after trading as low as 9 cents

A trigram grammar must predict after from the words 7 cents, while it seems clear
that the verb ended and the subject contract would be useful predictors that a PCFG-
based parser could help us make use of. Indeed, it turns out that PCFGs allow us to
condition on the entire previous context w1,w2, ...,wi−1 shown in Eq. 13.11.

In summary, this section and the previous one have shown that PCFGs can be
applied both to disambiguation in syntactic parsing and to word prediction in lan-
guage modeling. Both of these applications require that we be able to compute the
probability of parse tree T for a given sentence S. The next few sections introduce
some algorithms for computing this probability.

13.2 Probabilistic CKY Parsing of PCFGs

The parsing problem for PCFGs is to produce the most-likely parse T̂ for a given
sentence S, that is,

T̂ (S) = argmax
T s.t.S=yield(T )

P(T ) (13.14)

The algorithms for computing the most likely parse are simple extensions of the
standard algorithms for parsing; most modern probabilistic parsers are based on the
probabilistic CKY algorithm, first described by Ney (1991).Probabilistic

CKY
As with the CKY algorithm, we assume for the probabilistic CKY algorithm that

the PCFG is in Chomsky normal form. Recall from page 187 that grammars in CNF
are restricted to rules of the form A → B C, or A → w. That is, the right-hand side
of each rule must expand to either two non-terminals or to a single terminal.

For the CKY algorithm, we represented each sentence as having indices between
the words. Thus, an example sentence like

(13.15) Book the flight through Houston.

would assume the following indices between each word:

(13.16) 0© Book 1© the 2© flight 3© through 4© Houston 5©
Using these indices, each constituent in the CKY parse tree is encoded in a

two-dimensional matrix. Specifically, for a sentence of length n and a grammar
that contains V non-terminals, we use the upper-triangular portion of an (n+ 1)×
(n+ 1) matrix. For CKY, each cell table[i, j] contained a list of constituents that
could span the sequence of words from i to j. For probabilistic CKY, it’s slightly
simpler to think of the constituents in each cell as constituting a third dimension of
maximum length V . This third dimension corresponds to each non-terminal that can
be placed in this cell, and the value of the cell is then a probability for that non-
terminal/constituent rather than a list of constituents. In summary, each cell [i, j,A]
in this (n+1)× (n+1)×V matrix is the probability of a constituent of type A that
spans positions i through j of the input.

Figure 13.3 gives pseudocode for this probabilistic CKY algorithm, extending
the basic CKY algorithm from Fig. 12.5.
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function PROBABILISTIC-CKY(words,grammar) returns most probable parse
and its probability

for j← from 1 to LENGTH(words) do
for all { A | A → words[ j] ∈ grammar}

table[ j−1, j,A]←P(A→ words[ j])
for i← from j−2 downto 0 do

for k← i+1 to j−1 do
for all { A | A → BC ∈ grammar,

and table[i,k,B] > 0 and table[k, j,C] > 0 }
if (table[i,j,A] < P(A → BC) × table[i,k,B] × table[k,j,C]) then

table[i,j,A]←P(A → BC) × table[i,k,B] × table[k,j,C]
back[i,j,A]←{k,B,C}

return BUILD TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Figure 13.3 The probabilistic CKY algorithm for finding the maximum probability parse
of a string of num words words given a PCFG grammar with num rules rules in Chomsky
normal form. back is an array of backpointers used to recover the best parse. The build tree
function is left as an exercise to the reader.

Like the basic CKY algorithm, the probabilistic CKY algorithm as shown in
Fig. 13.3 requires a grammar in Chomsky normal form. Converting a probabilistic
grammar to CNF requires that we also modify the probabilities so that the probability
of each parse remains the same under the new CNF grammar. Exercise 13.2 asks
you to modify the algorithm for conversion to CNF in Chapter 12 so that it correctly
handles rule probabilities.

In practice, a generalized CKY algorithm that handles unit productions directly
is typically used. Recall that Exercise 13.3 asked you to make this change in CKY;
Exercise 13.3 asks you to extend this change to probabilistic CKY.

Let’s see an example of the probabilistic CKY chart, using the following mini-
grammar, which is already in CNF:

S → NP VP .80 Det → the .40
NP → Det N .30 Det → a .40
V P → V NP .20 N → meal .01

V → includes .05 N → f light .02

Given this grammar, Fig. 13.4 shows the first steps in the probabilistic CKY
parse of the following example:

(13.17) The flight includes a meal

13.3 Ways to Learn PCFG Rule Probabilities

Where do PCFG rule probabilities come from? There are two ways to learn proba-
bilities for the rules of a grammar. The simplest way is to use a treebank, a corpus
of already parsed sentences. Recall that we introduced in Chapter 11 the idea of
treebanks and the commonly used Penn Treebank (Marcus et al., 1993), a collec-
tion of parse trees in English, Chinese, and other languages that is distributed by the
Linguistic Data Consortium. Given a treebank, we can compute the probability of
each expansion of a non-terminal by counting the number of times that expansion
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The flight

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

Det: .40

includes a meal

[3,4]

[4,5]

N: .02

V: .05

NP: .30 *.40 *.02
= .0024

[0,4]

[1,4]

[2,4]

[3,5]

[2,5]

[1,5]

[0,5]

Det: .40

N: .01

Figure 13.4 The beginning of the probabilistic CKY matrix. Filling out the rest of the chart
is left as Exercise 13.4 for the reader.

occurs and then normalizing.

P(α → β |α) =
Count(α → β )∑
γ

Count(α → γ)
=

Count(α → β )

Count(α)
(13.18)

If we don’t have a treebank but we do have a (non-probabilistic) parser, we can
generate the counts we need for computing PCFG rule probabilities by first parsing
a corpus of sentences with the parser. If sentences were unambiguous, it would be
as simple as this: parse the corpus, increment a counter for every rule in the parse,
and then normalize to get probabilities.

But wait! Since most sentences are ambiguous, that is, have multiple parses, we
don’t know which parse to count the rules in. Instead, we need to keep a separate
count for each parse of a sentence and weight each of these partial counts by the
probability of the parse it appears in. But to get these parse probabilities to weight
the rules, we need to already have a probabilistic parser.

The intuition for solving this chicken-and-egg problem is to incrementally im-
prove our estimates by beginning with a parser with equal rule probabilities, then
parse the sentence, compute a probability for each parse, use these probabilities to
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weight the counts, re-estimate the rule probabilities, and so on, until our proba-
bilities converge. The standard algorithm for computing this solution is called the
inside-outside algorithm; it was proposed by Baker (1979) as a generalization of theInside-outside

forward-backward algorithm of Chapter 9. Like forward-backward, inside-outside
is a special case of the Expectation Maximization (EM) algorithm, and hence has
two steps: the expectation step, and the maximization step. See Lari and YoungExpectation

step
Maximization

step (1990) or Manning and Schütze (1999) for a complete description of the algorithm.
This use of the inside-outside algorithm to estimate the rule probabilities for

a grammar is actually a kind of limited use of inside-outside. The inside-outside
algorithm can actually be used not only to set the rule probabilities but even to induce
the grammar rules themselves. It turns out, however, that grammar induction is so
difficult that inside-outside by itself is not a very successful grammar inducer; see
the Historical Notes at the end of the chapter for pointers to other grammar induction
algorithms.

13.4 Problems with PCFGs

While probabilistic context-free grammars are a natural extension to context-free
grammars, they have two main problems as probability estimators:

Poor independence assumptions: CFG rules impose an independence assumption
on probabilities, resulting in poor modeling of structural dependencies across
the parse tree.

Lack of lexical conditioning: CFG rules don’t model syntactic facts about specific
words, leading to problems with subcategorization ambiguities, preposition
attachment, and coordinate structure ambiguities.

Because of these problems, most current probabilistic parsing models use some
augmented version of PCFGs, or modify the Treebank-based grammar in some way.
In the next few sections after discussing the problems in more detail we introduce
some of these augmentations.

13.4.1 Independence Assumptions Miss Structural Dependencies
Between Rules

Let’s look at these problems in more detail. Recall that in a CFG the expansion of a
non-terminal is independent of the context, that is, of the other nearby non-terminals
in the parse tree. Similarly, in a PCFG, the probability of a particular rule like
NP→Det N is also independent of the rest of the tree. By definition, the probability
of a group of independent events is the product of their probabilities. These two facts
explain why in a PCFG we compute the probability of a tree by just multiplying the
probabilities of each non-terminal expansion.

Unfortunately, this CFG independence assumption results in poor probability
estimates. This is because in English the choice of how a node expands can after all
depend on the location of the node in the parse tree. For example, in English it turns
out that NPs that are syntactic subjects are far more likely to be pronouns, and NPs
that are syntactic objects are far more likely to be non-pronominal (e.g., a proper
noun or a determiner noun sequence), as shown by these statistics for NPs in the
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Switchboard corpus (Francis et al., 1999):1

Pronoun Non-Pronoun
Subject 91% 9%
Object 34% 66%

Unfortunately, there is no way to represent this contextual difference in the prob-
abilities in a PCFG. Consider two expansions of the non-terminal NP as a pronoun
or as a determiner+noun. How shall we set the probabilities of these two rules? If
we set their probabilities to their overall probability in the Switchboard corpus, the
two rules have about equal probability.

NP → DT NN .28
NP → PRP .25

Because PCFGs don’t allow a rule probability to be conditioned on surrounding
context, this equal probability is all we get; there is no way to capture the fact that in
subject position, the probability for NP→ PRP should go up to .91, while in object
position, the probability for NP→ DT NN should go up to .66.

These dependencies could be captured if the probability of expanding an NP as
a pronoun (e.g., NP→ PRP) versus a lexical NP (e.g., NP→ DT NN) were condi-
tioned on whether the NP was a subject or an object. Section 13.5 introduces the
technique of parent annotation for adding this kind of conditioning.

13.4.2 Lack of Sensitivity to Lexical Dependencies
A second class of problems with PCFGs is their lack of sensitivity to the words in
the parse tree. Words do play a role in PCFGs since the parse probability includes
the probability of a word given a part-of-speech (i.e., from rules like V→ sleep,
NN→ book, etc.).

But it turns out that lexical information is useful in other places in the grammar,
such as in resolving prepositional phrase (PP) attachment ambiguities. Since prepo-
sitional phrases in English can modify a noun phrase or a verb phrase, when a parser
finds a prepositional phrase, it must decide where to attach it into the tree. Consider
the following example:

(13.19) Workers dumped sacks into a bin.

Figure 13.5 shows two possible parse trees for this sentence; the one on the left is
the correct parse; Fig. 13.6 shows another perspective on the preposition attachment
problem, demonstrating that resolving the ambiguity in Fig. 13.5 is equivalent to
deciding whether to attach the prepositional phrase into the rest of the tree at the
NP or VP nodes; we say that the correct parse requires VP attachment, and theVP attachment

incorrect parse implies NP attachment.NP attachment

Why doesn’t a PCFG already deal with PP attachment ambiguities? Note that
the two parse trees in Fig. 13.5 have almost exactly the same rules; they differ only
in that the left-hand parse has this rule:

V P → V BD NP PP

1 Distribution of subjects from 31,021 declarative sentences; distribution of objects from 7,489 sen-
tences. This tendency is caused by the use of subject position to realize the topic or old information
in a sentence (Givón, 1990). Pronouns are a way to talk about old information, while non-pronominal
(“lexical”) noun-phrases are often used to introduce new referents. We talk more about new and old
information in Chapter 23.
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Figure 13.5 Two possible parse trees for a prepositional phrase attachment ambiguity. The left parse is
the sensible one, in which “into a bin” describes the resulting location of the sacks. In the right incorrect parse,
the sacks to be dumped are the ones which are already “into a bin”, whatever that might mean.
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Figure 13.6 Another view of the preposition attachment problem. Should the PP on the right attach to the
VP or NP nodes of the partial parse tree on the left?

while the right-hand parse has these:

V P → V BD NP
NP → NP PP

Depending on how these probabilities are set, a PCFG will always either prefer
NP attachment or VP attachment. As it happens, NP attachment is slightly more
common in English, so if we trained these rule probabilities on a corpus, we might
always prefer NP attachment, causing us to misparse this sentence.

But suppose we set the probabilities to prefer the VP attachment for this sen-
tence. Now we would misparse the following sentence, which requires NP attach-
ment:

(13.20) fishermen caught tons of herring
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What information in the input sentence lets us know that (13.20) requires NP
attachment while (13.19) requires VP attachment?

It should be clear that these preferences come from the identities of the verbs,
nouns, and prepositions. It seems that the affinity between the verb dumped and the
preposition into is greater than the affinity between the noun sacks and the preposi-
tion into, thus leading to VP attachment. On the other hand, in (13.20) the affinity
between tons and of is greater than that between caught and of, leading to NP attach-
ment.

Thus, to get the correct parse for these kinds of examples, we need a model that
somehow augments the PCFG probabilities to deal with these lexical dependencyLexical

dependency
statistics for different verbs and prepositions.

Coordination ambiguities are another case in which lexical dependencies are
the key to choosing the proper parse. Figure 13.7 shows an example from Collins
(1999) with two parses for the phrase dogs in houses and cats. Because dogs is
semantically a better conjunct for cats than houses (and because most dogs can’t fit
inside cats), the parse [dogs in [NP houses and cats]] is intuitively unnatural and
should be dispreferred. The two parses in Fig. 13.7, however, have exactly the same
PCFG rules, and thus a PCFG will assign them the same probability.

NP

NP

Noun

cats

Conj

and

NP

PP

NP

Noun

houses

Prep

in

NP

Noun

dogs

NP

PP

NP

NP

Noun

cats

Conj

and

NP

Noun

houses

Prep

in

NP

Noun

dogs

Figure 13.7 An instance of coordination ambiguity. Although the left structure is intu-
itively the correct one, a PCFG will assign them identical probabilities since both structures
use exactly the same set of rules. After Collins (1999).

In summary, we have shown in this section and the previous one that probabilistic
context-free grammars are incapable of modeling important structural and lexical
dependencies. In the next two sections we sketch current methods for augmenting
PCFGs to deal with both these issues.

13.5 Improving PCFGs by Splitting Non-Terminals

Let’s start with the first of the two problems with PCFGs mentioned above: their
inability to model structural dependencies, like the fact that NPs in subject position
tend to be pronouns, whereas NPs in object position tend to have full lexical (non-
pronominal) form. How could we augment a PCFG to correctly model this fact?
One idea would be to split the NP non-terminal into two versions: one for sub-Split
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jects, one for objects. Having two nodes (e.g., NPsubject and NPobject) would allow
us to correctly model their different distributional properties, since we would have
different probabilities for the rule NPsubject → PRP and the rule NPobject → PRP.

One way to implement this intuition of splits is to do parent annotation (John-Parent
annotation

son, 1998), in which we annotate each node with its parent in the parse tree. Thus,
an NP node that is the subject of the sentence and hence has parent S would be anno-
tated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.
Figure 13.8 shows an example of a tree produced by a grammar that parent-annotates
the phrasal non-terminals (like NP and VP).

a) S

VP

NP

NN

flight

DT

a

VBD

need

NP

PRP

I

b) S

VPˆS

NPˆVP

NN

flight

DT

a

VBD

need

NPˆS

PRP

I

Figure 13.8 A standard PCFG parse tree (a) and one which has parent annotation on the
nodes which aren’t pre-terminal (b). All the non-terminal nodes (except the pre-terminal
part-of-speech nodes) in parse (b) have been annotated with the identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by
splitting the pre-terminal part-of-speech nodes (Klein and Manning, 2003b). For ex-
ample, different kinds of adverbs (RB) tend to occur in different syntactic positions:
the most common adverbs with ADVP parents are also and now, with VP parents
n’t and not, and with NP parents only and just. Thus, adding tags like RBˆADVP,
RBˆVP, and RBˆNP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN can mark a wide variety of parts-of-speech,
including subordinating conjunctions (while, as, if), complementizers (that, for), and
prepositions (of, in, from). Some of these differences can be captured by parent an-
notation (subordinating conjunctions occur under S, prepositions under PP), while
others require specifically splitting the pre-terminal nodes. Figure 13.9 shows an ex-
ample from Klein and Manning (2003b) in which even a parent-annotated grammar
incorrectly parses works as a noun in to see if advertising works. Splitting pre-
terminals to allow if to prefer a sentential complement results in the correct verbal
parse.

To deal with cases in which parent annotation is insufficient, we can also hand-
write rules that specify a particular node split based on other features of the tree. For
example, to distinguish between complementizer IN and subordinating conjunction
IN, both of which can have the same parent, we could write rules conditioned on
other aspects of the tree such as the lexical identity (the lexeme that is likely to be a
complementizer, as a subordinating conjunction).

Node-splitting is not without problems; it increases the size of the grammar and
hence reduces the amount of training data available for each grammar rule, leading
to overfitting. Thus, it is important to split to just the correct level of granularity for a
particular training set. While early models employed hand-written rules to try to find
an optimal number of non-terminals (Klein and Manning, 2003b), modern models
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automatically search for the optimal splits. The split and merge algorithm of PetrovSplit and merge

et al. (2006), for example, starts with a simple X-bar grammar, alternately splits the
non-terminals, and merges non-terminals, finding the set of annotated nodes that
maximizes the likelihood of the training set treebank. As of the time of this writing,
the performance of the Petrov et al. (2006) algorithm was the best of any known
parsing algorithm on the Penn Treebank.

13.6 Probabilistic Lexicalized CFGs

The previous section showed that a simple probabilistic CKY algorithm for pars-
ing raw PCFGs can achieve extremely high parsing accuracy if the grammar rule
symbols are redesigned by automatic splits and merges.

In this section, we discuss an alternative family of models in which instead of
modifying the grammar rules, we modify the probabilistic model of the parser to
allow for lexicalized rules. The resulting family of lexicalized parsers includes the
well-known Collins parser (Collins, 1999) and Charniak parser (Charniak, 1997),Collins parser

Charniak
parser both of which are publicly available and widely used throughout natural language

processing.
We saw in Section 11.4.3 that syntactic constituents could be associated with a

lexical head, and we defined a lexicalized grammar in which each non-terminalLexicalized
grammar

in the tree is annotated with its lexical head, where a rule like V P→ V BD NP PP
would be extended as

VP(dumped) → VBD(dumped) NP(sacks) PP(into) (13.21)

In the standard type of lexicalized grammar, we actually make a further exten-
sion, which is to associate the head tag, the part-of-speech tags of the headwords,Head tag

with the non-terminal symbols as well. Each rule is thus lexicalized by both the

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN

advertising

IN

if

VB

see

TO

to

VPˆS

VPˆVP

SBARˆVP

SˆSBAR

VPˆS

VBZˆVP

works

NPˆS

NNˆNP

advertising

INˆSBAR

if

VBˆVP

see

TOˆVP

to

Figure 13.9 An incorrect parse even with a parent-annotated parse (left). The correct parse (right), was
produced by a grammar in which the pre-terminal nodes have been split, allowing the probabilistic grammar to
capture the fact that if prefers sentential complements. Adapted from Klein and Manning (2003b).
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headword and the head tag of each constituent resulting in a format for lexicalized
rules like

VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P) (13.22)

We show a lexicalized parse tree with head tags in Fig. 13.10, extended from Fig. 11.11.

TOP

S(dumped,VBD)

VP(dumped,VBD)

PP(into,P)

NP(bin,NN)

NN(bin,NN)

bin

DT(a,DT)

a

P(into,P)

into

NP(sacks,NNS)

NNS(sacks,NNS)

sacks

VBD(dumped,VBD)

dumped

NP(workers,NNS)

NNS(workers,NNS)

workers

Internal Rules Lexical Rules
TOP → S(dumped,VBD) NNS(workers,NNS) → workers
S(dumped,VBD) → NP(workers,NNS) VP(dumped,VBD) VBD(dumped,VBD) → dumped
NP(workers,NNS) → NNS(workers,NNS) NNS(sacks,NNS) → sacks
VP(dumped,VBD) → VBD(dumped, VBD) NP(sacks,NNS) PP(into,P) P(into,P) → into
PP(into,P) → P(into,P) NP(bin,NN) DT(a,DT) → a
NP(bin,NN) → DT(a,DT) NN(bin,NN) NN(bin,NN) → bin

Figure 13.10 A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below
we show the PCFG rules that would be needed for this parse tree, internal rules on the left, and lexical rules on
the right.

To generate such a lexicalized tree, each PCFG rule must be augmented to iden-
tify one right-hand constituent to be the head daughter. The headword for a node is
then set to the headword of its head daughter, and the head tag to the part-of-speech
tag of the headword. Recall that we gave in Fig. 11.12 a set of hand-written rules for
identifying the heads of particular constituents.

A natural way to think of a lexicalized grammar is as a parent annotation, that
is, as a simple context-free grammar with many copies of each rule, one copy for
each possible headword/head tag for each constituent. Thinking of a probabilistic
lexicalized CFG in this way would lead to the set of simple PCFG rules shown below
the tree in Fig. 13.10.

Note that Fig. 13.10 shows two kinds of rules: lexical rules, which expressLexical rules

the expansion of a pre-terminal to a word, and internal rules, which express theInternal rule

other rule expansions. We need to distinguish these kinds of rules in a lexicalized
grammar because they are associated with very different kinds of probabilities. The
lexical rules are deterministic, that is, they have probability 1.0 since a lexicalized
pre-terminal like NN(bin,NN) can only expand to the word bin. But for the internal
rules, we need to estimate probabilities.
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Suppose we were to treat a probabilistic lexicalized CFG like a really big CFG
that just happened to have lots of very complex non-terminals and estimate the
probabilities for each rule from maximum likelihood estimates. Thus, according
to Eq. 13.18, the MLE estimate for the probability for the rule P(VP(dumped,VBD)
→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P)) would be

Count(VP(dumped,VBD)→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

Count(VP(dumped,VBD))
(13.23)

But there’s no way we can get good estimates of counts like those in (13.23)
because they are so specific: we’re unlikely to see many (or even any) instances of a
sentence with a verb phrase headed by dumped that has one NP argument headed by
sacks and a PP argument headed by into. In other words, counts of fully lexicalized
PCFG rules like this will be far too sparse, and most rule probabilities will come out
0.

The idea of lexicalized parsing is to make some further independence assump-
tions to break down each rule so that we would estimate the probability

P(VP(dumped,VBD)→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

as the product of smaller independent probability estimates for which we could
acquire reasonable counts. The next section summarizes one such method, the
Collins parsing method.

13.6.1 The Collins Parser
Modern statistical parsers differ in exactly which independence assumptions they
make. In this section we describe a simplified version of Collins’s worth knowing
about; see the summary at the end of the chapter.

The first intuition of the Collins parser is to think of the right-hand side of every
(internal) CFG rule as consisting of a head non-terminal, together with the non-
terminals to the left of the head and the non-terminals to the right of the head. In the
abstract, we think about these rules as follows:

LHS→ Ln Ln−1 ...L1 H R1 ...Rn−1 Rn (13.24)

Since this is a lexicalized grammar, each of the symbols like L1 or R3 or H or
LHS is actually a complex symbol representing the category and its head and head
tag, like VP(dumped,VP) or NP(sacks,NNS).

Now, instead of computing a single MLE probability for this rule, we are going
to break down this rule via a neat generative story, a slight simplification of what is
called Collins Model 1. This new generative story is that given the left-hand side,
we first generate the head of the rule and then generate the dependents of the head,
one by one, from the inside out. Each of these generation steps will have its own
probability.

We also add a special STOP non-terminal at the left and right edges of the rule;
this non-terminal allows the model to know when to stop generating dependents on a
given side. We generate dependents on the left side of the head until we’ve generated
STOP on the left side of the head, at which point we move to the right side of the
head and start generating dependents there until we generate STOP. So it’s as if we
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are generating a rule augmented as follows:

P(VP(dumped,VBD)→ (13.25)

STOP VBD(dumped, VBD) NP(sacks,NNS) PP(into,P) STOP)

Let’s see the generative story for this augmented rule. We make use of three
kinds of probabilities: PH for generating heads, PL for generating dependents on the
left, and PR for generating dependents on the right.

1. Generate the head VBD(dumped,VBD) with probability
P(H|LHS) = P(VBD(dumped,VBD) | VP(dumped,VBD))

VP(dumped,VBD)

VBD(dumped,VBD)

2. Generate the left dependent (which is STOP, since there isn’t
one) with probability
P(STOP| VP(dumped,VBD) VBD(dumped,VBD))

VP(dumped,VBD)

VBD(dumped,VBD)STOP

3. Generate right dependent NP(sacks,NNS) with probability
Pr(NP(sacks,NNS| VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

NP(sacks,NNS)VBD(dumped,VBD)STOP

4. Generate the right dependent PP(into,P) with probability
Pr(PP(into,P) | VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

PP(into,P)NP(sacks,NNS)VBD(dumped,VBD)STOP

5) Generate the right dependent STOP with probability
Pr(STOP | VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

STOPPP(into,P)NP(sacks,NNS)VBD(dumped,VBD)STOP

In summary, the probability of this rule

P(VP(dumped,VBD)→ (13.26)

VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

is estimated as

PH (VBD|VP, dumped) × PL(STOP|VP,VBD,dumped) (13.27)

× PR(NP(sacks,NNS)|VP,VBD,dumped)

× PR(PP(into,P)|VP,VBD,dumped)

× PR(STOP|VP,VBD,dumped)

Each of these probabilities can be estimated from much smaller amounts of data
than the full probability in (13.26). For example, the maximum likelihood estimate
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for the component probability PR(NP(sacks,NNS)|VP,VBD,dumped) is

Count( VP(dumped,VBD) with NNS(sacks)as a daughter somewhere on the right )

Count( VP(dumped,VBD) )
(13.28)

These counts are much less subject to sparsity problems than are complex counts
like those in (13.26).

More generally, if H is a head with head word hw and head tag ht, lw/lt and
rw/rt are the word/tag on the left and right respectively, and P is the parent, then the
probability of an entire rule can be expressed as follows:

1. Generate the head of the phrase H(hw,ht) with probability:

PH(H(hw,ht)|P,hw,ht)

2. Generate modifiers to the left of the head with total probability

n+1∏
i=1

PL(Li(lwi, lti)|P,H,hw,ht)

such that Ln+1(lwn+1, ltn+1) =STOP, and we stop generating once we’ve gen-
erated a STOP token.

3. Generate modifiers to the right of the head with total probability:

n+1∏
i=1

PP(Ri(rwi,rti)|P,H,hw,ht)

such that Rn+1(rwn+1,rtn+1) = STOP, and we stop generating once we’ve
generated a STOP token.

13.6.2 Advanced: Further Details of the Collins Parser
The actual Collins parser models are more complex (in a couple of ways) than the
simple model presented in the previous section. Collins Model 1 includes a distanceDistance

feature. Thus, instead of computing PL and PR as follows,

PL(Li(lwi, lti)|P,H,hw,ht) (13.29)

PR(Ri(rwi,rti)|P,H,hw,ht) (13.30)

Collins Model 1 conditions also on a distance feature:

PL(Li(lwi, lti)|P,H,hw,ht,distanceL(i−1)) (13.31)

PR(Ri(rwi,rti)|P,H,hw,ht,distanceR(i−1)) (13.32)

The distance measure is a function of the sequence of words below the previous
modifiers (i.e., the words that are the yield of each modifier non-terminal we have
already generated on the left).

The simplest version of this distance measure is just a tuple of two binary fea-
tures based on the surface string below these previous dependencies: (1) Is the string
of length zero? (i.e., were no previous words generated?) (2) Does the string contain
a verb?
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Collins Model 2 adds more sophisticated features, conditioning on subcatego-
rization frames for each verb and distinguishing arguments from adjuncts.

Finally, smoothing is as important for statistical parsers as it was for N-gram
models. This is particularly true for lexicalized parsers, since the lexicalized rules
will otherwise condition on many lexical items that may never occur in training
(even using the Collins or other methods of independence assumptions).

Consider the probability PR(Ri(rwi,rti)|P,hw,ht). What do we do if a particular
right-hand constituent never occurs with this head? The Collins model addresses this
problem by interpolating three backed-off models: fully lexicalized (conditioning on
the headword), backing off to just the head tag, and altogether unlexicalized.

Backoff PR(Ri(rwi,rti|...) Example
1 PR(Ri(rwi,rti)|P,hw,ht) PR(NP(sacks,NNS)|VP, VBD, dumped)
2 PR(Ri(rwi,rti)|P,ht) PR(NP(sacks,NNS)|V P,V BD)
3 PR(Ri(rwi,rti)|P) PR(NP(sacks,NNS)|V P)

Similar backoff models are built also for PL and PH . Although we’ve used the
word “backoff”, in fact these are not backoff models but interpolated models. The
three models above are linearly interpolated, where e1, e2, and e3 are the maximum
likelihood estimates of the three backoff models above:

PR(...) = λ1e1 +(1−λ1)(λ2e2 +(1−λ2)e3) (13.33)

The values of λ1andλ2 are set to implement Witten-Bell discounting (Witten and
Bell, 1991) following Bikel et al. (1997).

The Collins model deals with unknown words by replacing any unknown word
in the test set, and any word occurring less than six times in the training set, with a
special UNKNOWN word token. Unknown words in the test set are assigned a part-
of-speech tag in a preprocessing step by the Ratnaparkhi (1996) tagger; all other
words are tagged as part of the parsing process.

The parsing algorithm for the Collins model is an extension of probabilistic
CKY; see Collins (2003a). Extending the CKY algorithm to handle basic lexicalized
probabilities is left as Exercises 14.5 and 14.6 for the reader.

13.7 Probabilistic CCG Parsing

Lexicalized grammar frameworks such as CCG pose problems for which the phrase-
based methods we’ve been discussing are not particularly well-suited. To quickly
review, CCG consists of three major parts: a set of categories, a lexicon that asso-
ciates words with categories, and a set of rules that govern how categories combine
in context. Categories can be either atomic elements, such as S and NP, or functions
such as (S\NP)/NP which specifies the transitive verb category. Rules specify how
functions, their arguments, and other functions combine. For example, the following
rule templates, forward and backward function application, specify the way that
functions apply to their arguments.

X/Y Y ⇒ X

Y X\Y ⇒ X

The first rule applies a function to its argument on the right, while the second
looks to the left for its argument. The result of applying either of these rules is the
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category specified as the value of the function being applied. For the purposes of
this discussion, we’ll rely on these two rules along with the forward and backward
composition rules and type-raising, as described in Chapter 11.

13.7.1 Ambiguity in CCG

As is always the case in parsing, managing ambiguity is the key to successful CCG
parsing. The difficulties with CCG parsing arise from the ambiguity caused by the
large number of complex lexical categories combined with the very general nature of
the grammatical rules. To see some of the ways that ambiguity arises in a categorial
framework, consider the following example.

(13.34) United diverted the flight to Reno.

Our grasp of the role of the flight in this example depends on whether the prepo-
sitional phrase to Reno is taken as a modifier of the flight, as a modifier of the entire
verb phrase, or as a potential second argument to the verb divert. In a context-free
grammar approach, this ambiguity would manifest itself as a choice among the fol-
lowing rules in the grammar.

Nominal → Nominal PP

VP → VP PP

VP → Verb NP PP

In a phrase-structure approach we would simply assign the word to to the cate-
gory P allowing it to combine with Reno to form a prepositional phrase. The sub-
sequent choice of grammar rules would then dictate the ultimate derivation. In the
categorial approach, we can associate to with distinct categories to reflect the ways
in which it might interact with other elements in a sentence. The fairly abstract
combinatoric rules would then sort out which derivations are possible. Therefore,
the source of ambiguity arises not from the grammar but rather from the lexicon.

Let’s see how this works by considering several possible derivations for this
example. To capture the case where the prepositional phrase to Reno modifies the
flight, we assign the preposition to the category (NP\NP)/NP, which gives rise to
the following derivation.

United diverted the flight to Reno

NP (S\NP)/NP NP/N N (NP\NP)/NP NP
> >

NP NP\NP
<

NP
>

S\NP
<

S

Here, the category assigned to to expects to find two arguments: one to the right as
with a traditional preposition, and one to the left that corresponds to the NP to be
modified.

Alternatively, we could assign to to the category (S\S)/NP, which permits the
following derivation where to Reno modifies the preceding verb phrase.
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United diverted the flight to Reno

NP (S\NP)/NP NP/N N (S\S)/NP NP
> >

NP S\S
>

S\NP
<B

S\NP
<

S

A third possibility is to view divert as a ditransitive verb by assigning it to the
category ((S\NP)/PP)/NP, while treating to Reno as a simple prepositional phrase.

United diverted the flight to Reno

NP ((S\NP)/PP)/NP NP/N N PP/NP NP
> >

NP PP
>

(S\NP)/PP
>

S\NP
<

S

While CCG parsers are still subject to ambiguity arising from the choice of
grammar rules, including the kind of spurious ambiguity discussed in Chapter 11,
it should be clear that the choice of lexical categories is the primary problem to be
addressed in CCG parsing.

13.7.2 CCG Parsing Frameworks
Since the rules in combinatory grammars are either binary or unary, a bottom-up,
tabular approach based on the CKY algorithm should be directly applicable to CCG
parsing. Recall from Fig. 13.3 that PCKY employs a table that records the location,
category and probability of all valid constituents discovered in the input. Given an
appropriate probability model for CCG derivations, the same kind of approach can
work for CCG parsing.

Unfortunately, the large number of lexical categories available for each word,
combined with the promiscuity of CCG’s combinatoric rules, leads to an explosion
in the number of (mostly useless) constituents added to the parsing table. The key
to managing this explosion of zombie constituents is to accurately assess and ex-
ploit the most likely lexical categories possible for each word — a process called
supertagging.

The following sections describe two approaches to CCG parsing that make use of
supertags. Section 13.7.4, presents an approach that structures the parsing process
as a heuristic search through the use of the A* algorithm. The following section
then briefly describes a more traditional maximum entropy approach that manages
the search space complexity through the use of adaptive supertagging — a process
that iteratively considers more and more tags until a parse is found.

13.7.3 Supertagging
Chapter 10 introduced the task of part-of-speech tagging, the process of assigning
the correct lexical category to each word in a sentence. Supertagging is the corre-Supertagging

sponding task for highly lexicalized grammar frameworks, where the assigned tags
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often dictate much of the derivation for a sentence. Indeed, ) refer to supertagging
as almost parsing.

CCG supertaggers rely on treebanks such as CCGbank to provide both the over-
all set of lexical categories as well as the allowable category assignments for each
word in the lexicon. CCGbank includes over 1000 lexical categories, however, in
practice, most supertaggers limit their tagsets to those tags that occur at least 10
times in the training corpus. This results in an overall total of around 425 lexical
categories available for use in the lexicon. Note that even this smaller number is
large in contrast to the 45 POS types used by the Penn Treebank tagset.

As with traditional part-of-speech tagging, the standard approach to building a
CCG supertagger is to use supervised machine learning to build a sequence classi-
fier using labeled training data. A common approach is to use the maximum entropy
Markov model (MEMM), as described in Chapter 10, to find the most likely se-
quence of tags given a sentence. The features in such a model consist of the current
word wi, its surrounding words within l words wi+l

i−l , as well as the k previously as-
signed supertags t i−1

i−k . This type of model is summarized in the following equation
from Chapter 10. Training by maximizing log-likelihood of the training corpus and
decoding via the Viterbi algorithm are the same as described in Chapter 10.

T̂ = argmax
T

P(T |W )

= argmax
T

∏
i

P(ti|wi+l
i−l , t

i−1
i−k )

= argmax
T

∏
i

exp

(∑
i

wi fi(ti,wi+l
i−l , t

i−1
i−k )

)
∑

t ′∈tagset
exp

(∑
i

wi fi(t ′,wi+l
i−l , t

i−1
i−k )

) (13.35)

Word and tag-based features with k and l both set to 2 provides reasonable results
given sufficient training data. Additional features such as POS tags and short char-
acter suffixes are also commonly used to improve performance.

Unfortunately, even with additional features the large number of possible su-
pertags combined with high per-word ambiguity leads to error rates that are too
high for practical use in a parser. More specifically, the single best tag sequence
T̂ will typically contain too many incorrect tags for effective parsing to take place.
To overcome this, we can instead return a probability distribution over the possible
supertags for each word in the input. The following table illustrates an example dis-
tribution for a simple example sentence. In this table, each column represents the
probability of each supertag for a given word in the context of the input sentence.
The “...” represent all the remaining supertags possible for each word.

United serves Denver
N/N: 0.4 (S\NP)/NP: 0.8 NP: 0.9
NP: 0.3 N: 0.1 N/N: 0.05
S/S: 0.1 ... ...
S\S: .05

...

In a MEMM framework, the probability of the optimal tag sequence defined in
Eq. 13.35 is efficiently computed with a suitably modified version of the Viterbi
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algorithm. However, since Viterbi only finds the single best tag sequence it doesn’t
provide exactly what we need here; we need to know the probability of each possible
word/tag pair. The probability of any given tag for a word is the sum of the probabil-
ities of all the supertag sequences that contain that tag at that location. Fortunately,
we’ve seen this problem before — a table representing these values can be com-
puted efficiently by using a version of the forward-backward algorithm presented in
Chapter 9.

The same result can also be achieved through the use of deep learning approaches
based on recurrent neural networks (RNNs). Recent efforts have demonstrated con-
siderable success with RNNs as alternatives to HMM-based methods. These ap-
proaches differ from traditional classifier-based methods in the following ways:

• The use of vector-based word representations (embeddings) rather than word-
based feature functions.

• Input representations that span the entire sentence, as opposed to size-limited
sliding windows.

• Avoiding the use of high-level features, such as part of speech tags, since
errors in tag assignment can propagate to errors in supertags.

As with the forward-backward algorithm, RNN-based methods can provide a prob-
ability distribution over the lexical categories for each word in the input.

13.7.4 CCG Parsing using the A* Algorithm
The A* algorithm is a heuristic search method that employs an agenda to find an
optimal solution. Search states representing partial solutions are added to an agenda
based on a cost function, with the least-cost option being selected for further ex-
ploration at each iteration. When a state representing a complete solution is first
selected from the agenda, it is guaranteed to be optimal and the search terminates.

The A* cost function, f (n), is used to efficiently guide the search to a solution.
The f -cost has two components: g(n), the exact cost of the partial solution repre-
sented by the state n, and h(n) a heuristic approximation of the cost of a solution
that makes use of n. When h(n) satisfies the criteria of not overestimating the actual
cost, A* will find an optimal solution. Not surprisingly, the closer the heuristic can
get to the actual cost, the more effective A* is at finding a solution without having
to explore a significant portion of the solution space.

When applied to parsing, search states correspond to edges representing com-
pleted constituents. As with the PCKY algorithm, edges specify a constituent’s start
and end positions, its grammatical category, and its f -cost. Here, the g component
represents the current cost of an edge and the h component represents an estimate
of the cost to complete a derivation that makes use of that edge. The use of A*
for phrase structure parsing originated with (Klein and Manning, 2003a), while the
CCG approach presented here is based on (Lewis and Steedman, 2014).

Using information from a supertagger, an agenda and a parse table are initial-
ized with states representing all the possible lexical categories for each word in the
input, along with their f -costs. The main loop removes the lowest cost edge from
the agenda and tests to see if it is a complete derivation. If it reflects a complete
derivation it is selected as the best solution and the loop terminates. Otherwise, new
states based on the applicable CCG rules are generated, assigned costs, and entered
into the agenda to await further processing. The loop continues until a complete
derivation is discovered, or the agenda is exhausted, indicating a failed parse. The
algorithm is given in Fig. 13.11.
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function CCG-ASTAR-PARSE(words) returns table or failure

supertags←SUPERTAGGER(words)
for i← from 1 to LENGTH(words) do

for all {A | (words[i], A, score) ∈ supertags}
edge←MAKEEDGE(i−1, i, A, score)
table← INSERTEDGE(table, edge)
agenda← INSERTEDGE(agenda, edge)

loop do
if EMPTY?(agenda) return failure
current←POP(agenda)
if COMPLETEDPARSE?(current) return table
table← INSERTEDGE(chart, edge)
for each rule in APPLICABLERULES(edge) do

successor←APPLY(rule, edge)
if successor not ∈ in agenda or chart

agenda← INSERTEDGE(agenda, successor)
else if successor ∈ agenda with higher cost

agenda←REPLACEEDGE(agenda, successor)

Figure 13.11 A*-based CCG parsing.

Heuristic Functions

Before we can define a heuristic function for our A* search, we need to decide how
to assess the quality of CCG derivations. For the generic PCFG model, we defined
the probability of a tree as the product of the probability of the rules that made up
the tree. Given CCG’s lexical nature, we’ll make the simplifying assumption that the
probability of a CCG derivation is just the product of the probability of the supertags
assigned to the words in the derivation, ignoring the rules used in the the derivation.
More formally, given a sentence S and derivation D that contains suptertag sequence
T , we have:

P(D,S) = P(T,S) (13.36)

=

n∏
i=1

P(ti|si) (13.37)

To better fit with the traditional A* approach, we’d prefer to have states scored
by a cost function where lower is better (i.e., we’re trying to minimize the cost of
a derivation). To achieve this, we’ll use negative log probabilities to score deriva-
tions; this results in the following equation, which we’ll use to score completed CCG
derivations.

P(D,S) = P(T,S) (13.38)

=

n∑
i=1

− logP(ti|si) (13.39)

Given this model, we can define our f -cost as follows. The f -cost of an edge is
the sum of two components: g(n), the cost of the span represented by the edge, and
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h(n), the estimate of the cost to complete a derivation containing that edge (these
are often referred to as the inside and outside costs). We’ll define g(n) for an edge
using Equation 13.39. That is, it is just the sum of the costs of the supertags that
comprise the span.

For h(n), we need a score that approximates but never overestimates the actual
cost of the final derivation. A simple heuristic that meets this requirement assumes
that each of the words in the outside span will be assigned its most probable su-
pertag. If these are the tags used in the final derivation, then its score will equal
the heuristic. If any other tags are used in the final derivation the f -cost will be
higher since the new tags must have higher costs, thus guaranteeing that we will not
overestimate.

Putting this all together, we arrive at the following definition of a suitable f -cost
for an edge.

f (wi, j, ti, j) = g(wi, j)+h(wi, j) (13.40)

=

j∑
k=i

− logP(tk|wk)+

i−1∑
k=1

max
t∈tags

(− logP(t|wk))+

N∑
k= j+1

max
t∈tags

(− logP(t|wk))

As an example, consider an edge representing the word serves with the supertag
N in the following example.

(13.41) United serves Denver.

The g-cost for this edge is just the negative log probability of the tag, or X. The
outside h-cost consists of the most optimistic supertag assignments for United and
Denver. The resulting f -cost for this edge is therefore x+y+z = 1.494.

An Example

Fig. 13.12 shows the initial agenda and the progress of a complete parse for this
example. After initializing the agenda and the parse table with information from the
supertagger, it selects the best edge from the agenda — the entry for United with
the tag N/N and f -cost 0.591. This edge does not constitute a complete parse and is
therefore used to generate new states by applying all the relevant grammar rules. In
this case, applying forward application to United: N/N and serves: N results in the
creation of the edge United serves: N[0,2], 1.795 to the agenda.

Skipping ahead, at the the third iteration an edge representing the complete
derivation United serves Denver, S[0,3], .716 is added to the agenda. However,
the algorithm does not terminate at this point since the cost of this edge (.716) does
not place it at the top of the agenda. Instead, the edge representing Denver with the
category NP is popped. This leads to the addition of another edge to the agenda
(type-raising Denver). Only after this edge is popped and dealt with does the ear-
lier state representing a complete derivation rise to the top of the agenda where it is
popped, goal tested, and returned as a solution.

The effectiveness of the A* approach is reflected in the coloring of the states
in Fig. 13.12 as well as the final parsing table. The edges shown in blue (includ-
ing all the initial lexical category assignments not explicitly shown) reflect states in
the search space that never made it to the top of the agenda and, therefore, never
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United serves: N[0,2]
1.795

United: N/N
.591

Denver: N/N
2.494

Denver: N
1.795

serves: N
1.494

United: S\S
1.494

United: S/S
1.1938

United: NP
.716

Denver: NP
.591

serves: (S\NP)/NP
.591

serves Denver: S\NP[1,3]
.591

United serves Denver: S[0,3]
.716

Denver: S/(S\NP)[0,1]
.591

1

2 3

4 5

6

Initial 
Agenda

Goal State

…

S: 0.716

S/NP: 0.591

United serves

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

N/N: 0.591
NP: 0.716
S/S: 1.1938
S\S: 1.494
…

Denver

(S\NP)/NP: 0.591
N: 1.494
…

NP: 0.591
N: 1.795
N/N: 2.494
…

N: 1.795

Figure 13.12 Example of an A* search for the example “United serves Denver”. The circled numbers on the
white boxes indicate the order in which the states are popped from the agenda. The costs in each state are based
on f-costs using negative log10 probabilities.

contributed any edges to the final table. This is in contrast to the PCKY approach
where the parser systematically fills the parse table with all possible constituents for
all possible spans in the input, filling the table with myriad constituents that do not
contribute to the final analysis.
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13.8 Evaluating Parsers

The standard techniques for evaluating parsers and grammars are called the PAR-
SEVAL measures; they were proposed by Black et al. (1991) and were based on
the same ideas from signal-detection theory that we saw in earlier chapters. The
intuition of the PARSEVAL metric is to measure how much the constituents in the
hypothesis parse tree look like the constituents in a hand-labeled, gold-reference
parse. PARSEVAL thus assumes we have a human-labeled “gold standard” parse
tree for each sentence in the test set; we generally draw these gold-standard parses
from a treebank like the Penn Treebank.

Given these gold-standard reference parses for a test set, a given constituent in
a hypothesis parse Ch of a sentence s is labeled “correct” if there is a constituent in
the reference parse Cr with the same starting point, ending point, and non-terminal
symbol.

We can then measure the precision and recall just as we did for chunking in the
previous chapter.

labeled recall: = # of correct constituents in hypothesis parse of s
# of correct constituents in reference parse of s

labeled precision: = # of correct constituents in hypothesis parse of s
# of total constituents in hypothesis parse of s

As with other uses of precision and recall, instead of reporting them separately,
we often report a single number, the F-measure (van Rijsbergen, 1975): The F-F-measure

measure is defined as

Fβ =
(β 2 +1)PR

β 2P+R

The β parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of β > 1 favor recall and values
of β < 1 favor precision. When β = 1, precision and recall are equally balanced;
this is sometimes called Fβ=1 or just F1:

F1 =
2PR

P+R
(13.42)

The F-measure derives from a weighted harmonic mean of precision and recall.
Remember that the harmonic mean of a set of numbers is the reciprocal of the arith-
metic mean of the reciprocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(13.43)

and hence the F-measure is

F =
1

α
1
P +(1−α) 1

R

or
(

with β
2 =

1−α

α

)
F =

(β 2 +1)PR
β 2P+R

(13.44)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).



13.9 • HUMAN PARSING 239

As of the time of this writing, the performance of modern parsers that are trained
and tested on the Wall Street Journal treebank was somewhat higher than 90% recall,
90% precision, and about 1% cross-bracketed constituents per sentence.

For comparing parsers that use different grammars, the PARSEVAL metric in-
cludes a canonicalization algorithm for removing information likely to be grammar-
specific (auxiliaries, pre-infinitival “to”, etc.) and for computing a simplified score.
The interested reader should see Black et al. (1991). The canonical publicly avail-
able implementation of the PARSEVAL metrics is called evalb (Sekine and Collins,evalb

1997).
Nonetheless, phrasal constituents are not always an appropriate unit for parser

evaluation. In lexically-oriented grammars, such as CCG and LFG, the ultimate
goal is to extract the appropriate predicate-argument relations or grammatical de-
pendencies, rather than a specific derivation. Such relations often give us a better
metric for how useful a parser output will be for further semantic processing. For
these purposes, we can use alternative evaluation metrics based on measuring the
precision and recall of labeled dependencies, where the labels indicate the gram-
matical relations (Lin, 1995; Carroll et al., 1998; Collins et al., 1999). Indeed, the
parsing model of Clark and Curran (2007) presented in Section ?? incorporates a
dependency model as part of its training objective function.

Such evaluation metrics also allow us to compare parsers developed using differ-
ent grammatical frameworks by converting their outputs to a common neutral rep-
resentation. Kaplan et al. (2004), for example, compared the Collins (1999) parser
with the Xerox XLE parser (Riezler et al., 2002), which produces much richer se-
mantic representations by converting both parse trees to a dependency representa-
tion.

Finally, you might wonder why we don’t evaluate parsers by measuring how
many sentences are parsed correctly instead of measuring component accuracy in
the form of constituents or dependencies. The reason we use components is that it
gives us a more fine-grained metric. This is especially true for long sentences, where
most parsers don’t get a perfect parse. If we just measured sentence accuracy, we
wouldn’t be able to distinguish between a parse that got most of the parts wrong and
one that just got one part wrong.

13.9 Human Parsing

Are the kinds of probabilistic parsing models we have been discussing also used by
humans when they are parsing? The answer to this question lies in a field called
human sentence processing. Recent studies suggest that there are at least two

Human
sentence

processing
ways in which humans apply probabilistic parsing algorithms, although there is still
disagreement on the details.

One family of studies has shown that when humans read, the predictability of a
word seems to influence the reading time; more predictable words are read moreReading time

quickly. One way of defining predictability is from simple bigram measures. For
example, Scott and Shillcock (2003) used an eye-tracker to monitor the gaze of
participants reading sentences. They constructed the sentences so that some would
have a verb-noun pair with a high bigram probability (such as (13.45a)) and others
a verb-noun pair with a low bigram probability (such as (13.45b)).

(13.45) a) HIGH PROB: One way to avoid confusion is to make the changes
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during vacation
b) LOW PROB: One way to avoid discovery is to make the changes

during vacation

They found that the higher the bigram predictability of a word, the shorter the
time that participants looked at the word (the initial-fixation duration).

While this result provides evidence only for N-gram probabilities, more recent
experiments have suggested that the probability of an upcoming word given the syn-
tactic parse of the preceding sentence prefix also predicts word reading time (Hale,
2001; Levy, 2008).

Interestingly, this effect of probability on reading time has also been shown for
morphological structure; the time to recognize a word is influenced by entropy of
the word and the entropy of the word’s morphological paradigm (Moscoso del Prado
Martı́n et al., 2004).

The second family of studies has examined how humans disambiguate sentences
that have multiple possible parses, suggesting that humans prefer whichever parse
is more probable. These studies often rely on a specific class of temporarily am-
biguous sentences called garden-path sentences. These sentences, first describedGarden-path

by Bever (1970), are sentences that are cleverly constructed to have three properties
that combine to make them very difficult for people to parse:

1. They are temporarily ambiguous: The sentence is unambiguous, but its ini-
tial portion is ambiguous.

2. One of the two or more parses in the initial portion is somehow preferable to
the human parsing mechanism.

3. But the dispreferred parse is the correct one for the sentence.

The result of these three properties is that people are “led down the garden path”
toward the incorrect parse and then are confused when they realize it’s the wrong
one. Sometimes this confusion is quite conscious, as in Bever’s example (13.46);
in fact, this sentence is so hard to parse that readers often need to be shown the
correct structure. In the correct structure, raced is part of a reduced relative clause
modifying The horse, and means “The horse [which was raced past the barn] fell”;
this structure is also present in the sentence “Students taught by the Berlitz method
do worse when they get to France”.

(13.46) The horse raced past the barn fell.

(a) S

VP

PP

NP

N

barn

Det

the

P

past

V

raced

NP

N

horse

Det

The

?

V

fell

(b) S

VP

V

fell

NP

VP

PP

NP

N

barn

Det

the

P

past

V

raced

NP

N

horse

Det

The
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In Marti Hearst’s example (13.47), readers often misparse the verb houses as a
noun (analyzing the complex houses as a noun phrase, rather than a noun phrase and
a verb). Other times, the confusion caused by a garden-path sentence is so subtle
that it can only be measured by a slight increase in reading time. Thus, in (13.48)
readers often misparse the solution as the direct object of forgot rather than as the
subject of an embedded sentence. This misparse is subtle, and is only noticeable
because experimental participants take longer to read the word was than in control
sentences. This “mini garden path” effect at the word was suggests that subjects had
chosen the direct object parse and had to reanalyze or rearrange their parse now that
they realize they are in a sentential complement.

(13.47) The complex houses married and single students and their families.

S

NP

N

houses

Adj

complex

Det

The

S

VP

V

houses

NP

N

complex

Det

The

(13.48) The student forgot the solution was in the back of the book.

S

VP

NP

N

solution

Det

the

V

forgot

NP

N

students

Det

The

S

VP

S

VP

V

was

NP

N

solution

Det

the

V

forgot

NP

N

students

Det

The

While many factors seem to play a role in these preferences for a particular (in-
correct) parse, at least one factor seems to be syntactic probabilities, especially lex-
icalized (subcategorization) probabilities. For example, the probability of the verb
forgot taking a direct object (VP→ V NP) is higher than the probability of it taking a
sentential complement (VP→ V S); this difference causes readers to expect a direct
object after forget and be surprised (longer reading times) when they encounter a
sentential complement. By contrast, a verb which prefers a sentential complement
(like hope) didn’t cause extra reading time at was.

The garden path in (13.47) may arise from the fact that P(houses|Noun) is higher
than P(houses|Verb) and P(complex|Adjective) is higher than P(complex|Noun),
and the garden path in (13.46) at least partially caused by the low probability of the
reduced relative clause construction.

Besides grammatical knowledge, human parsing is affected by many other fac-
tors including resource constraints (such as memory limitations, thematic structure
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(such as whether a verb expects semantic agents or patients, discussed in Chapter 22)
and discourse constraints (Chapter 23).

13.10 Summary

This chapter has sketched the basics of probabilistic parsing, concentrating on
probabilistic context-free grammars and probabilistic lexicalized context-free
grammars.

• Probabilistic grammars assign a probability to a sentence or string of words
while attempting to capture more sophisticated syntactic information than the
N-gram grammars of Chapter 4.

• A probabilistic context-free grammar (PCFG) is a context-free
grammar in which every rule is annotated with the probability of that rule
being chosen. Each PCFG rule is treated as if it were conditionally inde-
pendent; thus, the probability of a sentence is computed by multiplying the
probabilities of each rule in the parse of the sentence.

• The probabilistic CKY (Cocke-Kasami-Younger) algorithm is a probabilistic
version of the CKY parsing algorithm. There are also probabilistic versions
of other parsers like the Earley algorithm.

• PCFG probabilities can be learned by counting in a parsed corpus or by pars-
ing a corpus. The inside-outside algorithm is a way of dealing with the fact
that the sentences being parsed are ambiguous.

• Raw PCFGs suffer from poor independence assumptions among rules and lack
of sensitivity to lexical dependencies.

• One way to deal with this problem is to split and merge non-terminals (auto-
matically or by hand).

• Probabilistic lexicalized CFGs are another solution to this problem in which
the basic PCFG model is augmented with a lexical head for each rule. The
probability of a rule can then be conditioned on the lexical head or nearby
heads.

• Parsers for lexicalized PCFGs (like the Charniak and Collins parsers) are
based on extensions to probabilistic CKY parsing.

• Parsers are evaluated with three metrics: labeled recall, labeled precision,
and cross-brackets.

• Evidence from garden-path sentences and other on-line sentence-processing
experiments suggest that the human parser uses some kinds of probabilistic
information about grammar.

Bibliographical and Historical Notes
Many of the formal properties of probabilistic context-free grammars were first
worked out by Booth (1969) and Salomaa (1969). Baker (1979) proposed the inside-
outside algorithm for unsupervised training of PCFG probabilities, and used a CKY-
style parsing algorithm to compute inside probabilities. Jelinek and Lafferty (1991)
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extended the CKY algorithm to compute probabilities for prefixes. Stolcke (1995)
drew on both of these algorithms in adapting the Earley algorithm to use with
PCFGs.

A number of researchers starting in the early 1990s worked on adding lexical de-
pendencies to PCFGs and on making PCFG rule probabilities more sensitive to sur-
rounding syntactic structure. For example, Schabes et al. (1988) and Schabes (1990)
presented early work on the use of heads. Many papers on the use of lexical depen-
dencies were first presented at the DARPA Speech and Natural Language Workshop
in June 1990. A paper by Hindle and Rooth (1990) applied lexical dependencies
to the problem of attaching prepositional phrases; in the question session to a later
paper, Ken Church suggested applying this method to full parsing (Marcus, 1990).
Early work on such probabilistic CFG parsing augmented with probabilistic depen-
dency information includes Magerman and Marcus (1991), Black et al. (1992), Bod
(1993), and Jelinek et al. (1994), in addition to Collins (1996), Charniak (1997), and
Collins (1999) discussed above. Other recent PCFG parsing models include Klein
and Manning (2003a) and Petrov et al. (2006).

This early lexical probabilistic work led initially to work focused on solving
specific parsing problems like preposition-phrase attachment by using methods in-
cluding transformation-based learning (TBL) (Brill and Resnik, 1994), maximum
entropy (Ratnaparkhi et al., 1994), memory-based Learning (Zavrel and Daelemans,
1997), log-linear models (Franz, 1997), decision trees that used semantic distance
between heads (computed from WordNet) (Stetina and Nagao, 1997), and boosting
(Abney et al., 1999).

Another direction extended the lexical probabilistic parsing work to build prob-
abilistic formulations of grammars other than PCFGs, such as probabilistic TAG
grammar (Resnik 1992, Schabes 1992), based on the TAG grammars discussed in
Chapter 11, probabilistic LR parsing (Briscoe and Carroll, 1993), and probabilistic
link grammar (Lafferty et al., 1992). An approach to probabilistic parsing called
supertagging extends the part-of-speech tagging metaphor to parsing by using verySupertagging

complex tags that are, in fact, fragments of lexicalized parse trees (Bangalore and
Joshi 1999, Joshi and Srinivas 1994), based on the lexicalized TAG grammars of
Schabes et al. (1988). For example, the noun purchase would have a different tag
as the first noun in a noun compound (where it might be on the left of a small tree
dominated by Nominal) than as the second noun (where it might be on the right).

Goodman (1997), Abney (1997), and Johnson et al. (1999) gave early discus-
sions of probabilistic treatments of feature-based grammars. Other recent work
on building statistical models of feature-based grammar formalisms like HPSG and
LFG includes (Riezler et al. 2002, Kaplan et al. 2004), and Toutanova et al. (2005).

We mentioned earlier that discriminative approaches to parsing fall into the two
broad categories of dynamic programming methods and discriminative reranking
methods. Recall that discriminative reranking approaches require N-best parses.
Parsers based on A* search can easily be modified to generate N-best lists just by
continuing the search past the first-best parse (Roark, 2001). Dynamic programming
algorithms like the ones described in this chapter can be modified by the elimina-
tion of the dynamic programming with heavy pruning (Collins 2000, Collins and
Koo 2005, Bikel 2004), or through new algorithms (Jiménez and Marzal 2000,Char-
niak and Johnson 2005,Huang and Chiang 2005), some adapted from speech recog-
nition algorithms such as those of Schwartz and Chow (1990) (see Section ??).

In dynamic programming methods, instead of outputting and then reranking an
N-best list, the parses are represented compactly in a chart, and log-linear and other
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methods are applied for decoding directly from the chart. Such modern methods
include (Johnson 2001, Clark and Curran 2004), and Taskar et al. (2004). Other
reranking developments include changing the optimization criterion (Titov and Hen-
derson, 2006).

Collins’ (1999) dissertation includes a very readable survey of the field and an
introduction to his parser. Manning and Schütze (1999) extensively cover proba-
bilistic parsing.

The field of grammar induction is closely related to statistical parsing, and a
parser is often used as part of a grammar induction algorithm. One of the earliest
statistical works in grammar induction was Horning (1969), who showed that PCFGs
could be induced without negative evidence. Early modern probabilistic grammar
work showed that simply using EM was insufficient (Lari and Young 1990, Carroll
and Charniak 1992). Recent probabilistic work, such as Yuret (1998), Clark (2001),
Klein and Manning (2002), and Klein and Manning (2004), are summarized in Klein
(2005) and Adriaans and van Zaanen (2004). Work since that summary includes
Smith and Eisner (2005), Haghighi and Klein (2006), and Smith and Eisner (2007).

Exercises
13.1 Implement the CKY algorithm.

13.2 Modify the algorithm for conversion to CNF from Chapter 12 to correctly
handle rule probabilities. Make sure that the resulting CNF assigns the same
total probability to each parse tree.

13.3 Recall that Exercise 13.3 asked you to update the CKY algorithm to han-
dle unit productions directly rather than converting them to CNF. Extend this
change to probabilistic CKY.

13.4 Fill out the rest of the probabilistic CKY chart in Fig. ??.

13.5 Sketch how the CKY algorithm would have to be augmented to handle lexi-
calized probabilities.

13.6 Implement your lexicalized extension of the CKY algorithm.

13.7 Implement the PARSEVAL metrics described in Section 13.8. Next, either
use a treebank or create your own hand-checked parsed test set. Now use your
CFG (or other) parser and grammar, parse the test set and compute labeled
recall, labeled precision, and cross-brackets.
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14 Dependency Parsing

The focus of the three previous chapters has been on context-free grammars and
their use in automatically generating constituent-based representations. Here we
present another family of grammar formalisms called dependency grammars thatDependency

grammar
are quite important in contemporary speech and language processing systems. In
these formalisms, phrasal constituents and phrase-structure rules do not play a direct
role. Instead, the syntactic structure of a sentence is described solely in terms of the
words (or lemmas) in a sentence and an associated set of directed binary grammatical
relations that hold among the words.

The following diagram illustrates a dependency-style analysis using the standard
graphical method favored in the dependency-parsing community.

(14.1)
I prefer the morning flight through Denver

nsubj

dobj

det

nmod

nmod

case

root

Relations among the words are illustrated above the sentence with directed, la-
beled arcs from heads to dependents. We call this a typed dependency structureTyped

dependency
because the labels are drawn from a fixed inventory of grammatical relations. It also
includes a root node that explicitly marks the root of the tree, the head of the entire
structure.

Figure 14.1 shows the same dependency analysis as a tree alongside its corre-
sponding phrase-structure analysis of the kind given in Chapter 11. Note the ab-
sence of nodes corresponding to phrasal constituents or lexical categories in the
dependency parse; the internal structure of the dependency parse consists solely
of directed relations between lexical items in the sentence. These relationships di-
rectly encode important information that is often buried in the more complex phrase-
structure parses. For example, the arguments to the verb prefer are directly linked to
it in the dependency structure, while their connection to the main verb is more dis-
tant in the phrase-structure tree. Similarly, morning and Denver, modifiers of flight,
are linked to it directly in the dependency structure.

A major advantage of dependency grammars is their ability to deal with lan-
guages that are morphologically rich and have a relatively free word order. ForFree word

order
example, word order in Czech can be much more flexible than in English; a gram-
matical object might occur before or after a location adverbial. A phrase-structure
grammar would need a separate rule for each possible place in the parse tree where
such an adverbial phrase could occur. A dependency-based approach would just
have one link type representing this particular adverbial relation. Thus, a depen-
dency grammar approach abstracts away from word-order information, representing
only the information that is necessary for the parse.

An additional practical motivation for a dependency-based approach is that the
head-dependent relations provide an approximation to the semantic relationship be-
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Figure 14.1 A dependency-style parse alongside the corresponding constituent-based analysis for I prefer the
morning flight through Denver.

tween predicates and their arguments that makes them directly useful for many ap-
plications such as coreference resolution, question answering and information ex-
traction. Constituent-based approaches to parsing provide similar information, but it
often has to be distilled from the trees via techniques such as the head finding rules
discussed in Chapter 11.

In the following sections, we’ll discuss in more detail the inventory of relations
used in dependency parsing, as well as the formal basis for these dependency struc-
tures. We’ll then move on to discuss the dominant families of algorithms that are
used to automatically produce these structures. Finally, we’ll discuss how to eval-
uate dependency parsers and point to some of the ways they are used in language
processing applications.

14.1 Dependency Relations

The traditional linguistic notion of grammatical relation provides the basis for theGrammatical
relation

binary relations that comprise these dependency structures. The arguments to these
relations consist of a head and a dependent. We’ve already discussed the notion ofHead

Dependent heads in Chapter 11 and Chapter 13 in the context of constituent structures. There,
the head word of a constituent was the central organizing word of a larger constituent
(e.g, the primary noun in a noun phrase, or verb in a verb phrase). The remaining
words in the constituent are either direct, or indirect, dependents of their head. In
dependency-based approaches, the head-dependent relationship is made explicit by
directly linking heads to the words that are immediately dependent on them, bypass-
ing the need for constituent structures.

In addition to specifying the head-dependent pairs, dependency grammars allow
us to further classify the kinds of grammatical relations, or grammatical function,Grammatical

function
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Clausal Argument Relations Description
NSUBJ Nominal subject
DOBJ Direct object
IOBJ Indirect object
CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description
NMOD Nominal modifier
AMOD Adjectival modifier
NUMMOD Numeric modifier
APPOS Appositional modifier
DET Determiner
CASE Prepositions, postpositions and other case markers
Other Notable Relations Description
CONJ Conjunct
CC Coordinating conjunction
Figure 14.2 Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

in terms of the role that the dependent plays with respect to its head. Familiar notions
such as subject, direct object and indirect object are among the kind of relations we
have in mind. In English these notions strongly correlate with, but by no means de-
termine, both position in a sentence and constituent type and are therefore somewhat
redundant with the kind of information found in phrase-structure trees. However, in
more flexible languages the information encoded directly in these grammatical rela-
tions is critical since phrase-based constituent syntax provides little help.

Not surprisingly, linguists have developed taxonomies of relations that go well
beyond the familiar notions of subject and object. While there is considerable vari-
ation from theory to theory, there is enough commonality that efforts to develop a
computationally useful standard are now possible. The Universal DependenciesUniversal

Dependencies
project (Nivre et al., 2016) provides an inventory of dependency relations that are
linguistically motivated, computationally useful, and cross-linguistically applicable.
Fig. 14.2 shows a subset of the relations from this effort. Fig. 14.3 provides some
example sentences illustrating selected relations.

The motivation for all of the relations in the Universal Dependency scheme is
beyond the scope of this chapter, but the core set of frequently used relations can be
broken into two sets: clausal relations that describe syntactic roles with respect to a
predicate (often a verb), and modifier relations that categorize the ways that words
that can modify their heads.

Consider the following example sentence:

(14.2)
United canceled the morning flights to Houston

nsubj

dobj

det

nmod

nmod

case

root

The clausal relations NSUBJ and DOBJ identify the subject and direct object of
the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of
the nouns flights and Houston.
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Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
IOBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.
Figure 14.3 Examples of core Universal Dependency relations.

14.2 Dependency Formalisms

In their most general form, the dependency structures we’re discussing are simply
directed graphs. That is, structures G = (V,A) consisting of a set of vertices V , and
a set of ordered pairs of vertices A, which we’ll refer to as arcs.

For the most part we will assume that the set of vertices, V , corresponds exactly
to the set of words in a given sentence. However, they might also correspond to
punctuation, or when dealing with morphologically complex languages the set of
vertices might consist of stems and affixes of the kind discussed in Chapter 3. The
set of arcs, A, captures the head-dependent and grammatical function relationships
between the elements in V .

Further constraints on these dependency structures are specific to the underlying
grammatical theory or formalism. Among the more frequent restrictions are that the
structures must be connected, have a designated root node, and be acyclic or planar.
Of most relevance to the parsing approaches discussed in this chapter is the common,
computationally-motivated, restriction to rooted trees. That is, a dependency treeDependency

tree
is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has no incoming arcs.
2. With the exception of the root node, each vertex has exactly one incoming arc.
3. There is a unique path from the root node to each vertex in V .

Taken together, these constraints ensure that each word has a single head, that the
dependency structure is connected, and that there is a single root node from which
one can follow a unique directed path to each of the words in the sentence.

14.2.1 Projectivity
The notion of projectivity imposes an additional constraint that is derived from the
order of the words in the input, and is closely related to the context-free nature of
human languages discussed in Chapter 11. An arc from a head to a dependent is
said to be projective if there is a path from the head to every word that lies between
the head and the dependent in the sentence. A dependency tree is then said to be
projective if all the arcs that make it up are projective. All the dependency trees
we’ve seen thus far have been projective. There are, however, many perfectly valid
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constructions which lead to non-projective trees, particularly in languages with a
relatively flexible word order.

Consider the following example.

(14.3)
JetBlue canceled our flight this morning which was already late

nsubj

dobj

mod

det

nmod

det case

mod

adv

root

In this example, the arc from flight to its modifier was is non-projective since
there is no path from flight to the intervening words this and morning. As we can
see from this diagram, projectivity (and non-projectivity) can be detected in the way
we’ve been drawing our trees. A dependency tree is projective if it can be drawn
with no crossing edges. Here there is no way to link flight to its dependent was
without crossing the arc that links morning to its head.

Our concern with projectivity arises from two related issues. First, the most
widely used English dependency treebanks were automatically derived from phrase-
structure treebanks through the use of head-finding rules (Chapter 11). The trees
generated in such a fashion are guaranteed to be projective since they’re generated
from context-free grammars.

Second, there are computational limitations to the most widely used families of
parsing algorithms. The transition-based approaches discussed in Section 14.4 can
only produce projective trees, hence any sentences with non-projective structures
will necessarily contain some errors. This limitation is one of the motivations for
the more flexible graph-based parsing approach described in Section 14.5.

14.3 Dependency Treebanks

As with constituent-based methods, treebanks play a critical role in the development
and evaluation of dependency parsers. Dependency treebanks have been created
using similar approaches to those discussed in Chapter 11 — having human annota-
tors directly generate dependency structures for a given corpus, or using automatic
parsers to provide an initial parse and then having annotators hand correct those
parsers. We can also use a deterministic process to translate existing constituent-
based treebanks into dependency trees through the use of head rules.

For the most part, directly annotated dependency treebanks have been created for
morphologically rich languages such as Czech, Hindi and Finnish that lend them-
selves to dependency grammar approaches, with the Prague Dependency Treebank
(Bejček et al., 2013) for Czech being the most well-known effort. The major English
dependency treebanks have largely been extracted from existing resources such as
the Wall Street Journal sections of the Penn Treebank(Marcus et al., 1993). The
more recent OntoNotes project (Hovy et al. 2006,Weischedel et al. 2011) extends
this approach going beyond traditional news text to include conversational telephone
speech, weblogs, usenet newsgroups, broadcast, and talk shows in English, Chinese
and Arabic.

The translation process from constituent to dependency structures has two sub-
tasks: identifying all the head-dependent relations in the structure and identifying
the correct dependency relations for these relations. The first task relies heavily on
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the use of head rules discussed in Chapter 11 first developed for use in lexicalized
probabilistic parsers (Magerman 1994,Collins 1999,Collins 2003b). Here’s a simple
and effective algorithm from Xia and Palmer (2001).

1. Mark the head child of each node in a phrase structure, using the appropriate
head rules.

2. In the dependency structure, make the head of each non-head child depend on
the head of the head-child.

When a phrase-structure parse contains additional information in the form of
grammatical relations and function tags, as in the case of the Penn Treebank, these
tags can be used to label the edges in the resulting tree. When applied to the parse
tree in Fig. 14.4, this algorithm would produce the dependency structure in Fig. 14.4.

(14.4)
Vinken will join the board as a nonexecutive director Nov 29

sbj

aux

dobj

clr

tmp

nmod

case

nmod

amod num

root

The primary shortcoming of these extraction methods is that they are limited by
the information present in the original constituent trees. Among the most impor-
tant issues are the failure to integrate morphological information with the phrase-
structure trees, the inability to easily represent non-projective structures, and the
lack of internal structure to most noun-phrases, as reflected in the generally flat
rules used in most treebank grammars. For these reasons, outside of English, most
dependency treebanks are developed directly using human annotators.

14.4 Transition-Based Dependency Parsing

Our first approach to dependency parsing is motivated by a stack-based approach
called shift-reduce parsing originally developed for analyzing programming lan-Shift-reduce

parsing
guages (Aho and Ullman, 1972). This classic approach is simple and elegant, em-
ploying a context-free grammar, a stack, and a list of tokens to be parsed. Input
tokens are successively shifted onto the stack and the top two elements of the stack
are matched against the right-hand side of the rules in the grammar; when a match is
found the matched elements are replaced on the stack (reduced) by the non-terminal
from the left-hand side of the rule being matched. In adapting this approach for
dependency parsing, we forgo the explicit use of a grammar and alter the reduce
operation so that instead of adding a non-terminal to a parse tree, it introduces a
dependency relation between a word and its head. More specifically, the reduce ac-
tion is replaced with two possible actions: assert a head-dependent relation between
the word at the top of the stack and the word below it, or vice versa. Figure 14.5
illustrates the basic operation of such a parser.

A key element in transition-based parsing is the notion of a configuration whichConfiguration

consists of a stack, an input buffer of words, or tokens, and a set of relations rep-
resenting a dependency tree. Given this framework, the parsing process consists of
a sequence of transitions through the space of possible configurations. The goal of
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Figure 14.4 A phrase-structure tree from the Wall Street Journal component of the Penn Treebank 3.

this process is to find a final configuration where all the words have been accounted
for and an appropriate dependency tree has been synthesized.

To implement such a search, we’ll define a set of transition operators, which
when applied to a configuration produce new configurations. Given this setup, we
can view the operation of a parser as a search through a space of configurations for
a sequence of transitions that leads from a start state to a desired goal state. At the
start of this process we create an initial configuration in which the stack contains the
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Figure 14.5 Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-
tion.

ROOT node, the word list is initialized with the set of the words or lemmatized tokens
in the sentence, and an empty set of relations is created to represent the parse. In the
final goal state, the stack and the word list should be empty, and the set of relations
will represent the final parse.

In the standard approach to transition-based parsing, the operators used to pro-
duce new configurations are surprisingly simple and correspond to the intuitive ac-
tions one might take in creating a dependency tree by examining the words in a
single pass over the input from left to right (Covington, 2001):

• Assign the current word as the head of some previously seen word,
• Assign some previously seen word as the head of the current word,
• Or postpone doing anything with the current word, adding it to a store for later

processing.

To make these actions more precise, we’ll create three transition operators that
will operate on the top two elements of the stack:

• LEFTARC: Assert a head-dependent relation between the word at the top of
stack and the word directly beneath it; remove the lower word from the stack.

• RIGHTARC: Assert a head-dependent relation between the second word on
the stack and the word at the top; remove the word at the top of the stack;

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

This particular set of operators implements the what is known as the arc stan-
dard approach to transition-based parsing (Covington 2001,Nivre 2003). There arearc standard

two notable characteristics to this approach: the transition operators only assert re-
lations between elements at the top of the stack, and once an element has been
assigned its head it is removed from the stack and is not available for further pro-
cessing. As we’ll see, there are alternative transition systems which demonstrate
different parsing behaviors, but the arc standard approach is quite effective and is
simple to implement.
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To assure that these operators are used properly we’ll need to add some pre-
conditions to their use. First, since, by definition, the ROOT node cannot have any
incoming arcs, we’ll add the restriction that the LEFTARC operator cannot be ap-
plied when ROOT is the second element of the stack. Second, both reduce operators
require two elements to be on the stack to be applied. Given these transition opera-
tors and preconditions, the specification of a transition-based parser is quite simple.
Fig. 14.6 gives the basic algorithm.

function DEPENDENCYPARSE(words) returns dependency tree

state←{[root], [words], [] } ; initial configuration
while state not final

t←ORACLE(state) ; choose a transition operator to apply
state←APPLY(t, state) ; apply it, creating a new state

return state

Figure 14.6 A generic transition-based dependency parser

At each step, the parser consults an oracle (we’ll come back to this shortly) that
provides the correct transition operator to use given the current configuration. It then
applies that operator to the current configuration, producing a new configuration.
The process ends when all the words in the sentence have been consumed and the
ROOT node is the only element remaining on the stack.

The efficiency of transition-based parsers should be apparent from the algorithm.
The complexity is linear in the length of the sentence since it is based on a single left
to right pass through the words in the sentence. More specifically, each word must
first be shifted onto the stack and then later reduced.

Note that unlike the dynamic programming and search-based approaches dis-
cussed in Chapters 12 and 13, this approach is a straightforward greedy algorithm
— the oracle provides a single choice at each step and the parser proceeds with that
choice, no other options are explored, no backtracking is employed, and a single
parse is returned in the end.

Figure 14.7 illustrates the operation of the parser with the sequence of transitions
leading to a parse for the following example.

(14.5)
Book me the morning flight

dobj

iobj

det

nmod

root

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

Stack Word List Relations
[root, book, me] [the, morning, flight]

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

Stack Word List Relations
[root, book] [the, morning, flight] (book→ me)



254 CHAPTER 14 • DEPENDENCY PARSING

Step Stack Word List Action Relation Added
0 [root] [book, me, the, morning, flight] SHIFT

1 [root, book] [me, the, morning, flight] SHIFT

2 [root, book, me] [the, morning, flight] RIGHTARC (book→ me)
3 [root, book] [the, morning, flight] SHIFT

4 [root, book, the] [morning, flight] SHIFT

5 [root, book, the, morning] [flight] SHIFT

6 [root, book, the, morning, flight] [] LEFTARC (morning← flight)
7 [root, book, the, flight] [] LEFTARC (the← flight)
8 [root, book, flight] [] RIGHTARC (book→ flight)
9 [root, book] [] RIGHTARC (root→ book)

10 [root] [] Done

Figure 14.7 Trace of a transition-based parse.

After several subsequent applications of the SHIFT and LEFTARC operators, the con-
figuration in Step 6 looks like the following:

Stack Word List Relations
[root, book, the, morning, flight] [] (book→ me)

Here, all the remaining words have been passed onto the stack and all that is left
to do is to apply the appropriate reduce operators. In the current configuration, we
employ the LEFTARC operator resulting in the following state.

Stack Word List Relations
[root, book, the, flight] [] (book→ me)

(morning← flight)

At this point, the parse for this sentence consists of the following structure.

(14.6)
Book me the morning flight

dobj nmod

There are several important things to note when examining sequences such as
the one in Figure 14.7. First, the sequence given is not the only one that might lead
to a reasonable parse. In general, there may be more than one path that leads to the
same result, and due to ambiguity, there may be other transition sequences that lead
to different equally valid parses.

Second, we are assuming that the oracle always provides the correct operator
at each point in the parse — an assumption that is unlikely to be true in practice.
As a result, given the greedy nature of this algorithm, incorrect choices will lead to
incorrect parses since the parser has no opportunity to go back and pursue alternative
choices. Section 14.4.2 will introduce several techniques that allow transition-based
approaches to explore the search space more fully.

Finally, for simplicity, we have illustrated this example without the labels on
the dependency relations. To produce labeled trees, we can parameterize the LEFT-
ARC and RIGHTARC operators with dependency labels, as in LEFTARC(NSUBJ) or
RIGHTARC(DOBJ). This is equivalent to expanding the set of transition operators
from our original set of three to a set that includes LEFTARC and RIGHTARC opera-
tors for each relation in the set of dependency relations being used, plus an additional
one for the SHIFT operator. This, of course, makes the job of the oracle more difficult
since it now has a much larger set of operators from which to choose.
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14.4.1 Creating an Oracle
State-of-the-art transition-based systems use supervised machine learning methods
to train classifiers that play the role of the oracle. Given appropriate training data,
these methods learn a function that maps from configurations to transition operators.

As with all supervised machine learning methods, we will need access to appro-
priate training data and we will need to extract features useful for characterizing the
decisions to be made. The source for this training data will be representative tree-
banks containing dependency trees. The features will consist of many of the same
features we encountered in Chapter 10 for part-of-speech tagging, as well as those
used in Chapter 13 for statistical parsing models.

Generating Training Data

Let’s revisit the oracle from the algorithm in Fig. 14.6 to fully understand the learn-
ing problem. The oracle takes as input a configuration and returns as output a tran-
sition operator. Therefore, to train a classifier, we will need configurations paired
with transition operators (i.e., LEFTARC, RIGHTARC, or SHIFT). Unfortunately,
treebanks pair entire sentences with their corresponding trees, and therefore they
don’t directly provide what we need.

To generate the required training data, we will employ the oracle-based parsing
algorithm in a clever way. We will supply our oracle with the training sentences
to be parsed along with their corresponding reference parses from the treebank. To
produce training instances, we will then simulate the operation of the parser by run-
ning the algorithm and relying on a new training oracle to give us correct transitionTraining oracle

operators for each successive configuration.
To see how this works, let’s first review the operation of our parser. It begins with

a default initial configuration where the stack contains the ROOT, the input list is just
the list of words, and the set of relations is empty. The LEFTARC and RIGHTARC
operators each add relations between the words at the top of the stack to the set of
relations being accumulated for a given sentence. Since we have a gold-standard
reference parse for each training sentence, we know which dependency relations are
valid for a given sentence. Therefore, we can use the reference parse to guide the
selection of operators as the parser steps through a sequence of configurations.

To be more precise, given a reference parse and a configuration, the training
oracle proceeds as follows:

• Choose LEFTARC if it produces a correct head-dependent relation given the
reference parse and the current configuration,

• Otherwise, choose RIGHTARC if (1) it produces a correct head-dependent re-
lation given the reference parse and (2) all of the dependents of the word at
the top of the stack have already been assigned,

• Otherwise, choose SHIFT.

The restriction on selecting the RIGHTARC operator is needed to ensure that a
word is not popped from the stack, and thus lost to further processing, before all its
dependents have been assigned to it.

More formally, during training the oracle has access to the following informa-
tion:

• A current configuration with a stack S and a set of dependency relations Rc

• A reference parse consisting of a set of vertices V and a set of dependency
relations Rp
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Step Stack Word List Predicted Action
0 [root] [book, the, flight, through, houston] SHIFT

1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] SHIFT

3 [root, book, the, flight] [through, houston] LEFTARC

4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston] SHIFT

6 [root, book, flight, through, houston] [] LEFTARC

7 [root, book, flight, houston ] [] RIGHTARC

8 [root, book, flight] [] RIGHTARC

9 [root, book] [] RIGHTARC

10 [root] [] Done

Figure 14.8 Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Given this information, the oracle chooses in transitions as follows:

LEFTARC(r): if (S1 r S2) ∈ Rp

RIGHTARC(r): if (S2 r S1) ∈ Rp and ∀r′,w s.t.(S1 r′ w) ∈ Rp then (S1 r′ w) ∈
Rc

SHIFT: otherwise

Let’s walk through some the steps of this process with the following example as
shown in Fig. 14.8.

(14.7)
Book the flight through Houston

dobj

det

nmod

case

root

At Step 1, LEFTARC is not applicable in the initial configuration since it asserts
a relation, (root ← book), not in the reference answer; RIGHTARC does assert a
relation contained in the final answer (root → book), however book has not been
attached to any of its dependents yet, so we have to defer, leaving SHIFT as the only
possible action. The same conditions hold in the next two steps. In step 3, LEFTARC
is selected to link the to its head.

Now consider the situation in Step 4.

Stack Word buffer Relations
[root, book, flight] [through, Houston] (the← flight)

Here, we might be tempted to add a dependency relation between book and flight,
which is present in the reference parse. But doing so now would prevent the later
attachment of Houston since flight would have been removed from the stack. For-
tunately, the precondition on choosing RIGHTARC prevents this choice and we’re
again left with SHIFT as the only viable option. The remaining choices complete the
set of operators needed for this example.

To recap, we derive appropriate training instances consisting of configuration-
transition pairs from a treebank by simulating the operation of a parser in the con-
text of a reference dependency tree. We can deterministically record correct parser
actions at each step as we progress through each training example, thereby creating
the training set we require.
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Features

Having generated appropriate training instances (configuration-transition pairs), we
need to extract useful features from the configurations so what we can train classi-
fiers. The features that are used to train transition-based systems vary by language,
genre, and the kind of classifier being employed. For example, morphosyntactic
features such as case marking on subjects or direct objects may be more or less im-
portant depending on the language being processed. That said, the basic features that
we have already seen with part-of-speech tagging and partial parsing have proven to
be useful in training dependency parsers across a wide range of languages. Word
forms, lemmas and parts of speech are all powerful features, as are the head, and
dependency relation to the head.

In the transition-based parsing framework, such features need to be extracted
from the configurations that make up the training data. Recall that configurations
consist of three elements: the stack, the buffer and the current set of relations. In
principle, any property of any or all of these elements can be represented as features
in the usual way for training. However, to avoid sparsity and encourage generaliza-
tion, it is best to focus the learning algorithm on the most useful aspects of decision
making at each point in the parsing process. The focus of feature extraction for
transition-based parsing is, therefore, on the top levels of the stack, the words near
the front of the buffer, and the dependency relations already associated with any of
those elements.

By combining simple features, such as word forms or parts of speech, with spe-
cific locations in a configuration, we can employ the notion of a feature templateFeature

template
that we’ve already encountered with sentiment analysis and part-of-speech tagging.
Feature templates allow us to automatically generate large numbers of specific fea-
tures from a training set. As an example, consider the following feature templates
that are based on single positions in a configuration.

〈s1.w,op〉,〈s2.w,op〉〈s1.t,op〉,〈s2.t,op〉
〈b1.w,op〉,〈b1.t,op〉〈s1.wt,op〉 (14.8)

In these examples, individual features are denoted as location.property, where s
denotes the stack, b the word buffer, and r the set of relations. Individual properties
of locations include w for word forms, l for lemmas, and t for part-of-speech. For
example, the feature corresponding to the word form at the top of the stack would be
denoted as s1.w, and the part of speech tag at the front of the buffer b1.t. We can also
combine individual features via concatenation into more specific features that may
prove useful. For example, the feature designated by s1.wt represents the word form
concatenated with the part of speech of the word at the top of the stack. Finally, op
stands for the transition operator for the training example in question (i.e., the label
for the training instance).

Let’s consider the simple set of single-element feature templates given above
in the context of the following intermediate configuration derived from a training
oracle for Example 14.2.

Stack Word buffer Relations
[root, canceled, flights] [to Houston] (canceled→ United)

(flights→ morning)
(flights→ the)

The correct transition here is SHIFT (you should convince yourself of this before
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proceeding). The application of our set of feature templates to this configuration
would result in the following set of instantiated features.

〈s1.w = flights,op = shift〉 (14.9)

〈s2.w = canceled,op = shift〉
〈s1.t = NNS,op = shift〉
〈s2.t = VBD,op = shift〉
〈b1.w = to,op = shift〉
〈b1.t = TO,op = shift〉

〈s1.wt = flightsNNS,op = shift〉

Given that the left and right arc transitions operate on the top two elements of
the stack, features that combine properties from these positions are even more useful.
For example, a feature like s1.t ◦ s2.t concatenates the part of speech tag of the word
at the top of the stack with the tag of the word beneath it.

〈s1t.s2t = NNSVBD,op = shift〉 (14.10)

Not surprisingly, if two properties are useful then three or more should be even
better. Figure 14.9 gives a baseline set of feature templates that have been employed
in various state-of-the-art systems (Zhang and Clark 2008,Huang and Sagae 2010,Zhang
and Nivre 2011).

Note that some of these features make use of dynamic features — features such
as head words and dependency relations that have been predicted at earlier steps in
the parsing process, as opposed to features that are derived from static properties of
the input.

Source Feature templates
One word s1.w s1.t s1.wt

s2.w s2.t s2.wt
b1.w b1.w b0.wt

Two word s1.w◦ s2.w s1.t ◦ s2.t s1.t ◦b1.w
s1.t ◦ s2.wt s1.w◦ s2.w◦ s2.t s1.w◦ s1.t ◦ s2.t
s1.w◦ s1.t ◦ s2.t s1.w◦ s1.t

Figure 14.9 Standard feature templates for training transition-based dependency parsers.
In the template specifications sn refers to a location on the stack, bn refers to a location in the
word buffer, w refers to the wordform of the input, and t refers to the part of speech of the
input.

Learning

Over the years, the dominant approaches to training transition-based dependency
parsers have been multinomial logistic regression and support vector machines, both
of which can make effective use of large numbers of sparse features of the kind
described in the last section. More recently, neural network, or deep learning,
approaches of the kind described in Chapter 8 have been applied successfully to
transition-based parsing (Chen and Manning, 2014). These approaches eliminate
the need for complex, hand-crafted features and have been particularly effective at
overcoming the data sparsity issues normally associated training transition-based
parsers.
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14.4.2 Advanced Methods in Transition-Based Parsing
The basic transition-based approach can be elaborated in a number of ways of ways
to improve performance by addressing some of the most obvious flaws in the ap-
proach.

Alternative Transition Systems

The arc-standard transition system described above is only one of many possible sys-
tems. A frequently used alternative is the arc eager transition system. The arc eagerarc eager

approach gets its name from its ability to assert rightward relations much sooner
than in the arc standard approach. To see this, let’s revisit the arc standard trace of
Example 14.7, repeated here.

Book the flight through Houston

dobj

det

nmod

case

root

Consider the dependency relation between book and flight in this analysis. As
is shown in Fig. 14.8, an arc-standard approach would assert this relation at Step 8,
despite the fact that book and flight first come together on the stack much earlier at
Step 4. The reason this relation can’t be captured at this point is due to the presence
of the post-nominal modifier through Houston. In an arc-standard approach, depen-
dents are removed from the stack as soon as they are assigned their heads. If flight
had been assigned book as its head in Step 4, it would no longer be available to serve
as the head of Houston.

While this delay doesn’t cause any issues in this example, in general the longer
a word has to wait to get assigned its head the more opportunities there are for
something to go awry. The arc-eager system addresses this issue by allowing words
to be attached to their heads as early as possible, before all the subsequent words
dependent on them have been seen. This is accomplished through minor changes to
the LEFTARC and RIGHTARC operators and the addition of a new REDUCE operator.

• LEFTARC: Assert a head-dependent relation between the word at the front of
the input buffer and the word at the top of the stack; pop the stack.

• RIGHTARC: Assert a head-dependent relation between the word on the top of
the stack and the word at front of the input buffer; shift the word at the front
of the input buffer to the stack.

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

• REDUCE: Pop the stack.

The LEFTARC and RIGHTARC operators are applied to the top of the stack and
the front of the input buffer, instead of the top two elements of the stack as in the
arc-standard approach. The RIGHTARC operator now moves the dependent to the
stack from the buffer rather than removing it, thus making it available to serve as the
head of following words. The new REDUCE operator removes the top element from
the stack. Together these changes permit a word to be eagerly assigned its head and
still allow it to serve as the head for later dependents. The trace shown in Fig. 14.10
illustrates the new decision sequence for this example.

In addition to demonstrating the arc-eager transition system, this example demon-
strates the power and flexibility of the overall transition-based approach. We were
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Step Stack Word List Action Relation Added
0 [root] [book, the, flight, through, houston] RIGHTARC (root→ book)
1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] LEFTARC (the← flight)
3 [root, book] [flight, through, houston] RIGHTARC (book→ flight)
4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston] LEFTARC (through← houston)
6 [root, book, flight] [houston] RIGHTARC (flight→ houston)
7 [root, book, flight, houston] [] REDUCE

8 [root, book, flight] [] REDUCE

9 [root, book] [] REDUCE

10 [root] [] Done

Figure 14.10 A processing trace of Book the flight through Houston using the arc-eager
transition operators.

able to swap in a new transition system without having to make any changes to the
underlying parsing algorithm. This flexibility has led to the development of a di-
verse set of transition systems that address different aspects of syntax and semantics
including: assigning part of speech tags (Choi and Palmer, 2011a), allowing the
generation of non-projective dependency structures (Nivre, 2009), assigning seman-
tic roles (Choi and Palmer, 2011b), and parsing texts containing multiple languages
(Bhat et al., 2017).

Beam Search

The computational efficiency of the transition-based approach discussed earlier de-
rives from the fact that it makes a single pass through the sentence, greedily making
decisions without considering alternatives. Of course, this is also the source of its
greatest weakness – once a decision has been made it can not be undone, even in
the face of overwhelming evidence arriving later in a sentence. Another approach
is to systematically explore alternative decision sequences, selecting the best among
those alternatives. The key problem for such a search is to manage the large number
of potential sequences. Beam search accomplishes this by combining a breadth-firstBeam search

search strategy with a heuristic filter that prunes the search frontier to stay within a
fixed-size beam width.Beam width

In applying beam search to transition-based parsing, we’ll elaborate on the al-
gorithm given in Fig. 14.6. Instead of choosing the single best transition operator
at each iteration, we’ll apply all applicable operators to each state on an agenda and
then score the resulting configurations. We then add each of these new configura-
tions to the frontier, subject to the constraint that there has to be room within the
beam. As long as the size of the agenda is within the specified beam width, we can
add new configurations to the agenda. Once the agenda reaches the limit, we only
add new configurations that are better than the worst configuration on the agenda
(removing the worst element so that we stay within the limit). Finally, to insure that
we retrieve the best possible state on the agenda, the while loop continues as long as
there are non-final states on the agenda.

The beam search approach requires a more elaborate notion of scoring than we
used with the greedy algorithm. There, we assumed that a classifier trained using
supervised machine learning would serve as an oracle, selecting the best transition
operator based on features extracted from the current configuration. Regardless of
the specific learning approach, this choice can be viewed as assigning a score to all
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the possible transitions and picking the best one.

T̂ (c) = argmaxScore(t,c)

With a beam search we are now searching through the space of decision se-
quences, so it makes sense to base the score for a configuration on its entire history.
More specifically, we can define the score for a new configuration as the score of its
predecessor plus the score of the operator used to produce it.

ConfigScore(c0) = 0.0
ConfigScore(ci) = ConfigScore(ci−1)+Score(ti,ci−1)

This score is used both in filtering the agenda and in selecting the final answer.
The new beam search version of transition-based parsing is given in Fig. 14.11.

function DEPENDENCYBEAMPARSE(words, width) returns dependency tree

state←{[root], [words], [], 0.0} ;initial configuration
agenda←〈state〉; initial agenda

while agenda contains non-final states
newagenda←〈〉
for each state ∈ agenda do

for all {t | t ∈ VALIDOPERATORS(state)} do
child←APPLY(t, state)
newagenda←ADDTOBEAM(child, newagenda, width)

agenda←newagenda
return BESTOF(agenda)

function ADDTOBEAM(state, agenda, width) returns updated agenda

if LENGTH(agenda) < width then
agenda← INSERT(state, agenda)

else if SCORE(state) > SCORE(WORSTOF(agenda))
agenda←REMOVE(WORSTOF(agenda))
agenda← INSERT(state, agenda)

return agenda

Figure 14.11 Beam search applied to transition-based dependency parsing.

14.5 Graph-Based Dependency Parsing

Graph-based approaches to dependency parsing search through the space of possible
trees for a given sentence for a tree (or trees) that maximize some score. These
methods encode the search space as directed graphs and employ methods drawn
from graph theory to search the space for optimal solutions. More formally, given a
sentence S we’re looking for the best dependency tree in Gs, the space of all possible
trees for that sentence, that maximizes some score.

T̂ (S) = argmax
t∈GS

score(t,S)
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As with the probabilistic approaches to context-free parsing discussed in Chap-
ter 13, the overall score for a tree can be viewed as a function of the scores of the
parts of the tree. The focus of this section is on edge-factored approaches where theedge-factored

score for a tree is based on the scores of the edges that comprise the tree.

score(t,S) =
∑
e∈t

score(e)

There are several motivations for the use of graph-based methods. First, unlike
transition-based approaches, these methods are capable of producing non-projective
trees. Although projectivity is not a significant issue for English, it is definitely a
problem for many of the world’s languages. A second motivation concerns parsing
accuracy, particularly with respect to longer dependencies. Empirically, transition-
based methods have high accuracy on shorter dependency relations but accuracy de-
clines significantly as the distance between the head and dependent increases (Mc-
Donald and Nivre, 2011). Graph-based methods avoid this difficulty by scoring
entire trees, rather than relying on greedy local decisions.

The following section examines a widely-studied approach based on the use of a
maximum spanning tree (MST) algorithm for weighted, directed graphs. We thenmaximum

spanning tree
discuss features that are typically used to score trees, as well as the methods used to
train the scoring models.

14.5.1 Parsing
The approach described here uses an efficient greedy algorithm to search for optimal
spanning trees in directed graphs. Given an input sentence, it begins by constructing
a fully-connected, weighted, directed graph where the vertices are the input words
and the directed edges represent all possible head-dependent assignments. An addi-
tional ROOT node is included with outgoing edges directed at all of the other vertices.
The weights in the graph reflect the score for each possible head-dependent relation
as provided by a model generated from training data. Given these weights, a maxi-
mum spanning tree of this graph emanating from the ROOT represents the preferred
dependency parse for the sentence. A directed graph for the example Book that
flight is shown in Fig. 14.12, with the maximum spanning tree corresponding to the
desired parse shown in blue. For ease of exposition, we’ll focus here on unlabeled
dependency parsing. Graph-based approaches to labeled parsing are discussed in
Section 14.5.3.

Before describing the algorithm its useful to consider two intuitions about di-
rected graphs and their spanning trees. The first intuition begins with the fact that
every vertex in a spanning tree has exactly one incoming edge. It follows from this
that every connected component of a spanning tree will also have one incoming edge.
The second intuition is that the absolute values of the edge scores are not critical to
determining its maximum spanning tree. Instead, it is the relative weights of the
edges entering each vertex that matters. If we were to subtract a constant amount
from each edge entering a given vertex it would have no impact on the choice of
the maximum spanning tree since every possible spanning tree would decrease by
exactly the same amount.

The first step of the algorithm itself is quite straightforward. For each vertex
in the graph, an incoming edge (representing a possible head assignment) with the
highest score is chosen. If the resulting set of edges produces a spanning tree then
we’re done. More formally, given the original fully-connected graph G = (V,E), a
subgraph T = (V,F) is a spanning tree if it has no cycles and each vertex (other than
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Figure 14.12 Initial rooted, directed graph for Book that flight.

the root) has exactly one edge entering it. If the greedy selection process produces
such a tree then it is the best possible one.

Unfortunately, this approach doesn’t always lead to a tree since the set of edges
selected may contain cycles. Fortunately, in yet another case of multiple discovery,
there is a straightforward way to eliminate cycles generated during the greedy se-
lection phase. Chu and Liu (1965) and Edmonds (1967) independently developed
an approach that begins with greedy selection and follows with an elegant recursive
cleanup phase that eliminates cycles.

The cleanup phase begins by adjusting all the weights in the graph by subtracting
the score of the maximum edge entering each vertex from the score of all the edges
entering that vertex. This is where the intuitions mentioned earlier come into play.
We have scaled the values of the edges so that the weight of the edges in the cycle
have no bearing on the weight of any of the possible spanning trees. Subtracting the
value of the edge with maximum weight from each edge entering a vertex results
in a weight of zero for all of the edges selected during the greedy selection phase,
including all of the edges involved in the cycle.

Having adjusted the weights, the algorithm creates a new graph by selecting a
cycle and collapsing it into a single new node. Edges that enter or leave the cycle
are altered so that they now enter or leave the newly collapsed node. Edges that do
not touch the cycle are included and edges within the cycle are dropped.

Now, if we knew the maximum spanning tree of this new graph, we would have
what we need to eliminate the cycle. The edge of the maximum spanning tree di-
rected towards the vertex representing the collapsed cycle tells us which edge to
delete to eliminate the cycle. How do we find the maximum spanning tree of this
new graph? We recursively apply the algorithm to the new graph. This will either
result in a spanning tree or a graph with a cycle. The recursions can continue as long
as cycles are encountered. When each recursion completes we expand the collapsed
vertex, restoring all the vertices and edges from the cycle with the exception of the
single edge to be deleted.

Putting all this together, the maximum spanning tree algorithm consists of greedy
edge selection, re-scoring of edge costs and a recursive cleanup phase when needed.
The full algorithm is shown in Fig. 14.13.
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function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F← []
T’← []
score’← []
for each v ∈ V do

bestInEdge←argmaxe=(u,v)∈ E score[e]
F←F ∪ bestInEdge
for each e=(u,v) ∈ E do

score’[e]←score[e] − score[bestInEdge]

if T=(V,F) is a spanning tree then return it
else

C←a cycle in F
G’←CONTRACT(G, C)
T’←MAXSPANNINGTREE(G’, root, score’)
T←EXPAND(T’, C)
return T

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

Figure 14.13 The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a
weighted directed graph.

Fig. 14.14 steps through the algorithm with our Book that flight example. The
first row of the figure illustrates greedy edge selection with the edges chosen shown
in blue (corresponding to the set F in the algorithm). This results in a cycle between
that and flight. The scaled weights using the maximum value entering each node are
shown in the graph to the right.

Collapsing the cycle between that and flight to a single node (labelled tf) and
recursing with the newly scaled costs is shown in the second row. The greedy selec-
tion step in this recursion yields a spanning tree that links root to book, as well as an
edge that links book to the contracted node. Expanding the contracted node, we can
see that this edge corresponds to the edge from book to flight in the original graph.
This in turn tells us which edge to drop to eliminate the cycle

On arbitrary directed graphs, this version of the CLE algorithm runs in O(mn)
time, where m is the number of edges and n is the number of nodes. Since this par-
ticular application of the algorithm begins by constructing a fully connected graph
m = n2 yielding a running time of O(n3). Gabow et al. (1986) present a more effi-
cient implementation with a running time of O(m+nlogn).

14.5.2 Features and Training

Given a sentence, S, and a candidate tree, T , edge-factored parsing models reduce
the score for the tree to a sum of the scores of the edges that comprise the tree.

score(S,T ) =
∑
e∈T

score(S,e)

Each edge score can, in turn, be reduced to a weighted sum of features extracted
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Figure 14.14 Chu-Liu-Edmonds graph-based example for Book that flight

from it.

score(S,e) =

N∑
i=1

wi fi(S,e)

Or more succinctly.

score(S,e) = w · f

Given this formulation, we are faced with two problems in training our parser:
identifying relevant features and finding the weights used to score those features.

The features used to train edge-factored models mirror those used in training
transition-based parsers (as shown in Fig. 14.9). This is hardly surprising since in
both cases we’re trying to capture information about the relationship between heads
and their dependents in the context of a single relation. To summarize this earlier
discussion, commonly used features include:

• Wordforms, lemmas, and parts of speech of the headword and its dependent.
• Corresponding features derived from the contexts before, after and between

the words.
• Pre-trained word embeddings such as those discussed in Chapter 3.
• The dependency relation itself.
• The direction of the relation (to the right or left).
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• The distance from the head to the dependent.

As with transition-based approaches, pre-selected combinations of these features are
often used as well.

Given a set of features, our next problem is to learn a set of weights correspond-
ing to each. Unlike many of the learning problems discussed in earlier chapters,
here we are not training a model to associate training items with class labels, or
parser actions. Instead, we seek to train a model that assigns higher scores to cor-
rect trees than to incorrect ones. An effective framework for problems like this is
to use inference-based learning combined with the perceptron learning rule frominference-based

learning
Chapter 3. In this framework, we parse a sentence (i.e, perform inference) from the
training set using some initially random set of initial weights. If the resulting parse
matches the corresponding tree in the training data, we do nothing to the weights.
Otherwise, we find those features in the incorrect parse that are not present in the
reference parse and we lower their weights by a small amount based on the learn-
ing rate. We do this incrementally for each sentence in our training data until the
weights converge.

More recently, recurrent neural network (RNN) models have demonstrated state-
of-the-art performance in shared tasks on multilingual parsing (Zeman et al. 2017,Dozat
et al. 2017). These neural approaches rely solely on lexical information in the form
of word embeddings, eschewing the use of hand-crafted features such as those de-
scribed earlier.

14.5.3 Advanced Issues in Graph-Based Parsing

14.6 Evaluation

As with phrase structure-based parsing, the evaluation of dependency parsers pro-
ceeds by measuring how well they work on a test-set. An obvious metric would be
exact match (EM) — how many sentences are parsed correctly. This metric is quite
pessimistic, with most sentences being marked wrong. Such measures are not fine-
grained enough to guide the development process. Our metrics need to be sensitive
enough to tell if actual improvements are being made.

For these reasons, the most common method for evaluating dependency parsers
are labeled and unlabeled attachment accuracy. Labeled attachment refers to the
proper assignment of a word to its head along with the correct dependency relation.
Unlabeled attachment simply looks at the correctness of the assigned head, ignor-
ing the dependency relation. Given a system output and a corresponding reference
parse, accuracy is simply the percentage of words in an input that are assigned the
correct head with the correct relation. This metrics are usually referred to as the
labeled attachment score (LAS) and unlabeled attachment score (UAS). Finally, we
can make use of a label accuracy score (LS), the percentage of tokens with correct
labels, ignoring where the relations are coming from.

As an example, consider the reference parse and system parse for the following
example shown in Fig. 14.15.

(14.11) Book me the flight through Houston.

The system correctly finds 4 of the 6 dependency relations present in the refer-
ence parse and therefore receives an LAS of 2/3. However, one of the 2 incorrect
relations found by the system holds between book and flight, which are in a head-
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dependent relation in the reference parse; therefore the system therefore achieves an
UAS of 5/6.

Book me the flight through Houston
Reference

obj

iobj

det

nmod

case

root

Book me the flight through Houston
System

x-comp

nsubj

det

nmod

case

root

Figure 14.15 Reference and system parses for Book me the flight through Houston, resulting in an LAS of
3/6 and an UAS of 4/6.

Beyond attachment scores, we may also be interested in how well a system is
performing on particular kind of dependency relation, for example NSUBJ, across a
development corpus. Here we can make use of the notions of precision and recall
introduced in Chapter 10, measuring the percentage of relations labeled NSUBJ by
the system that were correct (precision), and the percentage of the NSUBJ relations
present in the development set that were in fact discovered by the system (recall). We
can employ a confusion matrix (Ch. 5) to keep track of how often each dependency
type was confused for another.

14.7 Summary

This chapter has introduced the concept of dependency grammars and dependency
parsing. Here’s a summary of the main points that we covered:

• In dependency-based approaches to syntax, the structure of a sentence is de-
scribed in terms of a set of binary relations that hold between the words in a
sentence. Larger notions of constituency are not directly encoded in depen-
dency analyses.

• The relations in a dependency structure capture the head-dependent relation-
ship among the words in a sentence.

• Dependency-based analyses provides information directly useful in further
language processing tasks including information extraction, semantic parsing
and question answering

• Transition-based parsing systems employ a greedy stack-based algorithm to
create dependency structures.

• Graph-based methods for creating dependency structures are based on the use
of maximum spanning tree methods from graph theory.

• Both transition-based and graph-based approaches are developed using super-
vised machine learning techniques.

• Treebanks provide the data needed to train these systems. Dependency tree-
banks can be created directly by human annotators or via automatic transfor-
mation from phrase-structure treebanks.

• Evaluation of dependency parsers is based on labeled and unlabeled accuracy
scores as measured against withheld development and test corpora.
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Bibliographical and Historical Notes
The dependency-based approach to grammar is much older than the relatively re-
cent phrase-structure or constituency grammars that have been the primary focus of
both theoretical and computational linguistics for years. It has its roots in the an-
cient Greek and Indian linguistic traditions. Contemporary theories of dependency
grammar all draw heavily on the work of Tesnière (1959). The most influential
dependency grammar frameworks include Meaning-Text Theory (MTT) (Mel’c̆uk,
1988), Word Grammar (Hudson, 1984), Functional Generative Description (FDG)
(Sgall et al., 1986). These frameworks differ along a number of dimensions in-
cluding the degree and manner in which they deal with morphological, syntactic,
semantic and pragmatic factors, their use of multiple layers of representation, and
the set of relations used to categorize dependency relations.

Automatic parsing using dependency grammars was first introduced into compu-
tational linguistics by early work on machine translation at the RAND Corporation
led by David Hays. This work on dependency parsing closely paralleled work on
constituent parsing and made explicit use of grammars to guide the parsing process.
After this early period, computational work on dependency parsing remained inter-
mittent over the following decades. Notable implementations of dependency parsers
for English during this period include Link Grammar (Sleator and Temperley, 1993),
Constraint Grammar (Karlsson et al., 1995), and MINIPAR (Lin, 2003).

Dependency parsing saw a major resurgence in the late 1990’s with the appear-
ance of large dependency-based treebanks and the associated advent of data driven
approaches described in this chapter. Eisner (1996) developed an efficient dynamic
programming approach to dependency parsing based on bilexical grammars derived
from the Penn Treebank. Covington (2001) introduced the deterministic word by
word approach underlying current transition-based approaches. Yamada and Mat-
sumoto (2003) and Kudo and Matsumoto (2002) introduced both the shift-reduce
paradigm and the use of supervised machine learning in the form of support vector
machines to dependency parsing.

Nivre (2003) defined the modern, deterministic, transition-based approach to de-
pendency parsing. Subsequent work by Nivre and his colleagues formalized and an-
alyzed the performance of numerous transition systems, training methods, and meth-
ods for dealing with non-projective language Nivre and Scholz 2004,Nivre 2006,Nivre
and Nilsson 2005,Nivre et al. 2007,Nivre 2007.

The graph-based maximum spanning tree approach to dependency parsing was
introduced by McDonald et al. 2005,McDonald et al. 2005.

The earliest source of data for training and evaluating dependency English parsers
came from the WSJ Penn Treebank (Marcus et al., 1993) described in Chapter 11.
The use of head-finding rules developed for use with probabilistic parsing facili-
tated the automatic extraction of dependency parses from phrase-based ones (Xia
and Palmer, 2001).

The long-running Prague Dependency Treebank project (Hajič, 1998) is the most
significant effort to directly annotate a corpus with multiple layers of morphological,
syntactic and semantic information. The current PDT 3.0 now contains over 1.5 M
tokens (Bejček et al., 2013).

Universal Dependencies (UD) (Nivre et al., 2016) is a project directed at cre-
ating a consistent framework for dependency treebank annotation across languages
with the goal of advancing parser development across the worlds languages. Un-
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der the auspices of this effort, treebanks for over 30 languages have been anno-
tated and made available in a single consistent format. The UD annotation scheme
evolved out of several distinct efforts including Stanford dependencies de Marneffe
et al. 2006,de Marneffe and Manning 2008,de Marneffe et al. 2014, Google’s uni-
versal part-of-speech tags (Petrov et al., 2012) al., 2012), and the Interset interlingua
for morphosyntactic tagsets (Zeman, 2008). Driven in part by the UD framework,
dependency treebanks of a significant size and quality are now available in over 30
languages (Nivre et al., 2016).

The Conference on Natural Language Learning (CoNLL) has conducted an in-
fluential series of shared tasks related to dependency parsing over the years (Buch-
holz and Marsi 2006,Nilsson et al. 2007,Surdeanu et al. 2008a,Hajič et al. 2009).
More recent evaluations have focused on parser robustness with respect to morpho-
logically rich languages (Seddah et al., 2013), and non-canonical language forms
such as social media, texts, and spoken language (Petrov and McDonald, 2012).
Choi et al. (2015) presents a detailed performance analysis of 10 state-of-the-art de-
pendency parsers across an impressive range of metrics, as well as DEPENDABLE, a
robust parser evaluation tool.

Exercises
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CHAPTER

15 Vector Semantics

“You shall know a word by the company it keeps!”
Firth (1957)

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But
in the middle of the city is another patch of asphalt, the La Brea tar pits, and this
asphalt preserves millions of fossil bones from the last of the Ice Ages of the Pleis-
tocene Epoch. One of these fossils is the Smilodon, or sabre-toothed tiger, instantly
recognizable by its long canines. Five million years ago or so, a completely dif-
ferent sabre-tooth tiger called Thylacosmilus lived in Argentina and other parts of
South America. Thylacosmilus was a marsupial whereas Smilodon was a placental
mammal, but Thylacosmilus had the same long upper canines and, like Smilodon,
had a protective bone flange on the lower jaw. The similarity of these two mammals
is one of many examples of parallel or convergent evolution, in which particular
contexts or environments lead to the evolution of very similar structures in different
species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind
of organism: the word. Words that occur in similar contexts tend to have similar
meanings. This insight was perhaps first formulated by Harris (1954) who pointed
out that “oculist and eye-doctor . . . occur in almost the same environments” and more
generally that “If A and B have almost identical environments. . . we say that they are
synonyms.” But the most famous statement of the principle comes a few years later
from the linguist J. R. Firth (1957), who phrased it as “You shall know a word by
the company it keeps!”.

The meaning of a word is thus related to the distribution of words around it.
Imagine you had never seen the word tesgüino, but I gave you the following 4 sen-
tences (an example modified by Lin (1998a) from (Nida, 1975, page 167)):

(15.1) A bottle of tesgüino is on the table.
Everybody likes tesgüino.
Tesgüino makes you drunk.
We make tesgüino out of corn.

You can figure out from these sentences that tesgüino means a fermented alco-
holic drink like beer, made from corn. We can capture this same intuition automati-
cally by just counting words in the context of tesgüino; we’ll tend to see words like
bottle and drunk. The fact that these words and other similar context words also
occur around the word beer or liquor or tequila can help us discover the similarity
between these words and tesgüino. We can even look at more sophisticated features
of the context, syntactic features like ‘occurs before drunk’ or ‘occurs after bottle’
or ‘is the direct object of likes’.
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In this chapter we introduce such distributional methods, in which the meaning
of a word is computed from the distribution of words around it. These words are
generally represented as a vector or array of numbers related in some way to counts,
and so these methods are often called vector semantics.

In this chapter we introduce a simple method in which the meaning of a word
is simply defined by how often it occurs near other words. We will see that this
method results in very long (technically ‘high dimensional’) vectors that are sparse,
i.e. contain mostly zeros (since most words simply never occur in the context of
others). In the following chapter we’ll expand on this simple idea by introducing
three ways of constructing short, dense vectors that have useful semantic properties.

The shared intuition of vector space models of semantics is to model a word
by embedding it into a vector space. For this reason the representation of a word
as a vector is often called an embedding. By contrast, in many traditional NLPembedding

applications, a word is represented as an index in a vocabulary list, or as a string of
letters. (Consider the old philosophy joke:

Q: What’s the meaning of life?
A: LIFE

drawing on the philosophical tradition of representing concepts by words with small
capital letters.) As we’ll see, vector models of meaning offer a method of represent-
ing a word that is much more fine-grained than a simple atom like LIFE, and hence
may help in drawing rich inferences about word meaning.

Vector models of meaning have been used in NLP for over 50 years. They are
commonly used as features to represent words in applications from named entity
extraction to parsing to semantic role labeling to relation extraction. Vector models
are also the most common way to compute semantic similarity, the similarity be-
tween two words, two sentences, or two documents, an important tool in practical
applications like question answering, summarization, or automatic essay grading.

15.1 Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. Let’s begin by looking at
one such co-occurrence matrix, a term-document matrix.

15.1.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary andterm-document

matrix
each column represents a document from some collection. Fig. 15.1 shows a small
selection from a term-document matrix showing the occurrence of four words in
four plays by Shakespeare. Each cell in this matrix represents the number of times a
particular word (defined by the row) occurs in a particular document (defined by the
column). Thus clown appeared 117 times in Twelfth Night.

The term-document matrix of Fig. 15.1 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 15.2.

To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,2,37,5] and Julius Caesar
is represented as the list [8,12,1,0]. A vector space is a collection of vectors, char-vector space
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As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36

fool 37 58 1 5
clown 5 117 0 0
Figure 15.1 The term-document matrix for four words in four Shakespeare plays. Each
cell contains the number of times the (row) word occurs in the (column) document.

acterized by their dimension. The ordering of the numbers in a vector space is notdimension

arbitrary; each position indicates a meaningful dimension on which the documents
can vary. Thus the first dimension for both these vectors corresponds to the number
of times the word battle occurs, and we can compare each dimension, noting for
example that the vectors for As You Like It and Twelfth Night have the same value 1
for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36

fool 37 58 1 5
clown 5 117 0 0
Figure 15.2 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as identifying a point in |V |-dimensional
space; thus the documents in Fig. 15.2 are points in 4-dimensional space. Since 4-
dimensional spaces are hard to draw in textbooks, Fig. 15.3 shows a visualization
in two dimensions; we’ve arbitrarily chosen the dimensions corresponding to the
words battle and fool.
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Henry V [5,15]

As You Like It [37,1]

Julius Caesar [1,8]ba
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Twelfth Night [58,1]

15

40
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Figure 15.3 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
like It [1,2,37,5] and Twelfth Night [1,2,58,117] look a lot more like each other (more
fools and clowns than soldiers and battles) than they do like Julius Caesar [8,12,1,0]
or Henry V [15,36,5,0]. We can see the intuition with the raw numbers; in the
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first dimension (battle) the comedies have low numbers and the others have high
numbers, and we can see it visually in Fig. 15.3; we’ll see very shortly how to
quantify this intuition more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix X has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally at least in the tens of thousands,
and the number of documents can be enormous (think about all the pages on the
web).

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors, which is accomplished by making use of the
convenient fact that these vectors are sparse, i.e., mostly zeros). Later in the chapter
we’ll introduce some of the components of this vector comparison process: the tf-idf
term weighting, and the cosine similarity metric.

15.1.2 Words as vectors

We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words, by associating
each word with a vector.

The word vector is now a row vector rather than a column vector, and hencerow vector

the dimensions of the vector are different. The four dimensions of the vector for
fool, [37,58,1,5], correspond to the four Shakespeare plays. The same four dimen-
sions are used to form the vectors for the other 3 words: clown, [5, 117, 0, 0]; bat-
tle, [1,1,8,15]; and soldier [2,2,12,36]. Each entry in the vector thus represents the
counts of the word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-term-term

matrix
word-word

matrix context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |× |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):
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sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Note in Fig. 15.4 that the two words apricot and pineapple are more similar
to each other (both pinch and sugar tend to occur in their window) than they are to
other words like digital; conversely, digital and information are more similar to each
other than, say, to apricot. Fig. 15.5 shows a spatial visualization.
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Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
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of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order
co-occurrence

paradigmatic association) if they have similar neighbors. Thus wrote is a second-
order associate of words like said or remarked.

Now that we have some intuitions, let’s move on to examine the details of com-
puting a vector representation for a word. We’ll begin with one of the most com-
monly used vector representations: PPMI or positive pointwise mutual information.

15.2 Weighing terms: Pointwise Mutual Information (PMI)

The co-occurrence matrix in Fig. 15.4 represented each cell by the raw frequency of
the co-occurrence of two words. It turns out, however, that simple frequency isn’t
the best measure of association between words. One problem is that raw frequency
is very skewed and not very discriminative. If we want to know what kinds of
contexts are shared by apricot and pineapple but not by digital and information,
we’re not going to get good discrimination from words like the, it, or they, which
occur frequently with all sorts of words and aren’t informative about any particular
word.

Instead we’d like context words that are particularly informative about the target
word. The best weighting or measure of association between words should tell us
how much more often than chance the two words co-occur.

Pointwise mutual information is just such a measure. It was proposed by Church
and Hanks (1989) and (Church and Hanks, 1990), based on the notion of mutual
information. The mutual information between two random variables X and Y ismutual

information

I(X ,Y ) =
∑

x

∑
y

P(x,y) log2
P(x,y)

P(x)P(y)
(15.2)

The pointwise mutual information (Fano, 1961)1 is a measure of how often two
pointwise

mutual
information events x and y occur, compared with what we would expect if they were independent:

I(x,y) = log2
P(x,y)

P(x)P(y)
(15.3)

We can apply this intuition to co-occurrence vectors by defining the pointwise
mutual information association between a target word w and a context word c as

PMI(w,c) = log2
P(w,c)

P(w)P(c)
(15.4)

The numerator tells us how often we observed the two words together (assuming
we compute probability by using the MLE). The denominator tells us how often we
would expect the two words to co-occur assuming they each occurred independently,
so their probabilities could just be multiplied. Thus, the ratio gives us an estimate of
how much more the target and feature co-occur than we expect by chance.

PMI values range from negative to positive infinity. But negative PMI values
(which imply things are co-occurring less often than we would expect by chance)
tend to be unreliable unless our corpora are enormous. To distinguish whether two

1 Fano actually used the phrase mutual information to refer to what we now call pointwise mutual infor-
mation and the phrase expectation of the mutual information for what we now call mutual information;
the term mutual information is still often used to mean pointwise mutual information.
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words whose individual probability is each 10−6 occur together more often than
chance, we would need to be certain that the probability of the two occurring to-
gether is significantly different than 10−12, and this kind of granularity would require
an enormous corpus. Furthermore it’s not clear whether it’s even possible to evalu-
ate such scores of ‘unrelatedness’ with human judgments. For this reason it is more
common to use Positive PMI (called PPMI) which replaces all negative PMI valuesPPMI

with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and Nitta 1994)2:

PPMI(w,c) = max(log2
P(w,c)

P(w)P(c)
,0) (15.5)

More formally, let’s assume we have a co-occurrence matrix F with W rows
(words) and C columns (contexts), where fi j gives the number of times word wi
occurs in context c j. This can be turned into a PPMI matrix where ppmii j gives the
PPMI value of word wi with context c j as follows:

pi j =
fi j∑W

i=1
∑C

j=1 fi j
pi∗ =

∑C
j=1 fi j∑W

i=1
∑C

j=1 fi j
p∗ j =

∑W
i=1 fi j∑W

i=1
∑C

j=1 fi j
(15.6)

PPMIi j = max(log2
pi j

pi∗p∗ j
,0) (15.7)

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 15.4 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
6
19

= .316

P(w=information) =
11
19

= .579

P(c=data) =
7

19
= .368

ppmi(information,data) = log2(.316/(.368∗ .579)) = .568

Fig. 15.6 shows the joint probabilities computed from the counts in Fig. 15.4,
and Fig. 15.7 shows the PPMI values.

p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.05 0 0.05 0.11
pineapple 0 0 0.05 0 0.05 0.11

digital 0.11 0.05 0 0.05 0 0.21
information 0.05 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 15.6 Replacing the counts in Fig. 15.4 with joint probabilities, showing the
marginals around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

2 Positive PMI also cleanly solves the problem of what to do with zero counts, using 0 to replace the
−∞ from log(0).
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computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 15.7 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 15.4 again showing five dimensions. Note that the 0
ppmi values are ones that had a negative pmi; for example pmi(information,computer) =
log2(.05/(.16 ∗ .58)) = −0.618, meaning that information and computer co-occur in this
mini-corpus slightly less often than we would expect by chance, and with ppmi we re-
place negative values by zero. Many of the zero ppmi values had a pmi of −∞, like
pmi(apricot,computer) = log2(0/(0.16∗0.11)) = log2(0) =−∞.

events is to slightly change the computation for P(c), using a different function Pα(c)
that raises contexts to the power of α (Levy et al., 2015):

PPMIα(w,c) = max(log2
P(w,c)

P(w)Pα(c)
,0) (15.8)

Pα(c) =
count(c)α∑
c count(c)α

(15.9)

Levy et al. (2015) found that a setting of α = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to α = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pα(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 15.8 Laplace (add-2) smoothing of the counts in Fig. 15.4.

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 15.9 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 15.8.

15.2.1 Alternatives to PPMI for measuring association
While PPMI is quite popular, it is by no means the only measure of association
between two words (or between a word and some other feature). Other common
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measures of association come from information retrieval (tf-idf, Dice) or from hy-
pothesis testing (the t-test, the likelihood-ratio test). In this section we briefly sum-
marize one of each of these types of measures.

Let’s first consider the standard weighting scheme for term-document matrices
in information retrieval, called tf-idf. Tf-idf (this is a hyphen, not a minus sign) istf-idf

the product of two factors. The first is the term frequency (Luhn, 1957): simply theterm frequency

frequency of the word in the document, although we may also use functions of this
frequency like the log frequency.

The second factor is used to give a higher weight to words that occur only in a
few documents. Terms that are limited to a few documents are useful for discrimi-
nating those documents from the rest of the collection; terms that occur frequently
across the entire collection aren’t as helpful. The inverse document frequency or

inverse
document
frequency

IDF term weight (Sparck Jones, 1972) is one way of assigning higher weights toIDF

these more discriminative words. IDF is defined using the fraction N/d fi, where N
is the total number of documents in the collection, and d fi is the number of doc-
uments in which term i occurs. The fewer documents in which a term occurs, the
higher this weight. The lowest weight of 1 is assigned to terms that occur in all
the documents. Because of the large number of documents in many collections, this
measure is usually squashed with a log function. The resulting definition for inverse
document frequency (IDF) is thus

idfi = log
(

N
d fi

)
(15.10)

Combining term frequency with IDF results in a scheme known as tf-idf weight-tf-idf

ing of the value for word i in document j, wi j:

wi j = tfi jidfi (15.11)

Tf-idf thus prefers words that are frequent in the current document j but rare overall
in the collection.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural
language processing including summarization.

Tf-idf, however, is not generally used as a component in measures of word sim-
ilarity; for that PPMI and significance-testing metrics like t-test and likelihood-ratio
are more common. The t-test statistic, like PMI, can be used to measure how mucht-test

more frequent the association is than chance. The t-test statistic computes the differ-
ence between observed and expected means, normalized by the variance. The higher
the value of t, the greater the likelihood that we can reject the null hypothesis that
the observed and expected means are the same.

t =
x̄−µ√

s2

N

(15.12)

When applied to association between words, the null hypothesis is that the two
words are independent, and hence P(a,b) = P(a)P(b) correctly models the relation-
ship between the two words. We want to know how different the actual MLE prob-
ability P(a,b) is from this null hypothesis value, normalized by the variance. The
variance s2 can be approximated by the expected probability P(a)P(b) (see Manning
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and Schütze (1999)). Ignoring N (since it is constant), the resulting t-test association
measure is thus (Curran, 2003):

t-test(a,b) =
P(a,b)−P(a)P(b)√

P(a)P(b)
(15.13)

See the Historical Notes section for a summary of various other weighting factors
for distributional models of meaning.

15.3 Measuring similarity: the cosine

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =

N∑
i=1

viwi = v1w1 + v2w2 + ...+ vNwN (15.14)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v|=

√√√√ N∑
i=1

v2
i (15.15)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosθ

~a ·~b
|~a||~b|

= cosθ (15.16)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine
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as:

cosine(~v,~w) =
~v ·~w
|~v||~w|

=

N∑
i=1

viwi√√√√ N∑
i=1

v2
i

√√√√ N∑
i=1

w2
i

(15.17)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency or PPMI values are non-negative, so the cosine for these vectors
ranges from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0√

4+0+0
√

1+36+1
=

2
2
√

38
= .16

cos(digital, information) =
0+6+2√

0+1+4
√

1+36+1
=

8√
38
√

5
= .58 (15.18)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 15.10 shows a visualization.
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Figure 15.10 A graphical demonstration of the cosine measure of similarity, showing vec-
tors for three words (apricot, digital, and information) in the two dimensional space defined
by counts of the words data and large in the neighborhood. Note that the angle between dig-
ital and information is smaller than the angle between apricot and information. When two
vectors are more similar, the cosine is larger but the angle is smaller; the cosine has its max-
imum (1) when the angle between two vectors is smallest (0◦); the cosine of all other angles
is less than 1.

Fig. 15.11 uses clustering of vectors as a way to visualize what words are most
similar to other ones (Rohde et al., 2006).
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Figure 8: Multidimensional scaling for three noun classes.

WRIST
ANKLE

SHOULDER
ARM
LEG
HAND

FOOT
HEAD
NOSE
FINGER

TOE
FACE
EAR
EYE

TOOTH
DOG
CAT

PUPPY
KITTEN

COW
MOUSE

TURTLE
OYSTER

LION
BULL
CHICAGO
ATLANTA

MONTREAL
NASHVILLE

TOKYO
CHINA
RUSSIA
AFRICA
ASIA
EUROPE
AMERICA

BRAZIL
MOSCOW

FRANCE
HAWAII

Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.

20

Figure 15.11 Using hierarchical clustering to visualize 4 noun classes from the embeddings
produced by Rohde et al. (2006). These embeddings use a window size of ±4, and 14,000
dimensions, with 157 closed-class words removed. Rather than PPMI, these embeddings
compute each cell via the positive correlation (the correlation between word pairs, with neg-
ative values replaced by zero), followed by a square root. This visualization uses hierarchical
clustering, with correlation as the similarity function. From Rohde et al. (2006).

15.3.1 Alternative Similarity Metrics
There are alternatives to the cosine metric for measuring similarity. The JaccardJaccard

(Jaccard 1908, Jaccard 1912) measure, originally designed for binary vectors, was
extended by Grefenstette (1994) to vectors of weighted associations as follows:

simJaccard(~v,~w) =
∑N

i=1 min(vi,wi)∑N
i=1 max(vi,wi)

(15.19)

The numerator of the Grefenstette/Jaccard function uses the min function, es-
sentially computing the (weighted) number of overlapping features (since if either
vector has a zero association value for an attribute, the result will be zero). The
denominator can be viewed as a normalizing factor.

The Dice measure, was similarly extended from binary vectors to vectors ofDice

weighted associations; one extension from Curran (2003) uses the Jaccard numerator
but uses as the denominator normalization factor the total weighted value of non-
zero entries in the two vectors.

simDice(~v,~w) =
2×
∑N

i=1 min(vi,wi)∑N
i=1(vi +wi)

(15.20)

Finally, there is a family of information-theoretic distributional similarity mea-
sures (Pereira et al. 1993, Dagan et al. 1994, Dagan et al. 1999, Lee 1999). The
intuition of these models is that if two vectors, ~v and ~w, each express a probability
distribution (their values sum to one), then they are are similar to the extent that these
probability distributions are similar. The basis of comparing two probability distri-
butions P and Q is the Kullback-Leibler divergence or KL divergence or relativeKL divergence

entropy (Kullback and Leibler, 1951):
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PMI(w, f ) = log2
P(w, f )

P(w)P( f ) (15.4)

t-test(w, f ) = P(w, f )−P(w)P( f )√
P( f )P(w)

(15.13)

cosine(~v,~w) = ~v·~w
|~v||~w| =

∑N
i=1 vi×wi√∑N

i=1 v2
i

√∑N
i=1 w2

i

(15.17)

Jaccard(~v,~w) =
∑N

i=1 min(vi,wi)∑N
i=1 max(vi,wi)

(15.19)

Dice(~v,~w) =
2×

∑N
i=1 min(vi,wi)∑N
i=1(vi+wi)

(15.20)

JS(~v||~w) = D(~v|~v+~w2 )+D(~w|~v+~w2 ) (15.23)

Figure 15.12 Defining word similarity: measures of association between a target word w
and a feature f = (r,w′) to another word w′, and measures of vector similarity between word
co-occurrence vectors~v and ~w.

D(P||Q) =
∑

x

P(x) log
P(x)
Q(x)

(15.21)

Unfortunately, the KL-divergence is undefined when Q(x) = 0 and P(x) 6= 0,
which is a problem since these word-distribution vectors are generally quite sparse.
One alternative (Lee, 1999) is to use the Jensen-Shannon divergence, which repre-

Jensen-
Shannon

divergence
sents the divergence of each distribution from the mean of the two and doesn’t have
this problem with zeros.

JS(P||Q) = D(P|P+Q
2

)+D(Q|P+Q
2

) (15.22)

Rephrased in terms of vectors~v and ~w,

simJS(~v||~w) = D(~v|~v+~w
2

)+D(~w|~v+~w
2

) (15.23)

Figure 15.12 summarizes the measures of association and of vector similarity
that we have designed. See the Historical Notes section for a summary of other
vector similarity measures.

15.4 Using syntax to define a word’s context

Instead of defining a word’s context by nearby words, we could instead define it by
the syntactic relations of these neighboring words. This intuition was first suggested
by Harris (1968), who pointed out the relation between meaning and syntactic com-
binatory possibilities:

The meaning of entities, and the meaning of grammatical relations among
them, is related to the restriction of combinations of these entities rela-
tive to other entities.
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Consider the words duty and responsibility. The similarity between the mean-
ings of these words is mirrored in their syntactic behavior. Both can be modified by
adjectives like additional, administrative, assumed, collective, congressional, con-
stitutional, and both can be the direct objects of verbs like assert, assign, assume,
attend to, avoid, become, breach (Lin and Pantel, 2001).

In other words, we could define the dimensions of our context vector not by the
presence of a word in a window, but by the presence of a word in a particular de-
pendency (or other grammatical relation), an idea first worked out by Hindle (1990).
Since each word can be in a variety of different dependency relations with other
words, we’ll need to augment the feature space. Each feature is now a pairing of
a word and a relation, so instead of a vector of |V | features, we have a vector of
|V |×R features, where R is the number of possible relations. Figure 15.13 shows a
schematic early example of such a vector, taken from Lin (1998a), showing one row
for the word cell. As the value of each attribute we have shown the raw frequency
of the feature co-occurring with cell.
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Figure 15.13 Co-occurrence vector for the word cell, from Lin (1998a), showing gram-
matical function (dependency) features. Values for each attribute are frequency counts from
a 64-million word corpus, parsed by an early version of MINIPAR.

An alternative to augmenting the feature space is to use the dependency paths just
as a way to accumulate feature counts, but continue to have just |V | dimensions of
words. The value for a context word dimension, instead of counting all instances of
that word in the neighborhood of the target word, counts only words in a dependency
relationship with the target word. More complex models count only certain kinds of
dependencies, or weigh the counts based on the length of the dependency path (Padó
and Lapata, 2007). And of course we can use PPMI or other weighting schemes to
weight the elements of these vectors rather than raw frequency.

15.5 Evaluating Vector Models

Of course the most important evaluation metric for vector models is extrinsic eval-
uation on tasks; adding them as features into any NLP task and seeing whether this
improves performance.

Nonetheless it is useful to have intrinsic evaluations. The most common met-
ric is to test their performance on similarity, and in particular on computing the
correlation between an algorithm’s word similarity scores and word similarity rat-
ings assigned by humans. The various sets of human judgments are the same as we
described in Chapter 17 for thesaurus-based similarity, summarized here for conve-
nience. WordSim-353 (Finkelstein et al., 2002) is a commonly used set of of ratings
from 0 to 10 for 353 noun pairs; for example (plane, car) had an average score of
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5.77. SimLex-999 (Hill et al., 2015) is a more difficult dataset that quantifies sim-
ilarity (cup, mug) rather than relatedness (cup, coffee), and including both concrete
and abstract adjective, noun and verb pairs. The TOEFL dataset is a set of 80 ques-
tions, each consisting of a target word with 4 additional word choices; the task is to
choose which is the correct synonym, as in the example: Levied is closest in mean-
ing to: imposed, believed, requested, correlated (Landauer and Dumais, 1997). All
of these datasets present words without context.

Slightly more realistic are intrinsic similarity tasks that include context. The
Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) offers a
richer evaluation scenario, giving human judgments on 2,003 pairs of words in their
sentential context, including nouns, verbs, and adjectives. This dataset enables the
evaluation of word similarity algorithms that can make use of context words. The
semantic textual similarity task (Agirre et al. 2012, Agirre et al. 2015) evaluates the
performance of sentence-level similarity algorithms, consisting of a set of pairs of
sentences, each pair with human-labeled similarity scores.

Another task used for evaluate is an analogy task, where the system has to solve
problems of the form a is to b as c is to d, given a, b, and c and having to find d.
The system is given two words that participate in a relation (for example Athens and
Greece, which participate in the capital relation) and a word like Oslo and must find
the word Norway. Or more syntactically-oriented examples: given mouse, mice, and
dollar the system must return dollars. Large sets of such tuples have been created
(Mikolov et al. 2013, Mikolov et al. 2013b).

15.6 Summary

• The term-document matrix, first created for information retrieval, has rows
for each word (term) in the vocabulary and a column for each document. The
cell specify the count of that term in the document.

• The word-context (or word-word, or term-term) matrix has a row for each
(target) word in the vocabulary and a column for each context term in the
vocabulary. Each cell indicates the number of times the context term occurs
in a window (of a specified size) around the target word in a corpus.

• A common weighting for the Instead of using the raw word word co-occurrence
matrix, it is often weighted. A common weighting is positive pointwise mu-
tual information or PPMI.

• Alternative weightings are tf-idf, used for information retrieval task, and significance-
based methods like t-test.

• PPMI and other versions of the word-word matrix can be viewed as offering
high-dimensional, sparse (most values are 0) vector representations of words.

• The cosine of two vectors is a common function used for word similarity.

Bibliographical and Historical Notes
Models of distributional word similarity arose out of research in linguistics and psy-
chology of the 1950s. The idea that meaning was related to distribution of words
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in context was widespread in linguistic theory of the 1950s; even before the well-
known Firth (1957) and Harris (1968) dictums discussed earlier, Joos (1950) stated
that

the linguist’s “meaning” of a morpheme. . . is by definition the set of conditional
probabilities of its occurrence in context with all other morphemes.

The related idea that the meaning of a word could be modeled as a point in a
Euclidean space and that the similarity of meaning between two words could be
modeled as the distance between these points was proposed in psychology by Os-
good et al. (1957).

The application of these ideas in a computational framework was first made by
Sparck Jones (1986) and became a core principle of information retrieval, whence it
came into broader use in language processing.

The idea of defining words by a vector of discrete features has a venerable history
in our field, with roots at least as far back Descartes and Leibniz (Wierzbicka 1992,
Wierzbicka 1996). By the middle of the 20th century, beginning with the work of
Hjelmslev (Hjelmslev, 1969) and fleshed out in early models of generative grammar
(Katz and Fodor, 1963), the idea arose of representing meaning with semantic fea-
tures, symbols that represent some sort of primitive meaning. For example wordssemantic

feature
like hen, rooster, or chick, have something in common (they all describe chickens)
and something different (their age and sex), representable as:

hen +female, +chicken, +adult

rooster -female, +chicken, +adult

chick +chicken, -adult

The dimensions used by vector models of meaning to define words are only ab-
stractly related to these small fixed number of hand-built dimensions. Nonetheless,
there has been some attempt to show that certain dimensions of embedding mod-
els do contribute some specific compositional aspect of meaning like these early
semantic features.

Turney and Pantel (2010) is an excellent and comprehensive survey of vector
semantics.

There are a wide variety of other weightings and methods for word similarity.
The largest class of methods not discussed in this chapter are the variants to and
details of the information-theoretic methods like Jensen-Shannon divergence, KL-
divergence and α-skew divergence that we briefly introduced (Pereira et al. 1993,
Dagan et al. 1994, Dagan et al. 1999, Lee 1999, Lee 2001). Manning and Schütze
(1999, Chapters 5 and 8) give collocation measures and other related similarity mea-
sures.

Exercises
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CHAPTER

16 Semantics with Dense Vectors

In the previous chapter we saw how to represent a word as a sparse vector with
dimensions corresponding to the words in the vocabulary, and whose values were
some function of the count of the word co-occurring with each neighboring word.
Each word is thus represented with a vector that is both long (length |V |, with vo-
cabularies of 20,000 to 50,000) and sparse, with most elements of the vector for
each word equal to zero.

In this chapter we turn to an alternative family of methods of representing a
word: the use of vectors that are short (of length perhaps 50-1000) and dense (most
values are non-zero).

Short vectors have a number of potential advantages. First, they are easier
to include as features in machine learning systems; for example if we use 100-
dimensional word embeddings as features, a classifier can just learn 100 weights to
represent a function of word meaning, instead of having to learn tens of thousands of
weights for each of the sparse dimensions. Because they contain fewer parameters
than sparse vectors of explicit counts, dense vectors may generalize better and help
avoid overfitting. And dense vectors may do a better job of capturing synonymy
than sparse vectors. For example, car and automobile are synonyms; but in a typical
sparse vectors representation, the car dimension and the automobile dimension are
distinct dimensions. Because the relationship between these two dimensions is not
modeled, sparse vectors may fail to capture the similarity between a word with car
as a neighbor and a word with automobile as a neighbor.

We will introduce three methods of generating very dense, short vectors: (1)
using dimensionality reduction methods like SVD, (2) using neural nets like the
popular skip-gram or CBOW approaches. (3) a quite different approach based on
neighboring words called Brown clustering.

16.1 Dense Vectors via SVD

We begin with a classic method for generating dense vectors: singular value de-
composition, or SVD, first applied to the task of generating embeddings from term-SVD

document matrices by Deerwester et al. (1988) in a model called Latent Semantic
Indexing or Latent Semantic Analysis (LSA).

Latent
Semantic
Analysis

Singular Value Decomposition (SVD) is a method for finding the most important
dimensions of a data set, those dimensions along which the data varies the most. It
can be applied to any rectangular matrix. SVD is part of a family of methods that can
approximate an N-dimensional dataset using fewer dimensions, including Principle
Components Analysis (PCA), Factor Analysis, and so on.

In general, dimensionality reduction methods first rotate the axes of the original
dataset into a new space. The new space is chosen so that the highest order dimen-
sion captures the most variance in the original dataset, the next dimension captures
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the next most variance, and so on. Fig. 16.1 shows a visualization. A set of points
(vectors) in two dimensions is rotated so that the first new dimension captures the
most variation in the data. In this new space, we can represent data with a smaller
number of dimensions (for example using one dimension instead of two) and still
capture much of the variation in the original data.
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Figure 16.1 Visualizing principle components analysis: Given original data (a) find the rotation of the data
(b) such that the first dimension captures the most variation, and the second dimension is the one orthogonal to
the first that captures the next most variation. Use this new rotated space (c) to represent each point on a single
dimension (d). While some information about the relationship between the original points is necessarily lost,
the remaining dimension preserves the most that any one dimension could.

16.1.1 Latent Semantic Analysis
The use of SVD as a way to reduce large sparse vector spaces for word meaning,
like the vector space model itself, was first applied in the context of information
retrieval, briefly called latent semantic indexing (LSI) (Deerwester et al., 1988) but
most frequently referred to as LSA (latent semantic analysis) (Deerwester et al.,LSA

1990).
LSA is a particular application of SVD to a |V | × c term-document matrix X

representing |V | words and their co-occurrence with c documents or contexts. SVD
factorizes any such rectangular |V |× c matrix X into the product of three matrices
W , Σ, and CT . In the |V |×m matrix W , each of the w rows still represents a word,
but the columns do not; each column now represents one of m dimensions in a latent
space, such that the m column vectors are orthogonal to each other and the columns
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are ordered by the amount of variance in the original dataset each accounts for. The
number of such dimensions m is the rank of X (the rank of a matrix is the number
of linearly independent rows). Σ is a diagonal m×m matrix, with singular values
along the diagonal, expressing the importance of each dimension. The m× c matrix
CT still represents documents or contexts, but each row now represents one of the
new latent dimensions and the m row vectors are orthogonal to each other.

By using only the first k dimensions, of W, Σ, and C instead of all m dimensions,
the product of these 3 matrices becomes a least-squares approximation to the orig-
inal X . Since the first dimensions encode the most variance, one way to view the
reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
X


|V |× c

=


W


|V |×m


σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . σm


m×m

 C


m× c

Taking only the top k,k ≤ m dimensions after the SVD is applied to the co-
occurrence matrix X:

X


|V |× c

=


Wk


|V |× k


σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . σk


k× k

[
C

]
k× c

Figure 16.2 SVD factors a matrix X into a product of three matrices, W, Σ, and C. Taking
the first k dimensions gives a |V |×k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values) leads to a reduced |V |×k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original X .

LSA embeddings generally set k=300, so these embeddings are relatively short
by comparison to other dense embeddings.

Instead of PPMI or tf-idf weighting on the original term-document matrix, LSA
implementations generally use a particular weighting of each co-occurrence cell that
multiplies two weights called the local and global weights for each cell (i, j)—term
i in document j. The local weight of each term i is its log frequency: log f (i, j)+1

The global weight of term i is a version of its entropy: 1+
∑

j p(i, j) log p(i, j)
logD , where D
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is the number of documents.
LSA has also been proposed as a cognitive model for human language use (Lan-

dauer and Dumais, 1997) and applied to a wide variety of NLP applications; see the
end of the chapter for details.

16.1.2 SVD applied to word-context matrices
Rather than applying SVD to the term-document matrix (as in the LSA algorithm
of the previous section), an alternative that is widely practiced is to apply SVD to
the word-word or word-context matrix. In this version the context dimensions are
words rather than documents, an idea first proposed by Schütze (1992b).

The mathematics is identical to what is described in Fig. 16.2: SVD factorizes
the word-context matrix X into three matrices W , Σ, and CT . The only difference
is that we are starting from a PPMI-weighted word-word matrix, instead of a term-
document matrix.

Once again only the top k dimensions are retained (corresponding to the k most
important singular values), leading to a reduced |V | × k matrix Wk, with one k-
dimensioned row per word. Just as with LSA, this row acts as a dense k-dimensional
vector (embedding) representing that word. The other matrices (Σ and C) are simply
thrown away. 1

This use of just the top dimensions, whether for a term-document matrix like
LSA, or for a term-term matrix, is called truncated SVD. Truncated SVD is pa-truncated SVD

rameterized by k, the number of dimensions in the representation for each word,
typically ranging from 500 to 5000. Thus SVD run on term-context matrices tends
to use many more dimensions than the 300-dimensional embeddings produced by
LSA. This difference presumably has something to do with the difference in granu-
larity; LSA counts for words are much coarser-grained, counting the co-occurrences
in an entire document, while word-context PPMI matrices count words in a small
window. Generally the dimensions we keep are the highest-order dimensions, al-
though for some tasks, it helps to throw out a small number of the most high-order
dimensions, such as the first 1 or even the first 50 (Lapesa and Evert, 2014).

Fig. 16.3 shows a high-level sketch of the entire SVD process. The dense em-
beddings produced by SVD sometimes perform better than the raw PPMI matrices
on semantic tasks like word similarity. Various aspects of the dimensionality reduc-
tion seem to be contributing to the increased performance. If low-order dimensions
represent unimportant information, the truncated SVD may be acting to removing
noise. By removing parameters, the truncation may also help the models generalize
better to unseen data. When using vectors in NLP tasks, having a smaller number of
dimensions may make it easier for machine learning classifiers to properly weight
the dimensions for the task. And as mentioned above, the models may do better at
capturing higher order co-occurrence.

Nonetheless, there is a significant computational cost for the SVD for a large co-
occurrence matrix, and performance is not always better than using the full sparse
PPMI vectors, so for many applications the sparse vectors are the right approach.
Alternatively, the neural embeddings we discuss in the next section provide a popular
efficient solution to generating dense embeddings.

1 Some early systems weighted Wk by the singular values, using the product Wk ·Σk as an embedding
instead of just the matrix Wk , but this weighting leads to significantly worse embeddings and is not
generally used (Levy et al., 2015).



290 CHAPTER 16 • SEMANTICS WITH DENSE VECTORS

X W
Σ C

=

w ⨉ c w ⨉ m

m ⨉ m m ⨉ c

W
Σ C

w ⨉ m

m ⨉ m m ⨉ c

k

k k k

1) SVD

2) Truncation:

3) Embeddings:

w ⨉ k

1…….k

1
2
.
.
i
.
w

embedding for word i:

Wk

≈

Σ C

word-word 
PPMI matrix

Figure 16.3 Sketching the use of SVD to produce a dense embedding of dimensionality k
from a sparse PPMI matrix of dimensionality c. The SVD is used to factorize the word-word
PPMI matrix into a W , Σ, and C matrix. The Σ and C matrices are discarded, and the W matrix
is truncated giving a matrix of k-dimensionality embedding vectors for each word.

16.2 Embeddings from prediction: Skip-gram and CBOW

A second method for generating dense embeddings draws its inspiration from the
neural network models used for language modeling. Recall from Chapter 8 that
neural network language models are given a word and predict context words. This
prediction process can be used to learn embeddings for each target word. The intu-
ition is that words with similar meanings often occur near each other in texts. The
neural models therefore learn an embedding by starting with a random vector and
then iteratively shifting a word’s embeddings to be more like the embeddings of
neighboring words, and less like the embeddings of words that don’t occur nearby.

Although the metaphor for this architecture comes from word prediction, we’ll
see that the process for learning these neural embeddings actually has a strong re-
lationship to PMI co-occurrence matrices, SVD factorization, and dot-product simi-
larity metrics.

The most popular family of methods is referred to as word2vec, after the soft-word2vec

ware package that implements two methods for generating dense embeddings: skip-
gram and CBOW (continuous bag of words) (Mikolov et al. 2013, Mikolov et al. 2013a).skip-gram

CBOW Like the neural language models, the word2vec models learn embeddings by training
a network to predict neighboring words. But in this case the prediction task is not the
main goal; words that are semantically similar often occur near each other in text,
and so embeddings that are good at predicting neighboring words are also good at
representing similarity. The advantage of the word2vec methods is that they are fast,
efficient to train, and easily available online with code and pretrained embeddings.

We’ll begin with the skip-gram model. Like the SVD model in the previous
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section, the skip-gram model actually learns two separate embeddings for each word
w: the word embedding v and the context embedding c. These embeddings areword

embedding
context

embedding encoded in two matrices, the word matrix W and the context matrix C. We’ll
discuss in Section 16.2.1 how W and C are learned, but let’s first see how they
are used. Each row i of the word matrix W is the 1× d vector embedding vi for
word i in the vocabulary. Each column i of the context matrix C is a d× 1 vector
embedding ci for word i in the vocabulary. In principle, the word matrix and the
context matrix could use different vocabularies Vw and Vc. For the remainder of
the chapter, however we’ll simplify by assuming the two matrices share the same
vocabulary, which we’ll just call V .

Let’s consider the prediction task. We are walking through a corpus of length T
and currently pointing at the tth word w(t), whose index in the vocabulary is j, so
we’ll call it w j (1< j < |V |). The skip-gram model predicts each neighboring word
in a context window of 2L words from the current word. So for a context window
L = 2 the context is [wt−2,wt−1,wt+1,wt+2] and we are predicting each of these from
word w j. But let’s simplify for a moment and imagine just predicting one of the 2L
context words, for example w(t+1), whose index in the vocabulary is k (1< k< |V |).
Hence our task is to compute P(wk|w j).

The heart of the skip-gram computation of the probability p(wk|w j) is comput-
ing the dot product between the vectors for wk and w j, the context vector for wk and
the target vector for w j. For simplicity, we’ll represent this dot product as ck · v j,
(although more correctly, it should be cᵀk v j), where ck is the context vector of word k
and v j is the target vector for word j. As we saw in the previous chapter, the higher
the dot product between two vectors, the more similar they are. (That was the intu-
ition of using the cosine as a similarity metric, since cosine is just a normalized dot
product). Fig. 16.4 shows the intuition that the similarity function requires selecting
out a target vector v j from W , and a context vector ck from C.

W
1.2……k………|V|

1
.
.
.
d

context embedding
for word k

C

1
.
.
j
.
.

|V|

1. ..    …   d
target embeddings context embeddings

Similarity( j , k)

target embedding
for word j

Figure 16.4

Of course, the dot product ck · v j is not a probability, it’s just a number ranging
from−∞ to ∞. We can use the softmax function from Chapter 7 to normalize the dot
product into probabilities. Computing this denominator requires computing the dot
product between each other word w in the vocabulary with the target word wi:

p(wk|w j) =
exp(ck · v j)∑

i∈|V | exp(ci · v j)
(16.1)

In summary, the skip-gram computes the probability p(wk|w j) by taking the dot
product between the word vector for j (v j) and the context vector for k (ck), and
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turning this dot product v j · ck into a probability by passing it through a softmax
function.

This version of the algorithm, however, has a problem: the time it takes to com-
pute the denominator. For each word wt , the denominator requires computing the
dot product with all other words. As we’ll see in the next section, we generally solve
this by using an approximation of the denominator.

CBOW The CBOW (continuous bag of words) model is roughly the mirror im-
age of the skip-gram model. Like skip-grams, it is based on a predictive model,
but this time predicting the current word wt from the context window of 2L words
around it, e.g. for L = 2 the context is [wt−2,wt−1,wt+1,wt+2]

While CBOW and skip-gram are similar algorithms and produce similar embed-
dings, they do have slightly different behavior, and often one of them will turn out
to be the better choice for any particular task.

16.2.1 Learning the word and context embeddings
We already mentioned the intuition for learning the word embedding matrix W and
the context embedding matrix C: iteratively make the embeddings for a word more
like the embeddings of its neighbors and less like the embeddings of other words.

In the version of the prediction algorithm suggested in the previous section, the
probability of a word is computed by normalizing the dot-product between a word
and each context word by the dot products for all words. This probability is opti-
mized when a word’s vector is closest to the words that occur near it (the numerator),
and further from every other word (the denominator). Such a version of the algo-
rithm is very expensive; we need to compute a whole lot of dot products to make the
denominator.

Instead, the most commonly used version of skip-gram, skip-gram with negative
sampling, approximates this full denominator.

This section offers a brief sketch of how this works. In the training phase, the
algorithm walks through the corpus, at each target word choosing the surrounding
context words as positive examples, and for each positive example also choosing k
noise samples or negative samples: non-neighbor words. The goal will be to movenegative

samples
the embeddings toward the neighbor words and away from the noise words.

For example, in walking through the example text below we come to the word
apricot, and let L = 2 so we have 4 context words c1 through c4:

lemon, a [tablespoon of apricot preserves or] jam

c1 c2 w c3 c4

The goal is to learn an embedding whose dot product with each context word
is high. In practice skip-gram uses a sigmoid function σ of the dot product, where
σ(x) = 1

1+e−x . So for the above example we want σ(c1 ·w)+σ(c2 ·w)+σ(c3 ·w)+
σ(c4 ·w) to be high.

In addition, for each context word the algorithm chooses k random noise words
according to their unigram frequency. If we let k = 2, for each target/context pair,
we’ll have 2 noise words for each of the 4 context words:

[cement metaphysical dear coaxial apricot attendant whence forever puddle]

n1 n2 n3 n4 n5 n6 n7 n8

We’d like these noise words n to have a low dot-product with our target embed-
ding w; in other words we want σ(n1 ·w)+σ(n2 ·w)+ ...+σ(n8 ·w) to be low.
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More formally, the learning objective for one word/context pair (w,c) is

logσ(c ·w)+
k∑

i=1

Ewi∼p(w) [logσ(−wi ·w)] (16.2)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words. The noise words wi are sampled from the vocabulary V according
to their weighted unigram probability; in practice rather than p(w) it is common to
use the weighting p

3
4 (w).

The learning algorithm starts with randomly initialized W and C matrices, and
then walks through the training corpus moving W and C so as to maximize the objec-
tive in Eq. 16.2. An algorithm like stochastic gradient descent is used to iteratively
shift each value so as to maximize the objective, using error backpropagation to
propagate the gradient back through the network as described in Chapter 8 (Mikolov
et al., 2013a).

In summary, the learning objective in Eq. 16.2 is not the same as the p(wk|w j)
defined in Eq. 16.3. Nonetheless, although negative sampling is a different objective
than the probability objective, and so the resulting dot products will not produce
optimal predictions of upcoming words, it seems to produce good embeddings, and
that’s the goal we care about.

Visualizing the network Using error backpropagation requires that we envision
the selection of the two vectors from the W and C matrices as a network that we can
propagate backwards across. Fig. 16.5 shows a simplified visualization of the model;
we’ve simplified to predict a single context word rather than 2L context words, and
simplified to show the softmax over the entire vocabulary rather than just the k noise
words.

Input layer Projection layer Output layer

wt wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt
probabilities of
context words

C  d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

W
|V|⨉d

1⨉|V|

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov
et al. 2013a).

It’s worth taking a moment to envision how the network is computing the same
probability as the dot product version we described above. In the network of Fig. 16.5,
we begin with an input vector x, which is a one-hot vector for the current word w j.one-hot

A one-hot vector is just a vector that has one element equal to 1, and all the other
elements are set to zero. Thus in a one-hot representation for the word w j, x j = 1,
and xi = 0 ∀i 6= j, as shown in Fig. 16.6.
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0 0 0 0 0 … 0 0 0 0 1 0 0 0 0 0 … 0 0 0 0

w0 wj w|V|w1

Figure 16.6 A one-hot vector, with the dimension corresponding to word w j set to 1.

We then predict the probability of each of the 2L output words—in Fig. 16.5 that
means the one output word wt+1— in 3 steps:

1. Select the embedding from W: x is multiplied by W , the input matrix, to give
the hidden or projection layer. Since each row of the input matrix W is justprojection layer

an embedding for word wt , and the input is a one-hot columnvector for w j, the
projection layer for input x will be h =W ∗w j = v j, the input embedding for
w j.

2. Compute the dot product ck · v j: For each of the 2L context words we now
multiply the projection vector h by the context matrix C. The result for each
context word, o =Ch, is a 1×|V | dimensional output vector giving a score for
each of the |V | vocabulary words. In doing so, the element ok was computed
by multiplying h by the output embedding for word wk: ok = ck ·h = ck · v j.

3. Normalize the dot products into probabilities: For each context word we
normalize this vector of dot product scores, turning each score element ok into
a probability by using the soft-max function:

p(wk|w j) = yk =
exp(ck · v j)∑

i∈|V | exp(ci · v j)
(16.3)

16.2.2 Relationship between different kinds of embeddings
There is an interesting relationship between skip-grams, SVD/LSA, and PPMI. If
we multiply the two context matrices WC, we produce a |V | × |V | matrix X , each
entry xi j corresponding to some association between input word i and context word
j. Levy and Goldberg (2014b) prove that skip-gram’s optimal value occurs when
this learned matrix is actually a version of the PMI matrix, with the values shifted
by logk (where k is the number of negative samples in the skip-gram with negative
sampling algorithm):

WC = XPMI− logk (16.4)

In other words, skip-gram is implicitly factorizing a (shifted version of the) PMI
matrix into the two embedding matrices W and C, just as SVD did, albeit with a
different kind of factorization. See Levy and Goldberg (2014b) for more details.

Once the embeddings are learned, we’ll have two embeddings for each word wi:
vi and ci. We can choose to throw away the C matrix and just keep W , as we did
with SVD, in which case each word i will be represented by the vector vi.

Alternatively we can add the two embeddings together, using the summed em-
bedding vi + ci as the new d-dimensional embedding, or we can concatenate them
into an embedding of dimensionality 2d.

As with the simple count-based methods like PPMI, the context window size
L effects the performance of skip-gram embeddings, and experiments often tune
the parameter L on a dev set. As with PPMI, window sizing leads to qualitative
differences: smaller windows capture more syntactic information, larger ones more
semantic and relational information. One difference from the count-based methods
is that for skip-grams, the larger the window size the more computation the algorithm
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requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

16.3 Properties of embeddings

We’ll discuss in Section 15.5 how to evaluate the quality of different embeddings.
But it is also sometimes helpful to visualize them. Fig. 16.7 shows the words/phrases
that are most similar to some sample words using the phrase-based version of the
skip-gram algorithm (Mikolov et al., 2013a).

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts graffiti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Figure 16.7 Examples of the closest tokens to some target words using a phrase-based
extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their
usefulness is their ability to capture relational meanings

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings
can capture some relations between words, for example that the result of the ex-
pression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vec-
tor(‘queen’); the left panel in Fig. 16.8 visualizes this by projecting a representation
down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’)
- vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vec-
tor(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of em-
beddings also seem to have this property.

Figure 16.8 Vector offsets showing relational properties of the vector space, shown by pro-
jecting vectors onto two dimensions using PCA. In the left panel, ’king’ - ’man’ + ’woman’
is close to ’queen’. In the right, we see the way offsets seem to capture grammatical number
(Mikolov et al., 2013b).

16.4 Brown Clustering

Brown clustering (Brown et al., 1992) is an agglomerative clustering algorithm forBrown
clustering
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deriving vector representations of words by clustering words based on their associa-
tions with the preceding or following words.

The algorithm makes use of the class-based language model (Brown et al.,class-based
language model

1992), a model in which each word w∈V belongs to a class c∈C with a probability
P(w|c). Class based LMs assigns a probability to a pair of words wi−1 and wi by
modeling the transition between classes rather than between words:

P(wi|wi−1) = P(ci|ci−1)P(wi|ci) (16.5)

The class-based LM can be used to assign a probability to an entire corpus given
a particularly clustering C as follows:

P(corpus|C) =

n∏
i−1

P(ci|ci−1)P(wi|ci) (16.6)

Class-based language models are generally not used as a language model for ap-
plications like machine translation or speech recognition because they don’t work
as well as standard n-grams or neural language models. But they are an important
component in Brown clustering.

Brown clustering is a hierarchical clustering algorithm. Let’s consider a naive
(albeit inefficient) version of the algorithm:

1. Each word is initially assigned to its own cluster.
2. We now consider consider merging each pair of clusters. The pair whose

merger results in the smallest decrease in the likelihood of the corpus (accord-
ing to the class-based language model) is merged.

3. Clustering proceeds until all words are in one big cluster.

Two words are thus most likely to be clustered if they have similar probabilities
for preceding and following words, leading to more coherent clusters. The result is
that words will be merged if they are contextually similar.

By tracing the order in which clusters are merged, the model builds a binary tree
from bottom to top, in which the leaves are the words in the vocabulary, and each
intermediate node in the tree represents the cluster that is formed by merging its
children. Fig. 16.9 shows a schematic view of a part of a tree.Brown Algorithm

• Words merged according to contextual 
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of 
the clustering

011

president

walk
run sprint

chairman
CEO November October

0 1
00 01

00110010
001

10 11
000 100 101010

Figure 16.9 Brown clustering as a binary tree. A full binary string represents a word; each
binary prefix represents a larger class to which the word belongs and can be used as a vector
representation for the word. After Koo et al. (2008).

After clustering, a word can be represented by the binary string that corresponds
to its path from the root node; 0 for left, 1 for right, at each choice point in the binary
tree. For example in Fig. 16.9, the word chairman is the vector 0010 and October
is 011. Since Brown clustering is a hard clustering algorithm (each word has onlyhard clustering

one cluster), there is just one string per word.
Now we can extract useful features by taking the binary prefixes of this bit string;

each prefix represents a cluster to which the word belongs. For example the string 01
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in the figure represents the cluster of month names {November, October}, the string
0001 the names of common nouns for corporate executives {chairman, president},
1 is verbs {run, sprint, walk}, and 0 is nouns. These prefixes can then be used
as a vector representation for the word; the shorter the prefix, the more abstract
the cluster. The length of the vector representation can thus be adjusted to fit the
needs of the particular task. Koo et al. (2008) improving parsing by using multiple
features: a 4-6 bit prefix to capture part of speech information and a full bit string to
represent words. Spitkovsky et al. (2011) shows that vectors made of the first 8 or
9-bits of a Brown clustering perform well at grammar induction. Because they are
based on immediately neighboring words, Brown clusters are most commonly used
for representing the syntactic properties of words, and hence are commonly used as
a feature in parsers. Nonetheless, the clusters do represent some semantic properties
as well. Fig. 16.10 shows some examples from a large clustering from Brown et al.
(1992).

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody
had hadn’t hath would’ve could’ve should’ve must’ve might’ve
asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle
great big vast sudden mere sheer gigantic lifelong scant colossal
down backwards ashore sideways southward northward overboard aloft downwards adrift
Figure 16.10 Some sample Brown clusters from a 260,741-word vocabulary trained on 366
million words of running text (Brown et al., 1992). Note the mixed syntactic-semantic nature
of the clusters.

Note that the naive version of the Brown clustering algorithm described above is
extremely inefficient — O(n5): at each of n iterations, the algorithm considers each
of n2 merges, and for each merge, compute the value of the clustering by summing
over n2 terms. because it has to consider every possible pair of merges. In practice
we use more efficient O(n3) algorithms that use tables to pre-compute the values for
each merge (Brown et al. 1992, Liang 2005).

16.5 Summary

• Singular Value Decomposition (SVD) is a dimensionality technique that can
be used to create lower-dimensional embeddings from a full term-term or
term-document matrix.

• Latent Semantic Analysis is an application of SVD to the term-document
matrix, using particular weightings and resulting in embeddings of about 300
dimensions.

• Two algorithms inspired by neural language models, skip-gram and CBOW,
are popular efficient ways to compute embeddings. They learn embeddings (in
a way initially inspired from the neural word prediction literature) by finding
embeddings that have a high dot-product with neighboring words and a low
dot-product with noise words.

• Brown clustering is a method of grouping words into clusters based on their
relationship with the preceding and following words. Brown clusters can be
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used to create bit-vectors for a word that can function as a syntactic represen-
tation.

Bibliographical and Historical Notes

The use of SVD as a way to reduce large sparse vector spaces for word meaning, like
the vector space model itself, was first applied in the context of information retrieval,
briefly as latent semantic indexing (LSI) (Deerwester et al., 1988) and then after-
wards as LSA (latent semantic analysis) (Deerwester et al., 1990). LSA was based
on applying SVD to the term-document matrix (each cell weighted by log frequency
and normalized by entropy), and then using generally the top 300 dimensions as the
embedding. Landauer and Dumais (1997) summarizes LSA as a cognitive model.
LSA was then quickly applied to a wide variety of NLP applications: spell check-
ing (Jones and Martin, 1997), language modeling (Bellegarda 1997, Coccaro and
Jurafsky 1998, Bellegarda 2000) morphology induction (Schone and Jurafsky 2000,
Schone and Jurafsky 2001), and essay grading (Rehder et al., 1998).

The idea of SVD on the term-term matrix (rather than the term-document matrix)
as a model of meaning for NLP was proposed soon after LSA by Schütze (1992b).
Schütze applied the low-rank (97-dimensional) embeddings produced by SVD to the
task of word sense disambiguation, analyzed the resulting semantic space, and also
suggested possible techniques like dropping high-order dimensions. See Schütze
(1997a).

A number of alternative matrix models followed on from the early SVD work,
including Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999) Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). Nonnegative Matrix Factorization
(NMF) (Lee and Seung, 1999).

Neural networks were used as a tool for language modeling by Bengio et al.
(2003a) and Bengio et al. (2006), and extended to recurrent net language models in
Mikolov et al. (2011). Collobert and Weston (2007), Collobert and Weston (2008),
and Collobert et al. (2011) is a very influential line of work demonstrating that em-
beddings could play a role as the first representation layer for representing word
meanings for a number of NLP tasks. (Turian et al., 2010) compared the value of
different kinds of embeddings for different NLP tasks. The idea of simplifying the
hidden layer of these neural net language models to create the skip-gram and CBOW
algorithms was proposed by Mikolov et al. (2013). The negative sampling training
algorithm was proposed in Mikolov et al. (2013a). Both algorithms were made avail-
able in the word2vec package, and the resulting embeddings widely used in many
applications.

The development of models of embeddings is an active research area, with new
models including GloVe (Pennington et al., 2014) (based on ratios of probabilities
from the word-word co-occurrence matrix), or sparse embeddings based on non-
negative matrix factorization (Fyshe et al., 2015). Many survey experiments have ex-
plored the parameterizations of different kinds of vector space embeddings and their
parameterizations, including sparse and dense vectors, and count-based and predict-
based models (Dagan 2000, ?, Curran 2003, Bullinaria and Levy 2007, Bullinaria
and Levy 2012, Lapesa and Evert 2014, Kiela and Clark 2014, Levy et al. 2015).
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CHAPTER

17 Computing with Word Senses

“When I use a word”, Humpty Dumpty said in rather a scornful
tone, “it means just what I choose it to mean – neither more nor less.”

Lewis Carroll, Alice in Wonderland

The previous two chapters focused on meaning representations for entire sentences.
In those discussions, we made a simplifying assumption by representing word mean-
ings as unanalyzed symbols like EAT or JOHN or RED. But representing the meaning
of a word by capitalizing it is a pretty unsatisfactory model. In this chapter we in-
troduce a richer model of the semantics of words, drawing on the linguistic study of
word meaning, a field called lexical semantics, as well as the computational studylexical

semantics
of these meanings, known as computational lexical semantics.

In representing word meaning, we’ll begin with the lemma or citation formlemma

citation form which we said in Chapter 4 is the grammatical form of a word that is used to repre-
sent a word in dictionaries and thesaurus. Thus carpet is the lemma for carpets, and
sing the lemma for sing, sang, sung. In many languages the infinitive form is used as
the lemma for the verb, so Spanish dormir “to sleep” is the lemma for duermes “you
sleep”. The specific forms sung or carpets or sing or duermes are called wordforms.wordform

But a lemma can still have many different meanings. The lemma bank can re-
fer to a financial institution or to the sloping side of a river. We call each of these
aspects of the meaning of bank a word sense. The fact that lemmas can be homony-
mous (have multiple senses) causes all sorts of problems in text processing. Word
sense disambiguation is the task of determining which sense of a word is beingword sense

disambiguation
used in a particular context, a task with a long history in computational linguistics
and applications tasks from machine translation to question answering. We give a
number of algorithms for using features from the context for deciding which sense
was intended in a particular context.

We’ll also introduce WordNet, a widely-used thesaurus for representing word
senses themselves and for representing relations between senses, like the IS-A re-
lation between dog and mammal or the part-whole relationship between car and
engine. Finally, we’ll introduce the task of computing word similarity and show
how a sense-based thesaurus like WordNet can be used to decide whether two words
have a similar meaning.

17.1 Word Senses

Consider the two uses of the lemma bank mentioned above, meaning something like
“financial institution” and “sloping mound”, respectively:

(17.1) Instead, a bank can hold the investments in a custodial account in the
client’s name.

(17.2) But as agriculture burgeons on the east bank, the river will shrink even more.
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We represent this variation in usage by saying that the lemma bank has two
senses.1 A sense (or word sense) is a discrete representation of one aspect of theword sense

meaning of a word. Loosely following lexicographic tradition, we represent each
sense by placing a superscript on the orthographic form of the lemma as in bank1

and bank2.
The senses of a word might not have any particular relation between them; it

may be almost coincidental that they share an orthographic form. For example, the
financial institution and sloping mound senses of bank seem relatively unrelated.
In such cases we say that the two senses are homonyms, and the relation betweenHomonym

the senses is one of homonymy. Thus bank1 (“financial institution”) and bank2Homonymy

(“sloping mound”) are homonyms, as are the sense of bat meaning ‘club for hitting
a ball’ and the one meaning ‘nocturnal flying animal’. We say that these two uses
of bank are homographs, as are the two uses of bat, because they are written thehomographs

same. Two words can be homonyms in a different way if they are spelled differently
but pronounced the same,. like write and right, or piece and peace. We call these
homophones and we saw in Ch. 5 that homophones are one cause of real-wordhomophones

spelling errors.
Homonymy causes problems in other areas of language processing as well. In

question answering or information retrieval, we can do a much better job helping a
user who typed “bat care” if we know whether they are vampires or just want to play
baseball. And they will also have different translations; in Spanish the animal bat
is a murciélago while the baseball bat is a bate. Homographs that are pronounced
differently cause problems for speech synthesis (Chapter 32) such as these homo-
graphs of the word bass, the fish pronounced b ae s and the instrument pronounced
b ey s.

(17.3) The expert angler from Dora, Mo., was fly-casting for bass rather than the
traditional trout.

(17.4) The curtain rises to the sound of angry dogs baying and ominous bass
chords sounding.

Sometimes there is also some semantic connection between the senses of a word.
Consider the following example:

(17.5) While some banks furnish blood only to hospitals, others are less restrictive.

Although this is clearly not a use of the “sloping mound” meaning of bank, it just
as clearly is not a reference to a charitable giveaway by a financial institution. Rather,
bank has a whole range of uses related to repositories for various biological entities,
as in blood bank, egg bank, and sperm bank. So we could call this “biological
repository” sense bank3. Now this new sense bank3 has some sort of relation to
bank1; both bank1 and bank3 are repositories for entities that can be deposited and
taken out; in bank1 the entity is monetary, whereas in bank3 the entity is biological.

When two senses are related semantically, we call the relationship between them
polysemy rather than homonymy. In many cases of polysemy, the semantic relationpolysemy

between the senses is systematic and structured. For example, consider yet another
sense of bank, exemplified in the following sentence:

(17.6) The bank is on the corner of Nassau and Witherspoon.

This sense, which we can call bank4, means something like “the building be-
longing to a financial institution”. It turns out that these two kinds of senses (an

1 Confusingly, the word “lemma” is itself ambiguous; it is also sometimes used to mean these separate
senses, rather than the citation form of the word. You should be prepared to see both uses in the literature.
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organization and the building associated with an organization ) occur together for
many other words as well (school, university, hospital, etc.). Thus, there is a sys-
tematic relationship between senses that we might represent as

BUILDING↔ ORGANIZATION

This particular subtype of polysemy relation is often called metonymy. Metonymymetonymy

is the use of one aspect of a concept or entity to refer to other aspects of the entity
or to the entity itself. Thus, we are performing metonymy when we use the phrase
the White House to refer to the administration whose office is in the White House.
Other common examples of metonymy include the relation between the following
pairings of senses:

Author (Jane Austen wrote Emma)↔Works of Author (I really love Jane Austen)
Tree (Plums have beautiful blossoms)↔ Fruit (I ate a preserved plum yesterday)

While it can be useful to distinguish polysemy from unrelated homonymy, there
is no hard threshold for how related two senses must be to be considered polyse-
mous. Thus, the difference is really one of degree. This fact can make it very diffi-
cult to decide how many senses a word has, that is, whether to make separate senses
for closely related usages. There are various criteria for deciding that the differing
uses of a word should be represented as distinct discrete senses. We might consider
two senses discrete if they have independent truth conditions, different syntactic be-
havior, and independent sense relations, or if they exhibit antagonistic meanings.

Consider the following uses of the verb serve from the WSJ corpus:

(17.7) They rarely serve red meat, preferring to prepare seafood.
(17.8) He served as U.S. ambassador to Norway in 1976 and 1977.
(17.9) He might have served his time, come out and led an upstanding life.

The serve of serving red meat and that of serving time clearly have different truth
conditions and presuppositions; the serve of serve as ambassador has the distinct
subcategorization structure serve as NP. These heuristics suggest that these are prob-
ably three distinct senses of serve. One practical technique for determining if two
senses are distinct is to conjoin two uses of a word in a single sentence; this kind of
conjunction of antagonistic readings is called zeugma. Consider the following ATISZeugma

examples:

(17.10) Which of those flights serve breakfast?
(17.11) Does Midwest Express serve Philadelphia?
(17.12) ?Does Midwest Express serve breakfast and Philadelphia?

We use (?) to mark those examples that are semantically ill-formed. The oddness of
the invented third example (a case of zeugma) indicates there is no sensible way to
make a single sense of serve work for both breakfast and Philadelphia. We can use
this as evidence that serve has two different senses in this case.

Dictionaries tend to use many fine-grained senses so as to capture subtle meaning
differences, a reasonable approach given that the traditional role of dictionaries is
aiding word learners. For computational purposes, we often don’t need these fine
distinctions, so we may want to group or cluster the senses; we have already done
this for some of the examples in this chapter.

How can we define the meaning of a word sense? Can we just look in a dictio-
nary? Consider the following fragments from the definitions of right, left, red, and
blood from the American Heritage Dictionary (Morris, 1985).
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right adj. located nearer the right hand esp. being on the right when
facing the same direction as the observer.

left adj. located nearer to this side of the body than the right.
red n. the color of blood or a ruby.

blood n. the red liquid that circulates in the heart, arteries and veins of
animals.

Note the circularity in these definitions. The definition of right makes two direct
references to itself, and the entry for left contains an implicit self-reference in the
phrase this side of the body, which presumably means the left side. The entries for
red and blood avoid this kind of direct self-reference by instead referencing each
other in their definitions. Such circularity is, of course, inherent in all dictionary
definitions; these examples are just extreme cases. For humans, such entries are still
useful since the user of the dictionary has sufficient grasp of these other terms.

For computational purposes, one approach to defining a sense is to make use
of a similar approach to these dictionary definitions; defining a sense through its
relationship with other senses. For example, the above definitions make it clear that
right and left are similar kinds of lemmas that stand in some kind of alternation, or
opposition, to one another. Similarly, we can glean that red is a color, that it can
be applied to both blood and rubies, and that blood is a liquid. Sense relations
of this sort are embodied in on-line databases like WordNet. Given a sufficiently
large database of such relations, many applications are quite capable of performing
sophisticated semantic tasks (even if they do not really know their right from their
left).

17.2 Relations Between Senses

This section explores some of the relations that hold among word senses, focus-
ing on a few that have received significant computational investigation: synonymy,
antonymy, and hypernymy, as well as a brief mention of other relations like meronymy.

17.2.1 Synonymy and Antonymy
When two senses of two different words (lemmas) are identical, or nearly identical,
we say the two senses are synonyms. Synonyms include such pairs assynonym

couch/sofa vomit/throw up filbert/hazelnut car/automobile

A more formal definition of synonymy (between words rather than senses) is that
two words are synonymous if they are substitutable one for the other in any sentence
without changing the truth conditions of the sentence. We often say in this case that
the two words have the same propositional meaning.propositional

meaning
While substitutions between some pairs of words like car/automobile or water/H2O

are truth preserving, the words are still not identical in meaning. Indeed, probably
no two words are absolutely identical in meaning, and if we define synonymy as
identical meanings and connotations in all contexts, there are probably no absolute
synonyms. Besides propositional meaning, many other facets of meaning that dis-
tinguish these words are important. For example, H2O is used in scientific contexts
and would be inappropriate in a hiking guide; this difference in genre is part of the
meaning of the word. In practice, the word synonym is therefore commonly used to
describe a relationship of approximate or rough synonymy.
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Synonymy is actually a relationship between senses rather than words. Consid-
ering the words big and large. These may seem to be synonyms in the following
ATIS sentences, since we could swap big and large in either sentence and retain the
same meaning:

(17.13) How big is that plane?
(17.14) Would I be flying on a large or small plane?

But note the following WSJ sentence in which we cannot substitute large for big:

(17.15) Miss Nelson, for instance, became a kind of big sister to Benjamin.
(17.16) ?Miss Nelson, for instance, became a kind of large sister to Benjamin.

This is because the word big has a sense that means being older or grown up, while
large lacks this sense. Thus, we say that some senses of big and large are (nearly)
synonymous while other ones are not.

Synonyms are words with identical or similar meanings. Antonyms, by contrast,antonym

are words with opposite meaning such as the following:

long/short big/little fast/slow cold/hot dark/light
rise/fall up/down in/out

Two senses can be antonyms if they define a binary opposition or are at opposite
ends of some scale. This is the case for long/short, fast/slow, or big/little, which are
at opposite ends of the length or size scale. Another group of antonyms, reversives,reversives

describe change or movement in opposite directions, such as rise/fall or up/down.
Antonyms thus differ completely with respect to one aspect of their meaning—

their position on a scale or their direction—but are otherwise very similar, sharing
almost all other aspects of meaning. Thus, automatically distinguishing synonyms
from antonyms can be difficult.

17.2.2 Hyponymy
One sense is a hyponym of another sense if the first sense is more specific, denotinghyponym

a subclass of the other. For example, car is a hyponym of vehicle; dog is a hyponym
of animal, and mango is a hyponym of fruit. Conversely, we say that vehicle is a
hypernym of car, and animal is a hypernym of dog. It is unfortunate that the twohypernym

words (hypernym and hyponym) are very similar and hence easily confused; for this
reason, the word superordinate is often used instead of hypernym.superordinate

Superordinate vehicle fruit furniture mammal
Hyponym car mango chair dog

We can define hypernymy more formally by saying that the class denoted by
the superordinate extensionally includes the class denoted by the hyponym. Thus,
the class of animals includes as members all dogs, and the class of moving actions
includes all walking actions. Hypernymy can also be defined in terms of entailment.
Under this definition, a sense A is a hyponym of a sense B if everything that is A is
also B, and hence being an A entails being a B, or ∀x A(x)⇒ B(x). Hyponymy is
usually a transitive relation; if A is a hyponym of B and B is a hyponym of C, then A
is a hyponym of C. Another name for the hypernym/hyponym structure is the IS-AIS-A

hierarchy, in which we say A IS-A B, or B subsumes A.

Meronymy Another common relation is meronymy, the part-whole relation. Ameronymy

part-whole leg is part of a chair; a wheel is part of a car. We say that wheel is a meronym of
meronym car, and car is a holonym of wheel.
holonym



17.3 • WORDNET: A DATABASE OF LEXICAL RELATIONS 305

17.3 WordNet: A Database of Lexical Relations

The most commonly used resource for English sense relations is the WordNet lex-WordNet

ical database (Fellbaum, 1998). WordNet consists of three separate databases, one
each for nouns and verbs and a third for adjectives and adverbs; closed class words
are not included. Each database contains a set of lemmas, each one annotated with a
set of senses. The WordNet 3.0 release has 117,798 nouns, 11,529 verbs, 22,479 ad-
jectives, and 4,481 adverbs. The average noun has 1.23 senses, and the average verb
has 2.16 senses. WordNet can be accessed on the Web or downloaded and accessed
locally. Figure 17.1 shows the lemma entry for the noun and adjective bass.

The noun “bass” has 8 senses in WordNet.
1. bass1 - (the lowest part of the musical range)
2. bass2, bass part1 - (the lowest part in polyphonic music)
3. bass3, basso1 - (an adult male singer with the lowest voice)
4. sea bass1, bass4 - (the lean flesh of a saltwater fish of the family Serranidae)
5. freshwater bass1, bass5 - (any of various North American freshwater fish with

lean flesh (especially of the genus Micropterus))
6. bass6, bass voice1, basso2 - (the lowest adult male singing voice)
7. bass7 - (the member with the lowest range of a family of musical instruments)
8. bass8 - (nontechnical name for any of numerous edible marine and

freshwater spiny-finned fishes)

The adjective “bass” has 1 sense in WordNet.
1. bass1, deep6 - (having or denoting a low vocal or instrumental range)

“a deep voice”; “a bass voice is lower than a baritone voice”;
“a bass clarinet”

Figure 17.1 A portion of the WordNet 3.0 entry for the noun bass.

Note that there are eight senses for the noun and one for the adjective, each of
which has a gloss (a dictionary-style definition), a list of synonyms for the sense, andgloss

sometimes also usage examples (shown for the adjective sense). Unlike dictionaries,
WordNet doesn’t represent pronunciation, so doesn’t distinguish the pronunciation
[b ae s] in bass4, bass5, and bass8 from the other senses pronounced [b ey s].

The set of near-synonyms for a WordNet sense is called a synset (for synonymsynset

set); synsets are an important primitive in WordNet. The entry for bass includes
synsets like {bass1, deep6}, or {bass6, bass voice1, basso2}. We can think of a
synset as representing a concept of the type we discussed in Chapter 19. Thus,
instead of representing concepts in logical terms, WordNet represents them as lists
of the word senses that can be used to express the concept. Here’s another synset
example:

{chump1, fool2, gull1, mark9, patsy1, fall guy1,

sucker1, soft touch1, mug2}
The gloss of this synset describes it as a person who is gullible and easy to take
advantage of. Each of the lexical entries included in the synset can, therefore, be
used to express this concept. Synsets like this one actually constitute the senses
associated with WordNet entries, and hence it is synsets, not wordforms, lemmas, or
individual senses, that participate in most of the lexical sense relations in WordNet.

WordNet represents all the kinds of sense relations discussed in the previous
section, as illustrated in Fig. 17.2 and Fig. 17.3. WordNet hyponymy relations cor-
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Relation Also Called Definition Example
Hypernym Superordinate From concepts to superordinates breakfast1 → meal1

Hyponym Subordinate From concepts to subtypes meal1 → lunch1

Instance Hypernym Instance From instances to their concepts Austen1 → author1

Instance Hyponym Has-Instance From concepts to concept instances composer1 → Bach1

Member Meronym Has-Member From groups to their members faculty2 → professor1

Member Holonym Member-Of From members to their groups copilot1 → crew1

Part Meronym Has-Part From wholes to parts table2 → leg3

Part Holonym Part-Of From parts to wholes course7 → meal1

Substance Meronym From substances to their subparts water1 → oxygen1

Substance Holonym From parts of substances to wholes gin1 → martini1

Antonym Semantic opposition between lemmas leader1 ⇐⇒ follower1

Derivationally Lemmas w/same morphological root destruction1 ⇐⇒ destroy1

Related Form
Figure 17.2 Noun relations in WordNet.

Relation Definition Example
Hypernym From events to superordinate events fly9 → travel5

Troponym From events to subordinate event walk1 → stroll1
(often via specific manner)

Entails From verbs (events) to the verbs (events) they entail snore1 → sleep1

Antonym Semantic opposition between lemmas increase1 ⇐⇒ decrease1

Derivationally Lemmas with same morphological root destroy1 ⇐⇒ destruction1

Related Form
Figure 17.3 Verb relations in WordNet.

respond to the notion of immediate hyponymy discussed on page 304. Each synset is
related to its immediately more general and more specific synsets through direct hy-
pernym and hyponym relations. These relations can be followed to produce longer
chains of more general or more specific synsets. Figure 17.4 shows hypernym chains
for bass3 and bass7.

In this depiction of hyponymy, successively more general synsets are shown on
successive indented lines. The first chain starts from the concept of a human bass
singer. Its immediate superordinate is a synset corresponding to the generic concept
of a singer. Following this chain leads eventually to concepts such as entertainer and
person. The second chain, which starts from musical instrument, has a completely
different path leading eventually to such concepts as musical instrument, device, and
physical object. Both paths do eventually join at the very abstract synset whole, unit,
and then proceed together to entity which is the top (root) of the noun hierarchy (in
WordNet this root is generally called the unique beginner).unique

beginner

17.4 Word Sense Disambiguation: Overview

Our discussion of compositional semantic analyzers in Chapter 20 pretty much ig-
nored the issue of lexical ambiguity. It should be clear by now that this is an unrea-
sonable approach. Without some means of selecting correct senses for the words in
an input, the enormous amount of homonymy and polysemy in the lexicon would
quickly overwhelm any approach in an avalanche of competing interpretations.
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Sense 3

bass, basso --

(an adult male singer with the lowest voice)

=> singer, vocalist, vocalizer, vocaliser

=> musician, instrumentalist, player

=> performer, performing artist

=> entertainer

=> person, individual, someone...

=> organism, being

=> living thing, animate thing,

=> whole, unit

=> object, physical object

=> physical entity

=> entity

=> causal agent, cause, causal agency

=> physical entity

=> entity

Sense 7

bass --

(the member with the lowest range of a family of

musical instruments)

=> musical instrument, instrument

=> device

=> instrumentality, instrumentation

=> artifact, artefact

=> whole, unit

=> object, physical object

=> physical entity

=> entity

Figure 17.4 Hyponymy chains for two separate senses of the lemma bass. Note that the
chains are completely distinct, only converging at the very abstract level whole, unit.

The task of selecting the correct sense for a word is called word sense dis-
ambiguation, or WSD. Disambiguating word senses has the potential to improveword sense

disambiguation
WSD many natural language processing tasks, including machine translation, question

answering, and information retrieval.
WSD algorithms take as input a word in context along with a fixed inventory

of potential word senses and return as output the correct word sense for that use.
The input and the senses depends on the task. For machine translation from English
to Spanish, the sense tag inventory for an English word might be the set of differ-
ent Spanish translations. If our task is automatic indexing of medical articles, the
sense-tag inventory might be the set of MeSH (Medical Subject Headings) thesaurus
entries.

When we are evaluating WSD in isolation, we can use the set of senses from a
dictionary/thesaurus resource like WordNet. Figure 17.4 shows an example for the
word bass, which can refer to a musical instrument or a kind of fish.2

It is useful to distinguish two variants of the generic WSD task. In the lexi-
cal sample task, a small pre-selected set of target words is chosen, along with anlexical sample

inventory of senses for each word from some lexicon. Since the set of words and

2 The WordNet database includes eight senses; we have arbitrarily selected two for this example; we
have also arbitrarily selected one of the many Spanish fishes that could translate English sea bass.
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WordNet Spanish Roget
Sense Translation Category Target Word in Context
bass4 lubina FISH/INSECT . . . fish as Pacific salmon and striped bass and. . .
bass4 lubina FISH/INSECT . . . produce filets of smoked bass or sturgeon. . .
bass7 bajo MUSIC . . . exciting jazz bass player since Ray Brown. . .
bass7 bajo MUSIC . . . play bass because he doesn’t have to solo. . .

Figure 17.5 Possible definitions for the inventory of sense tags for bass.

the set of senses are small, supervised machine learning approaches are often used
to handle lexical sample tasks. For each word, a number of corpus instances (con-
text sentences) can be selected and hand-labeled with the correct sense of the target
word in each. Classifier systems can then be trained with these labeled examples.
Unlabeled target words in context can then be labeled using such a trained classifier.
Early work in word sense disambiguation focused solely on lexical sample tasks
of this sort, building word-specific algorithms for disambiguating single words like
line, interest, or plant.

In contrast, in the all-words task, systems are given entire texts and a lexiconall-words

with an inventory of senses for each entry and are required to disambiguate every
content word in the text. The all-words task is similar to part-of-speech tagging, ex-
cept with a much larger set of tags since each lemma has its own set. A consequence
of this larger set of tags is a serious data sparseness problem; it is unlikely that ade-
quate training data for every word in the test set will be available. Moreover, given
the number of polysemous words in reasonably sized lexicons, approaches based on
training one classifier per term are unlikely to be practical.

In the following sections we explore the application of various machine learning
paradigms to word sense disambiguation.

17.5 Supervised Word Sense Disambiguation

If we have data that has been hand-labeled with correct word senses, we can use a
supervised learning approach to the problem of sense disambiguation—extracting
features from the text and training a classifier to assign the correct sense given these
features. The output of training is thus a classifier system capable of assigning sense
labels to unlabeled words in context.

For lexical sample tasks, there are various labeled corpora for individual words;
these corpora consist of context sentences labeled with the correct sense for the tar-
get word. These include the line-hard-serve corpus containing 4,000 sense-tagged
examples of line as a noun, hard as an adjective and serve as a verb (Leacock et al.,
1993), and the interest corpus with 2,369 sense-tagged examples of interest as a
noun (Bruce and Wiebe, 1994). The SENSEVAL project has also produced a num-
ber of such sense-labeled lexical sample corpora (SENSEVAL-1 with 34 words from
the HECTOR lexicon and corpus (Kilgarriff and Rosenzweig 2000, Atkins 1993),
SENSEVAL-2 and -3 with 73 and 57 target words, respectively (Palmer et al. 2001,
Kilgarriff 2001).

For training all-word disambiguation tasks we use a semantic concordance,semantic
concordance

a corpus in which each open-class word in each sentence is labeled with its word
sense from a specific dictionary or thesaurus. One commonly used corpus is Sem-
Cor, a subset of the Brown Corpus consisting of over 234,000 words that were man-
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ually tagged with WordNet senses (Miller et al. 1993, Landes et al. 1998). In ad-
dition, sense-tagged corpora have been built for the SENSEVAL all-word tasks. The
SENSEVAL-3 English all-words test data consisted of 2081 tagged content word to-
kens, from 5,000 total running words of English from the WSJ and Brown corpora
(Palmer et al., 2001).

The first step in supervised training is to extract features that are predictive of
word senses. The insight that underlies all modern algorithms for word sense disam-
biguation was famously first articulated by Weaver (1955) in the context of machine
translation:

If one examines the words in a book, one at a time as through an opaque
mask with a hole in it one word wide, then it is obviously impossible
to determine, one at a time, the meaning of the words. [. . . ] But if
one lengthens the slit in the opaque mask, until one can see not only
the central word in question but also say N words on either side, then
if N is large enough one can unambiguously decide the meaning of the
central word. [. . . ] The practical question is : “What minimum value of
N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?”

We first perform some processing on the sentence containing the window, typi-
cally including part-of-speech tagging, lemmatization, and, in some cases, syntactic
parsing to reveal headwords and dependency relations. Context features relevant to
the target word can then be extracted from this enriched input. A feature vectorfeature vector

consisting of numeric or nominal values encodes this linguistic information as an
input to most machine learning algorithms.

Two classes of features are generally extracted from these neighboring contexts,
both of which we have seen previously in part-of-speech tagging: collocational fea-
tures and bag-of-words features. A collocation is a word or series of words in acollocation

position-specific relationship to a target word (i.e., exactly one word to the right, or
the two words starting 3 words to the left, and so on). Thus, collocational featurescollocational

features
encode information about specific positions located to the left or right of the target
word. Typical features extracted for these context words include the word itself, the
root form of the word, and the word’s part-of-speech. Such features are effective at
encoding local lexical and grammatical information that can often accurately isolate
a given sense.

For example consider the ambiguous word bass in the following WSJ sentence:

(17.17) An electric guitar and bass player stand off to one side, not really part of
the scene, just as a sort of nod to gringo expectations perhaps.

A collocational feature vector, extracted from a window of two words to the right
and left of the target word, made up of the words themselves, their respective parts-
of-speech, and pairs of words, that is,

[wi−2,POSi−2,wi−1,POSi−1,wi+1,POSi+1,wi+2,POSi+2,wi−1
i−2,w

i+1
i ] (17.18)

would yield the following vector:
[guitar, NN, and, CC, player, NN, stand, VB, and guitar, player stand]

High performing systems generally use POS tags and word collocations of length
1, 2, and 3 from a window of words 3 to the left and 3 to the right (Zhong and Ng,
2010).

The second type of feature consists of bag-of-words information about neigh-
boring words. A bag-of-words means an unordered set of words, with their exactbag-of-words
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position ignored. The simplest bag-of-words approach represents the context of a
target word by a vector of features, each binary feature indicating whether a vocab-
ulary word w does or doesn’t occur in the context.

This vocabulary is typically pre-selected as some useful subset of words in a
training corpus. In most WSD applications, the context region surrounding the target
word is generally a small, symmetric, fixed-size window with the target word at the
center. Bag-of-word features are effective at capturing the general topic of the dis-
course in which the target word has occurred. This, in turn, tends to identify senses
of a word that are specific to certain domains. We generally don’t use stopwords,
punctuation, or number as features, and words are lemmatized and lower-cased. In
some cases we may also limit the bag-of-words to consider only frequently used
words. For example, a bag-of-words vector consisting of the 12 most frequent con-
tent words from a collection of bass sentences drawn from the WSJ corpus would
have the following ordered word feature set:

[fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band]

Using these word features with a window size of 10, (17.17) would be repre-
sented by the following binary vector:

[0,0,0,1,0,0,0,0,0,0,1,0]

Given training data together with the extracted features, any supervised machine
learning paradigm can be used to train a sense classifier.

17.5.1 Wikipedia as a source of training data
Supervised methods for WSD are very dependent on the amount of training data,
especially because of their reliance on sparse lexical and collocation features. One
way to increase the amount of training data is to use Wikipedia as a source of sense-
labeled data. When a concept is mentioned in a Wikipedia article, the article text
may contain an explicit link to the concepts’ Wikipedia page, which is named by a
unique identifier. This link can be used as a sense annotation. For example, the am-
biguous word bar is linked to a different Wikipedia article depending on its meaning
in context, including the page BAR (LAW), the page BAR (MUSIC), and so on, as in
the following Wikipedia examples (Mihalcea, 2007).

In 1834, Sumner was admitted to the [[bar (law)|bar]] at the age of
twenty-three, and entered private practice in Boston.

It is danced in 3/4 time (like most waltzes), with the couple turning
approx. 180 degrees every [[bar (music)|bar]].

Jenga is a popular beer in the [[bar (establishment)|bar]]s of Thailand.

These sentences can then be added to the training data for a supervised system.
In order to use Wikipedia in this way, however, it is necessary to map from Wikipedia
concepts to whatever inventory of senses is relevant for the WSD application. Auto-
matic algorithms that map from Wikipedia to WordNet, for example, involve finding
the WordNet sense that has the greatest lexical overlap with the Wikipedia sense, by
comparing the vector of words in the WordNet synset, gloss, and related senses with
the vector of words in the Wikipedia page title, outgoing links, and page category
(Ponzetto and Navigli, 2010).

17.5.2 Evaluation
To evaluate WSD algorithms, it’s better to consider extrinsic, task-based, or end-extrinsic

evaluation
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to-end evaluation, in which we see whether some new WSD idea actually improves
performance in some end-to-end application like question answering or machine
translation. Nonetheless, because extrinsic evaluations are difficult and slow, WSD
systems are typically evaluated with intrinsic evaluation. in which a WSD compo-intrinsic

nent is treated as an independent system. Common intrinsic evaluations are either
exact-match sense accuracy—the percentage of words that are tagged identicallysense accuracy

with the hand-labeled sense tags in a test set—or with precision and recall if sys-
tems are permitted to pass on the labeling of some instances. In general, we evaluate
by using held-out data from the same sense-tagged corpora that we used for training,
such as the SemCor corpus discussed above or the various corpora produced by the
SENSEVAL effort.

Many aspects of sense evaluation have been standardized by the SENSEVAL and
SEMEVAL efforts (Palmer et al. 2006, Kilgarriff and Palmer 2000). This framework
provides a shared task with training and testing materials along with sense invento-
ries for all-words and lexical sample tasks in a variety of languages.

The normal baseline is to choose the most frequent sense for each word from themost frequent
sense

senses in a labeled corpus (Gale et al., 1992a). For WordNet, this corresponds to the
first sense, since senses in WordNet are generally ordered from most frequent to least
frequent. WordNet sense frequencies come from the SemCor sense-tagged corpus
described above– WordNet senses that don’t occur in SemCor are ordered arbitrarily
after those that do. The most frequent sense baseline can be quite accurate, and is
therefore often used as a default, to supply a word sense when a supervised algorithm
has insufficient training data.

17.6 WSD: Dictionary and Thesaurus Methods

Supervised algorithms based on sense-labeled corpora are the best-performing algo-
rithms for sense disambiguation. However, such labeled training data is expensive
and limited. One alternative is to get indirect supervision from dictionaries and the-
sauruses or similar knowledge bases and so this method is also called knowledge-
based WSD. Methods like this that do not use texts that have been hand-labeled with
senses are also called weakly supervised.

17.6.1 The Lesk Algorithm

The most well-studied dictionary-based algorithm for sense disambiguation is the
Lesk algorithm, really a family of algorithms that choose the sense whose dictio-Lesk algorithm

nary gloss or definition shares the most words with the target word’s neighborhood.
Figure 17.6 shows the simplest version of the algorithm, often called the Simplified
Lesk algorithm (Kilgarriff and Rosenzweig, 2000).Simplified Lesk

As an example of the Lesk algorithm at work, consider disambiguating the word
bank in the following context:

(17.19) The bank can guarantee deposits will eventually cover future tuition costs
because it invests in adjustable-rate mortgage securities.

given the following two WordNet senses:
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function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense←most frequent sense for word
max-overlap←0
context←set of words in sentence
for each sense in senses of word do
signature←set of words in the gloss and examples of sense
overlap←COMPUTEOVERLAP(signature, context)
if overlap > max-overlap then

max-overlap←overlap
best-sense←sense

end
return(best-sense)

Figure 17.6 The Simplified Lesk algorithm. The COMPUTEOVERLAP function returns the
number of words in common between two sets, ignoring function words or other words on a
stop list. The original Lesk algorithm defines the context in a more complex way. The Cor-
pus Lesk algorithm weights each overlapping word w by its − logP(w) and includes labeled
training corpus data in the signature.

bank1 Gloss: a financial institution that accepts deposits and channels the
money into lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgage
on my home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of

the river and watched the currents”

Sense bank1 has two non-stopwords overlapping with the context in (17.19):
deposits and mortgage, while sense bank2 has zero words, so sense bank1 is chosen.

There are many obvious extensions to Simplified Lesk. The original Lesk algo-
rithm (Lesk, 1986) is slightly more indirect. Instead of comparing a target word’s
signature with the context words, the target signature is compared with the signatures
of each of the context words. For example, consider Lesk’s example of selecting the
appropriate sense of cone in the phrase pine cone given the following definitions for
pine and cone.

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness

cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would select cone3 as the correct sense since
two of the words in its entry, evergreen and tree, overlap with words in the entry for
pine, whereas neither of the other entries has any overlap with words in the definition
of pine. In general Simplified Lesk seems to work better than original Lesk.

The primary problem with either the original or simplified approaches, how-
ever, is that the dictionary entries for the target words are short and may not provide
enough chance of overlap with the context.3 One remedy is to expand the list of
words used in the classifier to include words related to, but not contained in, their

3 Indeed, Lesk (1986) notes that the performance of his system seems to roughly correlate with the
length of the dictionary entries.
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individual sense definitions. But the best solution, if any sense-tagged corpus data
like SemCor is available, is to add all the words in the labeled corpus sentences for a
word sense into the signature for that sense. This version of the algorithm, the Cor-
pus Lesk algorithm, is the best-performing of all the Lesk variants (Kilgarriff andCorpus Lesk

Rosenzweig 2000, Vasilescu et al. 2004) and is used as a baseline in the SENSEVAL
competitions. Instead of just counting up the overlapping words, the Corpus Lesk
algorithm also applies a weight to each overlapping word. The weight is the inverse
document frequency or IDF, a standard information-retrieval measure introduced

inverse
document
frequency

IDF in Chapter 15. IDF measures how many different “documents” (in this case, glosses
and examples) a word occurs in and is thus a way of discounting function words.
Since function words like the, of, etc., occur in many documents, their IDF is very
low, while the IDF of content words is high. Corpus Lesk thus uses IDF instead of a
stop list.

Formally, the IDF for a word i can be defined as

idfi = log
(

Ndoc
ndi

)
(17.20)

where Ndoc is the total number of “documents” (glosses and examples) and ndi is
the number of these documents containing word i.

Finally, we can combine the Lesk and supervised approaches by adding new
Lesk-like bag-of-words features. For example, the glosses and example sentences
for the target sense in WordNet could be used to compute the supervised bag-of-
words features in addition to the words in the SemCor context sentence for the sense
(Yuret, 2004).

17.6.2 Graph-based Methods
Another way to use a thesaurus like WordNet is to make use of the fact that WordNet
can be construed as a graph, with senses as nodes and relations between senses
as edges. In addition to the hypernymy and other relations, it’s possible to create
links between senses and those words in the gloss that are unambiguous (have only
one sense). Often the relations are treated as undirected edges, creating a large
undirected WordNet graph. Fig. 17.7 shows a portion of the graph around the word
drink1

v .

toastn
4

drinkv
1

drinkern
1

drinkingn
1

potationn
1

sipn
1

sipv
1

beveragen
1 milkn

1

liquidn
1foodn

1

drinkn
1

helpingn
1

supv
1

consumptionn
1

consumern
1

consumev
1

Figure 17.7 Part of the WordNet graph around drink1
v , after Navigli and Lapata (2010)

.

There are various ways to use the graph for disambiguation, some using the
whole graph, some using only a subpart. For example the target word and the words
in its sentential context sentence can all be inserted as nodes in the graph via a
directed edge to each of its senses. If we consider the sentence She drank some milk,
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Fig. 17.8 shows a portion of the WordNet graph between the senses for between
drink1

v and milk1
n.

drinkv
1

drinkern
1

beveragen
1

boozingn
1

foodn
1

drinkn
1 milkn

1

milkn
2

milkn
3

milkn
4

drinkv
2

drinkv
3

drinkv
4

drinkv
5

nutrimentn
1

“drink” “milk”

Figure 17.8 Part of the WordNet graph between drink1
v and milk1

n, for disambiguating a
sentence like She drank some milk, adapted from Navigli and Lapata (2010).

The correct sense is then the one which is the most important or central in some
way in this graph. There are many different methods for deciding centrality. The
simplest is degree, the number of edges into the node, which tends to correlatedegree

with the most frequent sense. Another algorithm for assigning probabilities across
nodes is personalized page rank, a version of the well-known pagerank algorithmpersonalized

page rank
which uses some seed nodes. By inserting a uniform probability across the word
nodes (drink and milk in the example) and computing the personalized page rank of
the graph, the result will be a pagerank value for each node in the graph, and the
sense with the maximum pagerank can then be chosen. See Agirre et al. (2014) and
Navigli and Lapata (2010) for details.

17.7 Semi-Supervised WSD: Bootstrapping

Both the supervised approach and the dictionary-based approaches to WSD require
large hand-built resources: supervised training sets in one case, large dictionaries in
the other. We can instead use bootstrapping or semi-supervised learning, whichbootstrapping

needs only a very small hand-labeled training set.
A classic bootstrapping algorithm for WSD is the Yarowsky algorithm forYarowsky

algorithm
learning a classifier for a target word (in a lexical-sample task) (Yarowsky, 1995).
The algorithm is given a small seedset Λ0 of labeled instances of each sense and a
much larger unlabeled corpus V0. The algorithm first trains an initial classifier on
the seedset Λ0. It then uses this classifier to label the unlabeled corpus V0. The
algorithm then selects the examples in V0 that it is most confident about, removes
them, and adds them to the training set (call it now Λ1). The algorithm then trains a
new classifier (a new set of rules) on Λ1, and iterates by applying the classifier to the
now-smaller unlabeled set V1, extracting a new training set Λ2, and so on. With each
iteration of this process, the training corpus grows and the untagged corpus shrinks.
The process is repeated until some sufficiently low error-rate on the training set is
reached or until no further examples from the untagged corpus are above threshold.

Initial seeds can be selected by hand-labeling a small set of examples (Hearst,
1991), or by using the help of a heuristic. Yarowsky (1995) used the one sense
per collocation heuristic, which relies on the intuition that certain words or phrasesone sense per

collocation
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Figure 17.9 The Yarowsky algorithm disambiguating “plant” at two stages; “?” indicates an unlabeled ob-
servation, A and B are observations labeled as SENSE-A or SENSE-B. The initial stage (a) shows only seed
sentences Λ0 labeled by collocates (“life” and “manufacturing”). An intermediate stage is shown in (b) where
more collocates have been discovered (“equipment”, “microscopic”, etc.) and more instances in V0 have been
moved into Λ1, leaving a smaller unlabeled set V1. Figure adapted from Yarowsky (1995).

We need more good teachers – right now, there are only a half a dozen who can play
the free bass with ease.

An electric guitar and bass player stand off to one side, not really part of the scene, just
as a sort of nod to gringo expectations perhaps.
The researchers said the worms spend part of their life cycle in such fish as Pacific
salmon and striped bass and Pacific rockfish or snapper.

And it all started when fishermen decided the striped bass in Lake Mead were too
skinny.

Figure 17.10 Samples of bass sentences extracted from the WSJ by using the simple cor-
relates play and fish.

strongly associated with the target senses tend not to occur with the other sense.
Yarowsky defines his seedset by choosing a single collocation for each sense.

For example, to generate seed sentences for the fish and musical musical senses
of bass, we might come up with fish as a reasonable indicator of bass1 and play as
a reasonable indicator of bass2. Figure 17.10 shows a partial result of such a search
for the strings “fish” and “play” in a corpus of bass examples drawn from the WSJ.

The original Yarowsky algorithm also makes use of a second heuristic, called
one sense per discourse, based on the work of Gale et al. (1992b), who noticed thatone sense per

discourse
a particular word appearing multiple times in a text or discourse often appeared with
the same sense. This heuristic seems to hold better for coarse-grained senses and
particularly for cases of homonymy rather than polysemy (Krovetz, 1998).

Nonetheless, it is still useful in a number of sense disambiguation situations. In
fact, the one sense per discourse heuristic is an important one throughout language
processing as it seems that many disambiguation tasks may be improved by a bias
toward resolving an ambiguity the same way inside a discourse segment.
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17.8 Unsupervised Word Sense Induction

It is expensive and difficult to build large corpora in which each word is labeled for
its word sense. For this reason, an unsupervised approach to sense disambiguation,
often called word sense induction or WSI, is an exciting and important researchword sense

induction
area. In unsupervised approaches, we don’t use human-defined word senses. In-
stead, the set of “senses” of each word is created automatically from the instances
of each word in the training set.

Most algorithms for word sense induction use some sort of clustering. For exam-
ple, the early algorithm of Schütze (Schütze 1992b, Schütze 1998) represented each
word as a context vector of bag-of-words features ~c. (See Chapter 15 for a more
complete introduction to such vector models of meaning.) Then in training, we use
three steps.

1. For each token wi of word w in a corpus, compute a context vector~c.
2. Use a clustering algorithm to cluster these word-token context vectors~c into

a predefined number of groups or clusters. Each cluster defines a sense of w.
3. Compute the vector centroid of each cluster. Each vector centroid ~s j is a

sense vector representing that sense of w.

Since this is an unsupervised algorithm, we don’t have names for each of these
“senses” of w; we just refer to the jth sense of w.

Now how do we disambiguate a particular token t of w? Again, we have three
steps:

1. Compute a context vector~c for t.
2. Retrieve all sense vectors s j for w.
3. Assign t to the sense represented by the sense vector s j that is closest to t.

All we need is a clustering algorithm and a distance metric between vectors.
Clustering is a well-studied problem with a wide number of standard algorithms that
can be applied to inputs structured as vectors of numerical values (Duda and Hart,
1973). A frequently used technique in language applications is known as agglom-
erative clustering. In this technique, each of the N training instances is initiallyagglomerative

clustering
assigned to its own cluster. New clusters are then formed in a bottom-up fashion by
the successive merging of the two clusters that are most similar. This process con-
tinues until either a specified number of clusters is reached, or some global goodness
measure among the clusters is achieved. In cases in which the number of training
instances makes this method too expensive, random sampling can be used on the
original training set to achieve similar results.

Recent algorithms have also used topic modeling algorithms like Latent Dirich-topic modeling

let Allocation (LDA), another way to learn clusters of words based on their distri-LDA

butions (Lau et al., 2012).
How can we evaluate unsupervised sense disambiguation approaches? As usual,

the best way is to do extrinsic evaluation embedded in some end-to-end system; one
example used in a SemEval bakeoff is to improve search result clustering and di-
versification (Navigli and Vannella, 2013). Intrinsic evaluation requires a way to
map the automatically derived sense classes into a hand-labeled gold-standard set so
that we can compare a hand-labeled test set with a set labeled by our unsupervised
classifier. Various such metrics have been tested, for example in the SemEval tasks
(Manandhar et al. 2010, Navigli and Vannella 2013, Jurgens and Klapaftis 2013),
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including cluster overlap metrics, or methods that map each sense cluster to a pre-
defined sense by choosing the sense that (in some training set) has the most overlap
with the cluster. However it is fair to say that no evaluation metric for this task has
yet become standard.

17.9 Word Similarity: Thesaurus Methods

We turn now to the computation of various semantic relations that hold between
words. We saw in Section 17.2 that such relations include synonymy, antonymy,
hyponymy, hypernymy, and meronymy. Of these, the one that has been most com-
putationally developed and has the greatest number of applications is the idea of
word synonymy and similarity.

Synonymy is a binary relation between words; two words are either synonyms
or not. For most computational purposes, we use instead a looser metric of word
similarity or semantic distance. Two words are more similar if they share more fea-word similarity

semantic
distance tures of meaning or are near-synonyms. Two words are less similar or have greater

semantic distance, if they have fewer common meaning elements. Although we have
described them as relations between words, synonymy, similarity, and distance are
actually relations between word senses. For example, of the two senses of bank,
we might say that the financial sense is similar to one of the senses of fund and the
riparian sense is more similar to one of the senses of slope. In the next few sections
of this chapter, we will compute these relations over both words and senses.

The ability to compute word similarity is a useful part of many language un-
derstanding applications. In information retrieval or question answering, we
might want to retrieve documents whose words have meanings similar to the query
words. In summarization, generation, and machine translation, we need to know
whether two words are similar to know if we can substitute one for the other in
particular contexts. In language modeling, we can use semantic similarity to clus-
ter words for class-based models. One interesting class of applications for word
similarity is automatic grading of student responses. For example, algorithms for
automatic essay grading use word similarity to determine if an essay is similar in
meaning to a correct answer. We can also use word similarity as part of an algo-
rithm to take an exam, such as a multiple-choice vocabulary test. Automatically
taking exams is useful in test designs in order to see how easy or hard a particular
multiple-choice question or exam is.

Two classes of algorithms can be used to measure word similarity. This chapter
focuses on thesaurus-based algorithms, in which we measure the distance between
two senses in an on-line thesaurus like WordNet or MeSH. The next chapter focuses
on distributional algorithms, in which we estimate word similarity by finding words
that have similar distributions in a corpus.

The thesaurus-based algorithms use the structure of the thesaurus to define word
similarity. In principle, we could measure similarity by using any information avail-
able in a thesaurus (meronymy, glosses, etc.). In practice, however, thesaurus-based
word similarity algorithms generally use only the hypernym/hyponym (is-a or sub-
sumption) hierarchy. In WordNet, verbs and nouns are in separate hypernym hier-
archies, so a thesaurus-based algorithm for WordNet can thus compute only noun-
noun similarity, or verb-verb similarity; we can’t compare nouns to verbs or do
anything with adjectives or other parts of speech.

We can distinguish word similarity from word relatedness. Two words areword
relatedness
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similar if they are near-synonyms or roughly substitutable in context. Word related-
ness characterizes a larger set of potential relationships between words; antonyms,
for example, have high relatedness but low similarity. The words car and gasoline
are closely related but not similar, while car and bicycle are similar. Word similarity
is thus a subcase of word relatedness. In general, the five algorithms we describe in
this section do not attempt to distinguish between similarity and semantic related-
ness; for convenience, we will call them similarity measures, although some would
be more appropriately described as relatedness measures; we return to this question
in Section ??.

Figure 17.11 A fragment of the WordNet hypernym hierarchy, showing path lengths (num-
ber of edges plus 1) from nickel to coin (2), dime (3), money (6), and Richter scale (8).

The simplest thesaurus-based algorithms are based on the intuition that words
or senses are more similar if there is a shorter path between them in the thesaurus
graph, an intuition dating back to Quillian (1969). A word/sense is most similar to
itself, then to its parents or siblings, and least similar to words that are far away.
We make this notion operational by measuring the number of edges between the
two concept nodes in the thesaurus graph and adding one. Figure 17.11 shows an
intuition; the concept dime is most similar to nickel and coin, less similar to money,
and even less similar to Richter scale. A formal definition:

pathlen(c1,c2) = 1 + the number of edges in the shortest path in the
thesaurus graph between the sense nodes c1 and c2

Path-based similarity can be defined as just the path length, transformed either by
log (Leacock and Chodorow, 1998) or, more often, by an inverse, resulting in the
following common definition of path-length based similarity:path-length

based similarity

simpath(c1,c2) =
1

pathlen(c1,c2)
(17.21)

For most applications, we don’t have sense-tagged data, and thus we need our
algorithm to give us the similarity between words rather than between senses or con-
cepts. For any of the thesaurus-based algorithms, following Resnik (1995), we can
approximate the correct similarity (which would require sense disambiguation) by
just using the pair of senses for the two words that results in maximum sense sim-
ilarity. Thus, based on sense similarity, we can define word similarity as follows:word similarity

wordsim(w1,w2) = max
c1∈senses(w1)
c2∈senses(w2)

sim(c1,c2) (17.22)
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The basic path-length algorithm makes the implicit assumption that each link
in the network represents a uniform distance. In practice, this assumption is not
appropriate. Some links (e.g., those that are deep in the WordNet hierarchy) often
seem to represent an intuitively narrow distance, while other links (e.g., higher up
in the WordNet hierarchy) represent an intuitively wider distance. For example, in
Fig. 17.11, the distance from nickel to money (5) seems intuitively much shorter than
the distance from nickel to an abstract word standard; the link between medium of
exchange and standard seems wider than that between, say, coin and coinage.

It is possible to refine path-based algorithms with normalizations based on depth
in the hierarchy (Wu and Palmer, 1994), but in general we’d like an approach that
lets us independently represent the distance associated with each edge.

A second class of thesaurus-based similarity algorithms attempts to offer just
such a fine-grained metric. These information-content word-similarity algorithmsinformation-

content
still rely on the structure of the thesaurus but also add probabilistic information
derived from a corpus.

Following Resnik (1995) we’ll define P(c) as the probability that a randomly
selected word in a corpus is an instance of concept c (i.e., a separate random variable,
ranging over words, associated with each concept). This implies that P(root) = 1
since any word is subsumed by the root concept. Intuitively, the lower a concept
in the hierarchy, the lower its probability. We train these probabilities by counting
in a corpus; each word in the corpus counts as an occurrence of each concept that
contains it. For example, in Fig. 17.11 above, an occurrence of the word dime would
count toward the frequency of coin, currency, standard, etc. More formally, Resnik
computes P(c) as follows:

P(c) =

∑
w∈words(c) count(w)

N
(17.23)

where words(c) is the set of words subsumed by concept c, and N is the total number
of words in the corpus that are also present in the thesaurus.

Figure 17.12, from Lin (1998b), shows a fragment of the WordNet concept hier-
archy augmented with the probabilities P(c).

entity 0.395

inanimate-object 0.167

natural-object 0.0163

geological-formation 0.00176

shore 0.0000836

coast 0.0000216

0.000113 natural-elevation

0.0000189 hill

Figure 17.12 A fragment of the WordNet hierarchy, showing the probability P(c) attached
to each content, adapted from a figure from Lin (1998b).

We now need two additional definitions. First, following basic information the-
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ory, we define the information content (IC) of a concept c as

IC(c) =− logP(c) (17.24)

Second, we define the lowest common subsumer or LCS of two concepts:
Lowest

common
subsumer

LCS LCS(c1,c2) = the lowest common subsumer, that is, the lowest node in
the hierarchy that subsumes (is a hypernym of) both c1 and c2

There are now a number of ways to use the information content of a node in a
word similarity metric. The simplest way was first proposed by Resnik (1995). We
think of the similarity between two words as related to their common information;
the more two words have in common, the more similar they are. Resnik proposes
to estimate the common amount of information by the information content of the
lowest common subsumer of the two nodes. More formally, the Resnik similarityResnik

similarity
measure is

simresnik(c1,c2) =− logP(LCS(c1,c2)) (17.25)
Lin (1998b) extended the Resnik intuition by pointing out that a similarity metric

between objects A and B needs to do more than measure the amount of information
in common between A and B. For example, he additionally pointed out that the more
differences between A and B, the less similar they are. In summary:
• Commonality: the more information A and B have in common, the more

similar they are.
• Difference: the more differences between the information in A and B, the less

similar they are.
Lin measures the commonality between A and B as the information content of

the proposition that states the commonality between A and B:

IC(common(A,B)) (17.26)

He measures the difference between A and B as

IC(description(A,B))− IC(common(A,B)) (17.27)

where description(A,B) describes A and B. Given a few additional assumptions
about similarity, Lin proves the following theorem:

Similarity Theorem: The similarity between A and B is measured by the ratio
between the amount of information needed to state the commonality of A and
B and the information needed to fully describe what A and B are.

simLin(A,B) =
common(A,B)

description(A,B)
(17.28)

Applying this idea to the thesaurus domain, Lin shows (in a slight modification
of Resnik’s assumption) that the information in common between two concepts is
twice the information in the lowest common subsumer LCS(c1,c2). Adding in the
above definitions of the information content of thesaurus concepts, the final Lin
similarity function isLin similarity

simLin(c1,c2) =
2× logP(LCS(c1,c2))

logP(c1)+ logP(c2)
(17.29)
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For example, using simLin, Lin (1998b) shows that the similarity between the
concepts of hill and coast from Fig. 17.12 is

simLin(hill,coast) =
2× logP(geological-formation)

logP(hill)+ logP(coast)
= 0.59 (17.30)

A similar formula, Jiang-Conrath distance (Jiang and Conrath, 1997), althoughJiang-Conrath
distance

derived in a completely different way from Lin and expressed as a distance rather
than similarity function, has been shown to work as well as or better than all the
other thesaurus-based methods:

distJC(c1,c2) = 2× logP(LCS(c1,c2))− (logP(c1)+ logP(c2)) (17.31)

We can transform distJC into a similarity by taking the reciprocal.
Finally, we describe a dictionary-based method, an extension of the Lesk al-

gorithm for word sense disambiguation described in Section 17.6.1. We call this a
dictionary rather than a thesaurus method because it makes use of glosses, which
are, in general, a property of dictionaries rather than thesauruses (although WordNet
does have glosses). Like the Lesk algorithm, the intuition of this extended gloss
overlap, or Extended Lesk measure (Banerjee and Pedersen, 2003) is that two con-Extended gloss

overlap
Extended Lesk cepts/senses in a thesaurus are similar if their glosses contain overlapping words.

We’ll begin by sketching an overlap function for two glosses. Consider these two
concepts, with their glosses:

• drawing paper: paper that is specially prepared for use in drafting
• decal: the art of transferring designs from specially prepared paper to a wood

or glass or metal surface.

For each n-word phrase that occurs in both glosses, Extended Lesk adds in a
score of n2 (the relation is non-linear because of the Zipfian relationship between
lengths of phrases and their corpus frequencies; longer overlaps are rare, so they
should be weighted more heavily). Here, the overlapping phrases are paper and
specially prepared, for a total similarity score of 12 +22 = 5.

Given such an overlap function, when comparing two concepts (synsets), Ex-
tended Lesk not only looks for overlap between their glosses but also between the
glosses of the senses that are hypernyms, hyponyms, meronyms, and other relations
of the two concepts. For example, if we just considered hyponyms and defined
gloss(hypo(A)) as the concatenation of all the glosses of all the hyponym senses of
A, the total relatedness between two concepts A and B might be

similarity(A,B) = overlap(gloss(A), gloss(B))
+overlap(gloss(hypo(A)), gloss(hypo(B)))
+overlap(gloss(A), gloss(hypo(B)))
+overlap(gloss(hypo(A)),gloss(B))

Let RELS be the set of possible WordNet relations whose glosses we compare;
assuming a basic overlap measure as sketched above, we can then define the Ex-
tended Lesk overlap measure as

simeLesk(c1,c2) =
∑

r,q∈RELS
overlap(gloss(r(c1)),gloss(q(c2))) (17.32)
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simpath(c1,c2) =
1

pathlen(c1,c2)

simResnik(c1,c2) = − logP(LCS(c1,c2))

simLin(c1,c2) =
2× logP(LCS(c1,c2))

logP(c1)+ logP(c2)

simJC(c1,c2) =
1

2× logP(LCS(c1,c2))− (logP(c1)+ logP(c2))

simeLesk(c1,c2) =
∑

r,q∈RELS
overlap(gloss(r(c1)),gloss(q(c2)))

Figure 17.13 Five thesaurus-based (and dictionary-based) similarity measures.

Figure 17.13 summarizes the five similarity measures we have described in this
section.

Evaluating Thesaurus-Based Similarity

Which of these similarity measures is best? Word similarity measures have been
evaluated in two ways. The most common intrinsic evaluation metric computes
the correlation coefficient between an algorithm’s word similarity scores and word
similarity ratings assigned by humans. There are a variety of such human-labeled
datasets: the RG-65 dataset of human similarity ratings on 65 word pairs (Ruben-
stein and Goodenough, 1965), the MC-30 dataset of 30 word pairs (Miller and
Charles, 1991). The WordSim-353 (Finkelstein et al., 2002) is a commonly used
set of of ratings from 0 to 10 for 353 noun pairs; for example (plane, car) had an
average score of 5.77. SimLex-999 (Hill et al., 2015) is a more difficult dataset that
quantifies similarity (cup, mug) rather than relatedness (cup, coffee), and including
both concrete and abstract adjective, noun and verb pairs. Another common intrinic
similarity measure is the TOEFL dataset, a set of 80 questions, each consisting of a
target word with 4 additional word choices; the task is to choose which is the correct
synonym, as in the example: Levied is closest in meaning to: imposed, believed,
requested, correlated (Landauer and Dumais, 1997). All of these datasets present
words without context.

Slightly more realistic are intrinsic similarity tasks that include context. The
Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) offers a
richer evaluation scenario, giving human judgments on 2,003 pairs of words in their
sentential context, including nouns, verbs, and adjectives. This dataset enables the
evaluation of word similarity algorithms that can make use of context words. The
semantic textual similarity task (Agirre et al. 2012, Agirre et al. 2015) evaluates the
performance of sentence-level similarity algorithms, consisting of a set of pairs of
sentences, each pair with human-labeled similarity scores.

Alternatively, the similarity measure can be embedded in some end-application,
such as question answering (Surdeanu et al., 2011), spell-checking (Jones and Mar-
tin 1997, Budanitsky and Hirst 2006, Hirst and Budanitsky 2005), web search result
clustering (Di Marco and Navigli, 2013), or text simplification (Biran et al., 2011),
and different measures can be evaluated by how much they improve the end appli-
cation.

We’ll return to evaluation metrics in the next chapter when we consider distribu-
tional semantics and similarity.



17.10 • SUMMARY 323

17.10 Summary

This chapter has covered a wide range of issues concerning the meanings associated
with lexical items. The following are among the highlights:

• Lexical semantics is the study of the meaning of words and the systematic
meaning-related connections between words.

• A word sense is the locus of word meaning; definitions and meaning relations
are defined at the level of the word sense rather than wordforms.

• Homonymy is the relation between unrelated senses that share a form, and
polysemy is the relation between related senses that share a form.

• Synonymy holds between different words with the same meaning.
• Hyponymy and hypernymy relations hold between words that are in a class-

inclusion relationship.
• WordNet is a large database of lexical relations for English
• Word-sense disambiguation (WSD) is the task of determining the correct

sense of a word in context. Supervised approaches make use of sentences in
which individual words (lexical sample task) or all words (all-words task)
are hand-labeled with senses from a resource like WordNet. Classifiers for su-
pervised WSD are generally trained on collocational and bag-of-words fea-
tures that describe the surrounding words.

• An important baseline for WSD is the most frequent sense, equivalent, in
WordNet, to take the first sense.

• The Lesk algorithm chooses the sense whose dictionary definition shares the
most words with the target word’s neighborhood.

• Graph-based algorithms view the thesaurus as a graph and choose the sense
that is most central in some way.

• Word similarity can be computed by measuring the link distance in a the-
saurus or by various measure of the information content of the two nodes.

Bibliographical and Historical Notes
Word sense disambiguation traces its roots to some of the earliest applications of dig-
ital computers. We saw above Warren Weaver’s (1955) suggestion to disambiguate
a word by looking at a small window around it, in the context of machine transla-
tion. Other notions first proposed in this early period include the use of a thesaurus
for disambiguation (Masterman, 1957), supervised training of Bayesian models for
disambiguation (Madhu and Lytel, 1965), and the use of clustering in word sense
analysis (Sparck Jones, 1986).

An enormous amount of work on disambiguation was conducted within the con-
text of early AI-oriented natural language processing systems. Quillian (1968) and
Quillian (1969) proposed a graph-based approach to language understanding, in
which the dictionary definition of words was represented by a network of word nodes
connected by syntactic and semantic relations. He then proposed to do sense disam-
biguation by finding the shortest path between senses in the conceptual graph. Sim-
mons (1973) is another influential early semantic network approach. Wilks proposed
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one of the earliest non-discrete models with his Preference Semantics (Wilks 1975c,
Wilks 1975b, Wilks 1975a), and Small and Rieger (1982) and Riesbeck (1975) pro-
posed understanding systems based on modeling rich procedural information for
each word. Hirst’s ABSITY system (Hirst and Charniak 1982, Hirst 1987, Hirst 1988),
which used a technique called marker passing based on semantic networks, repre-
sents the most advanced system of this type. As with these largely symbolic ap-
proaches, early neural network (often called ‘connectionist’) approaches to word
sense disambiguation relied on small lexicons with hand-coded representations (Cot-
trell 1985, Kawamoto 1988).

Considerable work on sense disambiguation has been conducted in the areas of
cognitive science and psycholinguistics. Appropriately enough, this work is gener-
ally described by a different name: lexical ambiguity resolution. Small et al. (1988)
present a variety of papers from this perspective.

The earliest implementation of a robust empirical approach to sense disambigua-
tion is due to Kelly and Stone (1975), who directed a team that hand-crafted a set of
disambiguation rules for 1790 ambiguous English words. Lesk (1986) was the first
to use a machine-readable dictionary for word sense disambiguation. The problem
of dictionary senses being too fine-grained or lacking an appropriate organization
has been addressed with models of clustering word senses (Dolan 1994, Chen and
Chang 1998, Mihalcea and Moldovan 2001, Agirre and de Lacalle 2003, Chklovski
and Mihalcea 2003, Palmer et al. 2004, Navigli 2006, Snow et al. 2007). Clustered
senses are often called coarse senses. Corpora with clustered word senses for train-coarse senses

ing clustering algorithms include Palmer et al. (2006) and OntoNotes (Hovy et al.,OntoNotes

2006).
Modern interest in supervised machine learning approaches to disambiguation

began with Black (1988), who applied decision tree learning to the task. The need
for large amounts of annotated text in these methods led to investigations into the
use of bootstrapping methods (Hearst 1991, Yarowsky 1995).

Diab and Resnik (2002) give a semi-supervised algorithm for sense disambigua-
tion based on aligned parallel corpora in two languages. For example, the fact that
the French word catastrophe might be translated as English disaster in one instance
and tragedy in another instance can be used to disambiguate the senses of the two
English words (i.e., to choose senses of disaster and tragedy that are similar). Ab-
ney (2002) and Abney (2004) explore the mathematical foundations of the Yarowsky
algorithm and its relation to co-training. The most-frequent-sense heuristic is an ex-
tremely powerful one but requires large amounts of supervised training data.

The earliest use of clustering in the study of word senses was by Sparck Jones
(1986). Zernik (1991) applied a standard information retrieval clustering algorithm
to the problem and evaluated it according to improvements in retrieval performance
and Pedersen and Bruce (1997), Schütze (1997b), and Schütze (1998) applied distri-
butional methods. Recent work on word sense induction has applied Latent Dirichelet
Allocation (LDA) (Boyd-Graber et al. 2007, Brody and Lapata 2009, Lau et al. 2012).
and large co-occurrence graphs (Di Marco and Navigli, 2013).

Cruse (2004) is a useful introductory linguistic text on lexical semantics. A
collection of work concerning WordNet can be found in Fellbaum (1998). Many
efforts have been made to use existing dictionaries as lexical resources. One of the
earliest was Amsler’s (1981) use of the Merriam Webster dictionary. The machine-
readable version of Longman’s Dictionary of Contemporary English has also been
used (Boguraev and Briscoe, 1989).

Navigli (2009) is a comprehensive survey article on WSD, Agirre and Edmonds
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(2006) edited volume that summarizes the state of the art, and Ide and Véronis
(1998) review the earlier history of word sense disambiguation up to 1998. Resnik
(2006) describes potential applications of WSD. One recent application has been to
improve machine translation (Chan et al. 2007, Carpuat and Wu 2007).

See Pustejovsky (1995), Pustejovsky and Boguraev (1996), Martin (1986), and
Copestake and Briscoe (1995), inter alia, for computational approaches to the rep-
resentation of polysemy. Pustejovsky’s theory of the generative lexicon, and ingenerative

lexicon
particular his theory of the qualia structure of words, is another way of accountingqualia

structure
for the dynamic systematic polysemy of words in context.

Another important recent direction is the addition of sentiment and connotation
to knowledge bases (Wiebe et al. 2005, Qiu et al. 2009, Velikovich et al. 2010)
including SentiWordNet (Baccianella et al., 2010) and ConnotationWordNet (Kang
et al., 2014).

Exercises
17.1 Collect a small corpus of example sentences of varying lengths from any

newspaper or magazine. Using WordNet or any standard dictionary, deter-
mine how many senses there are for each of the open-class words in each sen-
tence. How many distinct combinations of senses are there for each sentence?
How does this number seem to vary with sentence length?

17.2 Using WordNet or a standard reference dictionary, tag each open-class word
in your corpus with its correct tag. Was choosing the correct sense always a
straightforward task? Report on any difficulties you encountered.

17.3 Using your favorite dictionary, simulate the original Lesk word overlap dis-
ambiguation algorithm described on page 312 on the phrase Time flies like an
arrow. Assume that the words are to be disambiguated one at a time, from
left to right, and that the results from earlier decisions are used later in the
process.

17.4 Build an implementation of your solution to the previous exercise. Using
WordNet, implement the original Lesk word overlap disambiguation algo-
rithm described on page 312 on the phrase Time flies like an arrow.
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CHAPTER

18 Lexicons for Sentiment and
Affect Extraction

“[W]e write, not with the fingers, but with the whole person. The nerve which
controls the pen winds itself about every fibre of our being, threads the heart,
pierces the liver.”

Virginia Woolf, Orlando

“She runs the gamut of emotions from A to B.”
Dorothy Parker, reviewing Hepburn’s performance in Little Women

In this chapter we turn to tools for interpreting affective meaning, extending ouraffective

study of sentiment analysis in Chapter 6. We use the word ‘affective’, following
the tradition in affective computing (Picard, 1995) to mean emotion, sentiment, per-
sonality, mood, and attitudes. Affective meaning is closely related to subjectivity,subjectivity

the study of a speaker or writer’s evaluations, opinions, emotions, and speculations
(Wiebe et al., 1999).

How should affective meaning be defined? One influential typology of affec-
tive states comes from Scherer (2000), who defines each class of affective states by
factors like its cognition realization and time course:

Emotion: Relatively brief episode of response to the evaluation of an external
or internal event as being of major significance.
(angry, sad, joyful, fearful, ashamed, proud, elated, desperate)

Mood: Diffuse affect state, most pronounced as change in subjective feeling, of
low intensity but relatively long duration, often without apparent cause.
(cheerful, gloomy, irritable, listless, depressed, buoyant)

Interpersonal stance: Affective stance taken toward another person in a spe-
cific interaction, colouring the interpersonal exchange in that situation.
(distant, cold, warm, supportive, contemptuous, friendly)

Attitude: Relatively enduring, affectively colored beliefs, preferences, and pre-
dispositions towards objects or persons.
(liking, loving, hating, valuing, desiring)

Personality traits: Emotionally laden, stable personality dispositions and be-
havior tendencies, typical for a person.
(nervous, anxious, reckless, morose, hostile, jealous)

Figure 18.1 The Scherer typology of affective states, with descriptions from Scherer
(2000).
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We can design extractors for each of these kinds of affective states. Chapter 6
already introduced sentiment analysis, the task of extracting the positive or negative
orientation that a writer expresses toward some object. This corresponds in Scherer’s
typology to the extraction of attitudes: figuring out what people like or dislike,
whether from consumer reviews of books or movies, newspaper editorials, or public
sentiment from blogs or tweets.

Detecting emotion and moods is useful for detecting whether a student is con-
fused, engaged, or certain when interacting with a tutorial system, whether a caller
to a help line is frustrated, whether someone’s blog posts or tweets indicated depres-
sion. Detecting emotions like fear in novels, for example, could help us trace what
groups or situations are feared and how that changes over time.

Detecting different interpersonal stances can be useful when extracting infor-
mation from human-human conversations. The goal here is to detect stances like
friendliness or awkwardness in interviews or friendly conversations, or even to de-
tect flirtation in dating. For the task of automatically summarizing meetings, we’d
like to be able to automatically understand the social relations between people, who
is friendly or antagonistic to whom. A related task is finding parts of a conversation
where people are especially excited or engaged, conversational hot spots that can
help a summarizer focus on the correct region.

Detecting the personality of a user—such as whether the user is an extrovert
or the extent to which they are open to experience— can help improve conversa-
tional agents, which seem to work better if they match users’ personality expecta-
tions (Mairesse and Walker, 2008).

Affect is important for generation as well as recognition; synthesizing affect
is important for conversational agents in various domains, including literacy tutors
such as children’s storybooks, or computer games.

In Chapter 6 we introduced the use of Naive Bayes classification to classify a
document’s sentiment, an approach that has been successfully applied to many of
these tasks. In that approach, all the words in the training set are used as features for
classifying sentiment.

In this chapter we focus on an alternative model, in which instead of using every
word as a feature, we focus only on certain words, ones that carry particularly strong
cues to sentiment or affect. We call these lists of words sentiment or affective
lexicons. In the next sections we introduce lexicons for sentiment, semi-supervised
algorithms for inducing them, and simple algorithms for using lexicons to perform
sentiment analysis.

We then turn to the extraction of other kinds of affective meaning, beginning
with emotion, and the use of on-line tools for crowdsourcing emotion lexicons, and
then proceeding to other kinds of affective meaning like interpersonal stance and
personality.

18.1 Available Sentiment Lexicons

The most basic lexicons label words along one dimension of semantic variability,
called ”sentiment”, ”valence”, or ”semantic orientation”.

In the simplest lexicons this dimension is represented in a binary fashion, with
a wordlist for positive words and a wordlist for negative words. The oldest is the
General Inquirer (Stone et al., 1966), which drew on early work in the cognitionGeneral

Inquirer
psychology of word meaning (Osgood et al., 1957) and on work in content analysis.
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The General Inquirer is a freely available web resource with lexicons of 1915 posi-
tive words and 2291 negative words (and also includes other lexicons we’ll discuss
in the next section).

The MPQA Subjectivity lexicon (Wilson et al., 2005) has 2718 positive and
4912 negative words drawn from a combination of sources, including the General
Inquirer lists, the output of the Hatzivassiloglou and McKeown (1997) system de-
scribed below, and a bootstrapped list of subjective words and phrases (Riloff and
Wiebe, 2003) that was then hand-labeled for sentiment. Each phrase in the lexicon
is also labeled for reliability (strongly subjective or weakly subjective). The polar-
ity lexicon of (Hu and Liu, 2004b) gives 2006 positive and 4783 negative words,
drawn from product reviews, labeled using a bootstrapping method from WordNet
described in the next section.

Positive admire, amazing, assure, celebration, charm, eager, enthusiastic, excel-
lent, fancy, fantastic, frolic, graceful, happy, joy, luck, majesty, mercy,
nice, patience, perfect, proud, rejoice, relief, respect, satisfactorily, sen-
sational, super, terrific, thank, vivid, wise, wonderful, zest

Negative abominable, anger, anxious, bad, catastrophe, cheap, complaint, conde-
scending, deceit, defective, disappointment, embarrass, fake, fear, filthy,
fool, guilt, hate, idiot, inflict, lazy, miserable, mourn, nervous, objection,
pest, plot, reject, scream, silly, terrible, unfriendly, vile, wicked

Figure 18.2 Some samples of words with consistent sentiment across three sentiment lexi-
cons: the General Inquirer (Stone et al., 1966), the MPQA Subjectivity lexicon (Wilson et al.,
2005), and the polarity lexicon of Hu and Liu (2004b).

18.2 Semi-supervised induction of sentiment lexicons

Some affective lexicons are built by having humans assign ratings to words; this
was the technique for building the General Inquirer starting in the 1960s (Stone
et al., 1966), and for modern lexicons based on crowd-sourcing to be described in
Section 18.5.1. But one of the most powerful ways to learn lexicons is to use semi-
supervised learning.

In this section we introduce three methods for semi-supervised learning that are
important in sentiment lexicon extraction. The three methods all share the same
intuitive algorithm which is sketched in Fig. 18.3.

function BUILDSENTIMENTLEXICON(posseeds,negseeds) returns poslex,neglex

poslex←posseeds
neglex←negseeds
Until done

poslex←poslex + FINDSIMILARWORDS(poslex)
neglex←neglex + FINDSIMILARWORDS(neglex)

poslex,neglex←POSTPROCESS(poslex,neglex)

Figure 18.3 Schematic for semi-supervised sentiment lexicon induction. Different algo-
rithms differ in the how words of similar polarity are found, in the stopping criterion, and in
the post-processing.
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As we will see, the methods differ in the intuitions they use for finding words
with similar polarity, and in steps they take to use machine learning to improve the
quality of the lexicons.

18.2.1 Using seed words and adjective coordination
The Hatzivassiloglou and McKeown (1997) algorithm for labeling the polarity of ad-
jectives is the same semi-supervised architecture described above. Their algorithm
has four steps.

Step 1: Create seed lexicon: Hand-label a seed set of 1336 adjectives (all words
that occurred more than 20 times in the 21 million word WSJ corpus). They la-
beled 657 positive adjectives (e.g., adequate, central, clever, famous, intelligent,
remarkable, reputed, sensitive, slender, thriving) and 679 negative adjectives (e.g.,
contagious, drunken, ignorant, lanky, listless, primitive, strident, troublesome, unre-
solved, unsuspecting).

Step 2: Find cues to candidate similar words: Choose words that are similar
or different to the seed words, using the intuition that adjectives conjoined by the
words and tend to have the same polarity. Thus we might expect to see instances of
positive adjectives coordinated with positive, or negative with negative:

fair and legitimate, corrupt and brutal

but less likely to see positive adjectives coordinated with negative:

*fair and brutal, *corrupt and legitimate

By contrast, adjectives conjoined by but are likely to be of opposite polarity:

fair but brutal

The idea that simple patterns like coordination via and and but are good tools for
finding lexical relations like same-polarity and opposite-polarity is an application of
the pattern-based approach to relation extraction described in Chapter 20.

Another cue to opposite polarity comes from morphological negation (un-, im-,
-less). Adjectives with the same root but differing in a morphological negative (ad-
equate/inadequate, thoughtful/thoughtless) tend to be of opposite polarity.

Step 3: Build a polarity graph
These cues are integrated by building a graph with nodes for words and links

representing how likely the two words are to have the same polarity, as shown in
Fig. 18.4.

A simple way to build a graph would predict an opposite-polarity link if the two
adjectives are connected by at least one but, and a same-polarity link otherwise (for
any two adjectives connected by at least one conjunction). The more sophisticated
method used by Hatzivassiloglou and McKeown (1997) is to build a supervised clas-
sifier that predicts whether two words are of the same or different polarity, by using
these 3 features (occurrence with and, occurrence with but, and morphological nega-
tions).

The classifier is trained on a subset of the hand-labeled seed words, and returns a
probability that each pair of words is of the same or opposite polarity. This ‘polarity
similarity’ of each word pair can be viewed as the strength of the positive or negative
links between them in a graph.

Step 4: Clustering the graph Finally, any of various graph clustering algo-
rithms can be used to divide the graph into two subsets with the same polarity; a
graphical intuition is shown in Fig. 18.5.
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helpful
nice

fair
classy

brutal

corrupt
irrational

Figure 18.4 A graph of polarity similarity between all pairs of words; words are notes and
links represent polarity association between words. Continuous lines are same-polarity and
dotted lines are opposite-polarity; the width of lines represents the strength of the polarity.

helpful
nice

fair
classy

brutal

corrupt
irrational

+ -

Figure 18.5 The graph from Fig. 18.4 clustered into two groups, using the polarity simi-
larity between two words (visually represented as the edge line strength and continuity) as a
distance metric for clustering.

Some sample output from the Hatzivassiloglou and McKeown (1997) algorithm
is shown below, showing system errors in red.

Positive: bold decisive disturbing generous good honest important large
mature patient peaceful positive proud sound stimulating straightfor-
ward strange talented vigorous witty

Negative: ambiguous cautious cynical evasive harmful hypocritical in-
efficient insecure irrational irresponsible minor outspoken pleasant reck-
less risky selfish tedious unsupported vulnerable wasteful

18.2.2 Pointwise mutual information
Where the first method for finding words with similar polarity relied on patterns of
conjunction, we turn now to a second method that uses neighborhood co-occurrence
as proxy for polarity similarity. This algorithm assumes that words with similar
polarity tend to occur nearby each other, using the pointwise mutual information
(PMI) algorithm defined in Chapter 15.

The method of Turney (2002) uses this method to assign polarity to both words
and two-word phrases.

In a prior step, two-word phrases are extracted based on simple part-of-speech
regular expressions. The expressions select nouns with preceding adjectives, verbs
with preceding adverbs, and adjectival heads (adjectives with no following noun)
preceded by adverbs, adjectives or nouns:
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Word 1 POS Word 2 POS
JJ NN|NNS
RB|RBR|RBS VB|VBD|VBN|VBG
RB|RBR|RBS|JJ|NN|NNS JJ (only if following word is not NN|NNS)

To measure the polarity of each extracted phrase, we start by choosing positive
and negative seed words. For example we might choose a single positive seed word
excellent and a single negative seed word poor. We then make use of the intuition
that positive phrases will in general tend to co-occur more with excellent. Negative
phrases co-occur more with poor.

The PMI measure can be used to measure this co-occurrence. Recall from Chap-
ter 15 that the pointwise mutual information (Fano, 1961) is a measure of how

pointwise
mutual

information often two events x and y occur, compared with what we would expect if they were
independent:

PMI(x,y) = log2
P(x,y)

P(x)P(y)
(18.1)

This intuition can be applied to measure the co-occurrence of two words by
defining the pointwise mutual information association between a seed word s and
another word w as:

PMI(w,s) = log2
P(w,s)

P(w)P(s)
(18.2)

Turney (2002) estimated the probabilities needed by Eq. 18.2 using a search
engine with a NEAR operator, specifying that a word has to be near another word.
The probabilities are then estimated as follows:

P(w) =
hits(w)

N
(18.3)

P(w1,w2) =
hits(w1 NEAR w2)

kN
(18.4)

That is, we estimate the probability of a word as the count returned from the
search engine, normalized by the total number of words in the entire web corpus N.
(It doesn’t matter that we don’t know what N is, since it turns out it will cancel out
nicely). The bigram probability is the number of bigram hits normalized by kN—
although there are N unigrams and also approximately N bigrams in a corpus of
length N, there are kN “NEAR” bigrams in which the two words are separated by a
distance of up to k.

The PMI between two words w and s is then:

PMI(w,s) = log2

1
kN hits(w NEAR s)
1
N hits(w) 1

N hits(s)
(18.5)

The insight of Turney (2002) is then to define the polarity of a word by how
much it occurs with the positive seeds and doesn’t occur with the negative seeds:
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Polarity(w) = PMI(w,“excellent”)−PMI(w,“poor”)

= log2

1
kN hits(w NEAR “excellent”)
1
N hits(w) 1

N hits(“excellent”)
− log2

1
kN hits(w NEAR “poor”)
1
N hits(w) 1

N hits(“poor”)

= log2

(
hits(w NEAR “excellent”)
hits(w)hits(“excellent”)

hits(w)hits(“poor”)
hits(w NEAR “poor”)

)
= log2

(
hits(w NEAR “excellent”) hits(“poor”)
hits(“excellent”) hits(w NEAR “poor”)

)
(18.6)

The table below from Turney (2002) shows sample examples of phrases learned
by the PMI method (from reviews of banking services), showing those with both
positive and negative polarity:

Extracted Phrase Polarity
online experience 2.3
very handy 1.4
low fees 0.3
inconveniently located -1.5
other problems -2.8
unethical practices -8.5

18.2.3 Using WordNet synonyms and antonyms
A third method for finding words that have a similar polarity to seed words is to
make use of word synonymy and antonymy. The intuition is that a word’s synonyms
probably share its polarity while a word’s antonyms probably have the opposite po-
larity.

Since WordNet has these relations, it is often used (Kim and Hovy 2004, Hu
and Liu 2004b). After a seed lexicon is built, each lexicon is updated as follows,
possibly iterated.

Lex+ : Add synonyms of positive words (well) and antonyms (like fine) of negative
words

Lex− : Add synonyms of negative words (awful) and antonyms ( like evil) of posi-
tive words

An extension of this algorithm has been applied to assign polarity to WordNet
senses, called SentiWordNet (Baccianella et al., 2010). Fig. 18.6 shows some ex-SentiWordNet

amples.
In this algorithm, polarity is assigned to entire synsets rather than words. A pos-

itive lexicon is built from all the synsets associated with 7 positive words, and a neg-
ative lexicon from synsets associated with 7 negative words. Both are expanded by
drawing in synsets related by WordNet relations like antonymy or see-also. A clas-
sifier is then trained from this data to take a WordNet gloss and decide if the sense
being defined is positive, negative or neutral. A further step (involving a random-
walk algorithm) assigns a score to each WordNet synset for its degree of positivity,
negativity, and neutrality.

In summary, we’ve seen three distinct ways to use semisupervised learning to
induce a sentiment lexicon. All begin with a seed set of positive and negative words,
as small as 2 words (Turney, 2002) or as large as a thousand (Hatzivassiloglou and
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Synset Pos Neg Obj
good#6 ‘agreeable or pleasing’ 1 0 0
respectable#2 honorable#4 good#4 estimable#2 ‘deserving of esteem’ 0.75 0 0.25
estimable#3 computable#1 ‘may be computed or estimated’ 0 0 1
sting#1 burn#4 bite#2 ‘cause a sharp or stinging pain’ 0 0.875 .125
acute#6 ‘of critical importance and consequence’ 0.625 0.125 .250
acute#4 ‘of an angle; less than 90 degrees’ 0 0 1
acute#1 ‘having or experiencing a rapid onset and short but severe course’ 0 0.5 0.5
Figure 18.6 Examples from SentiWordNet 3.0 (Baccianella et al., 2010). Note the differences between senses
of homonymous words: estimable#3 is purely objective, while estimable#2 is positive; acute can be positive
(acute#6), negative (acute#1), or neutral (acute #4).

McKeown, 1997). More words of similar polarity are then added, using pattern-
based methods, PMI-weighted document co-occurrence, or WordNet synonyms and
antonyms. Classifiers can also be used to combine various cues to the polarity of
new words, by training on the seed training sets, or early iterations.

18.3 Supervised learning of word sentiment

The previous section showed semi-supervised ways to learn sentiment when there
is no supervision signal, by expanding a hand-built seed set using cues to polarity
similarity. An alternative to semi-supervision is to do supervised learning, making
direct use of a powerful source of supervision for word sentiment: on-line reviews.

The web contains an enormous number of on-line reviews for restaurants, movies,
books, or other products, each of which have the text of the review along with an
associated review score: a value that may range from 1 star to 5 stars, or scoring 1
to 10. Fig. 18.7 shows samples extracted from restaurant, book, and movie reviews.

We can use this review score as supervision: positive words are more likely to
appear in 5-star reviews; negative words in 1-star reviews. And instead of just a
binary polarity, this kind of supervision allows us to assign a word a more complex
representation of its polarity: its distribution over stars (or other scores).

Thus in a ten-star system we could represent the sentiment of each word as a
10-tuple, each number a score representing the word’s association with that polarity
level. This association can be a raw count, or a likelihood P(c|w), or some other
function of the count, for each class c from 1 to 10.

For example, we could compute the IMDB likelihood of a word like disap-
point(ed/ing) occuring in a 1 star review by dividing the number of times disap-
point(ed/ing) occurs in 1-star reviews in the IMDB dataset (8,557) by the total num-
ber of words occurring in 1-star reviews (25,395,214), so the IMDB estimate of
P(disappointing|1) is .0003.

A slight modification of this weighting, the normalized likelihood, can be used
as an illuminating visualization (Potts, 2011)1:

1 Potts shows that the normalized likelihood is an estimate of the posterior P(c|w) if we make the
incorrect but simplifying assumption that all categories c have equal probability.
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Movie review excerpts (IMDB)
10 A great movie. This film is just a wonderful experience. It’s surreal, zany, witty and slapstick

all at the same time. And terrific performances too.
1 This was probably the worst movie I have ever seen. The story went nowhere even though they

could have done some interesting stuff with it.
Restaurant review excerpts (Yelp)

5 The service was impeccable. The food was cooked and seasoned perfectly... The watermelon
was perfectly square ... The grilled octopus was ... mouthwatering...

2 ...it took a while to get our waters, we got our entree before our starter, and we never received
silverware or napkins until we requested them...

Book review excerpts (GoodReads)
1 I am going to try and stop being deceived by eye-catching titles. I so wanted to like this book

and was so disappointed by it.
5 This book is hilarious. I would recommend it to anyone looking for a satirical read with a

romantic twist and a narrator that keeps butting in
Product review excerpts (Amazon)

5 The lid on this blender though is probably what I like the best about it... enables you to pour
into something without even taking the lid off! ... the perfect pitcher! ... works fantastic.

1 I hate this blender... It is nearly impossible to get frozen fruit and ice to turn into a smoothie...
You have to add a TON of liquid. I also wish it had a spout ...

Figure 18.7 Excerpts from some reviews from various review websites, all on a scale of 1 to 5 stars except
IMDB, which is on a scale of 1 to 10 stars.

P(w|c) =
count(w,c)∑

w∈C count(w,c)

PottsScore(w) =
P(w|c)∑
c P(w|c)

(18.7)

Dividing the IMDB estimate P(disappointing|1) of .0003 by the sum of the like-
lihood P(w|c) over all categories gives a Potts score of 0.10. The word disappointing
thus is associated with the vector [.10, .12, .14, .14, .13, .11, .08, .06, .06, .05]. The
Potts diagram (Potts, 2011) is a visualization of these word scores, representing thePotts diagram

prior sentiment of a word as a distribution over the rating categories.
Fig. 18.8 shows the Potts diagrams for 3 positive and 3 negative scalar adjectives.

Note that the curve for strongly positive scalars have the shape of the letter J, while
strongly negative scalars look like a reverse J. By contrast, weakly positive and neg-
ative scalars have a hump-shape, with the maximum either below the mean (weakly
negative words like disappointing) or above the mean (weakly positive words like
good). These shapes offer an illuminating typology of affective word meaning.

Fig. 18.9 shows the Potts diagrams for emphasizing and attenuating adverbs.
Again we see generalizations in the characteristic curves associated with words of
particular meanings. Note that emphatics tend to have a J-shape (most likely to occur
in the most positive reviews) or a U-shape (most likely to occur in the strongly posi-
tive and negative). Attenuators all have the hump-shape, emphasizing the middle of
the scale and downplaying both extremes.

The diagrams can be used both as a typology of lexical sentiment, and also play
a role in modeling sentiment compositionality.

In addition to functions like posterior P(c|w), likelihood P(w|c), or normalized
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Figure 18.8 Potts diagrams (Potts, 2011) for positive and negative scalar adjectives, show-
ing the J-shape and reverse J-shape for strongly positive and negative adjectives, and the
hump-shape for more weakly polarized adjectives.
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Figure 18.9 Potts diagrams (Potts, 2011) for emphatic and attenuating adverbs.

likelihood (Eq. 18.7) many other functions of the count of a word occuring with a
sentiment label have been used. We’ll introduce some of these on page 343, includ-
ing ideas like normalizing the counts per writer in Eq. 18.13.

18.3.1 Log odds ratio informative Dirichlet prior
One thing we often want to do with word polarity is to distinguish between words
that are more likely to be used in one category of texts than in another. We may, for
example, want to know the words most associated with 1 star reviews versus those
associated with 5 star reviews. These differences may not be just related to senti-
ment. We might want to find words used more often by Democratic than Republican
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members of Congress, or words used more often in menus of expensive restaurants
than cheap restaurants.

Given two classes of documents, to find words more associated with one cate-
gory than another, we might choose to just compute the difference in frequencies
(is a word w more frequent in class A or class B?). Or instead of the difference in
frequencies we might want to compute the ratio of frequencies, or the log-odds ratio
(the log of the ratio between the odds of the two words). Then we can sort words
by whichever of these associations with the category we use, (sorting from words
overrepresented in category A to words overrepresented in category B).

Many such metrics have been studied; in this section we walk through the details
of one of them, the “log odds ratio informative Dirichlet prior” method of Monroe
et al. (2008) that is a particularly useful method for finding words that are statistically
overrepresented in one particular category of texts compared to another.

The method estimates the difference between the frequency of word w in two
corpora i and j via the log-odds-ratio for w, δ

(i− j)
w , which is estimated as:

δ
(i− j)
w = log

(
yi

w +αw

ni +α0− (yi
w +αw)

)
− log

(
y j

w +αw

n j +α0− (y j
w +αw)

)
(18.8)

(where ni is the size of corpus i, n j is the size of corpus j, yi
w is the count of word w

in corpus i, y j
w is the count of word w in corpus j, α0 is the size of the background

corpus, and αw is the count of word w in the background corpus.)
In addition, Monroe et al. (2008) make use of an estimate for the variance of the

log–odds–ratio:

σ
2
(

δ̂
(i− j)
w

)
≈ 1

yi
w +αw

+
1

y j
w +αw

(18.9)

The final statistic for a word is then the z–score of its log–odds–ratio:

δ̂
(i− j)
w√

σ2
(

δ̂
(i− j)
w

) (18.10)

The Monroe et al. (2008) method thus modifies the commonly used log-odds
ratio in two ways: it uses the z-scores of the log-odds ratio, which controls for the
amount of variance in a words frequency, and it uses counts from a background
corpus to provide a prior count for words, essentially shrinking the counts toward to
the prior frequency in a large background corpus.

Fig. 18.10 shows the method applied to a dataset of restaurant reviews from
Yelp, comparing the words used in 1-star reviews to the words used in 5-star reviews
(Jurafsky et al., 2014). The largest difference is in obvious sentiment words, with the
1-star reviews using negative sentiment words like worse, bad, awful and the 5-star
reviews using positive sentiment words like great, best, amazing. But there are other
illuminating differences. 1-star reviews use logical negation (no, not), while 5-star
reviews use emphatics and emphasize universality (very, highly, every, always). 1-
star reviews use first person plurals (we, us, our) while 5 star reviews use the second
person. 1-star reviews talk about people (manager, waiter, customer) while 5-star
reviews talk about dessert and properties of expensive restaurants like courses and
atmosphere. See Jurafsky et al. (2014) for more details.
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Class Words in 1-star reviews Class Words in 5-star reviews
Negative worst, rude, terrible, horrible, bad,

awful, disgusting, bland, tasteless,
gross, mediocre, overpriced, worse,
poor

Positive great, best, love(d), delicious, amazing,
favorite, perfect, excellent, awesome,
friendly, fantastic, fresh, wonderful, in-
credible, sweet, yum(my)

Negation no, not Emphatics/
universals

very, highly, perfectly, definitely, abso-
lutely, everything, every, always

1Pl pro we, us, our 2 pro you
3 pro she, he, her, him Articles a, the
Past verb was, were, asked, told, said, did,

charged, waited, left, took
Advice try, recommend

Sequencers after, then Conjunct also, as, well, with, and
Nouns manager, waitress, waiter, customer,

customers, attitude, waste, poisoning,
money, bill, minutes

Nouns atmosphere, dessert, chocolate, wine,
course, menu

Irrealis
modals

would, should Auxiliaries is/’s, can, ’ve, are

Comp to, that Prep, other in, of, die, city, mouth
Figure 18.10 The top 50 words associated with one–star and five-star restaurant reviews in a Yelp dataset of
900,000 reviews, using the Monroe et al. (2008) method (Jurafsky et al., 2014).

18.4 Using Lexicons for Sentiment Recognition

In Chapter 6 we introduced the naive Bayes algorithm for sentiment analysis. The
lexicons we have focused on throughout the chapter so far can be used in a number
of ways to improve sentiment detection.

In the simplest case, lexicons can be used when we don’t have sufficient training
data to build a supervised sentiment analyzer; it can often be expensive to have a
human assign sentiment to each document to train the supervised classifier.

In such situations, lexicons can be used in a simple rule-based algorithm for
classification. The simplest version is just to use the ratio of positive to negative
words: if a document has more positive than negative words (using the lexicon to
decide the polarity of each word in the document), it is classified as positive. Often
a threshold λ is used, in which a document is classified as positive only if the ratio
is greater than λ . If the sentiment lexicon includes positive and negative weights for
each word, θ+

w and θ−w , these can be used as well. Here’s a simple such sentiment
algorithm:

f+ =
∑

w s.t. w∈positivelexicon

θ
+
w count(w)

f− =
∑

w s.t. w∈negativelexicon

θ
−
w count(w)

sentiment =


+ if f+

f− > λ

− if f−

f+ > λ

0 otherwise.

(18.11)

If supervised training data is available, these counts computed from sentiment
lexicons, sometimes weighted or normalized in various ways, can also be used as
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features in a classifier along with other lexical or non-lexical features. We return to
such algorithms in Section 18.7.

18.5 Emotion and other classes

One of the most important affective classes is emotion, which Scherer (2000) definesemotion

as a “relatively brief episode of response to the evaluation of an external or internal
event as being of major significance”.

Detecting emotion has the potential to improve a number of language processing
tasks. Automatically detecting emotions in reviews or customer responses (anger,
dissatisfaction, trust) could help businesses recognize specific problem areas or ones
that are going well. Emotion recognition could help dialog systems like tutoring
systems detect that a student was unhappy, bored, hesitant, confident, and so on.
Emotion can play a role in medical informatics tasks like detecting depression or
suicidal intent. Detecting emotions expressed toward characters in novels might
play a role in understanding how different social groups were viewed by society at
different times.

There are two widely-held families of theories of emotion. In one family, emo-
tions are viewed as fixed atomic units, limited in number, and from which others
are generated, often called basic emotions (Tomkins 1962, Plutchik 1962). Per-basic emotions

haps most well-known of this family of theories are the 6 emotions proposed by
(Ekman, 1999) as a set of emotions that is likely to be universally present in all
cultures: surprise, happiness, anger, fear, disgust, sadness. Another atomic theory
is the (Plutchik, 1980) wheel of emotion, consisting of 8 basic emotions in four
opposing pairs: joy–sadness, anger–fear, trust–disgust, and anticipation–surprise,
together with the emotions derived from them, shown in Fig. 18.11.

Figure 18.11 Plutchik wheel of emotion.



18.5 • EMOTION AND OTHER CLASSES 339

The second class of emotion theories views emotion as a space in 2 or 3 di-
mensions (Russell, 1980). Most models include the two dimensions valence and
arousal, and many add a third, dominance. These can be defined as:

valence: the pleasantness of the stimulus

arousal: the intensity of emotion provoked by the stimulus

dominance: the degree of control exerted by the stimulus

Practical lexicons have been built for both kinds of theories of emotion.

18.5.1 Lexicons for emotion and other affective states

While semi-supervised algorithms are the norm in sentiment and polarity, the most
common way to build emotional lexicons is to have humans label the words. This
is most commonly done using crowdsourcing: breaking the task into small piecescrowdsourcing

and distributing them to a large number of annotaters. Let’s take a look at one
crowdsourced emotion lexicon from each of the two common theoretical models of
emotion.

The NRC Word-Emotion Association Lexicon, also called EmoLex (Moham-EmoLex

mad and Turney, 2013), uses the Plutchik (1980) 8 basic emotions defined above.
The lexicon includes around 14,000 words chosen partly from the prior lexicons
(the General Inquirer and WordNet Affect Lexicons) and partly from the Macquarie
Thesaurus, from which the 200 most frequent words were chosen from four parts of
speech: nouns, verbs, adverbs, and adjectives (using frequencies from the Google
n-gram count).

In order to ensure that the annotators were judging the correct sense of the word,
they first answered a multiple-choice synonym question that primed the correct sense
of the word (without requiring the annotator to read a potentially confusing sense
definition). These were created automatically using the headwords associated with
the thesaurus category of the sense in question in the Macquarie dictionary and the
headwords of 3 random distractor categories. An example:

Which word is closest in meaning (most related) to startle?

• automobile
• shake
• honesty
• entertain

For each word (e.g. startle), the annotator was asked to rate how associated that
word is with each of the 8 emotions (joy, fear, anger, etc.). The associations were
rated on a scale of not, weakly, moderately, and strongly associated. Outlier ratings
were removed, and then each term was assigned the class chosen by the majority of
the annotators, with ties broken by choosing the stronger intensity, and then the 4
levels were mapped into a binary label for each word (no and weak mapped to 0,
moderate and strong mapped to 1). Values from the lexicon for some sample words:
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Word an
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reward 0 1 0 0 1 0 1 1 1 0
worry 0 1 0 1 0 1 0 0 0 1
tenderness 0 0 0 0 1 0 0 0 1 0
sweetheart 0 1 0 0 1 1 0 1 1 0
suddenly 0 0 0 0 0 0 1 0 0 0
thirst 0 1 0 0 0 1 1 0 0 0
garbage 0 0 1 0 0 0 0 0 0 1

A second lexicon, also built using crowdsourcing, assigns values on three di-
mensions (valence/arousal/dominance) to 14,000 words (Warriner et al., 2013).

The annotaters marked each word with a value from 1-9 on each of the dimen-
sions, with the scale defined for them as follows:

• valence (the pleasantness of the stimulus)
9: happy, pleased, satisfied, contented, hopeful
1: unhappy, annoyed, unsatisfied, melancholic, despaired, or bored

• arousal (the intensity of emotion provoked by the stimulus)
9: stimulated, excited, frenzied, jittery, wide-awake, or aroused
1: relaxed, calm, sluggish, dull, sleepy, or unaroused;

• dominance (the degree of control exerted by the stimulus)
9: in control, influential, important, dominant, autonomous, or controlling
1: controlled, influenced, cared-for, awed, submissive, or guided

Some examples are shown in Fig. 18.12

Valence Arousal Dominance
vacation 8.53 rampage 7.56 self 7.74
happy 8.47 tornado 7.45 incredible 7.74
whistle 5.7 zucchini 4.18 skillet 5.33
conscious 5.53 dressy 4.15 concur 5.29
torture 1.4 dull 1.67 earthquake 2.14
Figure 18.12 Samples of the values of selected words on the three emotional dimensions
from Warriner et al. (2013).

There are various other hand-built lexicons of words related in various ways to
the emotions. The General Inquirer includes lexicons like strong vs. weak, active vs.
passive, overstated vs. understated, as well as lexicons for categories like pleasure,
pain, virtue, vice, motivation, and cognitive orientation.

Another useful feature for various tasks is the distinction between concreteconcrete

words like banana or bathrobe and abstract words like belief and although. Theabstract

lexicon in (Brysbaert et al., 2014) used crowdsourcing to assign a rating from 1 to 5
of the concreteness of 40,000 words, thus assigning banana, bathrobe, and bagel 5,
belief 1.19, although 1.07, and in between words like brisk a 2.5.

LIWC, Linguistic Inquiry and Word Count, is another set of 73 lexicons con-LIWC

taining over 2300 words (Pennebaker et al., 2007), designed to capture aspects of
lexical meaning relevant for social psychological tasks. In addition to sentiment-
related lexicons like ones for negative emotion (bad, weird, hate, problem, tough)
and positive emotion (love, nice, sweet), LIWC includes lexicons for categories like
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anger, sadness, cognitive mechanisms, perception, tentative, and inhibition, shown
in Fig. 18.13.

Positive Negative
Emotion Emotion Insight Inhibition Family Negate
appreciat* anger* aware* avoid* brother* aren’t
comfort* bore* believe careful* cousin* cannot
great cry decid* hesitat* daughter* didn’t
happy despair* feel limit* family neither
interest fail* figur* oppos* father* never
joy* fear know prevent* grandf* no
perfect* griev* knew reluctan* grandm* nobod*
please* hate* means safe* husband none
safe* panic* notice* stop mom nor
terrific suffers recogni* stubborn* mother nothing
value terrify sense wait niece* nowhere
wow* violent* think wary wife without
Figure 18.13 Samples from 5 of the 73 lexical categories in LIWC (Pennebaker et al.,
2007). The * means the previous letters are a word prefix and all words with that prefix are
included in the category.

18.6 Other tasks: Personality

Many other kinds of affective meaning can be extracted from text and speech. For
example detecting a person’s personality from their language can be useful for di-personality

alog systems (users tend to prefer agents that match their personality), and can play
a useful role in computational social science questions like understanding how per-
sonality is related to other kinds of behavior.

Many theories of human personality are based around a small number of dimen-
sions, such as various versions of the “Big Five” dimensions (Digman, 1990):

Extroversion vs. Introversion: sociable, assertive, playful vs. aloof, reserved,
shy

Emotional stability vs. Neuroticism: calm, unemotional vs. insecure, anxious
Agreeableness vs. Disagreeableness: friendly, cooperative vs. antagonistic, fault-

finding
Conscientiousness vs. Unconscientiousness: self-disciplined, organized vs. in-

efficient, careless
Openness to experience: intellectual, insightful vs. shallow, unimaginative

A few corpora of text and speech have been labeled for the personality of their
author by having the authors take a standard personality test. The essay corpus of
Pennebaker and King (1999) consists of 2,479 essays (1.9 million words) from psy-
chology students who were asked to “write whatever comes into your mind” for 20
minutes. The EAR (Electronically Activated Recorder) corpus of Mehl et al. (2006)
was created by having volunteers wear a recorder throughout the day, which ran-
domly recorded short snippets of conversation throughout the day, which were then
transcribed. The Facebook corpus of (Schwartz et al., 2013) includes 309 million
words of Facebook posts from 75,000 volunteers.
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For example, here are samples from Pennebaker and King (1999) from an essay
written by someone on the neurotic end of the neurotic/emotionally stable scale,

One of my friends just barged in, and I jumped in my seat. This is crazy.
I should tell him not to do that again. I’m not that fastidious actually.
But certain things annoy me. The things that would annoy me would
actually annoy any normal human being, so I know I’m not a freak.

and someone on the emotionally stable end of the scale:

I should excel in this sport because I know how to push my body harder
than anyone I know, no matter what the test I always push my body
harder than everyone else. I want to be the best no matter what the sport
or event. I should also be good at this because I love to ride my bike.

Another kind of affective meaning is what Scherer (2000) calls interpersonal
stance, the ‘affective stance taken toward another person in a specific interactioninterpersonal

stance
coloring the interpersonal exchange’. Extracting this kind of meaning means au-
tomatically labeling participants for whether they are friendly, supportive, distant.
For example Ranganath et al. (2013) studied a corpus of speed-dates, in which par-
ticipants went on a series of 4-minute romantic dates, wearing microphones. Each
participant labeled each other for how flirtatious, friendly, awkward, or assertive
they were. Ranganath et al. (2013) then used a combination of lexicons and other
features to detect these interpersonal stances from text.

18.7 Affect Recognition

Detection of emotion, personality, interactional stance, and the other kinds of af-
fective meaning described by Scherer (2000) can be done by generalizing the algo-
rithms described above for detecting sentiment.

The most common algorithms involve supervised classification: a training set is
labeled for the affective meaning to be detected, and a classifier is built using features
extracted from the training set. As with sentiment analysis, if the training set is large
enough, and the test set is sufficiently similar to the training set, simply using all
the words or all the bigrams as features in a powerful classifier like SVM or logistic
regression, as described in Fig. 6.2 in Chapter 6, is an excellent algorithm whose
performance is hard to beat. Thus we can treat affective meaning classification of a
text sample as simple document classification.

Some modifications are nonetheless often necessary for very large datasets. For
example, the Schwartz et al. (2013) study of personality, gender, and age using 700
million words of Facebook posts used only a subset of the n-grams of lengths 1-
3. Only words and phrases used by at least 1% of the subjects were included as
features, and 2-grams and 3-grams were only kept if they had sufficiently high PMI
(PMI greater than 2∗ length, where length is the number of words):

pmi(phrase) = log
p(phrase)∏

w∈phrase
p(w)

(18.12)

Various weights can be used for the features, including the raw count in the train-
ing set, or some normalized probability or log probability. Schwartz et al. (2013), for
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example, turn feature counts into phrase likelihoods by normalizing them by each
subject’s total word use.

p(phrase|subject) =
freq(phrase,subject)∑

phrase′∈vocab(subject)

freq(phrase′,subject)
(18.13)

If the training data is sparser, or not as similar to the test set, any of the lexicons
we’ve discussed can play a helpful role, either alone or in combination with all the
words and n-grams.

Many possible values can be used for lexicon features. The simplest is just an
indicator function, in which the value of a feature fL takes the value 1 if a particular
text has any word from the relevant lexicon L . Using the notation of Chapter 6, in
which a feature value is defined for a particular output class c and document x.

fL (c,x) =

{
1 if ∃w : w ∈L & w ∈ x & class = c
0 otherwise

(18.14)

Alternatively the value of a feature fL for a particular lexicon L can be the total
number of word tokens in the document that occur in L :

fL =
∑
w∈L

count(w)

For lexica in which each word is associated with a score or weight, the count can
be multiplied by a weight θL

w :

fL =
∑
w∈L

θ
L
w count(w)

Counts can alternatively be logged or normalized per writer as in Eq. 18.13.
However they are defined, these lexicon features are then used in a supervised

classifier to predict the desired affective category for the text or document. Once
a classifier is trained, we can examine which lexicon features are associated with
which classes. For a classifier like logistic regression the feature weight gives an
indication of how associated the feature is with the class.

Thus, for example, (Mairesse and Walker, 2008) found that for classifying per-
sonality, for the dimension Agreeable, the LIWC lexicons Family and Home were
positively associated while the LIWC lexicons anger and swear were negatively
associated. By contrast, Extroversion was positively associated with the Friend,
Religion and Self lexicons, and Emotional Stability was positively associated with
Sports and negatively associated with Negative Emotion.

In the situation in which we use all the words and phrases in the document as
potential features, we can use the resulting weights from the learned regression
classifier as the basis of an affective lexicon. Thus, for example, in the Extrover-
sion/Introversion classifier of Schwartz et al. (2013), ordinary least-squares regres-
sion is used to predict the value of a personality dimension from all the words and
phrases. The resulting regression coefficient for each word or phrase can be used as
an association value with the predicted dimension. The word clouds in Fig. 18.14
show an example of words associated with introversion (a) and extroversion (b).
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Figure 6. Words, phrases, and topics most distinguishing extraversion from introversion and neuroticism from emotional stability. A.
Language of extraversion (left, e.g., ‘party’) and introversion (right, e.g., ‘computer’); N~72,709. B. Language distinguishing neuroticism (left, e.g.
‘hate’) from emotional stability (right, e.g., ‘blessed’); N~71,968 (adjusted for age and gender, Bonferroni-corrected pv0:001). Figure S8 contains
results for openness, conscientiousness, and agreeableness.
doi:10.1371/journal.pone.0073791.g006
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(a) (b)

Figure 18.14 Word clouds from Schwartz et al. (2013), showing words highly associated
with introversion (left) or extroversion (right). The size of the word represents the association
strength (the regression coefficient), while the color (ranging from cold to hot) represents the
relative frequency of the word/phrase (from low to high).

18.8 Summary

• Many kinds of affective states can be distinguished, including emotions, moods,
attitudes (which include sentiment), interpersonal stance, and personality.

• Words have connotational aspects related to these affective states, and this
connotational aspect of word meaning can be represented in lexicons.

• Affective lexicons can be built by hand, using crowd sourcing to label the
affective content of each word.

• Lexicons can be built semi-supervised, bootstrapping from seed words using
similarity metrics like the frequency two words are conjoined by and or but,
the two words’ pointwise mutual information, or their association via Word-
Net synonymy or antonymy relations.

• Lexicons can be learned in a fully supervised manner, when a convenient
training signal can be found in the world, such as ratings assigned by users on
a review site.

• Words can be assigned weights in a lexicon by using various functions of word
counts in training texts, and ratio metrics like log odds ratio informative
Dirichlet prior.

• Emotion can be represented by fixed atomic units often called basic emo-
tions, or as points in space defined by dimensions like valence and arousal.

• Personality is often represented as a point in 5-dimensional space.
• Affect can be detected, just like sentiment, by using standard supervised text

classification techniques, using all the words or bigrams in a text as features.
Additional features can be drawn from counts of words in lexicons.

• Lexicons can also be used to detect affect in a rule-based classifier by picking
the simple majority sentiment based on counts of words in each lexicon.

Bibliographical and Historical Notes
The idea of formally representing the subjective meaning of words began with Os-
good et al. (1957), the same pioneering study that first proposed the vector space
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model of meaning described in Chapter 15. Osgood et al. (1957) had participants
rate words on various scales, and ran factor analysis on the ratings. The most sig-
nificant factor they uncovered was the evaluative dimension, which distinguished
between pairs like good/bad, valuable/worthless, pleasant/unpleasant. This work
influenced the development of early dictionaries of sentiment and affective meaning
in the field of content analysis (Stone et al., 1966).

Wiebe (1994) began an influential line of work on detecting subjectivity in text,subjectivity

beginning with the task of identifying subjective sentences and the subjective char-
acters who are described in the text as holding private states, beliefs or attitudes.
Learned sentiment lexicons such as the polarity lexicons of (Hatzivassiloglou and
McKeown, 1997) were shown to be a useful feature in subjectivity detection (Hatzi-
vassiloglou and Wiebe 2000, Wiebe 2000).

The term sentiment seems to have been introduced in 2001 by Das and Chen
(2001), to describe the task of measuring market sentiment by looking at the words in
stock trading message boards. In the same paper Das and Chen (2001) also proposed
the use of a sentiment lexicon. The list of words in the lexicon was created by
hand, but each word was assigned weights according to how much it discriminated
a particular class (say buy versus sell) by maximizing across-class variation and
minimizing within-class variation. The term sentiment, and the use of lexicons,
caught on quite quickly (e.g., inter alia, Turney 2002). Pang et al. (2002) first showed
the power of using all the words without a sentiment lexicon; see also Wang and
Manning (2012).

The semi-supervised methods we describe for extending sentiment dictionar-
ies all drew on the early idea that synonyms and antonyms tend to co-occur in the
same sentence. (Miller and Charles 1991, Justeson and Katz 1991). Other semi-
supervized methods for learning cues to affective meaning rely on information ex-
traction techniques, like the AutoSlog pattern extractors (Riloff and Wiebe, 2003).

For further information on sentiment analysis, including discussion of lexicons,
see the useful surveys of Pang and Lee (2008) and Liu (2015).
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CHAPTER

21 Information Extraction

I am the very model of a modern Major-General,
I’ve information vegetable, animal, and mineral,

I know the kings of England, and I quote the fights historical
From Marathon to Waterloo, in order categorical...

Gilbert and Sullivan, Pirates of Penzance

Imagine that you are an analyst with an investment firm that tracks airline stocks.
You’re given the task of determining the relationship (if any) between airline an-
nouncements of fare increases and the behavior of their stocks the next day. His-
torical data about stock prices is easy to come by, but what about the airline an-
nouncements? You will need to know at least the name of the airline, the nature of
the proposed fare hike, the dates of the announcement, and possibly the response of
other airlines. Fortunately, these can be all found in news articles like this one:

Citing high fuel prices, United Airlines said Friday it has increased fares
by $6 per round trip on flights to some cities also served by lower-
cost carriers. American Airlines, a unit of AMR Corp., immediately
matched the move, spokesman Tim Wagner said. United, a unit of UAL
Corp., said the increase took effect Thursday and applies to most routes
where it competes against discount carriers, such as Chicago to Dallas
and Denver to San Francisco.

This chapter presents techniques for extracting limited kinds of semantic con-
tent from text. This process of information extraction (IE), turns the unstructuredinformation

extraction
information embedded in texts into structured data, for example for populating a
relational database to enable further processing.

The first step in most IE tasks is to find the proper names or named entities
mentioned in a text. The task of named entity recognition (NER) is to find eachnamed entity

recognition
mention of a named entity in the text and label its type. What constitutes a named
entity type is application specific; these commonly include people, places, and or-
ganizations but also more specific entities from the names of genes and proteins
(Cohen and Demner-Fushman, 2014) to the names of college courses (McCallum,
2005).

Having located all of the mentions of named entities in a text, it is useful to
link, or cluster, these mentions into sets that correspond to the entities behind the
mentions, for example inferring that mentions of United Airlines and United in the
sample text refer to the same real-world entity. We’ll defer discussion of this task of
coreference resolution until Chapter 23.

The task of relation extraction is to find and classify semantic relations amongrelation
extraction

the text entities, often binary relations like spouse-of, child-of, employment, part-
whole, membership, and geospatial relations. Relation extraction has close links to
populating a relational database.
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The task of event extraction is to find events in which these entities participate,event
extraction

like, in our sample text, the fare increases by United and American and the reporting
events said and cite. We’ll also need to perform event coreference to figure out
which of the many event mentions in a text refer to the same event; in our running
example the two instances of increase and the phrase the move all refer to the same
event.

To figure out when the events in a text happened we’ll do recognition of tem-
poral expressions like days of the week (Friday and Thursday), months, holidays,temporal

expression
etc., relative expressions like two days from now or next year and times such as 3:30
P.M. or noon. The problem of temporal expression normalization is to map these
temporal expressions onto specific calendar dates or times of day to situate events
in time. In our sample task, this will allow us to link Friday to the time of United’s
announcement, and Thursday to the previous day’s fare increase, and produce a
timeline in which United’s announcement follows the fare increase and American’s
announcement follows both of those events.

Finally, many texts describe recurring stereotypical situations. The task of tem-
plate filling is to find such situations in documents and fill the template slots withtemplate filling

appropriate material. These slot-fillers may consist of text segments extracted di-
rectly from the text, or concepts like times, amounts, or ontology entities that have
been inferred from text elements through additional processing.

Our airline text is an example of this kind of stereotypical situation since airlines
often raise fares and then wait to see if competitors follow along. In this situa-
tion, we can identify United as a lead airline that initially raised its fares, $6 as the
amount, Thursday as the increase date, and American as an airline that followed
along, leading to a filled template like the following.

FARE-RAISE ATTEMPT:


LEAD AIRLINE: UNITED AIRLINES

AMOUNT: $6
EFFECTIVE DATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES


The following sections review current approaches to each of these problems.

21.1 Named Entity Recognition

The first step in information extraction is to detect the entities in the text. A named
entity is, roughly speaking, anything that can be referred to with a proper name:named entity

a person, a location, an organization. The term is commonly extended to include
things that aren’t entities per se, including dates, times, and other kinds of temporal
expressions, and even numerical expressions like prices. Here’s the sample texttemporal

expressions
introduced earlier with the named entities marked:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].
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The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money.

In addition to their use in extracting events and the relationship between par-
ticipants, named entities are useful for many other language processing tasks. In
sentiment analysis we might want to know a consumer’s sentiment toward a partic-
ular entity. Entities are a useful first stage in question answering, or for linking text
to information in structured knowledge sources like wikipedia.

Figure 21.1 shows typical generic named entity types. Many applications will
also need to use specific entity types like proteins, genes, commercial products, or
works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas The Mt. Sanitas loop is in Sunshine Canyon.
Geo-Political
Entity

GPE countries, states, provinces Palo Alto is raising the fees for parking.

Facility FAC bridges, buildings, airports Consider the Tappan Zee Bridge.
Vehicles VEH planes, trains, automobiles It was a classic Ford Falcon.

Figure 21.1 A list of generic named entity types with the kinds of entities they refer to.

Named entity recognition means finding spans of text that constitute proper
names and then classifying the type of the entity. Recognition is difficult partly be-
cause of the ambiguity of segmentation; we need to decide what’s an entity and what
isn’t, and where the boundaries are. Another difficulty is caused by type ambiguity.
The mention JFK can refer to a person, the airport in New York, or any number of
schools, bridges, and streets around the United States. Some examples of this kind
of cross-type confusion are given in Figures 21.2 and 21.3.

Name Possible Categories
Washington Person, Location, Political Entity, Organization, Vehicle
Downing St. Location, Organization
IRA Person, Organization, Monetary Instrument
Louis Vuitton Person, Organization, Commercial Product

Figure 21.2 Common categorical ambiguities associated with various proper names.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.
The [VEH Washington] had proved to be a leaky ship, every passage I made...

Figure 21.3 Examples of type ambiguities in the use of the name Washington.

21.1.1 NER as Sequence Labeling
The standard algorithm for named entity recognition is as a word-by-word sequence
labeling task, in which the assigned tags capture both the boundary and the type. A
sequence classifier like an MEMM or CRF is trained to label the tokens in a text
with tags that indicate the presence of particular kinds of named entities. Consider
the following simplified excerpt from our running example.
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[ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched
the move, spokesman [PER Tim Wagner] said.

Figure 21.4 shows the same excerpt represented with IOB tagging. In IOB tag-IOB

ging we introduce a tag for the beginning (B) and inside (I) of each entity type,
and one for tokens outside (O) any entity. The number of tags is thus 2n+ 1 tags,
where n is the number of entity types. IOB tagging can represent exactly the same
information as the bracketed notation.

Words IOB Label IO Label
American B-ORG I-ORG
Airlines I-ORG I-ORG
, O O
a O O
unit O O
of O O
AMR B-ORG I-ORG
Corp. I-ORG I-ORG
, O O
immediately O O
matched O O
the O O
move O O
, O O
spokesman O O
Tim B-PER I-PER
Wagner I-PER I-PER
said O O
. O O

Figure 21.4 Named entity tagging as a sequence model, showing IOB and IO encodings.

We’ve also shown IO tagging, which loses some information by eliminating the
B tag. Without the B tag IO tagging is unable to distinguish between two entities of
the same type that are right next to each other. Since this situation doesn’t arise very
often (usually there is at least some punctuation or other deliminator), IO tagging
may be sufficient, and has the advantage of using only n+1 tags.

Having encoded our training data with IOB tags, the next step is to select a set of
features to associate with each input word token. Figure 21.5 lists standard features
used in state-of-the-art systems.

We’ve seen many of these features before in the context of part-of-speech tag-
ging, particularly for tagging unknown words. This is not surprising, as many un-
known words are in fact named entities. Word shape features are thus particularly
important in the context of NER. Recall that word shape features are used to rep-word shape

resent the abstract letter pattern of the word by mapping lower-case letters to ‘x’,
upper-case to ‘X’, numbers to ’d’, and retaining punctuation. Thus for example
I.M.F would map to X.X.X. and DC10-30 would map to XXdd-dd. A second class
of shorter word shape features is also used. In these features consecutive character
types are removed, so DC10-30 would be mapped to Xd-d but I.M.F would still map
to X.X.X. It turns out that this feature by itself accounts for a considerable part of the
success of NER systems for English news text. Shape features are also particularly
important in recognizing names of proteins and genes in biological texts.
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identity of wi
identity of neighboring words
part of speech of wi
part of speech of neighboring words
base-phrase syntactic chunk label of wi and neighboring words
presence of wi in a gazetteer
wi contains a particular prefix (from all prefixes of length ≤ 4)
wi contains a particular suffix (from all suffixes of length ≤ 4)
wi is all upper case
word shape of wi
word shape of neighboring words
short word shape of wi
short word shape of neighboring words
presence of hyphen

Figure 21.5 Features commonly used in training named entity recognition systems.

For example the named entity token L’Occitane would generate the following
non-zero valued feature values:

prefix(wi) = L

prefix(wi) = L’

prefix(wi) = L’O

prefix(wi) = L’Oc

suffix(wi) = tane

suffix(wi) = ane

suffix(wi) = ne

suffix(wi) = e

word-shape(wi) = X’Xxxxxxxx

short-word-shape(wi) = X’Xx

A gazetteer is a list of place names, and they can offer millions of entries forgazetteer

all manner of locations along with detailed geographical, geologic, and political
information.1 In addition to gazeteers, the United States Census Bureau provides
extensive lists of first names and surnames derived from its decadal census in the
U.S.2 Similar lists of corporations, commercial products, and all manner of things
biological and mineral are also available from a variety of sources. Gazeteer features
are typically implemented as a binary feature for each name list. Unfortunately, such
lists can be difficult to create and maintain, and their usefulness varies considerably
depending on the named entity class. It appears that gazetteers can be quite effec-
tive, while extensive lists of persons and organizations are not nearly as beneficial
(Mikheev et al., 1999).

The relative usefulness of any of these features or combination of features de-
pends to a great extent on the application, genre, media, language, and text encoding.
For example, shape features, which are critical for English newswire texts, are of lit-
tle use with materials transcribed from spoken text by automatic speech recognition,
materials gleaned from informally edited sources such as blogs and discussion fo-
rums, and for character-based languages like Chinese where case information isn’t
available. The set of features given in Fig. 21.5 should therefore be thought of as
only a starting point for any given application.

1 www.geonames.org
2 www.census.gov
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Word POS Chunk Short shape Label
American NNP B-NP Xx B-ORG
Airlines NNPS I-NP Xx I-ORG
, , O , O
a DT B-NP x O
unit NN I-NP x O
of IN B-PP x O
AMR NNP B-NP X B-ORG
Corp. NNP I-NP Xx. I-ORG
, , O , O
immediately RB B-ADVP x O
matched VBD B-VP x O
the DT B-NP x O
move NN I-NP x O
, , O , O
spokesman NN B-NP x O
Tim NNP I-NP Xx B-PER
Wagner NNP I-NP Xx I-PER
said VBD B-VP x O
. , O . O

Figure 21.6 Word-by-word feature encoding for NER.

Classifier

IN NNP NNP RB

unit ofa...

x
B-PP
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Figure 21.7 Named entity recognition as sequence labeling. The features available to the classifier during
training and classification are those in the boxed area.

Figure 21.6 illustrates the result of adding part-of-speech tags, syntactic base-
phrase chunk tags, and some shape information to our earlier example.

Given such a training set, a sequence classifier like an MEMM can be trained to
label new sentences. Figure 21.7 illustrates the operation of such a sequence labeler
at the point where the token Corp. is next to be labeled. If we assume a context win-
dow that includes the two preceding and following words, then the features available
to the classifier are those shown in the boxed area.

21.1.2 Evaluation of Named Entity Recognition
The familiar metrics of recall, precision, and F1 measure are used to evaluate NER
systems. Remember that recall is the ratio of the number of correctly labeled re-
sponses to the total that should have been labeled; precision is the ratio of the num-
ber of correctly labeled responses to the total labeled; and F-measure is the harmonic
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mean of the two. For named entities, the entity rather than the word is the unit of
response. Thus in the example in Fig. 21.6, the two entities Tim Wagner and AMR
Corp. and the non-entity said would each count as a single response.

The fact that named entity tagging has a segmentation component which is not
present in tasks like text categorization or part-of-speech tagging causes some prob-
lems with evaluation. For example, a system that labeled American but not American
Airlines as an organization would cause two errors, a false positive for O and a false
negative for I-ORG. In addition, using entities as the unit of response but words as
the unit of training means that there is a mismatch between the training and test
conditions.

21.1.3 Practical NER Architectures
While pure statistical sequence models are the norm in academic research, commer-
cial approaches to NER are often based on pragmatic combinations of lists, rules,
and supervised machine learning (Chiticariu et al., 2013). One common approach
is to make repeated passes over a text, allowing the results of one pass to influ-
ence the next. The stages typically first involve the use of rules that have extremely
high precision but low recall. Subsequent stages employ more error-prone statistical
methods that take the output of the first pass into account.

1. First, use high-precision rules to tag unambiguous entity mentions.
2. Then, search for substring matches of the previously detected names.
3. Consult application-specific name lists to identify likely name entity mentions

from the given domain.
4. Finally, apply probabilistic sequence labeling techniques that make use of the

tags from previous stages as additional features.

The intuition behind this staged approach is twofold. First, some of the entity
mentions in a text will be more clearly indicative of a given entity’s class than others.
Second, once an unambiguous entity mention is introduced into a text, it is likely that
subsequent shortened versions will refer to the same entity (and thus the same type
of entity).

21.2 Relation Extraction

Next on our list of tasks is to discern the relationships that exist among the detected
entities. Let’s return to our sample airline text:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text tells us, for example, that Tim Wagner is a spokesman for American
Airlines, that United is a unit of UAL Corp., and that American is a unit of AMR.
These binary relations are instances of more generic relations such as part-of or
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Figure 21.8 The 17 relations used in the ACE relation extraction task.

Relations Types Examples
Physical-Located PER-GPE He was in Tennessee
Part-Whole-Subsidiary ORG-ORG XYZ, the parent company of ABC
Person-Social-Family PER-PER Yoko’s husband John
Org-AFF-Founder PER-ORG Steve Jobs, co-founder of Apple...
Figure 21.9 Semantic relations with examples and the named entity types they involve.

employs that are fairly frequent in news-style texts. Figure 21.8 lists the 17 relations
used in the ACE relation extraction evaluations and Fig. 21.9 shows some sample
relations. We might also extract more domain-specific relation such as the notion of
an airline route. For example from this text we can conclude that United has routes
to Chicago, Dallas, Denver, and San Francisco.

These relations correspond nicely to the model-theoretic notions we introduced
in Chapter 19 to ground the meanings of the logical forms. That is, a relation consists
of a set of ordered tuples over elements of a domain. In most standard information-
extraction applications, the domain elements correspond to the named entities that
occur in the text, to the underlying entities that result from co-reference resolution, or
to entities selected from a domain ontology. Figure 21.10 shows a model-based view
of the set of entities and relations that can be extracted from our running example.
Notice how this model-theoretic view subsumes the NER task as well; named entity
recognition corresponds to the identification of a class of unary relations.

Sets of relations have been defined for many other domains as well. For example
UMLS, the Unified Medical Language System from the US National Library of
Medicine has a network that defines 134 broad subject categories, entity types, and
54 relations between the entities, such as the following:

Entity Relation Entity
Injury disrupts Physiological Function
Bodily Location location-of Biologic Function
Anatomical Structure part-of Organism
Pharmacologic Substance causes Pathological Function
Pharmacologic Substance treats Pathologic Function

Given a medical sentence like this one:

(21.1) Doppler echocardiography can be used to diagnose left anterior descending
artery stenosis in patients with type 2 diabetes

We could thus extract the UMLS relation:
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Domain D = {a,b,c,d,e, f ,g,h, i}
United, UAL, American Airlines, AMR a,b,c,d
Tim Wagner e
Chicago, Dallas, Denver, and San Francisco f ,g,h, i

Classes
United, UAL, American, and AMR are organizations Org = {a,b,c,d}
Tim Wagner is a person Pers = {e}
Chicago, Dallas, Denver, and San Francisco are places Loc = { f ,g,h, i}

Relations
United is a unit of UAL PartOf = {〈a,b〉,〈c,d〉}
American is a unit of AMR
Tim Wagner works for American Airlines OrgAff = {〈c,e〉}
United serves Chicago, Dallas, Denver, and San Francisco Serves = {〈a, f 〉,〈a,g〉,〈a,h〉,〈a, i〉}
Figure 21.10 A model-based view of the relations and entities in our sample text.

Echocardiography, Doppler Diagnoses Acquired stenosis

Wikipedia also offers a large supply of relations, drawn from infoboxes, struc-infoboxes

tured tables associated with certain Wikipedia articles. For example, the Wikipedia
infobox for Stanford includes structured facts like state = "California" or
president = "John L. Hennessy". These facts can be turned into relations like
president-of or located-in. or into relations in a metalanguage called RDF (ResourceRDF

Description Framework). An RDF triple is a tuple of entity-relation-entity, called aRDF triple

subject-predicate-object expression. Here’s a sample RDF triple:

subject predicate object
Golden Gate Park location San Francisco

For example the crowdsourced DBpedia (Bizer et al., 2009) is an ontology de-
rived from Wikipedia containing over 2 billion RDF triples. Another dataset from
Wikipedia infoboxes, Freebase (Bollacker et al., 2008), has relations likeFreebase

people/person/nationality
location/location/contains
people/person/place-of-birth
biology/organism classification

WordNet or other ontologies offer useful ontological relations that express hier-
archical relations between words or concepts. For example WordNet has the is-a oris-a

hypernym relation between classes,hypernym

Giraffe is-a ruminant is-a ungulate is-a mammal is-a vertebrate is-a an-
imal. . .

WordNet also has Instance-of relation between individuals and classes, so that for
example San Francisco is in the Instance-of relation with city. Extracting these rela-
tions is an important step in extending ontologies or building them for new languages
or domains.

There are four main classes of algorithms for relation extraction: hand-written
patterns, supervised machine learning, semi-supervised, and unsupervised. We’ll
introduce each of these in the next four sections.
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21.2.1 Using Patterns to Extract Relations
The earliest and still a common algorithm for relation extraction is the use of lexico-
syntactic patterns, first developed by Hearst (1992a). Consider the following sen-
tence:

Agar is a substance prepared from a mixture of red algae, such as Ge-
lidium, for laboratory or industrial use.

Hearst points out that most human readers will not know what Gelidium is, but that
they can readily infer that it is a kind of (a hyponym of) red algae, whatever that is.
She suggests that the following lexico-syntactic pattern

NP0 such as NP1{,NP2 . . . ,(and|or)NPi}, i≥ 1 (21.2)

implies the following semantics

∀NPi, i≥ 1,hyponym(NPi,NP0) (21.3)

allowing us to infer
hyponym(Gelidium, red algae) (21.4)

NP {, NP}* {,} (and|or) other NPH temples, treasuries, and other important civic buildings
NPH such as {NP,}* {(or|and)} NP red algae such as Gelidium
such NPH as {NP,}* {(or|and)} NP such authors as Herrick, Goldsmith, and Shakespeare
NPH {,} including {NP,}* {(or|and)} NP common-law countries, including Canada and England
NPH {,} especially {NP}* {(or|and)} NP European countries, especially France, England, and Spain

Figure 21.11 Hand-built lexico-syntactic patterns for finding hypernyms, using {} to mark optionality
(Hearst, 1992a, 1998).

Figure 21.11 shows five patterns Hearst (1992a, 1998) suggested for inferring
the hyponym relation; we’ve shown NPH as the parent/hyponym.

Modern versions of the pattern-based approach extend it by adding named entity
constraints. For example if our goal is to answer questions about “Who holds what
office in which organization?”, we can use patterns like the following:

PER, POSITION of ORG:
George Marshall, Secretary of State of the United States

PER (named|appointed|chose|etc.) PER Prep? POSITION
Truman appointed Marshall Secretary of State

PER [be]? (named|appointed|etc.) Prep? ORG POSITION
George Marshall was named US Secretary of State

Hand-built patterns have the advantage of high-precision and they can be tailored
to specific domains. On the other hand, they are often low-recall, and it’s a lot of
work to create them for all possible patterns.

21.2.2 Relation Extraction via Supervised Learning
Supervised machine learning approaches to relation extraction follow a scheme that
should be familiar by now. A fixed set of relations and entities is chosen, a training
corpus is hand-annotated with the relations and entities, and the annotated texts are
then used to train classifiers to annotate an unseen test set.
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The most straightforward approach has three steps, illustrated in Fig. 21.12. Step
one is to find pairs of named entities (usually in the same sentence). In step two, a
filtering classifier is trained to make a binary decision as to whether a given pair of
named entities are related (by any relation). Positive examples are extracted directly
from all relations in the annotated corpus, and negative examples are generated from
within-sentence entity pairs that are not annotated with a relation. In step 3, a classi-
fier is trained to assign a label to the relations that were found by step 2. The use of
the filtering classifier can speed up the final classification and also allows the use of
distinct feature-sets appropriate for each task. For each of the two classifiers, we can
use any of the standard classification techniques (logistic regression, SVM, naive
bayes, random forest, neural network, etc.).

function FINDRELATIONS(words) returns relations

relations←nil
entities←FINDENTITIES(words)
forall entity pairs 〈e1, e2〉 in entities do

if RELATED?(e1, e2)
relations←relations+CLASSIFYRELATION(e1, e2)

Figure 21.12 Finding and classifying the relations among entities in a text.

As with named entity recognition, the most important step in this process is to
identify useful surface features that will be useful for relation classification. Let’s
look at some common features in the context of classifying the relationship between
American Airlines (Mention 1, or M1) and Tim Wagner (Mention 2, M2) from this
sentence:

(21.5) American Airlines, a unit of AMR, immediately matched the move,
spokesman Tim Wagner said

Useful word features include

• The headwords of M1 and M2 and their concatenation
Airlines Wagner Airlines-Wagner

• Bag-of-words and bigrams in M1 and M2
American, Airlines, Tim, Wagner, American Airlines, Tim Wagner

• Words or bigrams in particular positions
M2: -1 spokesman
M2: +1 said

• Bag of words or bigrams between M1 and M2:
a, AMR, of, immediately, matched, move, spokesman, the, unit

• Stemmed versions of the same

Useful named entity features include

• Named-entity types and their concatenation
(M1: ORG, M2: PER, M1M2: ORG-PER)

• Entity Level of M1 and M2 (from the set NAME, NOMINAL, PRONOUN)
M1: NAME [it or he would be PRONOUN]
M2: NAME [the company would be NOMINAL]

• Number of entities between the arguments (in this case 1, for AMR)
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Finally, the syntactic structure of a sentence can signal many of the relation-
ships among its entities. One simple and effective way to featurize a structure is to
use strings representing syntactic paths: the path traversed through the tree in get-
ting from one to the other. Constituency or dependency paths can both be helpful.

• Base syntactic chunk sequence from M1 to M2
NP NP PP VP NP NP

• Constituent paths between M1 and M2
NP ↑ NP ↑ S ↑ S ↓ NP

• Dependency-tree paths
Airlines←sub j matched←comp said→sub j Wagner

Figure 21.13 summarizes many of the features we have discussed that could be
used for classifying the relationship between American Airlines and Tim Wagner
from our example text.

M1 headword airlines
M2 headword Wagner
Word(s) before M1 NONE
Word(s) after M2 said

Bag of words between {a, unit, of, AMR, Inc., immediately, matched, the, move, spokesman }
M1 type ORG
M2 type PERS
Concatenated types ORG-PERS

Constituent path NP ↑ NP ↑ S ↑ S ↓ NP
Base phrase path NP→ NP→ PP→ NP→V P→ NP→ NP
Typed-dependency path Airlines←sub j matched←comp said→sub j Wagner
Figure 21.13 Sample of features extracted during classification of the <American Airlines, Tim Wagner>
tuple; M1 is the first mention, M2 the second.

Supervised systems can get high accuracies with enough hand-labeled training
data, if the test set is similar enough to the training set. But labeling a large training
set is extremely expensive and supervised models are brittle: they don’t generalize
well to different genres.

21.2.3 Semisupervised Relation Extraction via Bootstrapping
Supervised machine learning assumes that we have a large collection of previously
annotated material with which to train classifiers. Unfortunately, such collections
are hard to come by.

But suppose we just have a few high-precision seed patterns, like those in Sec-seed patterns

tion 21.2.1, or perhaps a few seed tuples. That’s enough to bootstrap a classifier!seed tuples

Bootstrapping proceeds by taking the entities in the seed pair, and then findingbootstrapping

sentences (on the web, or whatever dataset we are using) that contain both entities.
From all such sentences, we extract and generalize the context around the entities to
learn new patterns. Fig. 21.14 sketches a basic algorithm.

Suppose, for example, that we need to create a list of airline/hub pairs, and we
know only that Ryanair has a hub at Charleroi. We can use this seed fact to discover
new patterns by finding other mentions of this relation in our corpus. We search
for the terms Ryanair, Charleroi and hub in some proximity. Perhaps we find the
following set of sentences:
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function BOOTSTRAP(Relation R) returns new relation tuples

tuples←Gather a set of seed tuples that have relation R
iterate

sentences←find sentences that contain entities in seeds
patterns←generalize the context between and around entities in sentences
newpairs←use patterns to grep for more tuples
newpairs←newpairs with high confidence
tuples← tuples + newpairs

return tuples

Figure 21.14 Bootstrapping from seed entity pairs to learn relations.

(21.6) Budget airline Ryanair, which uses Charleroi as a hub, scrapped all
weekend flights out of the airport.

(21.7) All flights in and out of Ryanair’s Belgian hub at Charleroi airport were
grounded on Friday...

(21.8) A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000
passengers had already been affected.

From these results, we can use the context of words between the entity mentions,
the words before mention one, the word after mention two, and the named entity
types of the two mentions, and perhaps other features, to extract general patterns
such as the following:

/ [ORG], which uses [LOC] as a hub /

/ [ORG]’s hub at [LOC] /

/ [LOC] a main hub for [ORG] /

These new patterns can then be used to search for additional tuples.
Bootstrapping systems also assign confidence values to new tuples to avoid se-confidence

values
mantic drift. In semantic drift, an erroneous pattern leads to the introduction ofsemantic drift

erroneous tuples, which, in turn, lead to the creation of problematic patterns and the
meaning of the extracted relations ‘drifts’. Consider the following example:

(21.9) Sydney has a ferry hub at Circular Quay.

If accepted as a positive example, this expression could lead to the incorrect in-
troduction of the tuple 〈Sydney,CircularQuay〉. Patterns based on this tuple could
propagate further errors into the database.

Confidence values for patterns are based on balancing two factors: the pattern’s
performance with respect to the current set of tuples and the pattern’s productivity
in terms of the number of matches it produces in the document collection. More
formally, given a document collection D , a current set of tuples T , and a proposed
pattern p, we need to track two factors:

• hits: the set of tuples in T that p matches while looking in D

• f inds: The total set of tuples that p finds in D

The following equation balances these considerations (Riloff and Jones, 1999).

Conf RlogF(p) =
hitsp

findsp
× log(findsp) (21.10)

This metric is generally normalized to produce a probability.
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We can assess the confidence in a proposed new tuple by combining the evidence
supporting it from all the patterns P′ that match that tuple in D (Agichtein and
Gravano, 2000). One way to combine such evidence is the noisy-or technique.Noisy-or

Assume that a given tuple is supported by a subset of the patterns in P, each with
its own confidence assessed as above. In the noisy-or model, we make two basic
assumptions. First, that for a proposed tuple to be false, all of its supporting patterns
must have been in error, and second, that the sources of their individual failures are
all independent. If we loosely treat our confidence measures as probabilities, then
the probability of any individual pattern p failing is 1−Conf (p); the probability of
all of the supporting patterns for a tuple being wrong is the product of their individual
failure probabilities, leaving us with the following equation for our confidence in a
new tuple.

Conf (t) = 1−
∏
p∈P′

(1−Conf (p)) (21.11)

Setting conservative confidence thresholds for the acceptance of new patterns
and tuples during the bootstrapping process helps prevent the system from drifting
away from the targeted relation.

21.2.4 Distant Supervision for Relation Extraction
Although text that has been hand-labeled with relation labels is extremely expensive
to produce, there are ways to find indirect sources of training data.

The distant supervision (Mintz et al., 2009) method combines the advantagesdistant
supervision

of bootstrapping with supervised learning. Instead of just a handful of seeds, distant
supervision uses a large database to acquire a huge number of seed examples, creates
lots of noisy pattern features from all these examples and then combines them in a
supervised classifier.

For example suppose we are trying to learn the place-of-birth relationship be-
tween people and their birth cities. In the seed-based approach, we might have only
5 examples to start with. But Wikipedia-based databases like DBPedia or Freebase
have tens of thousands of examples of many relations; including over 100,000 ex-
amples of place-of-birth, (<Edwin Hubble, Marshfield>, <Albert Einstein,

Ulm>, etc.,). The next step is to run named entity taggers on large amounts of text—
Mintz et al. (2009) used 800,000 articles from Wikipedia—and extract all sentences
that have two named entities that match the tuple, like the following:

...Hubble was born in Marshfield...

...Einstein, born (1879), Ulm...

...Hubble’s birthplace in Marshfield...

Training instances can now be extracted from this data, one training instance
for each identical tuple <relation, entity1, entity2>. Thus there will be one
training instance for each of:

<born-in, Edwin Hubble, Marshfield>

<born-in, Albert Einstein, Ulm>

<born-year, Albert Einstein, 1879>

and so on. As with supervised relation extraction, we use features like the named
entity labels of the two mentions, the words and dependency paths in between the
mentions, and neighboring words. Each tuple will have features collected from many
training instances; the feature vector for a single training instance like (<born-in,Albert
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Einstein, Ulm> will have lexical and syntactic features from many different sen-
tences that mention Einstein and Ulm.

Because distant supervision has very large training sets, it is also able to use very
rich features that are conjunctions of these individual features. So we will extract
thousands of patterns that conjoin the entity types with the intervening words or
dependency paths like these:

PER was born in LOC
PER, born (XXXX), LOC
PER’s birthplace in LOC

To return to our running example, for this sentence:

(21.12) American Airlines, a unit of AMR, immediately matched the move,
spokesman Tim Wagner said

we would learn rich conjunction features like this one:

M1 = ORG & M2 = PER & nextword=“said”& path= NP ↑ NP ↑ S ↑ S ↓ NP

The result is a supervised classifier that has a huge rich set of features to use
in detecting relations. Since not every test sentence will have one of the training
relations, the classifier will also need to be able to label an example as no-relation.
This label is trained by randomly selecting entity pairs that do not appear in any
Freebase relation, extracting features for them, and building a feature vector for
each such tuple. The final algorithm is sketched in Fig. 21.15.

function DISTANT SUPERVISION(Database D, Text T) returns relation classifier C

foreach relation R
foreach tuple (e1,e2) of entities with relation R in D

sentences←Sentences in T that contain e1 and e2
f←Frequent features in sentences
observations←observations + new training tuple (e1, e2, f, R)

C←Train supervised classifier on observations
return C

Figure 21.15 The distant supervision algorithm for relation extraction.

Distant supervision shares advantages with each of the methods we’ve exam-
ined. Like supervised classification, distant supervision uses a classifier with lots
of features, and supervised by detailed hand-created knowledge. Like pattern-based
classifiers, it can make use of high-precision evidence for the relation between en-
tities. Indeed, distance supervision systems learn patterns just like the hand-built
patterns of early relation extractors. For example the is-a or hypernym extraction
system of Snow et al. (2005) used hypernym/hyponym NP pairs from WordNet as
distant supervision, and then learned new patterns from large amounts of text. Their
system induced exactly the original 5 template patterns of Hearst (1992a), but also
70,000 additional patterns including these four:

NPH like NP Many hormones like leptin...
NPH called NP ...using a markup language called XHTML
NP is a NPH Ruby is a programming language...
NP , a NPH IBM, a company with a long...
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This ability to use a large number of features simultaneously means that, unlike
the iterative expansion of patterns in seed-based systems, there’s no semantic drift.
Like unsupervised classification, it doesn’t use a labeled training corpus of texts,
so it isn’t sensitive to genre issues in the training corpus, and relies on very large
amounts of unlabeled data.

But distant supervision can only help in extracting relations for which a large
enough database already exists. To extract new relations without datasets, or rela-
tions for new domains, purely unsupervised methods must be used.

21.2.5 Unsupervised Relation Extraction
The goal of unsupervised relation extraction is to extract relations from the web
when we have no labeled training data, and not even any list of relations. This task
is often called Open Information Extraction or Open IE. In Open IE, the relations

Open
Information

Extraction are simply strings of words (usually beginning with a verb).
For example, the ReVerb system (Fader et al., 2011) extracts a relation from aReVerb

sentence s in 4 steps:

1. Run a part-of-speech tagger and entity chunker over s
2. For each verb in s, find the longest sequence of words w that start with a verb

and satisfy syntactic and lexical constraints, merging adjacent matches.
3. For each phrase w, find the nearest noun phrase x to the left which is not a

relative pronoun, wh-word or existential “there”. Find the nearest noun phrase
y to the right.

4. Assign confidence c to the relation r = (x,w,y) using a confidence classifier
and return it.

A relation is only accepted if it meets syntactic and lexical constraints. The
syntactic constraints ensure that it is a verb-initial sequence that might also include
nouns (relations that begin with light verbs like make, have, or do often express the
core of the relation with a noun, like have a hub in):

V | VP | VW*P
V = verb particle? adv?
W = (noun | adj | adv | pron | det )
P = (prep | particle | inf. marker)

The lexical constraints are based on a dictionary D that is used to prune very
rare, long relation strings. The intuition is to eliminate candidate relations that don’t
occur with sufficient number of distinct argument types and so are likely to be bad
examples. The system first runs the above relation extraction algorithm offline on
500 million web sentences and extracts a list of all the relations that occur after nor-
malizing them (removing inflection, auxiliary verbs, adjectives, and adverbs). Each
relation r is added to the dictionary if it occurs with at least 20 different arguments.
Fader et al. (2011) used a dictionary of 1.7 million normalized relations.

Finally, a confidence value is computed for each relation using a logistic re-
gression classifier. The classifier is trained by taking 1000 random web sentences,
running the extractor, and hand labelling each extracted relation as correct or incor-
rect. A confidence classifier is then trained on this hand-labeled data, using features
of the relation and the surrounding words. Fig. 21.16 shows some sample features
used in the classification.

For example the following sentence:
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(x,r,y) covers all words in s
the last preposition in r is for
the last preposition in r is on
len(s) ≤ 10
there is a coordinating conjunction to the left of r in s
r matches a lone V in the syntactic constraints
there is preposition to the left of x in s.
there is an NP to the right of y in s.

Figure 21.16 Features for the classifier that assigns confidence to relations extracted by the
Open Information Extraction system REVERB (Fader et al., 2011).

(21.13) United has a hub in Chicago, which is the headquarters of United
Continental Holdings.

has the relation phrases has a hub in and is the headquarters of (it also has has and
is, but longer phrases are preferred). Step 3 finds United to the left and Chicago to
the right of has a hub in, and skips over which to find Chicago to the left of is the
headquarters of. The final output is:
r1: <United, has a hub in, Chicago>

r2: <Chicago, is the headquarters of, United Continental Holdings>

The great advantage of unsupervised relation extraction is its ability to handle
a huge number of relations without having to specify them in advance. The disad-
vantage is the need to map these large sets of strings into some canonical form for
adding to databases or other knowledge sources. Current methods focus heavily on
relations expressed with verbs, and so will miss many relations that are expressed
nominally.

21.2.6 Evaluation of Relation Extraction
Supervised relation extraction systems are evaluated by using test sets with human-
annotated, gold-standard relations and computing precision, recall, and F-measure.
Labeled precision and recall require the system to classify the relation correctly,
whereas unlabeled methods simply measure a system’s ability to detect entities that
are related.

Semi-supervised and unsupervised methods are much more difficult to evalu-
ate, since they extract totally new relations from the web or a large text. Because
these methods use very large amounts of text, it is generally not possible to run them
solely on a small labeled test set, and as a result it’s not possible to pre-annotate a
gold set of correct instances of relations.

For these methods it’s possible to approximate (only) precision by drawing a
random sample of relations from the output, and having a human check the accuracy
of each of these relations. Usually this approach focuses on the tuples to be extracted
from a body of text rather than on the relation mentions; systems need not detect
every mention of a relation to be scored correctly. Instead, the evaluation is based
on the set of tuples occupying the database when the system is finished. That is,
we want to know if the system can discover that Ryanair has a hub at Charleroi; we
don’t really care how many times it discovers it. The estimated precision P̂ is then

P̂ =
# of correctly extracted relation tuples in the sample

total # of extracted relation tuples in the sample.
(21.14)

Another approach that gives us a little bit of information about recall is to com-
pute precision at different levels of recall. Assuming that our system is able to
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rank the relations it produces (by probability, or confidence) we can separately com-
pute precision for the top 1000 new relations, the top 10,000 new relations, the top
100,000, and so on. In each case we take a random sample of that set. This will
show us how the precision curve behaves as we extract more and more tuples. But
there is no way to directly evaluate recall.

21.3 Extracting Times

Times and dates are a particularly important kind of named entity that play a role
in question answering, in calendar and personal assistant applications. In order to
reason about times and dates, after we extract these temporal expressions they must
be normalized—converted to a standard format so we can reason about them. In this
section we consider both the extraction and normalization of temporal expressions.

21.3.1 Temporal Expression Extraction
Temporal expressions are those that refer to absolute points in time, relative times,
durations, and sets of these. Absolute temporal expressions are those that can

Absolute
temporal

expressions
be mapped directly to calendar dates, times of day, or both. Relative temporal
expressions map to particular times through some other reference point (as in a

Relative
temporal

expressions
week from last Tuesday). Finally, durations denote spans of time at varying levelsDurations

of granularity (seconds, minutes, days, weeks, centuries etc.). Figure 21.17 lists
some sample temporal expressions in each of these categories.

Absolute Relative Durations
April 24, 1916 yesterday four hours
The summer of ’77 next semester three weeks
10:15 AM two weeks from yesterday six days
The 3rd quarter of 2006 last quarter the last three quarters
Figure 21.17 Examples of absolute, relational and durational temporal expressions.

Temporal expressions are grammatical constructions that have temporal lexi-
cal triggers as their heads. Lexical triggers might be nouns, proper nouns, adjec-lexical triggers

tives, and adverbs; full temporal expression consist of their phrasal projections: noun
phrases, adjective phrases, and adverbial phrases. Figure 21.18 provides examples.

Category Examples
Noun morning, noon, night, winter, dusk, dawn
Proper Noun January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet
Adjective recent, past, annual, former
Adverb hourly, daily, monthly, yearly

Figure 21.18 Examples of temporal lexical triggers.

Let’s look at the TimeML annotation scheme, in which temporal expressions are
annotated with an XML tag, TIMEX3, and various attributes to that tag (Pustejovsky
et al. 2005, Ferro et al. 2005). The following example illustrates the basic use of this
scheme (we defer discussion of the attributes until Section 21.3.2).

A fare increase initiated <TIMEX3>last week</TIMEX3> by UAL
Corp’s United Airlines was matched by competitors over<TIMEX3>the
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weekend</TIMEX3>, marking the second successful fare increase in
<TIMEX3>two weeks</TIMEX3>.

The temporal expression recognition task consists of finding the start and end of
all of the text spans that correspond to such temporal expressions. Rule-based ap-
proaches to temporal expression recognition use cascades of automata to recognize
patterns at increasing levels of complexity. Tokens are first part-of-speech tagged,
and then larger and larger chunks are recognized from the results from previous
stages, based on patterns containing trigger words (e.g., February) or classes (e.g.,
MONTH). Figure 21.19 gives a small representative fragment from a rule-based sys-
tem written in Perl.

# yesterday/today/tomorrow
$string =˜ s/(($OT+(early|earlier|later?)$CT+\s+)?(($OT+the$CT+\s+)?$OT+day$CT+\s+
$OT+(before|after)$CT+\s+)?$OT+$TERelDayExpr$CT+(\s+$OT+(morning|afternoon|
evening|night)$CT+)?)/<TIMEX2 TYPE=\"DATE\">$1<\/TIMEX2>/gio;

$string =˜ s/($OT+\w+$CT+\s+)
<TIMEX2 TYPE=\"DATE\"[ˆ>]*>($OT+(Today|Tonight)$CT+)<\/TIMEX2>/$1$2/gso;

# this/that (morning/afternoon/evening/night)
$string =˜ s/(($OT+(early|earlier|later?)$CT+\s+)?$OT+(this|that|every|the$CT+\s+
$OT+(next|previous|following))$CT+\s*$OT+(morning|afternoon|evening|night)
$CT+(\s+$OT+thereafter$CT+)?)/<TIMEX2 TYPE=\"DATE\">$1<\/TIMEX2>/gosi;

Figure 21.19 Fragment of Perl code from MITRE’s TempEx temporal tagging system.

Sequence-labeling approaches follow the same IOB scheme used for named-
entity tags, marking words that are either inside, outside or at the beginning of a
TIMEX3-delimited temporal expression with the B, I, and O tags as follows:

A
O

fare
O

increase
O

initiated
O

last
B

week
I

by
O

UAL
O

Corp’s...
O

Features are extracted from the token and its context, and a statistical sequence
labeler is trained (any sequence model can be used). Figure 21.20 lists standard
features used in temporal tagging.

Feature Explanation
Token The target token to be labeled
Tokens in window Bag of tokens in the window around a target
Shape Character shape features
POS Parts of speech of target and window words
Chunk tags Base-phrase chunk tag for target and words in a window
Lexical triggers Presence in a list of temporal terms

Figure 21.20 Typical features used to train IOB-style temporal expression taggers.

Temporal expression recognizers are evaluated with the usual recall, precision,
and F-measures. A major difficulty for all of these very lexicalized approaches is
avoiding expressions that trigger false positives:

(21.15) 1984 tells the story of Winston Smith...
(21.16) ...U2’s classic Sunday Bloody Sunday

21.3.2 Temporal Normalization
Temporal normalization is the process of mapping a temporal expression to eithertemporal

normalization
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a specific point in time or to a duration. Points in time correspond to calendar dates,
to times of day, or both. Durations primarily consist of lengths of time but may also
include information about start and end points. Normalized times are represented
with the VALUE attribute from the ISO 8601 standard for encoding temporal values
(ISO8601, 2004). Fig. 21.21 reproduces our earlier example with the value attributes
added in.

<TIMEX3 id=’’t1’’ type="DATE" value="2007-07-02" functionInDocument="CREATION_TIME">
July 2, 2007 </TIMEX3> A fare increase initiated <TIMEX3 id="t2" type="DATE"
value="2007-W26" anchorTimeID="t1">last week</TIMEX3> by UAL Corp’s United Airlines
was matched by competitors over <TIMEX3 id="t3" type="DURATION" value="P1WE"
anchorTimeID="t1"> the weekend </TIMEX3>, marking the second successful fare increase
in <TIMEX3 id="t4" type="DURATION" value="P2W" anchorTimeID="t1"> two weeks </TIMEX3>.

Figure 21.21 TimeML markup including normalized values for temporal expressions.

The dateline, or document date, for this text was July 2, 2007. The ISO repre-
sentation for this kind of expression is YYYY-MM-DD, or in this case, 2007-07-02.
The encodings for the temporal expressions in our sample text all follow from this
date, and are shown here as values for the VALUE attribute.

The first temporal expression in the text proper refers to a particular week of the
year. In the ISO standard, weeks are numbered from 01 to 53, with the first week
of the year being the one that has the first Thursday of the year. These weeks are
represented with the template YYYY-Wnn. The ISO week for our document date is
week 27; thus the value for last week is represented as “2007-W26”.

The next temporal expression is the weekend. ISO weeks begin on Monday;
thus, weekends occur at the end of a week and are fully contained within a single
week. Weekends are treated as durations, so the value of the VALUE attribute has
to be a length. Durations are represented according to the pattern Pnx, where n is
an integer denoting the length and x represents the unit, as in P3Y for three years
or P2D for two days. In this example, one weekend is captured as P1WE. In this
case, there is also sufficient information to anchor this particular weekend as part of
a particular week. Such information is encoded in the ANCHORTIMEID attribute.
Finally, the phrase two weeks also denotes a duration captured as P2W.

There is a lot more to the various temporal annotation standards—far too much
to cover here. Figure 21.22 describes some of the basic ways that other times and
durations are represented. Consult ISO8601 (2004), Ferro et al. (2005), and Puste-
jovsky et al. (2005) for more details.

Unit Pattern Sample Value
Fully specified dates YYYY-MM-DD 1991-09-28
Weeks YYYY-Wnn 2007-W27
Weekends PnWE P1WE
24-hour clock times HH:MM:SS 11:13:45
Dates and times YYYY-MM-DDTHH:MM:SS 1991-09-28T11:00:00
Financial quarters Qn 1999-Q3
Figure 21.22 Sample ISO patterns for representing various times and durations.

Most current approaches to temporal normalization are rule-based (Chang and
Manning 2012, Strötgen and Gertz 2013). Patterns that match temporal expres-
sions are associated with semantic analysis procedures. As in the compositional
rule-to-rule approach introduced in Chapter 20, the meaning of a constituent is com-
puted from the meaning of its parts using a method specific to the constituent, al-
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though here the semantic composition rules involve temporal arithmetic rather than
λ -calculus attachments.

Fully qualified date expressions contain a year, month, and day in some con-Fully qualified
date expressions

ventional form. The units in the expression must be detected and then placed in the
correct place in the corresponding ISO pattern. The following pattern normalizes
expressions like April 24, 1916.

FQTE → Month Date , Year {Year.val − Month.val − Date.val}

The non-terminals Month, Date, and Year represent constituents that have already
been recognized and assigned semantic values, accessed through the *.val notation.
The value of this FQE constituent can, in turn, be accessed as FQTE.val during
further processing.

Fully qualified temporal expressions are fairly rare in real texts. Most temporal
expressions in news articles are incomplete and are only implicitly anchored, of-
ten with respect to the dateline of the article, which we refer to as the document’s
temporal anchor. The values of temporal expressions such as today, yesterday, ortemporal

anchor
tomorrow can all be computed with respect to this temporal anchor. The semantic
procedure for today simply assigns the anchor, and the attachments for tomorrow
and yesterday add a day and subtract a day from the anchor, respectively. Of course,
given the cyclic nature of our representations for months, weeks, days, and times of
day, our temporal arithmetic procedures must use modulo arithmetic appropriate to
the time unit being used.

Unfortunately, even simple expressions such as the weekend or Wednesday in-
troduce a fair amount of complexity. In our current example, the weekend clearly
refers to the weekend of the week that immediately precedes the document date. But
this won’t always be the case, as is illustrated in the following example.

(21.17) Random security checks that began yesterday at Sky Harbor will continue
at least through the weekend.

In this case, the expression the weekend refers to the weekend of the week that the
anchoring date is part of (i.e., the coming weekend). The information that signals
this meaning comes from the tense of continue, the verb governing the weekend.

Relative temporal expressions are handled with temporal arithmetic similar to
that used for today and yesterday. The document date indicates that our example
article is ISO week 27, so the expression last week normalizes to the current week
minus 1. To resolve ambiguous next and last expressions we consider the distance
from the anchoring date to the nearest unit. Next Friday can refer either to the
immediately next Friday or to the Friday following that, but the closer the document
date is to a Friday, the more likely it is that the phrase will skip the nearest one. Such
ambiguities are handled by encoding language and domain-specific heuristics into
the temporal attachments.

21.4 Extracting Events and their Times

The task of event extraction is to identify mentions of events in texts. For theevent
extraction

purposes of this task, an event mention is any expression denoting an event or state
that can be assigned to a particular point, or interval, in time. The following markup
of the sample text on page 365 shows all the events in this text.
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[EVENT Citing] high fuel prices, United Airlines [EVENT said] Fri-
day it has [EVENT increased] fares by $6 per round trip on flights to
some cities also served by lower-cost carriers. American Airlines, a unit
of AMR Corp., immediately [EVENT matched] [EVENT the move],
spokesman Tim Wagner [EVENT said]. United, a unit of UAL Corp.,
[EVENT said] [EVENT the increase] took effect Thursday and [EVENT
applies] to most routes where it [EVENT competes] against discount
carriers, such as Chicago to Dallas and Denver to San Francisco.

In English, most event mentions correspond to verbs, and most verbs introduce
events. However, as we can see from our example, this is not always the case. Events
can be introduced by noun phrases, as in the move and the increase, and some verbs
fail to introduce events, as in the phrasal verb took effect, which refers to when the
event began rather than to the event itself. Similarly, light verbs such as make, take,
and have often fail to denote events. In these cases, the verb is simply providing a
syntactic structure for the arguments to an event expressed by the direct object as in
took a flight.

Various versions of the event extraction task exist, depending on the goal. For
example in the TempEval shared tasks (Verhagen et al. 2009) the goal is to extract
events and aspects like their aspectual and temporal properties. Events are to be
classified as actions, states, reporting events (say, report, tell, explain), perceptionreporting

events
events, and so on. The aspect, tense, and modality of each event also needs to be
extracted. Thus for example the various said events in the sample text would be
annotated as (class=REPORTING, tense=PAST, aspect=PERFECTIVE).

Event extraction is generally modeled via machine learning, detecting events via
sequence models with IOB tagging, and assigning event classes and attributes with
multi-class classifiers. Common features include surface information like parts of
speech, lexical items, and verb tense information; see Fig. 21.23.

Feature Explanation
Character affixes Character-level prefixes and suffixes of target word
Nominalization suffix Character level suffixes for nominalizations (e.g., -tion)
Part of speech Part of speech of the target word
Light verb Binary feature indicating that the target is governed by a light verb
Subject syntactic category Syntactic category of the subject of the sentence
Morphological stem Stemmed version of the target word
Verb root Root form of the verb basis for a nominalization
WordNet hypernyms Hypernym set for the target
Figure 21.23 Features commonly used in both rule-based and statistical approaches to event detection.

21.4.1 Temporal Ordering of Events
With both the events and the temporal expressions in a text having been detected, the
next logical task is to use this information to fit the events into a complete timeline.
Such a timeline would be useful for applications such as question answering and
summarization. This ambitious task is the subject of considerable current research
but is beyond the capabilities of current systems.

A somewhat simpler, but still useful, task is to impose a partial ordering on the
events and temporal expressions mentioned in a text. Such an ordering can provide
many of the same benefits as a true timeline. An example of such a partial ordering
is the determination that the fare increase by American Airlines came after the fare
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increase by United in our sample text. Determining such an ordering can be viewed
as a binary relation detection and classification task similar to those described ear-
lier in Section 21.2. One common approach to this problem is to operationalize it
by attempting to identify which of Allen’s temporal relations shown in Fig. 21.24
hold between events. Most systems employ statistical classifiers of the kind dis-
cussed earlier in Section 21.2, trained on the TimeBank corpus and using features
like words, parse paths, tense and aspect.

B

A

B

A

B

A

A

A

B

B

A

B

Time 

A  before B
B after  A A overlaps B

B overlaps' A

A meets B
B meets' A

A equals B
(B equals A)

A starts B
B starts' A

A finishes B
B finishes' A

B

A during B
B during' A

A

Figure 21.24 Allen’s 13 possible temporal relations.

The TimeBank corpus consists of text annotated with much of the informationTimeBank

we’ve been discussing throughout this section (Pustejovsky et al., 2003b). Time-
Bank 1.2 consists of 183 news articles selected from a variety of sources, including
the Penn TreeBank and PropBank collections.

Each article in the TimeBank corpus has had the temporal expressions and event
mentions in them explicitly annotated in the TimeML annotation (Pustejovsky et al.,
2003a). In addition to temporal expressions and events, the TimeML annotation
provides temporal links between events and temporal expressions that specify the
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<TIMEX3 tid="t57" type="DATE" value="1989-10-26" functionInDocument="CREATION_TIME">
10/26/89 </TIMEX3>

Delta Air Lines earnings <EVENT eid="e1" class="OCCURRENCE"> soared </EVENT> 33% to a
record in <TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57"> the
fiscal first quarter </TIMEX3>, <EVENT eid="e3" class="OCCURRENCE">bucking</EVENT>
the industry trend toward <EVENT eid="e4" class="OCCURRENCE">declining</EVENT>
profits.

Figure 21.25 Example from the TimeBank corpus.

nature of the relation between them. Consider the following sample sentence and
its corresponding markup shown in Fig. 21.25, selected from one of the TimeBank
documents.

(21.18) Delta Air Lines earings soared 33% to a record in the fiscal first quarter,
bucking the industry trend toward declining profits.

As annotated, this text includes three events and two temporal expressions. The
events are all in the occurrence class and are given unique identifiers for use in fur-
ther annotations. The temporal expressions include the creation time of the article,
which serves as the document time, and a single temporal expression within the text.

In addition to these annotations, TimeBank provides four links that capture the
temporal relations between the events and times in the text, using the Allen relations
from Fig. 21.24. The following are the within-sentence temporal relations annotated
for this example.

• Soaringe1 is included in the fiscal first quartert58

• Soaringe1 is before 1989-10-26t57

• Soaringe1 is simultaneous with the buckinge3

• Declininge4 includes soaringe1

21.5 Template Filling

Many texts contain reports of events, and possibly sequences of events, that often
correspond to fairly common, stereotypical situations in the world. These abstract
situations or stories, related to what have been called scripts (Schank and Abel-scripts

son, 1977), consist of prototypical sequences of sub-events, participants, and their
roles. The strong expectations provided by these scripts can facilitate the proper
classification of entities, the assignment of entities into roles and relations, and most
critically, the drawing of inferences that fill in things that have been left unsaid. In
their simplest form, such scripts can be represented as templates consisting of fixedtemplates

sets of slots that take as values slot-fillers belonging to particular classes. The task
of template filling is to find documents that invoke particular scripts and then fill thetemplate filling

slots in the associated templates with fillers extracted from the text. These slot-fillers
may consist of text segments extracted directly from the text, or they may consist of
concepts that have been inferred from text elements through some additional pro-
cessing.

A filled template from our original airline story might look like the following.



372 CHAPTER 21 • INFORMATION EXTRACTION

FARE-RAISE ATTEMPT:


LEAD AIRLINE: UNITED AIRLINES

AMOUNT: $6
EFFECTIVE DATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES


This template has four slots (LEAD AIRLINE, AMOUNT, EFFECTIVE DATE, FOL-

LOWER). The next section describes a standard sequence-labeling approach to filling
slots. Section 21.5.2 then describes an older system based on the use of cascades of
finite-state transducers and designed to address a more complex template-filling task
that current learning-based systems don’t yet address.

21.5.1 Statistical Approaches to Template Filling
The standard paradigm for template filling assumes we are trying to fill fixed known
templates with known slots, and also assumes we are given training documents la-
beled with examples of each template, with the fillers of each slot marked in the text.
The template filling task is then creation of one template for each event in the input
documents, with the slots filled with text from the document.

The task is generally modeled by training two separate supervised systems. The
first system decides whether the template is present in a particular sentence. This
task is called template recognition or sometimes, in a perhaps confusing bit oftemplate

recognition
terminology, event recognition. Template recognition can be treated as a text classi-
fication task, with features extracted from every sequence of words that was labeled
in training documents as filling any slot from the template being detected. The usual
set of features can be used: tokens, word shapes, part-of-speech tags, syntactic chunk
tags, and named entity tags.

The second system has the job of role-filler extraction. A separate classifier isrole-filler
extraction

trained to detect each role (LEAD-AIRLINE, AMOUNT, and so on). This can be a
binary classifier that is run on every noun-phrase in the parsed input sentence, or a
sequence model run over sequences of words. Each role classifier is trained on the
labeled data in the training set. Again, the usual set of features can be used, but now
trained only on an individual noun phrase or the fillers of a single slot.

Multiple non-identical text segments might be labeled with the same slot la-
bel. For example in our sample text, the strings United or United Airlines might be
labeled as the LEAD AIRLINE. These are not incompatible choices and the corefer-
ence resolution techniques introduced in Chapter 23 can provide a path to a solution.

A variety of annotated collections have been used to evaluate this style of ap-
proach to template filling, including sets of job announcements, conference calls for
papers, restaurant guides, and biological texts.

Recent work focuses on extracting templates in cases where there is no training
data or even predefined templates, by inducing templates as sets of linked events
(Chambers and Jurafsky, 2011).

21.5.2 Earlier Finite-State Template-Filling Systems
The templates above are relatively simple. But consider the task of producing a
template that contained all the information in a text like this one (Grishman and
Sundheim, 1995):

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan
with a local concern and a Japanese trading house to produce golf clubs to be
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shipped to Japan. The joint venture, Bridgestone Sports Taiwan Co., capital-
ized at 20 million new Taiwan dollars, will start production in January 1990
with production of 20,000 iron and “metal wood” clubs a month.

The MUC-5 ‘joint venture’ task (the Message Understanding Conferences were
a series of U.S. government-organized information-extraction evaluations) was to
produce hierarchically linked templates describing joint ventures. Figure 21.26
shows a structure produced by the FASTUS system (Hobbs et al., 1997). Note how
the filler of the ACTIVITY slot of the TIE-UP template is itself a template with slots.

Tie-up-1 Activity-1:
RELATIONSHIP tie-up COMPANY Bridgestone Sports Taiwan Co.
ENTITIES Bridgestone Sports Co. PRODUCT iron and “metal wood” clubs

a local concern START DATE DURING: January 1990
a Japanese trading house

JOINT VENTURE Bridgestone Sports Taiwan Co.
ACTIVITY Activity-1
AMOUNT NT$20000000

Figure 21.26 The templates produced by FASTUS given the input text on page 372.

Early systems for dealing with these complex templates were based on cascades
of transducers based on hand-written rules, as sketched in Fig. 21.27.

No. Step Description
1 Tokens Tokenize input stream of characters
2 Complex Words Multiword phrases, numbers, and proper names.
3 Basic phrases Segment sentences into noun and verb groups
4 Complex phrases Identify complex noun groups and verb groups
5 Semantic Patterns Identify entities and events, insert into templates.
6 Merging Merge references to the same entity or event

Figure 21.27 Levels of processing in FASTUS (Hobbs et al., 1997). Each level extracts a
specific type of information which is then passed on to the next higher level.

The first four stages use hand-written regular expression and grammar rules to
do basic tokenization, chunking, and parsing. Stage 5 then recognizes entities and
events with a FST-based recognizer and inserts the recognized objects into the ap-
propriate slots in templates. This FST recognizer is based on hand-built regular
expressions like the following (NG indicates Noun-Group and VG Verb-Group),
which matches the first sentence of the news story above.

NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Company/ies)

VG(Produce) NG(Product)

The result of processing these two sentences is the five draft templates (Fig. 21.28)
that must then be merged into the single hierarchical structure shown in Fig. 21.26.
The merging algorithm, after performing coreference resolution, merges two activi-
ties that are likely to be describing the same events.

21.6 Summary

This chapter has explored a series of techniques for extracting limited forms of se-
mantic content from texts. Most techniques can be characterized as problems in
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# Template/Slot Value
1 RELATIONSHIP: TIE-UP

ENTITIES: Bridgestone Co., a local concern, a Japanese trading house
2 ACTIVITY: PRODUCTION

PRODUCT: “golf clubs”
3 RELATIONSHIP: TIE-UP

JOINT VENTURE: “Bridgestone Sports Taiwan Co.”
AMOUNT: NT$20000000

4 ACTIVITY: PRODUCTION
COMPANY: “Bridgestone Sports Taiwan Co.”
STARTDATE: DURING: January 1990

5 ACTIVITY: PRODUCTION
PRODUCT: “iron and “metal wood” clubs”

Figure 21.28 The five partial templates produced by Stage 5 of the FASTUS system. These
templates will be merged by the Stage 6 merging algorithm to produce the final template
shown in Fig. 21.26 on page 373.

detection followed by classification.

• Named entities can be recognized and classified by sequence labeling tech-
niques.

• Relations among entities can be extracted by pattern-based approaches, su-
pervised learning methods when annotated training data is available, lightly
supervised bootstrapping methods when small numbers of seed tuples or
seed patterns are available, distant supervision when a database of relations
is available, and unsupervised or Open IE methods.

• Reasoning about time can be facilitated by detection and normalization of
temporal expressions through a combination of statistical learning and rule-
based methods.

• Events can be detected and ordered in time using sequence models and classi-
fiers trained on temporally- and event-labeled data like the TimeBank corpus.

• Template-filling applications can recognize stereotypical situations in texts
and assign elements from the text to roles represented as fixed sets of slots.

Bibliographical and Historical Notes
The earliest work on information extraction addressed the template-filling task and
was performed in the context of the Frump system (DeJong, 1982). Later work
was stimulated by the U.S. government-sponsored MUC conferences (Sundheim,
1991, 1992, 1993, 1995). Early MUC systems like CIRCUS system (Lehnert et al.,
1991) and SCISOR (Jacobs and Rau, 1990) were quite influential and inspired later
systems like FASTUS (Hobbs et al., 1997). Chinchor et al. (1993) describe the MUC
evaluation techniques.

Due to the difficulty of reusing or porting systems from one domain to another,
attention shifted to automatic knowledge acquisition. The earliest supervised learn-
ing approaches to IE are described in Cardie (1993), Cardie (1994), Riloff (1993),
Soderland et al. (1995), Huffman (1996), and Freitag (1998). These early learning
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efforts focused on automating the knowledge acquisition process for mostly finite-
state rule-based systems. Their success, and the earlier success of HMM-based
methods for automatic speech recognition, led to the development of statistical sys-
tems based on sequence labeling. Early efforts applying HMMs to IE problems
include Bikel et al. (1997, 1999) and Freitag and McCallum (1999). Subsequent
efforts demonstrated the effectiveness of a range of statistical methods including
MEMMs (McCallum et al., 2000), CRFs (Lafferty et al., 2001), and SVMs (Sas-
sano and Utsuro, 2000; McNamee and Mayfield, 2002). Zhou et al. (2005) explored
different features for relation extraction. Progress in this area continues to be stim-
ulated by formal evaluations with shared benchmark datasets. In the US, after the
MUC evaluations of the mid-1990s the Automatic Content Extraction (ACE) eval-
uations of 2000-2007 focused on named entity recognition, relation extraction, and
temporal expression extraction and normalization.3 These were followed by the
KBP (Knowledge Base Population) evaluations (Ji et al. 2010b, Ji et al. 2010a,KBP

Surdeanu 2013) which included relation extraction tasks like slot filling (extractingslot filling

values of attributes (‘slots’) like age, birthplace, and spouse for a given entity from
text corpora). In addition, a new task was defined, entity linking, linking mentionsentity linking

of entities to their unique records in a database like Wikipedia; we return to entity
linking in Chapter 23.

Semisupervised relation extraction was first proposed by Hearst (1992b). Im-
portant extensions included systems like DIPRE (Brin, 1998), and SNOWBALL
(Agichtein and Gravano, 2000). The distant supervision algorithm we describe was
drawn from Mintz et al. (2009), where the term ‘distant supervision’ was first de-
fined, but similar ideas occurred in earlier systems like Craven and Kumlien (1999)
and Morgan et al. (2004) under the name weakly labeled data, as well as in Snow
et al. (2005) and Wu and Weld (2007). Among the many extensions are Wu and
Weld (2010), Riedel et al. (2010), and Ritter et al. (2013). Open IE systems include
KNOWITALL Etzioni et al. (2005), TextRunner (Banko et al., 2007), and REVERB
(Fader et al., 2011). See Riedel et al. (2013) for a universal schema that combines
the advantages of distant supervision and Open IE.

HeidelTime (Strötgen and Gertz, 2013) and SUTime (Chang and Manning, 2012)
are downloadable temporal extraction and normalization systems. The 2013 TempE-
val challenge is described in UzZaman et al. (2013); Chambers (2013) and Bethard
(2013) give typical approaches.

Exercises
21.1 Develop a set of regular expressions to recognize the character shape features

described in Fig. ??.

21.2 The IOB labeling scheme given in this chapter isn’t the only possible one. For
example, an E tag might be added to mark the end of entities, or the B tag
can be reserved only for those situations where an ambiguity exists between
adjacent entities. Propose a new set of IOB tags for use with your NER system.
Experiment with it and compare its performance with the scheme presented
in this chapter.

3 www.nist.gov/speech/tests/ace/
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21.3 Names of works of art (books, movies, video games, etc.) are quite different
from the kinds of named entities we’ve discussed in this chapter. Collect a
list of names of works of art from a particular category from a Web-based
source (e.g., gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list
and give examples of ways that the names in it are likely to be problematic for
the techniques described in this chapter.

21.4 Develop an NER system specific to the category of names that you collected in
the last exercise. Evaluate your system on a collection of text likely to contain
instances of these named entities.

21.5 Acronym expansion, the process of associating a phrase with an acronym, can
be accomplished by a simple form of relational analysis. Develop a system
based on the relation analysis approaches described in this chapter to populate
a database of acronym expansions. If you focus on English Three Letter
Acronyms (TLAs) you can evaluate your system’s performance by comparing
it to Wikipedia’s TLA page.

21.6 A useful functionality in newer email and calendar applications is the ability
to associate temporal expressions connected with events in email (doctor’s
appointments, meeting planning, party invitations, etc.) with specific calendar
entries. Collect a corpus of email containing temporal expressions related to
event planning. How do these expressions compare to the kinds of expressions
commonly found in news text that we’ve been discussing in this chapter?

21.7 Acquire the CMU seminar corpus and develop a template-filling system by
using any of the techniques mentioned in Section 21.5. Analyze how well
your system performs as compared with state-of-the-art results on this corpus.



CHAPTER

22 Semantic Role Labeling

Understanding events and their participants is a key part of understanding natural
language. At a high level, understanding an event means being able to answer the
question “Who did what to whom” (and perhaps also “when and where”). The
answers to this question may be expressed in many different ways in the sentence.
For example, if we want to process sentences to help us answer question about a
purchase of stock by XYZ Corporation, we need to understand this event despite
many different surface forms. The event could be described by a verb (sold, bought)
or a noun (purchase), and XYZ Corp can be the syntactic subject (of bought) the
indirect object (of sold), or in a genitive or noun compound relation (with the noun
purchase), in the following sentences, despite having notationally the same role in
all of them:

• XYZ corporation bought the stock.
• They sold the stock to XYZ corporation.
• The stock was bought by XYZ corporation.
• The purchase of the stock by XYZ corporation...
• The stock purchase by XYZ corporation...

In this chapter we introduce a level of representation that lets us capture the
commonality between these sentences. We will be able to represent the fact that
there was a purchase event, that the participants in this event were XYZ Corp and
some stock, and that XYZ Corp played a specific role, the role of acquiring the stock.

We call this shallow semantic representation level semantic roles. Semantic
roles are representations that express the abstract role that arguments of a predicate
can take in the event; these can be very specific, like the BUYER, abstract like the
AGENT, or super-abstract (the PROTO-AGENT). These roles can both represent gen-
eral semantic properties of the arguments and also express their likely relationship to
the syntactic role of the argument in the sentence. AGENTS tend to be the subject of
an active sentence, THEMES the direct object, and so on. These relations are codified
in databases like PropBank and FrameNet. We’ll introduce semantic role labeling,
the task of assigning roles to the constituents or phrases in sentences. We’ll also
discuss selectional restrictions, the semantic sortal restrictions or preferences that
each individual predicate can express about its potential arguments, such as the fact
that the theme of the verb eat is generally something edible. Along the way, we’ll
describe the various ways these representations can help in language understanding
tasks like question answering and machine translation.

22.1 Semantic Roles

Consider how in Chapter 19 we represented the meaning of arguments for sentences
like these:
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Thematic Role Definition
AGENT The volitional causer of an event
EXPERIENCER The experiencer of an event
FORCE The non-volitional causer of the event
THEME The participant most directly affected by an event
RESULT The end product of an event
CONTENT The proposition or content of a propositional event
INSTRUMENT An instrument used in an event
BENEFICIARY The beneficiary of an event
SOURCE The origin of the object of a transfer event
GOAL The destination of an object of a transfer event
Figure 22.1 Some commonly used thematic roles with their definitions.

(22.1) Sasha broke the window.

(22.2) Pat opened the door.

A neo-Davidsonian event representation of these two sentences would be

∃e,x,y Breaking(e)∧Breaker(e,Sasha)
∧BrokenT hing(e,y)∧Window(y)

∃e,x,y Opening(e)∧Opener(e,Pat)
∧OpenedT hing(e,y)∧Door(y)

In this representation, the roles of the subjects of the verbs break and open are
Breaker and Opener respectively. These deep roles are specific to each event; Break-deep roles

ing events have Breakers, Opening events have Openers, and so on.
If we are going to be able to answer questions, perform inferences, or do any

further kinds of natural language understanding of these events, we’ll need to know
a little more about the semantics of these arguments. Breakers and Openers have
something in common. They are both volitional actors, often animate, and they have
direct causal responsibility for their events.

Thematic roles are a way to capture this semantic commonality between Break-Thematic roles

ers and Eaters.
We say that the subjects of both these verbs are agents. Thus, AGENT is theagents

thematic role that represents an abstract idea such as volitional causation. Similarly,
the direct objects of both these verbs, the BrokenThing and OpenedThing, are both
prototypically inanimate objects that are affected in some way by the action. The
semantic role for these participants is theme.theme

Thematic roles are one of the oldest linguistic models, proposed first by the
Indian grammarian Panini sometime between the 7th and 4th centuries BCE. Their
modern formulation is due to Fillmore (1968) and Gruber (1965). Although there is
no universally agreed-upon set of roles, Figs. 22.1 and 22.2 list some thematic roles
that have been used in various computational papers, together with rough definitions
and examples. Most thematic role sets have about a dozen roles, but we’ll see sets
with smaller numbers of roles with even more abstract meanings, and sets with very
large numbers of roles that are specific to situations. We’ll use the general term
semantic roles for all sets of roles, whether small or large.semantic roles
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Thematic Role Example
AGENT The waiter spilled the soup.
EXPERIENCER John has a headache.
FORCE The wind blows debris from the mall into our yards.
THEME Only after Benjamin Franklin broke the ice...
RESULT The city built a regulation-size baseball diamond...
CONTENT Mona asked “You met Mary Ann at a supermarket?”
INSTRUMENT He poached catfish, stunning them with a shocking device...
BENEFICIARY Whenever Ann Callahan makes hotel reservations for her boss...
SOURCE I flew in from Boston.
GOAL I drove to Portland.
Figure 22.2 Some prototypical examples of various thematic roles.

22.2 Diathesis Alternations

The main reason computational systems use semantic roles is to act as a shallow
meaning representation that can let us make simple inferences that aren’t possible
from the pure surface string of words, or even from the parse tree. To extend the
earlier examples, if a document says that Company A acquired Company B, we’d
like to know that this answers the query Was Company B acquired? despite the fact
that the two sentences have very different surface syntax. Similarly, this shallow
semantics might act as a useful intermediate language in machine translation.

Semantic roles thus help generalize over different surface realizations of pred-
icate arguments. For example, while the AGENT is often realized as the subject of
the sentence, in other cases the THEME can be the subject. Consider these possible
realizations of the thematic arguments of the verb break:

(22.3) John
AGENT

broke the window.
THEME

(22.4) John
AGENT

broke the window
THEME

with a rock.
INSTRUMENT

(22.5) The rock
INSTRUMENT

broke the window.
THEME

(22.6) The window
THEME

broke.

(22.7) The window
THEME

was broken by John.
AGENT

These examples suggest that break has (at least) the possible arguments AGENT,
THEME, and INSTRUMENT. The set of thematic role arguments taken by a verb is
often called the thematic grid, θ -grid, or case frame. We can see that there arethematic grid

case frame (among others) the following possibilities for the realization of these arguments of
break:

AGENT/Subject, THEME/Object
AGENT/Subject, THEME/Object, INSTRUMENT/PPwith
INSTRUMENT/Subject, THEME/Object
THEME/Subject

It turns out that many verbs allow their thematic roles to be realized in various
syntactic positions. For example, verbs like give can realize the THEME and GOAL
arguments in two different ways:
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(22.8) a. Doris
AGENT

gave the book
THEME

to Cary.
GOAL

b. Doris
AGENT

gave Cary
GOAL

the book.
THEME

These multiple argument structure realizations (the fact that break can take AGENT,
INSTRUMENT, or THEME as subject, and give can realize its THEME and GOAL in
either order) are called verb alternations or diathesis alternations. The alternationverb

alternation
we showed above for give, the dative alternation, seems to occur with particular se-dative

alternation
mantic classes of verbs, including “verbs of future having” (advance, allocate, offer,
owe), “send verbs” (forward, hand, mail), “verbs of throwing” (kick, pass, throw),
and so on. Levin (1993) lists for 3100 English verbs the semantic classes to which
they belong (47 high-level classes, divided into 193 more specific classes) and the
various alternations in which they participate. These lists of verb classes have been
incorporated into the online resource VerbNet (Kipper et al., 2000), which links each
verb to both WordNet and FrameNet entries.

22.3 Semantic Roles: Problems with Thematic Roles

Representing meaning at the thematic role level seems like it should be useful in
dealing with complications like diathesis alternations. Yet it has proved quite diffi-
cult to come up with a standard set of roles, and equally difficult to produce a formal
definition of roles like AGENT, THEME, or INSTRUMENT.

For example, researchers attempting to define role sets often find they need to
fragment a role like AGENT or THEME into many specific roles. Levin and Rappa-
port Hovav (2005) summarize a number of such cases, such as the fact there seem
to be at least two kinds of INSTRUMENTS, intermediary instruments that can appear
as subjects and enabling instruments that cannot:

(22.9) a. The cook opened the jar with the new gadget.
b. The new gadget opened the jar.

(22.10) a. Shelly ate the sliced banana with a fork.
b. *The fork ate the sliced banana.

In addition to the fragmentation problem, there are cases in which we’d like to
reason about and generalize across semantic roles, but the finite discrete lists of roles
don’t let us do this.

Finally, it has proved difficult to formally define the thematic roles. Consider the
AGENT role; most cases of AGENTS are animate, volitional, sentient, causal, but any
individual noun phrase might not exhibit all of these properties.

These problems have led to alternative semantic role models that use eithersemantic role

many fewer or many more roles.
The first of these options is to define generalized semantic roles that abstract

over the specific thematic roles. For example, PROTO-AGENT and PROTO-PATIENTproto-agent

proto-patient are generalized roles that express roughly agent-like and roughly patient-like mean-
ings. These roles are defined, not by necessary and sufficient conditions, but rather
by a set of heuristic features that accompany more agent-like or more patient-like
meanings. Thus, the more an argument displays agent-like properties (being voli-
tionally involved in the event, causing an event or a change of state in another par-
ticipant, being sentient or intentionally involved, moving) the greater the likelihood
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that the argument can be labeled a PROTO-AGENT. The more patient-like the proper-
ties (undergoing change of state, causally affected by another participant, stationary
relative to other participants, etc.), the greater the likelihood that the argument can
be labeled a PROTO-PATIENT.

The second direction is instead to define semantic roles that are specific to a
particular verb or a particular group of semantically related verbs or nouns.

In the next two sections we describe two commonly used lexical resources that
make use of these alternative versions of semantic roles. PropBank uses both proto-
roles and verb-specific semantic roles. FrameNet uses semantic roles that are spe-
cific to a general semantic idea called a frame.

22.4 The Proposition Bank

The Proposition Bank, generally referred to as PropBank, is a resource of sen-PropBank

tences annotated with semantic roles. The English PropBank labels all the sentences
in the Penn TreeBank; the Chinese PropBank labels sentences in the Penn Chinese
TreeBank. Because of the difficulty of defining a universal set of thematic roles,
the semantic roles in PropBank are defined with respect to an individual verb sense.
Each sense of each verb thus has a specific set of roles, which are given only numbers
rather than names: Arg0, Arg1, Arg2, and so on. In general, Arg0 represents the
PROTO-AGENT, and Arg1, the PROTO-PATIENT. The semantics of the other roles
are less consistent, often being defined specifically for each verb. Nonetheless there
are some generalization; the Arg2 is often the benefactive, instrument, attribute, or
end state, the Arg3 the start point, benefactive, instrument, or attribute, and the Arg4
the end point.

Here are some slightly simplified PropBank entries for one sense each of the
verbs agree and fall. Such PropBank entries are called frame files; note that the
definitions in the frame file for each role (“Other entity agreeing”, “Extent, amount
fallen”) are informal glosses intended to be read by humans, rather than being formal
definitions.

(22.11) agree.01
Arg0: Agreer
Arg1: Proposition
Arg2: Other entity agreeing

Ex1: [Arg0 The group] agreed [Arg1 it wouldn’t make an offer].
Ex2: [ArgM-TMP Usually] [Arg0 John] agrees [Arg2 with Mary]

[Arg1 on everything].

(22.12) fall.01
Arg1: Logical subject, patient, thing falling
Arg2: Extent, amount fallen
Arg3: start point
Arg4: end point, end state of arg1
Ex1: [Arg1 Sales] fell [Arg4 to $25 million] [Arg3 from $27 million].
Ex2: [Arg1 The average junk bond] fell [Arg2 by 4.2%].

Note that there is no Arg0 role for fall, because the normal subject of fall is a
PROTO-PATIENT.
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The PropBank semantic roles can be useful in recovering shallow semantic in-
formation about verbal arguments. Consider the verb increase:

(22.13) increase.01 “go up incrementally”
Arg0: causer of increase
Arg1: thing increasing
Arg2: amount increased by, EXT, or MNR
Arg3: start point
Arg4: end point

A PropBank semantic role labeling would allow us to infer the commonality in
the event structures of the following three examples, that is, that in each case Big
Fruit Co. is the AGENT and the price of bananas is the THEME, despite the differing
surface forms.

(22.14) [Arg0 Big Fruit Co. ] increased [Arg1 the price of bananas].
(22.15) [Arg1 The price of bananas] was increased again [Arg0 by Big Fruit Co. ]
(22.16) [Arg1 The price of bananas] increased [Arg2 5%].

PropBank also has a number of non-numbered arguments called ArgMs, (ArgM-
TMP, ArgM-LOC, etc) which represent modification or adjunct meanings. These are
relatively stable across predicates, so aren’t listed with each frame file. Data labeled
with these modifiers can be helpful in training systems to detect temporal, location,
or directional modification across predicates. Some of the ArgM’s include:

TMP when? yesterday evening, now
LOC where? at the museum, in San Francisco
DIR where to/from? down, to Bangkok
MNR how? clearly, with much enthusiasm
PRP/CAU why? because ... , in response to the ruling
REC themselves, each other
ADV miscellaneous
PRD secondary predication ...ate the meat raw

While PropBank focuses on verbs, a related project, NomBank (Meyers et al.,
2004) adds annotations to noun predicates. For example the noun agreement in
Apple’s agreement with IBM would be labeled with Apple as the Arg0 and IBM as
the Arg2. This allows semantic role labelers to assign labels to arguments of both
verbal and nominal predicates.

22.5 FrameNet

While making inferences about the semantic commonalities across different sen-
tences with increase is useful, it would be even more useful if we could make such
inferences in many more situations, across different verbs, and also between verbs
and nouns. For example, we’d like to extract the similarity among these three sen-
tences:

(22.17) [Arg1 The price of bananas] increased [Arg2 5%].
(22.18) [Arg1 The price of bananas] rose [Arg2 5%].
(22.19) There has been a [Arg2 5%] rise [Arg1 in the price of bananas].

Note that the second example uses the different verb rise, and the third example
uses the noun rather than the verb rise. We’d like a system to recognize that the
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price of bananas is what went up, and that 5% is the amount it went up, no matter
whether the 5% appears as the object of the verb increased or as a nominal modifier
of the noun rise.

The FrameNet project is another semantic-role-labeling project that attemptsFrameNet

to address just these kinds of problems (Baker et al. 1998, Fillmore et al. 2003,
Fillmore and Baker 2009, Ruppenhofer et al. 2010). Whereas roles in the PropBank
project are specific to an individual verb, roles in the FrameNet project are specific
to a frame.

What is a frame? Consider the following set of words:

reservation, flight, travel, buy, price, cost, fare, rates, meal, plane

There are many individual lexical relations of hyponymy, synonymy, and so on
between many of the words in this list. The resulting set of relations does not,
however, add up to a complete account of how these words are related. They are
clearly all defined with respect to a coherent chunk of common-sense background
information concerning air travel.

We call the holistic background knowledge that unites these words a frame (Fill-frame

more, 1985). The idea that groups of words are defined with respect to some back-
ground information is widespread in artificial intelligence and cognitive science,
where besides frame we see related works like a model (Johnson-Laird, 1983), ormodel

even script (Schank and Abelson, 1977).script

A frame in FrameNet is a background knowledge structure that defines a set of
frame-specific semantic roles, called frame elements, and includes a set of predi-frame elements

cates that use these roles. Each word evokes a frame and profiles some aspect of the
frame and its elements. The FrameNet dataset includes a set of frames and frame
elements, the lexical units associated with each frame, and a set of labeled example
sentences.

For example, the change position on a scale frame is defined as follows:

This frame consists of words that indicate the change of an Item’s posi-
tion on a scale (the Attribute) from a starting point (Initial value) to an
end point (Final value).

Some of the semantic roles (frame elements) in the frame are defined as in
Fig. 22.3. Note that these are separated into core roles, which are frame specific, andCore roles

non-core roles, which are more like the Arg-M arguments in PropBank, expressedNon-core roles

more general properties of time, location, and so on.
Here are some example sentences:

(22.20) [ITEM Oil] rose [ATTRIBUTE in price] [DIFFERENCE by 2%].

(22.21) [ITEM It] has increased [FINAL STATE to having them 1 day a month].

(22.22) [ITEM Microsoft shares] fell [FINAL VALUE to 7 5/8].

(22.23) [ITEM Colon cancer incidence] fell [DIFFERENCE by 50%] [GROUP among
men].

(22.24) a steady increase [INITIAL VALUE from 9.5] [FINAL VALUE to 14.3] [ITEM
in dividends]

(22.25) a [DIFFERENCE 5%] [ITEM dividend] increase...

Note from these example sentences that the frame includes target words like rise,
fall, and increase. In fact, the complete frame consists of the following words:
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Core Roles
ATTRIBUTE The ATTRIBUTE is a scalar property that the ITEM possesses.
DIFFERENCE The distance by which an ITEM changes its position on the scale.
FINAL STATE A description that presents the ITEM’s state after the change in the ATTRIBUTE’s

value as an independent predication.
FINAL VALUE The position on the scale where the ITEM ends up.
INITIAL STATE A description that presents the ITEM’s state before the change in the AT-

TRIBUTE’s value as an independent predication.
INITIAL VALUE The initial position on the scale from which the ITEM moves away.
ITEM The entity that has a position on the scale.
VALUE RANGE A portion of the scale, typically identified by its end points, along which the

values of the ATTRIBUTE fluctuate.
Some Non-Core Roles

DURATION The length of time over which the change takes place.
SPEED The rate of change of the VALUE.
GROUP The GROUP in which an ITEM changes the value of an

ATTRIBUTE in a specified way.
Figure 22.3 The frame elements in the change position on a scale frame from the FrameNet Labelers
Guide (Ruppenhofer et al., 2010).

VERBS: dwindle move soar escalation shift
advance edge mushroom swell explosion tumble
climb explode plummet swing fall
decline fall reach triple fluctuation ADVERBS:
decrease fluctuate rise tumble gain increasingly
diminish gain rocket growth
dip grow shift NOUNS: hike
double increase skyrocket decline increase
drop jump slide decrease rise

FrameNet also codes relationships between frames, allowing frames to inherit
from each other, or representing relations between frames like causation (and gen-
eralizations among frame elements in different frames can be representing by inher-
itance as well). Thus, there is a Cause change of position on a scale frame that is
linked to the Change of position on a scale frame by the cause relation, but that
adds an AGENT role and is used for causative examples such as the following:

(22.26) [AGENT They] raised [ITEM the price of their soda] [DIFFERENCE by 2%].

Together, these two frames would allow an understanding system to extract the
common event semantics of all the verbal and nominal causative and non-causative
usages.

FrameNets have also been developed for many other languages including Span-
ish, German, Japanese, Portuguese, Italian, and Chinese.

22.6 Semantic Role Labeling

Semantic role labeling (sometimes shortened as SRL) is the task of automaticallysemantic role
labeling

finding the semantic roles of each argument of each predicate in a sentence. Cur-
rent approaches to semantic role labeling are based on supervised machine learning,
often using the FrameNet and PropBank resources to specify what counts as a pred-
icate, define the set of roles used in the task, and provide training and test sets.
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Recall that the difference between these two models of semantic roles is that
FrameNet (22.27) employs many frame-specific frame elements as roles, while Prop-
Bank (22.28) uses a smaller number of numbered argument labels that can be inter-
preted as verb-specific labels, along with the more general ARGM labels. Some
examples:

(22.27)
[You] can’t [blame] [the program] [for being unable to identify it]
COGNIZER TARGET EVALUEE REASON

(22.28)
[The San Francisco Examiner] issued [a special edition] [yesterday]
ARG0 TARGET ARG1 ARGM-TMP

A simplified semantic role labeling algorithm is sketched in Fig. 22.4. While
there are a large number of algorithms, many of them use some version of the steps
in this algorithm.

Most algorithms, beginning with the very earliest semantic role analyzers (Sim-
mons, 1973), begin by parsing, using broad-coverage parsers to assign a parse to the
input string. Figure 22.5 shows a parse of (22.28) above. The parse is then traversed
to find all words that are predicates.

For each of these predicates, the algorithm examines each node in the parse tree
and decides the semantic role (if any) it plays for this predicate.

This is generally done by supervised classification. Given a labeled training set
such as PropBank or FrameNet, a feature vector is extracted for each node, using
feature templates described in the next subsection.

A 1-of-N classifier is then trained to predict a semantic role for each constituent
given these features, where N is the number of potential semantic roles plus an
extra NONE role for non-role constituents. Most standard classification algorithms
have been used (logistic regression, SVM, etc). Finally, for each test sentence to be
labeled, the classifier is run on each relevant constituent. We give more details of
the algorithm after we discuss features.

function SEMANTICROLELABEL(words) returns labeled tree

parse←PARSE(words)
for each predicate in parse do

for each node in parse do
featurevector←EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

Figure 22.4 A generic semantic-role-labeling algorithm. CLASSIFYNODE is a 1-of-N clas-
sifier that assigns a semantic role (or NONE for non-role constituents), trained on labeled data
such as FrameNet or PropBank.

Features for Semantic Role Labeling

A wide variety of features can be used for semantic role labeling. Most systems use
some generalization of the core set of features introduced by Gildea and Jurafsky
(2000). A typical set of basic features are based on the following feature templates
(demonstrated on the NP-SBJ constituent The San Francisco Examiner in Fig. 22.5):

• The governing predicate, in this case the verb issued. The predicate is a cru-
cial feature since labels are defined only with respect to a particular predicate.

• The phrase type of the constituent, in this case, NP (or NP-SBJ). Some se-
mantic roles tend to appear as NPs, others as S or PP, and so on.
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S

NP-SBJ = ARG0 VP

DT NNP NNP NNP

The San Francisco Examiner

VBD = TARGET NP = ARG1 PP-TMP = ARGM-TMP

issued DT JJ NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 22.5 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows the path feature NP↑S↓VP↓VBD for ARG0, the NP-SBJ constituent The San Francisco Examiner.

• The headword of the constituent, Examiner. The headword of a constituent
can be computed with standard head rules, such as those given in Chapter 11
in Fig. 11.12. Certain headwords (e.g., pronouns) place strong constraints on
the possible semantic roles they are likely to fill.

• The headword part of speech of the constituent, NNP.
• The path in the parse tree from the constituent to the predicate. This path is

marked by the dotted line in Fig. 22.5. Following Gildea and Jurafsky (2000),
we can use a simple linear representation of the path, NP↑S↓VP↓VBD. ↑ and
↓ represent upward and downward movement in the tree, respectively. The
path is very useful as a compact representation of many kinds of grammatical
function relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this case, active
(as contrasted with passive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than do active ones.

• The binary linear position of the constituent with respect to the predicate,
either before or after.

• The subcategorization of the predicate, the set of expected arguments that
appear in the verb phrase. We can extract this information by using the phrase-
structure rule that expands the immediate parent of the predicate; VP→ VBD
NP PP for the predicate in Fig. 22.5.

• The named entity type of the constituent.
• The first words and the last word of the constituent.

The following feature vector thus represents the first NP in our example (recall
that most observations will have the value NONE rather than, for example, ARG0,
since most constituents in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP↑S↓VP↓VBD, active, before, VP → NP PP,
ORG, The, Examiner]

Other features are often used in addition, such as sets of n-grams inside the
constituent, or more complex versions of the path features (the upward or downward
halves, or whether particular nodes occur in the path).

It’s also possible to use dependency parses instead of constituency parses as the
basis of features, for example using dependency parse paths instead of constituency
paths.
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Further Issues in Semantic Role Labeling

Instead of training a single-stage classifier, some role-labeling algorithms break
down the classification task for the arguments of a predicate into multiple steps:

1. Pruning: Since only a small number of the constituents in a sentence are
arguments of any given predicate, many systems use simple heuristics to prune
unlikely constituents.

2. Identification: a binary classification of each node as an argument to be la-
beled or a NONE.

3. Classification: a 1-of-N classification of all the constituents that were labeled
as arguments by the previous stage

The separation of identification and classification may lead to better use of fea-
tures (different features may be useful for the two tasks) or to computational effi-
ciency.

The classification algorithm described above classifies each argument separately
(‘locally’), making the simplifying assumption that each argument of a predicate
can be labeled independently. But this is of course not true; there are many kinds
of interactions between arguments that require a more ‘global’ assignment of labels
to constituents. For example, constituents in FrameNet and PropBank are required
to be non-overlapping. Thus a system may incorrectly label two overlapping con-
stituents as arguments. At the very least it needs to decide which of the two is
correct; better would be to use a global criterion to avoid making this mistake. More
significantly, the semantic roles of constituents are not independent; since PropBank
does not allow multiple identical arguments, labeling one constituent as an ARG0
should greatly increase the probability of another constituent being labeled ARG1.

For this reason, many role labeling systems add a fourth step to deal with global
consistency across the labels in a sentence. This fourth step can be implemented
in many ways. The local classifiers can return a list of possible labels associated
with probabilities for each constituent, and a second-pass re-ranking approach can
be used to choose the best consensus label. Integer linear programming (ILP) is
another common way to choose a solution that conforms best to multiple constraints.

The standard evaluation for semantic role labeling is to require that each ar-
gument label must be assigned to the exactly correct word sequence or parse con-
stituent, and then compute precision, recall, and F-measure. Identification and clas-
sification can also be evaluated separately.

Systems for performing automatic semantic role labeling have been applied widely
to improve the state-of-the-art in tasks across NLP like question answering (Shen
and Lapata 2007, Surdeanu et al. 2011) and machine translation (Liu and Gildea 2010,
Lo et al. 2013).

22.7 Selectional Restrictions

We turn in this section to another way to represent facts about the relationship be-
tween predicates and arguments. A selectional restriction is a semantic type con-selectional

restriction
straint that a verb imposes on the kind of concepts that are allowed to fill its argument
roles. Consider the two meanings associated with the following example:

(22.29) I want to eat someplace nearby.
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There are two possible parses and semantic interpretations for this sentence. In
the sensible interpretation, eat is intransitive and the phrase someplace nearby is
an adjunct that gives the location of the eating event. In the nonsensical speaker-as-
Godzilla interpretation, eat is transitive and the phrase someplace nearby is the direct
object and the THEME of the eating, like the NP Malaysian food in the following
sentences:

(22.30) I want to eat Malaysian food.

How do we know that someplace nearby isn’t the direct object in this sentence?
One useful cue is the semantic fact that the THEME of EATING events tends to be
something that is edible. This restriction placed by the verb eat on the filler of its
THEME argument is a selectional restriction.

Selectional restrictions are associated with senses, not entire lexemes. We can
see this in the following examples of the lexeme serve:

(22.31) The restaurant serves green-lipped mussels.
(22.32) Which airlines serve Denver?

Example (22.31) illustrates the offering-food sense of serve, which ordinarily re-
stricts its THEME to be some kind of food Example (22.32) illustrates the provides a
commercial service to sense of serve, which constrains its THEME to be some type
of appropriate location.

Selectional restrictions vary widely in their specificity. The verb imagine, for
example, imposes strict requirements on its AGENT role (restricting it to humans
and other animate entities) but places very few semantic requirements on its THEME
role. A verb like diagonalize, on the other hand, places a very specific constraint
on the filler of its THEME role: it has to be a matrix, while the arguments of the
adjectives odorless are restricted to concepts that could possess an odor:

(22.33) In rehearsal, I often ask the musicians to imagine a tennis game.
(22.34) Radon is an odorless gas that can’t be detected by human senses.

(22.35) To diagonalize a matrix is to find its eigenvalues.

These examples illustrate that the set of concepts we need to represent selectional
restrictions (being a matrix, being able to possess an odor, etc) is quite open ended.
This distinguishes selectional restrictions from other features for representing lexical
knowledge, like parts-of-speech, which are quite limited in number.

22.7.1 Representing Selectional Restrictions
One way to capture the semantics of selectional restrictions is to use and extend the
event representation of Chapter 19. Recall that the neo-Davidsonian representation
of an event consists of a single variable that stands for the event, a predicate denoting
the kind of event, and variables and relations for the event roles. Ignoring the issue of
the λ -structures and using thematic roles rather than deep event roles, the semantic
contribution of a verb like eat might look like the following:

∃e,x,y Eating(e)∧Agent(e,x)∧T heme(e,y)

With this representation, all we know about y, the filler of the THEME role, is that
it is associated with an Eating event through the Theme relation. To stipulate the
selectional restriction that y must be something edible, we simply add a new term to
that effect:

∃e,x,y Eating(e)∧Agent(e,x)∧T heme(e,y)∧EdibleT hing(y)
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Sense 1

hamburger, beefburger --

(a fried cake of minced beef served on a bun)

=> sandwich

=> snack food

=> dish

=> nutriment, nourishment, nutrition...

=> food, nutrient

=> substance

=> matter

=> physical entity

=> entity

Figure 22.6 Evidence from WordNet that hamburgers are edible.

When a phrase like ate a hamburger is encountered, a semantic analyzer can
form the following kind of representation:

∃e,x,y Eating(e)∧Eater(e,x)∧T heme(e,y)∧EdibleT hing(y)∧Hamburger(y)

This representation is perfectly reasonable since the membership of y in the category
Hamburger is consistent with its membership in the category EdibleThing, assuming
a reasonable set of facts in the knowledge base. Correspondingly, the representation
for a phrase such as ate a takeoff would be ill-formed because membership in an
event-like category such as Takeoff would be inconsistent with membership in the
category EdibleThing.

While this approach adequately captures the semantics of selectional restrictions,
there are two problems with its direct use. First, using FOL to perform the simple
task of enforcing selectional restrictions is overkill. Other, far simpler, formalisms
can do the job with far less computational cost. The second problem is that this
approach presupposes a large, logical knowledge base of facts about the concepts
that make up selectional restrictions. Unfortunately, although such common-sense
knowledge bases are being developed, none currently have the kind of coverage
necessary to the task.

A more practical approach is to state selectional restrictions in terms of WordNet
synsets rather than as logical concepts. Each predicate simply specifies a WordNet
synset as the selectional restriction on each of its arguments. A meaning representa-
tion is well-formed if the role filler word is a hyponym (subordinate) of this synset.

For our ate a hamburger example, for instance, we could set the selectional
restriction on the THEME role of the verb eat to the synset {food, nutrient}, glossed
as any substance that can be metabolized by an animal to give energy and build
tissue. Luckily, the chain of hypernyms for hamburger shown in Fig. 22.6 reveals
that hamburgers are indeed food. Again, the filler of a role need not match the
restriction synset exactly; it just needs to have the synset as one of its superordinates.

We can apply this approach to the THEME roles of the verbs imagine, lift, and di-
agonalize, discussed earlier. Let us restrict imagine’s THEME to the synset {entity},
lift’s THEME to {physical entity}, and diagonalize to {matrix}. This arrangement
correctly permits imagine a hamburger and lift a hamburger, while also correctly
ruling out diagonalize a hamburger.
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22.7.2 Selectional Preferences
In the earliest implementations, selectional restrictions were considered strict con-
straints on the kind of arguments a predicate could take (Katz and Fodor 1963,
Hirst 1987). For example, the verb eat might require that its THEME argument be
[+FOOD]. Early word sense disambiguation systems used this idea to rule out senses
that violated the selectional restrictions of their governing predicates.

Very quickly, however, it became clear that these selectional restrictions were
better represented as preferences rather than strict constraints (Wilks 1975c, Wilks 1975b).
For example, selectional restriction violations (like inedible arguments of eat) often
occur in well-formed sentences, for example because they are negated (22.36), or
because selectional restrictions are overstated (22.37):

(22.36) But it fell apart in 1931, perhaps because people realized you can’t eat
gold for lunch if you’re hungry.

(22.37) In his two championship trials, Mr. Kulkarni ate glass on an empty
stomach, accompanied only by water and tea.

Modern systems for selectional preferences therefore specify the relation be-
tween a predicate and its possible arguments with soft constraints of some kind.

Selectional Association

One of the most influential has been the selectional association model of Resnik
(1993). Resnik defines the idea of selectional preference strength as the general

selectional
preference

strength
amount of information that a predicate tells us about the semantic class of its argu-
ments. For example, the verb eat tells us a lot about the semantic class of its direct
objects, since they tend to be edible. The verb be, by contrast, tells us less about
its direct objects. The selectional preference strength can be defined by the differ-
ence in information between two distributions: the distribution of expected semantic
classes P(c) (how likely is it that a direct object will fall into class c) and the dis-
tribution of expected semantic classes for the particular verb P(c|v) (how likely is
it that the direct object of the specific verb v will fall into semantic class c). The
greater the difference between these distributions, the more information the verb is
giving us about possible objects. The difference between these two distributions can
be quantified by relative entropy, or the Kullback-Leibler divergence (Kullback andrelative entropy

Leibler, 1951). The Kullback-Leibler or KL divergence D(P||Q) expresses the dif-KL divergence

ference between two probability distributions P and Q (we’ll return to this when we
discuss distributional models of meaning in Chapter 15).

D(P||Q) =
∑

x

P(x) log
P(x)
Q(x)

(22.38)

The selectional preference SR(v) uses the KL divergence to express how much
information, in bits, the verb v expresses about the possible semantic class of its
argument.

SR(v) = D(P(c|v)||P(c))

=
∑

c

P(c|v) log
P(c|v)
P(c)

(22.39)

Resnik then defines the selectional association of a particular class and verbselectional
association
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as the relative contribution of that class to the general selectional preference of the
verb:

AR(v,c) =
1

SR(v)
P(c|v) log

P(c|v)
P(c)

(22.40)

The selectional association is thus a probabilistic measure of the strength of as-
sociation between a predicate and a class dominating the argument to the predicate.
Resnik estimates the probabilities for these associations by parsing a corpus, count-
ing all the times each predicate occurs with each argument word, and assuming
that each word is a partial observation of all the WordNet concepts containing the
word. The following table from Resnik (1996) shows some sample high and low
selectional associations for verbs and some WordNet semantic classes of their direct
objects.

Direct Object Direct Object
Verb Semantic Class Assoc Semantic Class Assoc
read WRITING 6.80 ACTIVITY -.20
write WRITING 7.26 COMMERCE 0
see ENTITY 5.79 METHOD -0.01

Selectional Preference via Conditional Probability

An alternative to using selectional association between a verb and the WordNet class
of its arguments, is to simply use the conditional probability of an argument word
given a predicate verb. This simple model of selectional preferences can be used
to directly model the strength of association of one verb (predicate) with one noun
(argument).

The conditional probability model can be computed by parsing a very large cor-
pus (billions of words), and computing co-occurrence counts: how often a given
verb occurs with a given noun in a given relation. The conditional probability of an
argument noun given a verb for a particular relation P(n|v,r) can then be used as a
selectional preference metric for that pair of words (Brockmann and Lapata, 2003):

P(n|v,r) =

{
C(n,v,r)
C(v,r) if C(n,v,r)> 0

0 otherwise

The inverse probability P(v|n,r) was found to have better performance in some
cases (Brockmann and Lapata, 2003):

P(v|n,r) =

{
C(n,v,r)
C(n,r) if C(n,v,r)> 0

0 otherwise

In cases where it’s not possible to get large amounts of parsed data, another
option, at least for direct objects, is to get the counts from simple part-of-speech
based approximations. For example pairs can be extracted using the pattern ”V Det
N”, where V is any form of the verb, Det is the—a—ε and N is the singular or plural
form of the noun (Keller and Lapata, 2003).

An even simpler approach is to use the simple log co-occurrence frequency of
the predicate with the argument logcount(v,n,r) instead of conditional probability;
this seems to do better for extracting preferences for syntactic subjects rather than
objects (Brockmann and Lapata, 2003).
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Evaluating Selectional Preferences

One way to evaluate models of selectional preferences is to use pseudowords (Galepseudowords

et al. 1992c, Schütze 1992a). A pseudoword is an artificial word created by concate-
nating a test word in some context (say banana) with a confounder word (say door)
to create banana-door). The task of the system is to identify which of the two words
is the original word. To evaluate a selectional preference model (for example on the
relationship between a verb and a direct object) we take a test corpus and select all
verb tokens. For each verb token (say drive) we select the direct object (e.g., car),
concatenated with a confounder word that is its nearest neighbor, the noun with the
frequency closest to the original (say house), to make car/house). We then use the
selectional preference model to choose which of car and house are more preferred
objects of drive, and compute how often the model chooses the correct original ob-
ject (e.g., (car) (Chambers and Jurafsky, 2010).

Another evaluation metric is to get human preferences for a test set of verb-
argument pairs, and have them rate their degree of plausibility. This is usually done
by using magnitude estimation, a technique from psychophysics, in which subjects
rate the plausibility of an argument proportional to a modulus item. A selectional
preference model can then be evaluated by its correlation with the human prefer-
ences (Keller and Lapata, 2003).

22.8 Primitive Decomposition of Predicates

One way of thinking about the semantic roles we have discussed through the chapter
is that they help us define the roles that arguments play in a decompositional way,
based on finite lists of thematic roles (agent, patient, instrument, proto-agent, proto-
patient, etc.) This idea of decomposing meaning into sets of primitive semantics
elements or features, called primitive decomposition or componential analysis,componential

analysis
has been taken even further, and focused particularly on predicates.

Consider these examples of the verb kill:

(22.41) Jim killed his philodendron.

(22.42) Jim did something to cause his philodendron to become not alive.

There is a truth-conditional (‘propositional semantics’) perspective from which these
two sentences have the same meaning. Assuming this equivalence, we could repre-
sent the meaning of kill as:

(22.43) KILL(x,y)⇔ CAUSE(x, BECOME(NOT(ALIVE(y))))

thus using semantic primitives like do, cause, become not, and alive.
Indeed, one such set of potential semantic primitives has been used to account

for some of the verbal alternations discussed in Section 22.2 (Lakoff, 1965; Dowty,
1979). Consider the following examples.

(22.44) John opened the door. ⇒ CAUSE(John(BECOME(OPEN(door))))
(22.45) The door opened. ⇒ BECOME(OPEN(door))
(22.46) The door is open. ⇒ OPEN(door)

The decompositional approach asserts that a single state-like predicate associ-
ated with open underlies all of these examples. The differences among the meanings
of these examples arises from the combination of this single predicate with the prim-
itives CAUSE and BECOME.
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While this approach to primitive decomposition can explain the similarity be-
tween states and actions or causative and non-causative predicates, it still relies on
having a large number of predicates like open. More radical approaches choose to
break down these predicates as well. One such approach to verbal predicate de-
composition that played a role in early natural language understanding systems is
conceptual dependency (CD), a set of ten primitive predicates, shown in Fig. 22.7.conceptual

dependency

Primitive Definition
ATRANS The abstract transfer of possession or control from one entity to

another
PTRANS The physical transfer of an object from one location to another
MTRANS The transfer of mental concepts between entities or within an

entity
MBUILD The creation of new information within an entity
PROPEL The application of physical force to move an object
MOVE The integral movement of a body part by an animal
INGEST The taking in of a substance by an animal
EXPEL The expulsion of something from an animal
SPEAK The action of producing a sound
ATTEND The action of focusing a sense organ

Figure 22.7 A set of conceptual dependency primitives.

Below is an example sentence along with its CD representation. The verb brought
is translated into the two primitives ATRANS and PTRANS to indicate that the waiter
both physically conveyed the check to Mary and passed control of it to her. Note
that CD also associates a fixed set of thematic roles with each primitive to represent
the various participants in the action.

(22.47) The waiter brought Mary the check.

∃x,y Atrans(x)∧Actor(x,Waiter)∧Ob ject(x,Check)∧To(x,Mary)
∧Ptrans(y)∧Actor(y,Waiter)∧Ob ject(y,Check)∧To(y,Mary)

22.9 AMR

To be written

22.10 Summary

• Semantic roles are abstract models of the role an argument plays in the event
described by the predicate.

• Thematic roles are a model of semantic roles based on a single finite list of
roles. Other semantic role models include per-verb semantic role lists and
proto-agent/proto-patient, both of which are implemented in PropBank,
and per-frame role lists, implemented in FrameNet.
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• Semantic role labeling is the task of assigning semantic role labels to the con-
stituents of a sentence. The task is generally treated as a supervised machine
learning task, with models trained on PropBank or FrameNet. Algorithms
generally start by parsing a sentence and then automatically tag each parse
tree node with a semantic role.

• Semantic selectional restrictions allow words (particularly predicates) to post
constraints on the semantic properties of their argument words. Selectional
preference models (like selectional association or simple conditional proba-
bility) allow a weight or probability to be assigned to the association between
a predicate and an argument word or class.

Bibliographical and Historical Notes
Although the idea of semantic roles dates back to Panini, they were re-introduced
into modern linguistics by (Gruber, 1965) and (Fillmore, 1966) and (Fillmore, 1968).
Fillmore, interestingly, had become interested in argument structure by studying
Lucien Tesnière’s groundbreaking Éléments de Syntaxe Structurale (Tesnière, 1959)
in which the term ‘dependency’ was introduced and the foundations were laid for
dependency grammar. Following Tesnière’s terminology, Fillmore first referred to
argument roles as actants (Fillmore, 1966) but quickly switched to the term case,
(see Fillmore (2003)) and proposed a universal list of semantic roles or cases (Agent,
Patient, Instrument, etc.), that could be taken on by the arguments of predicates.
Verbs would be listed in the lexicon with their ‘case frame’, the list of obligatory (or
optional) case arguments.

The idea that semantic roles could provide an intermediate level of semantic
representation that could help map from syntactic parse structures to deeper, more
fully-specified representations of meaning was quickly adopted in natural language
processing, and systems for extracting case frames were created for machine trans-
lation (Wilks, 1973), question-answering (Hendrix et al., 1973), spoken-language
understanding (Nash-Webber, 1975), and dialogue systems (Bobrow et al., 1977).
General-purpose semantic role labelers were developed. The earliest ones (Sim-
mons, 1973) first parsed a sentence by means of an ATN parser. Each verb then had
a set of rules specifying how the parse should be mapped to semantic roles. These
rules mainly made reference to grammatical functions (subject, object, complement
of specific prepositions) but also checked constituent internal features such as the an-
imacy of head nouns. Later systems assigned roles from pre-built parse trees, again
by using dictionaries with verb-specific case frames (Levin 1977, Marcus 1980).

By 1977 case representation was widely used and taught in natural language
processing and artificial intelligence, and was described as a standard component
of natural language understanding in the first edition of Winston’s (1977) textbook
Artificial Intelligence.

In the 1980s Fillmore proposed his model of frame semantics, later describing
the intuition as follows:

“The idea behind frame semantics is that speakers are aware of possi-
bly quite complex situation types, packages of connected expectations,
that go by various names—frames, schemas, scenarios, scripts, cultural
narratives, memes—and the words in our language are understood with
such frames as their presupposed background.” (Fillmore, 2012, p. 712)
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The word frame seemed to be in the air for a suite of related notions proposed at
about the same time by Minsky (1974), Hymes (1974), and Goffman (1974), as
well as related notions with other names like scripts (Schank and Abelson, 1975)
and schemata (Bobrow and Norman, 1975) (see Tannen (1979) for a comparison).
Fillmore was also influenced by the semantic field theorists and by a visit to the Yale
AI lab where he took notice of the lists of slots and fillers used by early information
extraction systems like DeJong (1982) and Schank and Abelson (1977). In the 1990s
Fillmore drew on these insights to begin the FrameNet corpus annotation project.

At the same time, Beth Levin drew on her early case frame dictionaries (Levin,
1977) to develop her book which summarized sets of verb classes defined by shared
argument realizations (Levin, 1993). The VerbNet project built on this work (Kipper
et al., 2000), leading soon afterwards to the PropBank semantic-role-labeled corpus
created by Martha Palmer and colleagues (Palmer et al., 2005). The combination of
rich linguistic annotation and corpus-based approach instantiated in FrameNet and
PropBank led to a revival of automatic approaches to semantic role labeling, first
on FrameNet (Gildea and Jurafsky, 2000) and then on PropBank data (Gildea and
Palmer, 2002, inter alia). The problem first addressed in the 1970s by hand-written
rules was thus now generally recast as one of supervised machine learning enabled
by large and consistent databases. Many popular features used for role labeling
are defined in Gildea and Jurafsky (2002), Surdeanu et al. (2003), Xue and Palmer
(2004), Pradhan et al. (2005), Che et al. (2009), and Zhao et al. (2009).

The use of dependency rather than constituency parses was introduced in the
CoNLL-2008 shared task (Surdeanu et al., 2008b). For surveys see Palmer et al.
(2010) and Màrquez et al. (2008).

To avoid the need for huge labeled training sets, unsupervised approaches for se-
mantic role labeling attempt to induce the set of semantic roles by generalizing over
syntactic features of arguments (Swier and Stevenson 2004, Grenager and Man-
ning 2006, Titov and Klementiev 2012, Lang and Lapata 2014).

The most recent work in semantic role labeling focuses on the use of deep neural
networks (Collobert et al. 2011, Foland Jr and Martin 2015).

Selectional preference has been widely studied beyond the selectional associa-
tion models of Resnik (1993) and Resnik (1996). Methods have included cluster-
ing (Rooth et al., 1999), discriminative learning (Bergsma et al., 2008), and topic
models (Séaghdha 2010, Ritter et al. 2010), and constraints can be expressed at the
level of words or classes (Agirre and Martinez, 2001). Selectional preferences have
also been successfully integrated into semantic role labeling (Erk 2007, Zapirain
et al. 2013).

Exercises
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CHAPTER

27 Question Answering

The quest for knowledge is deeply human, and so it is not surprising that practi-
cally as soon as there were computers, and certainly as soon as there was natu-
ral language processing, we were trying to use computers to answer textual ques-
tions. By the early 1960s, there were systems implementing the two major modern
paradigms of question answering—IR-based question answering and knowledge-
based question answering to answer questions about baseball statistics or scientific
facts. Even imaginary computers got into the act. Deep Thought, the computer that
Douglas Adams invented in The Hitchhiker’s Guide to the Galaxy, managed to an-
swer “the Great Question Of Life The Universe and Everything” (the answer was
42, but unfortunately the details of the question were never revealed).

More recently, IBM’s Watson question-answering system won the TV game-
show Jeopardy! in 2011, beating humans at the task of answering questions like

WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPAL-
ITIES OF WALLACHIA AND MOLDOVIA” INSPIRED THIS AU-
THOR’S MOST FAMOUS NOVEL1

Although the goal of quiz shows is entertainment, the technology used to answer
these questions both draws on and extends the state of the art in practical question
answering, as we will see.

Most current question answering systems focus on factoid questions. Factoid
questions are questions that can be answered with simple facts expressed in short
text answers. The following factoid questions, for example, can be answered with a
short string expressing a personal name, temporal expression, or location:

(27.1) Who founded Virgin Airlines?
(27.2) What is the average age of the onset of autism?
(27.3) Where is Apple Computer based?

In this chapter we describe the two major modern paradigms to question answer-
ing, focusing on their application to factoid questions.

The first paradigm is called IR-based question answering or sometimes text-
based question answering, and relies on the enormous amounts of information
available as text on the Web or in specialized collections such as PubMed. Given a
user question, information retrieval techniques extract passages directly from these
documents, guided by the text of the question.

The method processes the question to determine the likely answer type (often
a named entity like a person, location, or time), and formulates queries to send to
a search engine. The search engine returns ranked documents which are broken up
into suitable passages and reranked. Finally candidate answer strings are extracted
from the passages and ranked.

1 The answer, of course, is Bram Stoker, and the novel was the fantastically Gothic Dracula.
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In the second paradigm, knowledge-based question answering, we instead
build a semantic representation of the query. The meaning of a query can be a
full predicate calculus statement. So the question What states border Texas?—taken
from the GeoQuery database of questions on U.S. Geography (Zelle and Mooney,
1996)— might have the representation:

λx.state(x)∧borders(x, texas)
Alternatively the meaning of a question could be a single relation between a known
and an unknown entity. Thus the representation of the question When was Ada
Lovelace born? could be birth-year (Ada Lovelace, ?x).

Whatever meaning representation we choose, we’ll be using it to query databases
of facts. These might be complex databases, perhaps of scientific facts or geospatial
information, that need powerful logical or SQL queries. Or these might be databases
of simple relations, triple stores like Freebase or DBpedia introduced in Chapter 20.triple stores

Large practical systems like the DeepQA system in IBM’s Watson generally are
hybrid systems, using both text datasets and structured knowledge bases to answer
questions. DeepQA extracts a wide variety of meanings from the question (parses,
relations, named entities, ontological information), and then finds large numbers of
candidate answers in both knowledge bases and in textual sources like Wikipedia or
newspapers. Each candidate answer is then scored using a wide variety of knowl-
edge sources, such as geospatial databases, temporal reasoning, taxonomical classi-
fication, and various textual sources.

We’ll explore all three of these approaches: IR-based, knowledge-based, and the
Watson DeepQA system, in the next three sections.

27.1 IR-based Factoid Question Answering

The goal of IR-based question answering is to answer a user’s question by finding
short text segments on the Web or some other collection of documents. Figure 27.1
shows some sample factoid questions and their answers.

Question Answer
Where is the Louvre Museum located? in Paris, France
What’s the abbreviation for limited partnership? L.P.
What are the names of Odin’s ravens? Huginn and Muninn
What currency is used in China? the yuan
What kind of nuts are used in marzipan? almonds
What instrument does Max Roach play? drums
What’s the official language of Algeria? Arabic
How many pounds are there in a stone? 14

Figure 27.1 Some sample factoid questions and their answers.

Figure 27.2 shows the three phases of an IR-based factoid question-answering
system: question processing, passage retrieval and ranking, and answer processing.

27.1.1 Question Processing
The goal of the question-processing phase is to extract a number of pieces of infor-
mation from the question. The answer type specifies the kind of entity the answer
consists of (person, location, time, etc.). The query specifies the keywords that
should be used for the IR system to use in searching for documents. Some systems



402 CHAPTER 27 • QUESTION ANSWERING

Document
DocumentDocument

Docume
ntDocume

ntDocume
ntDocume

ntDocume
nt

Question 
Processing

Passage
Retrieval

Query 
Formulation

Answer Type 
Detection

Question

Passage 
Retrieval

Document 
Retrieval

Answer 
Processing

Answer

passages

Indexing

Relevant
Docs

DocumentDocumentDocument

Figure 27.2 IR-based factoid question answering has three stages: question processing, passage retrieval, and
answer processing.

also extract a focus, which is the string of words in the question that are likely to
be replaced by the answer in any answer string found. Some systems also classify
the question type: is this a definition question, a math question, a list question? For
example, for the following question:

Which US state capital has the largest population?

The query processing should produce results like the following:

Answer Type: city
Query: US state capital, largest, population
Focus: state capital

In the next two sections we summarize the two most commonly used tasks, an-
swer type detection and query formulation.

27.1.2 Answer Type Detection (Question Classification)
The task of question classification or answer type recognition is to determine thequestion

classification
answer type, the named-entity or similar class categorizing the answer. A questionanswer type

like “Who founded Virgin Airlines” expects an answer of type PERSON. A question
like “What Canadian city has the largest population?” expects an answer of type
CITY. If we know the answer type for a question, we can avoid looking at every
sentence or noun phrase in the entire suite of documents for the answer, instead
focusing on, for example, just people or cities.

As some of the above examples suggest, we might draw the set of possible an-
swer types for a question classifier from a set of named entities like PERSON, LO-
CATION, and ORGANIZATION described in Chapter 20. Usually, however, a richer,
often hierarchical set of answer types is used, an answer type taxonomy. Such tax-answer type

taxonomy
onomies can be built semi-automatically and dynamically, for example, from Word-
Net (Harabagiu et al. 2000,Pasca 2003), or they can be designed by hand.

Figure 27.4 shows one such hand-built ontology, the Li and Roth (2005) tagset;
a subset is shown graphically in Fig. 27.3. In this hierarchical tagset, each ques-
tion can be labeled with a coarse-grained tag like HUMAN or a fine-grained tag like
HUMAN:DESCRIPTION, HUMAN:GROUP, HUMAN:IND, and so on. Similar tags are
used in other systems; the HUMAN:DESCRIPTION type is often called a BIOGRAPHY
question because the answer is required to give a brief biography of the person rather
than just a name.

Question classifiers can be built by hand-writing rules, by supervised machine
learning, or with some combination. The Webclopedia QA Typology, for example,
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Figure 27.3 A subset of the Li and Roth (2005) answer types.

contains 276 hand-written rules associated with the approximately 180 answer types
in the typology (Hovy et al., 2002). A regular expression rule for detecting an answer
type like BIOGRAPHY (which assumes the question has been named-entity-tagged)
might be

(27.4) who {is | was | are | were} PERSON

Most modern question classifiers, however, are based on supervised machine
learning, and are trained on databases of questions that have been hand-labeled with
an answer type (Li and Roth, 2002). Typical features used for classification include
the words in the questions, the part-of-speech of each word, and named entities in
the questions.

Often, a single word in the question gives extra information about the answer
type, and its identity is used as a feature. This word is sometimes called the an-
swer type word or question headword, and may be defined as the headword of
the first NP after the question’s wh-word; headwords are indicated in boldface in the
following examples:

(27.5) Which city in China has the largest number of foreign financial companies?
(27.6) What is the state flower of California?

Finally, it often helps to use semantic information about the words in the ques-
tions. The WordNet synset ID of the word can be used as a feature, as can the IDs
of the hypernym and hyponyms of each word in the question.

In general, question classification accuracies are relatively high on easy ques-
tion types like PERSON, LOCATION, and TIME questions; detecting REASON and
DESCRIPTION questions can be much harder.

27.1.3 Query Formulation
Query formulation is the task of creating from the question a list of keywords
that form a query that can be sent to an information retrieval system. Exactly what
query to form depends on the application. If question answering is applied to the
Web, we might simply create a keyword from every word in the question, letting
the Web search engine automatically remove any stopwords. Often, we leave out
the question word (where, when, etc.). Alternatively, keywords can be formed from
only the terms found in the noun phrases in the question, applying stopword lists to
ignore function words and high-frequency, low-content verbs.
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Tag Example
ABBREVIATION

abb What’s the abbreviation for limited partnership?
exp What does the “c” stand for in the equation E=mc2?

DESCRIPTION
definition What are tannins?
description What are the words to the Canadian National anthem?
manner How can you get rust stains out of clothing?
reason What caused the Titanic to sink ?

ENTITY
animal What are the names of Odin’s ravens?
body What part of your body contains the corpus callosum?
color What colors make up a rainbow ?
creative In what book can I find the story of Aladdin?
currency What currency is used in China?
disease/medicine What does Salk vaccine prevent?
event What war involved the battle of Chapultepec?
food What kind of nuts are used in marzipan?
instrument What instrument does Max Roach play?
lang What’s the official language of Algeria?
letter What letter appears on the cold-water tap in Spain?
other What is the name of King Arthur’s sword?
plant What are some fragrant white climbing roses?
product What is the fastest computer?
religion What religion has the most members?
sport What was the name of the ball game played by the Mayans?
substance What fuel do airplanes use?
symbol What is the chemical symbol for nitrogen?
technique What is the best way to remove wallpaper?
term How do you say “ Grandma ” in Irish?
vehicle What was the name of Captain Bligh’s ship?
word What’s the singular of dice?

HUMAN
description Who was Confucius?
group What are the major companies that are part of Dow Jones?
ind Who was the first Russian astronaut to do a spacewalk?
title What was Queen Victoria’s title regarding India?

LOCATION
city What’s the oldest capital city in the Americas?
country What country borders the most others?
mountain What is the highest peak in Africa?
other What river runs through Liverpool?
state What states do not have state income tax?

NUMERIC
code What is the telephone number for the University of Colorado?
count About how many soldiers died in World War II?
date What is the date of Boxing Day?
distance How long was Mao’s 1930s Long March?
money How much did a McDonald’s hamburger cost in 1963?
order Where does Shanghai rank among world cities in population?
other What is the population of Mexico?
period What was the average life expectancy during the Stone Age?
percent What fraction of a beaver’s life is spent swimming?
temp How hot should the oven be when making Peachy Oat Muffins?
speed How fast must a spacecraft travel to escape Earth’s gravity?
size What is the size of Argentina?
weight How many pounds are there in a stone?

Figure 27.4 Question typology from Li and Roth (2002), (2005). Example sentences are
from their corpus of 5500 labeled questions. A question can be labeled either with a coarse-
grained tag like HUMAN or NUMERIC or with a fine-grained tag like HUMAN:DESCRIPTION,
HUMAN:GROUP, HUMAN:IND, and so on.
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When question answering is applied to smaller sets of documents, for example,
to answer questions about corporate information pages, we still use an IR engine
to search our documents for us. But for this smaller set of documents, we generally
need to apply query expansion. On the Web the answer to a question might appear in
many different forms, so if we search with words from the question we’ll probably
find an answer written in the same form. In smaller sets of corporate pages, by con-
trast, an answer might appear only once, and the exact wording might look nothing
like the question. Thus, query expansion methods can add query terms in hopes of
matching the particular form of the answer as it appears. These might include all
morphological variants of the content words in the question, or synonyms from a
thesaurus.

A query formulation approach that is sometimes used for questioning the Web is
to apply query reformulation rules to the query. The rules rephrase the question toquery

reformulation
make it look like a substring of possible declarative answers. The question “when
was the laser invented?” might be reformulated as “the laser was invented”; the
question “where is the Valley of the Kings?” as “the Valley of the Kings is located
in”. Here are some sample hand-written reformulation rules from Lin (2007):

(27.7) wh-word did A verb B→ . . . A verb+ed B
(27.8) Where is A→ A is located in

27.1.4 Passage Retrieval
The query that was created in the question-processing phase is next used to query
an information-retrieval system, either a general IR engine over a proprietary set of
indexed documents or a Web search engine. The result of this document retrieval
stage is a set of documents.

Although the set of documents is generally ranked by relevance, the top-ranked
document is probably not the answer to the question. This is because documents
are not an appropriate unit to rank with respect to the goals of a question-answering
system. A highly relevant and large document that does not prominently answer a
question is not an ideal candidate for further processing.

Therefore, the next stage is to extract a set of potential answer passages from
the retrieved set of documents. The definition of a passage is necessarily system
dependent, but the typical units include sections, paragraphs, and sentences. We
might run a paragraph segmentation algorithm on all the returned documents and
treat each paragraph as a segment.

We next perform passage retrieval. In this stage, we first filter out passages inpassage
retrieval

the returned documents that don’t contain potential answers and then rank the rest
according to how likely they are to contain an answer to the question. The first step
in this process is to run a named entity or answer type classification on the retrieved
passages. The answer type that we determined from the question tells us the possible
answer types we expect to see in the answer. We can therefore filter out documents
that don’t contain any entities of the right type.

The remaining passages are then ranked, usually by supervised machine learn-
ing, relying on a small set of features that can be easily extracted from a potentially
large number of answer passages, such as:

• The number of named entities of the right type in the passage
• The number of question keywords in the passage
• The longest exact sequence of question keywords that occurs in the passage
• The rank of the document from which the passage was extracted
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• The proximity of the keywords from the original query to each other
For each passage identify the shortest span that covers the keywords contained
in that passage. Prefer smaller spans that include more keywords (Pasca 2003,
Monz 2004).

• The N-gram overlap between the passage and the question
Count the N-grams in the question and the N-grams in the answer passages.
Prefer the passages with higher N-gram overlap with the question (Brill et al.,
2002).

For question answering from the Web, instead of extracting passages from all
returned documents, we can rely on the Web search to do passage extraction for
us. We do this by using snippets produced by the Web search engine as the returned
passages. For example, Fig. 27.5 shows snippets for the first five documents returned
from Google for the query When was movable type metal printing invented in Korea?

Figure 27.5 Five snippets from Google in response to the query When was movable type
metal printing invented in Korea?

27.1.5 Answer Processing
The final stage of question answering is to extract a specific answer from the passage
so as to be able to present the user with an answer like 29,029 feet to the question
“How tall is Mt. Everest?”
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Two classes of algorithms have been applied to the answer-extraction task, one
based on answer-type pattern extraction and one based on N-gram tiling.

In the pattern-extraction methods for answer processing, we use information
about the expected answer type together with regular expression patterns. For ex-
ample, for questions with a HUMAN answer type, we run the answer type or named
entity tagger on the candidate passage or sentence and return whatever entity is la-
beled with type HUMAN. Thus, in the following examples, the underlined named
entities are extracted from the candidate answer passages as the answer to the HU-
MAN and DISTANCE-QUANTITY questions:

“Who is the prime minister of India”
Manmohan Singh, Prime Minister of India, had told left leaders that the
deal would not be renegotiated.

“How tall is Mt. Everest?”
The official height of Mount Everest is 29029 feet

Unfortunately, the answers to some questions, such as DEFINITION questions,
don’t tend to be of a particular named entity type. For some questions, then, instead
of using answer types, we use hand-written regular expression patterns to help ex-
tract the answer. These patterns are also useful in cases in which a passage contains
multiple examples of the same named entity type. Figure 27.6 shows some patterns
from Pasca (2003) for the question phrase (QP) and answer phrase (AP) of definition
questions.

Pattern Question Answer
<AP> such as <QP> What is autism? “, developmental disorders such as autism”
<QP>, a <AP> What is a caldera? “the Long Valley caldera, a volcanic crater 19

miles long”

Figure 27.6 Some answer-extraction patterns for definition questions (Pasca, 2003).

The patterns are specific to each question type and can either be written by hand
or learned automatically using relation extraction methods. Patterns can then be
used together with other information as features in a classifier that ranks candidate
answers. We extract potential answers by using named entities or patterns or even
just by looking at every sentence returned from passage retrieval and rank them using
a classifier with features like the following.

Answer type match: True if the candidate answer contains a phrase with the cor-
rect answer type.

Pattern match: The identity of a pattern that matches the candidate answer.
Number of matched question keywords: How many question keywords are con-

tained in the candidate answer.
Keyword distance: The distance between the candidate answer and query key-

words (measured in average number of words or as the number of keywords
that occur in the same syntactic phrase as the candidate answer).

Novelty factor: True if at least one word in the candidate answer is novel, that is,
not in the query.

Apposition features: True if the candidate answer is an appositive to a phrase con-
taining many question terms. Can be approximated by the number of question
terms separated from the candidate answer through at most three words and
one comma (Pasca, 2003).
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Punctuation location: True if the candidate answer is immediately followed by a
comma, period, quotation marks, semicolon, or exclamation mark.

Sequences of question terms: The length of the longest sequence of question
terms that occurs in the candidate answer.

An alternative approach to answer extraction, used solely in Web search, is
based on N-gram tiling, sometimes called the redundancy-based approach (BrillN-gram tiling

et al. 2002, Lin 2007). This simplified method begins with the snippets returned
from the Web search engine, produced by a reformulated query. In the first step,
N-gram mining, every unigram, bigram, and trigram occurring in the snippet is ex-N-gram mining

tracted and weighted. The weight is a function of the number of snippets in which
the N-gram occurred, and the weight of the query reformulation pattern that re-
turned it. In the N-gram filtering step, N-grams are scored by how well they matchN-gram

filtering
the predicted answer type. These scores are computed by hand-written filters built
for each answer type. Finally, an N-gram tiling algorithm concatenates overlapping
N-gram fragments into longer answers. A standard greedy method is to start with
the highest-scoring candidate and try to tile each other candidate with this candidate.
The best-scoring concatenation is added to the set of candidates, the lower-scoring
candidate is removed, and the process continues until a single answer is built.

For any of these answer-extraction methods, the exact answer phrase can just be
presented to the user by itself, or, more helpfully, accompanied by enough passage
information to provide helpful context.

27.2 Knowledge-based Question Answering

While an enormous amount of information is encoded in the vast amount of text
on the web, information obviously also exists in more structured forms. We use
the term knowledge-based question answering for the idea of answering a natural
language question by mapping it to a query over a structured database. Like the text-
based paradigm for question answering, this approach dates back to the earliest days
of natural language processing, with systems like BASEBALL (Green et al., 1961)
that answered questions from a structured database of baseball games and stats.

Systems for mapping from a text string to any logical form are called semantic
parsers (???). Semantic parsers for question answering usually map either to some
version of predicate calculus or a query language like SQL or SPARQL, as in the
examples in Fig. 27.7.

Question Logical form
When was Ada Lovelace born? birth-year (Ada Lovelace, ?x)

What states border Texas? λ x.state(x) ∧ borders(x,texas)
What is the largest state argmax(λx.state(x),λx.size(x))
How many people survived the sinking of

the Titanic
(count (!fb:event.disaster.survivors

fb:en.sinking of the titanic))

Figure 27.7 Sample logical forms produced by a semantic parser for question answering. These range from
simple relations like birth-year, or relations normalized to databases like Freebase, to full predicate calculus.

The logical form of the question is thus either in the form of a query or can easily
be converted into one. The database can be a full relational database, or simpler
structured databases like sets of RDF triples. Recall from Chapter 20 that an RDF
triple is a 3-tuple, a predicate with two arguments, expressing some simple relation
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or proposition. Popular ontologies like Freebase (Bollacker et al., 2008) or DBpedia
(Bizer et al., 2009) have large numbers of triples derived from Wikipedia infoboxes,
the structured tables associated with certain Wikipedia articles.

The simplest formation of the knowledge-based question answering task is to
answer factoid questions that ask about one of the missing arguments in a triple.
Consider an RDF triple like the following:

subject predicate object
Ada Lovelace birth-year 1815

This triple can be used to answer text questions like ‘When was Ada Lovelace
born?’ or ‘Who was born in 1815?’. Question answering in this paradigm requires
mapping from textual strings like ”When was ... born” to canonical relations in the
knowledge base like birth-year. We might sketch this task as:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)

“What is the capital of England?” → capital-city(?x, England)

27.2.1 Rule-based Methods

For relations that are very frequent, it may be worthwhile to write hand-written rules
to extract relations from the question, just as we saw in Section 21.2. For example,
to extract the birth-year relation, we could write patterns that search for the question
word When, a main verb like born, and that extract the named entity argument of the
verb.

27.2.2 Supervised Methods

In some cases we have supervised data, consisting of a set of questions paired with
their correct logical form like the examples in Fig. 27.7. The task is then to take
those pairs of training tuples and produce a system that maps from new questions to
their logical forms.

Most supervised algorithms for learning to answer these simple questions about
relations first parse the questions and then align the parse trees to the logical form.
Generally these systems bootstrap by having a small set of rules for building this
mapping, and an initial lexicon as well. For example, a system might have built-
in strings for each of the entities in the system (Texas, Ada Lovelace), and then
have simple default rules mapping fragments of the question parse tree to particular
relations:

Who V ENTITY → relation( ?x, entity)

nsubj dobj

When V ENTITY → relation( ?x, entity)

tmod nsubj

Then given these rules and the lexicon, a training tuple like the following:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)

would first be parsed, resulting in the following mapping.
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When was Ada Lovelace born → birth-year(Ada Lovelace, ?x)

tmod

nsubj

From many pairs like this, we could induce mappings between pieces of parse
fragment, such as the mapping between the parse fragment on the left and the rela-
tion on the right:

When was · born → birth-year( , ?x)

tmod

nsubj

A supervised system would thus parse each tuple in the training set and induce a
bigger set of such specific rules, allowing it to map unseen examples of “When was
X born?” questions to the birth-year relation. Rules can furthermore be associ-
ated with counts based on the number of times the rule is used to parse the training
data. Like rule counts for probabilistic grammars, these can be normalized into prob-
abilities. The probabilities can then be used to choose the highest probability parse
for sentences with multiple semantic interpretations.

The supervised approach can be extended to deal with more complex questions
that are not just about single relations. Consider the question What is the biggest
state bordering Texas? from the GEOQUERY (Zelle and Mooney, 1996) dataset,
with the semantic form:

argmax(λx.state(x)∧borders(x, texas),λx.size(x))
This question has much more complex structures than the simple single-relation

questions we considered above, such as the argmax function, the mapping of the
word biggest to size and so on. Zettlemoyer and Collins (2005) shows how more
complex default rules (along with richer syntactic structures) can be used to learn to
map from text sentences to more complex logical forms. The rules take the training
set’s pairings of sentence and meaning as above and use the complex rules to break
each training example down into smaller tuples that can then be recombined to parse
new sentences.

27.2.3 Dealing with Variation: Semi-Supervised Methods
Because it is difficult to create training sets with questions labeled with their mean-
ing representation, supervised datasets can’t cover the wide variety of forms that
even simple factoid questions can take. For this reason most techniques for mapping
factoid questions to the canonical relations or other structures in knowledge bases
find some way to make use of textual redundancy.

The most common source of redundancy, of course, is the web, which contains
vast number of textual variants expressing any relation. For this reason, most meth-
ods make some use of web text, either via semi-supervised methods like distant
supervision or unsupervised methods like open information extraction, both intro-
duced in Chapter 20. For example the REVERB open information extractor (Fader
et al., 2011) extracts billions of (subject, relation, object) triples of strings from the
web, such as (“Ada Lovelace”,“was born in”, “1815”). By aligning these strings
with a canonical knowledge source like Wikipedia, we create new relations that can
be queried while simultaneously learning to map between the words in question and
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canonical relations.
To align a REVERB triple with a canonical knowledge source we first align

the arguments and then the predicate. Recall from Chapter 23 that linking a string
like “Ada Lovelace” with a Wikipedia page is called entity linking; we thus rep-entity linking

resent the concept ‘Ada Lovelace’ by a unique identifier of a Wikipedia page. If
this subject string is not associated with a unique page on Wikipedia, we can dis-
ambiguate which page is being sought, for example by using the cosine distance
between the triple string (‘Ada Lovelace was born in 1815’) and each candidate
Wikipedia page. Date strings like ‘1815’ can be turned into a normalized form us-
ing standard tools for temporal normalization like SUTime (Chang and Manning,
2012). Once we’ve aligned the arguments, we align the predicates. Given the Free-
base relation people.person.birthdate(ada lovelace,1815) and the string
‘Ada Lovelace was born in 1815’, having linked Ada Lovelace and normalized
1815, we learn the mapping between the string ‘was born in’ and the relation peo-
ple.person.birthdate. In the simplest case, this can be done by aligning the relation
with the string of words in between the arguments; more complex alignment algo-
rithms like IBM Model 1 (Chapter 25) can be used. Then if a phrase aligns with a
predicate across many entities, it can be extracted into a lexicon for mapping ques-
tions to relations.

Here are some examples from such a resulting lexicon, produced by Berant
et al. (2013), giving many variants of phrases that align with the Freebase relation
country.capital between a country and its capital city:

capital of capital city of become capital of
capitol of national capital of official capital of
political capital of administrative capital of beautiful capital of
capitol city of remain capital of make capital of
political center of bustling capital of capital city in
cosmopolitan capital of move its capital to modern capital of
federal capital of beautiful capital city of administrative capital city of
Figure 27.8 Some phrases that align with the Freebase relation country.capital from
Berant et al. (2013).

Another useful source of linguistic redundancy are paraphrase databases. For ex-
ample the site wikianswers.com contains millions of pairs of questions that users
have tagged as having the same meaning, 18 million of which have been collected
in the PARALEX corpus (Fader et al., 2013). Here’s an example:

Q: What are the green blobs in plant cells?
Lemmatized synonyms from PARALEX:
what be the green blob in plant cell?
what be green part in plant cell?
what be the green part of a plant cell?
what be the green substance in plant cell?
what be the part of plant cell that give it green color?
what cell part do plant have that enable the plant to be give a green color?
what part of the plant cell turn it green?
part of the plant cell where the cell get it green color?
the green part in a plant be call?
the part of the plant cell that make the plant green be call?

The resulting millions of pairs of question paraphrases can be aligned to each
other using MT alignment approaches (such as IBM Model 1) to create an MT-style
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phrase table for translating from question phrases to synonymous phrases. These
are used by a number of modern question answering algorithms, generating all para-
phrases of a question as part of the process of finding an answer (Fader et al. 2013,
Berant and Liang 2014).

27.3 Using multiple information sources: IBM’s Watson

Of course there is no reason to limit ourselves to just text-based or knowledge-based
resources for question answering. The Watson system from IBM that won the Jeop-
ardy! challenge in 2011 is an example of a system that relies on a wide variety of
resources to answer questions.
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Figure 27.9 The 4 broad stages of Watson QA: (1) Question Processing, (2) Candidate Answer Generation,
(3) Candidate Answer Scoring, and (4) Answer Merging and Confidence Scoring.

Figure 27.9 shows the 4 stages of the DeepQA system that is the question an-
swering component of Watson.

The first stage is question processing. The DeepQA system runs parsing, named
entity tagging, and relation extraction on the question. Then, like the text-based
systems in Section 27.1, the DeepQA system extracts the focus, the answer type
(also called the lexical answer type or LAT), and performs question classification
and question sectioning.

Consider these Jeopardy! examples, with a category followed by a question:

Poets and Poetry: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907.
THEATRE: A new play based on this Sir Arthur Conan Doyle canine
classic opened on the London stage in 2007.

The questions are parsed, named entities are extracted (Sir Arthur Conan Doyle
identified as a PERSON, Yukon as a GEOPOLITICAL ENTITY, “Songs of a Sour-
dough” as a COMPOSITION), coreference is run (he is linked with clerk) and rela-
tions like the following are extracted:

authorof(focus,“Songs of a sourdough”)
publish (e1, he, “Songs of a sourdough”)
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in (e2, e1, 1907)
temporallink(publish(...), 1907)

Next DeepQA extracts the question focus, shown in bold in both examples. Thefocus

focus is the part of the question that co-refers with the answer, used for example to
align with a supporting passage. The focus is extracted by hand-written rules—made
possible by the relatively stylized syntax of Jeopardy! questions—such as a rule
extracting any noun phrase with determiner “this” as in the Conan Doyle example,
and rules extracting pronouns like she, he, hers, him, as in the poet example.

The lexical answer type (shown in blue above) is a word or words which telllexical answer
type

us something about the semantic type of the answer. Because of the wide variety
of questions in Jeopardy!, Jeopardy! uses a far larger set of answer types than the
sets for standard factoid algorithms like the one shown in Fig. 27.4. Even a large
set of named entity tags is insufficient to define a set of answer types. The DeepQA
team investigated a set of 20,000 questions and found that a named entity tagger
with over 100 named entity types covered less than half the types in these questions.
Thus DeepQA extracts a wide variety of words to be answer types; roughly 5,000
lexical answer types occurred in the 20,000 questions they investigated, often with
multiple answer types in each question.

These lexical answer types are again extracted by rules: the default rule is to
choose the syntactic headword of the focus. Other rules improve this default choice.
For example additional lexical answer types can be words in the question that are
coreferent with or have a particular syntactic relation with the focus, such as head-
words of appositives or predicative nominatives of the focus. In some cases even the
Jeopardy! category can act as a lexical answer type, if it refers to a type of entity
that is compatible with the other lexical answer types. Thus in the first case above,
he, poet, and clerk are all lexical answer types. In addition to using the rules directly
as a classifier, they can instead be used as features in a logisitic regression classifier
that can return a probability as well as a lexical answer type.

Note that answer types function quite differently in DeepQA than the purely IR-
based factoid question answerers. In the algorithm described in Section 27.1, we
determine the answer type, and then use a strict filtering algorithm only considering
text strings that have exactly that type. In DeepQA, by contrast, we extract lots of
answers, unconstrained by answer type, and a set of answer types, and then in the
later ‘candidate answer scoring’ phase, we simply score how well each answer fits
the answer types as one of many sources of evidence.

Finally the question is classified by type (definition question, multiple-choice,
puzzle, fill-in-the-blank). This is generally done by writing pattern-matching regular
expressions over words or parse trees.

In the second candidate answer generation stage, we combine the processed
question with external documents and other knowledge sources to suggest many
candidate answers. These candidate answers can either be extracted from text docu-
ments or from structured knowledge bases.

For structured resources like DBpedia, IMDB, or the triples produced by Open
Information Extraction, we can just query these stores with the relation and the
known entity, just as we saw in Section 27.2. Thus if we have extracted the rela-
tion authorof(focus,"Songs of a sourdough"), we can query a triple store
with authorof(?x,"Songs of a sourdough") to return the correct author.

The method for extracting answers from text depends on the type of text docu-
ments. To extract answers from normal text documents we can do passage search
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just as we did in Section 27.1. As we did in that section, we need to generate a query
from the question; for DeepQA this is generally done by eliminating stop words, and
then upweighting any terms which occur in any relation with the focus. For example
from this query:

MOVIE-“ING”: Robert Redford and Paul Newman starred in this depression-
era grifter flick. (Answer: “The Sting”)

the following weighted query might be extracted:

(2.0 Robert Redford) (2.0 Paul Newman) star depression era grifter (1.5 flick)

The query can now be passed to a standard IR system. Some systems are already
set up to allow retrieval of short passages, and the system can just return the ten 1-2
sentence passages that are needed for the next stage. Alternatively the query can
be passed to a standard document retrieval engine, and then from each returned
document passages are selected that are longer, toward the front, and have more
named entities.

DeepQA also makes use of the convenient fact that the vast majority of Jeopardy!
answers are the title of a Wikipedia document. To find these titles, we can do a
second text retrieval pass specifically on Wikipedia documents. Then instead of
extracting passages from the retrieved Wikipedia document, we directly return the
titles of the highly ranked retrieved documents as the possible answers.

Once we have a set of passages, we need to extract candidate answers. As we
just said, if the document is a Wikipedia page, we can just take the title, but for other
texts, like news documents, we need other approaches. Two common approaches
are to extract all anchor texts in the document (anchor text is the text between <a>anchor texts

and <\a> used to point to a URL in an HTML page), or to extract all noun phrases
in the passage that are Wikipedia document titles.

The third candidate answer scoring stage uses many sources of evidence to
score the candidates. One of the most important is the lexical answer type. DeepQA
includes a system that takes a candidate answer and a lexical answer type and returns
a score indicating whether the candidate answer can be interpreted as a subclass or
instance of the answer type. Consider the candidate “difficulty swallowing” and
the lexical answer type “manifestation”. DeepQA first matches each of these words
with possible entities in ontologies like DBpedia and WordNet. Thus the candidate
“difficulty swallowing” is matched with the DBpedia entity “Dysphagia”, and then
that instance is mapped to the WordNet type “Symptom”. The answer type “man-
ifestation” is mapped to the WordNet type “Condition”. The system looks for a
link of hyponymy, instance-of or synonymy between these two types; in this case a
hyponymy relation is found between “Symptom” and “Condition”.

Other scorers are based on using time and space relations extracted from DBpe-
dia or other structured databases. For example, we can extract temporal properties
of the entity (when was a person born, when died) and then compare to time expres-
sions in the question. If a time expression in the question occurs chronologically
before a person was born, that would be evidence against this person being the an-
swer to the question.

Finally, we can use text retrieval to help retrieve evidence supporting a candidate
answer. We can retrieve passages with terms matching the question, then replace the
focus in the question with the candidate answer and measure the overlapping words
or ordering of the passage with the modified question.

The output of this stage is a set of candidate answers, each with a vector of
scoring features.
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In the final answer merging and scoring step, we first merge candidate answers
that are equivalent. Thus if we had extracted two candidate answers J.F.K. and John
F. Kennedy, this stage would merge the two into a single candidate. For proper
nouns, automatically generated name dictionaries can help in this task. One useful
kind of resource is the large synonym dictionaries that are created by listing all an-
chor text strings that point to the same Wikipedia page; such dictionaries give large
numbers of synonyms for each Wikipedia title — e.g., JFK, John F. Kennedy, John
Fitzgerald Kennedy, Senator John F. Kennedy, President Kennedy, Jack Kennedy,
etc. (Spitkovsky and Chang, 2012). For common nouns, we can use morphological
parsing to merge candidates which are morphological variants.

We then merge the evidence for each variant, combining the scoring feature
vectors for the merged candidates into a single vector.

Now we have a set of candidates, each with a feature vector. A regularized
logistic regression classifier is used to take each feature vector and assign a single
confidence value to this candidate answer. The classifier is trained on thousands
of candidate answers, each labeled for whether it is correct or incorrect, together
with their feature vectors, and learning to predict a probability of being a correct
answer. Since, in training, there are far more incorrect answers than correct answers,
we need to use one of the standard techniques for dealing with very imbalanced
data. DeepQA uses instance weighting, assigning an instance weight of .5 for each
incorrect answer example in training. The candidate answers are then sorted by this
confidence value, resulting in a single best answer.

The merging and ranking is actually run iteratively; first the candidates are
ranked by the classifier, giving a rough first value for each candidate answer, then
that value is used to decide which of the variants of a name to select as the merged
answer, then the merged answers are re-ranked,.

In summary, we’ve seen in the four stages of DeepQA that it draws on the in-
tuitions of both the IR-based and knowledge-based paradigms. Indeed, Watson’s
architectural innovation is its reliance on proposing a very large number of candi-
date answers from both text-based and knowledge-based sources and then devel-
oping a wide variety of evidence features for scoring these candidates —again both
text-based and knowledge-based. Of course the Watson system has many more com-
ponents for dealing with rare and complex questions, and for strategic decisions in
playing Jeopardy!; see the papers mentioned at the end of the chapter for many more
details.

27.4 Evaluation of Factoid Answers

A common evaluation metric for factoid question answering, introduced in the TREC
Q/A track in 1999, is mean reciprocal rank, or MRR. MRR assumes a test set ofmean

reciprocal rank
MRR questions that have been human-labeled with correct answers. MRR also assumes

that systems are returning a short ranked list of answers or passages containing an-
swers. Each question is then scored according to the reciprocal of the rank of the
first correct answer. For example if the system returned five answers but the first
three are wrong and hence the highest-ranked correct answer is ranked fourth, the
reciprocal rank score for that question would be 1

4 . Questions with return sets that
do not contain any correct answers are assigned a zero. The score of a system is
then the average of the score for each question in the set. More formally, for an
evaluation of a system returning a set of ranked answers for a test set consisting of
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N questions, the MRR is defined as

MRR =
1
N

N∑
i=1 s.t. ranki 6=0

1
ranki

(27.9)

A number of test sets are available for question answering. Early systems used
the TREC QA dataset; questions and hand-written answers for TREC competitions
from 1999 to 2004 are publicly available. FREE917 (Cai and Yates, 2013) has 917FREE917

questions manually created by annotators, each paired with a meaning representa-
tion; example questions include:

How many people survived the sinking of the Titanic?
What is the average temperature in Sydney in August?
When did Mount Fuji last erupt?

WEBQUESTIONS (Berant et al., 2013) contains 5,810 questions asked by webWEBQUES-
TIONS

users, each beginning with a wh-word and containing exactly one entity. Questions
are paired with hand-written answers drawn from the Freebase page of the question’s
entity, and were extracted from Google Suggest by breadth-first search (start with a
seed question, remove some words, use Google Suggest to suggest likely alternative
question candidates, remove some words, etc.). Some examples:

What character did Natalie Portman play in Star Wars?
What airport is closest to Palm Springs?
Which countries share land border with Vietnam?
What present day countries use English as their national language?

Bibliographical and Historical Notes
Question answering was one of the earliest NLP tasks, and early versions of the text-
based and knowledge-based paradigms were developed by the very early 1960s. The
text-based algorithms generally relied on simple parsing of the question and of the
sentences in the document, and then looking for matches. This approach was used
very early on (Phillips, 1960) but perhaps the most complete early system, and one
that strikingly prefigures modern relation-based systems, was the Protosynthex sys-
tem of Simmons et al. (1964). Given a question, Protosynthex first formed a query
from the content words in the question, and then retrieved candidate answer sen-
tences in the document, ranked by their frequency-weighted term overlap with the
question. The query and each retrieved sentence were then parsed with dependency
parsers, and the sentence whose structure best matches the question structure se-
lected. Thus the question What do worms eat? would match worms eat grass: both
have the subject worms as a dependent of eat, in the version of dependency grammar
used at the time, while birds eat worms has birds as the subject:

What do worms eat Worms eat grass Birds eat worms
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The alternative knowledge-based paradigm was implemented in the BASEBALL
system (Green et al., 1961). This system answered questions about baseball games
like “Where did the Red Sox play on July 7” by querying a structured database of
game information. The database was stored as a kind of attribute-value matrix with
values for attributes of each game:

Month = July

Place = Boston

Day = 7

Game Serial No. = 96

(Team = Red Sox, Score = 5)

(Team = Yankees, Score = 3)

Each question was constituency-parsed using the algorithm of Zellig Harris’s
TDAP project at the University of Pennsylvania, essentially a cascade of finite-
state transducers (see the historical discussion in Joshi and Hopely 1999 and Kart-
tunen 1999). Then a content analysis phase each word or phrase was associated with
a program that computed parts of its meaning. Thus the phrase ‘Where’ had code to
assign the semantics Place = ?", with the result that the question “Where did the
Red Sox play on July 7” was assigned the meaning

Place = ?

Team = Red Sox

Month = July

Day = 7

The question is then matched against the database to return to the answer. Sim-
mons (1965) summarizes other early QA systems.

Another important progenitor of the knowledge-based paradigm for question-
answering is work that used predicate calculus as the meaning representation lan-
guage. The LUNAR system (Woods et al. 1972,Woods 1978) was designed to beLUNAR

a natural language interface to a database of chemical facts about lunar geology. It
could answer questions like Do any samples have greater than 13 percent aluminum
by parsing them into a logical form

(TEST (FOR SOME X16 / (SEQ SAMPLES) : T ; (CONTAIN’ X16
(NPR* X17 / (QUOTE AL203)) (GREATERTHAN 13PCT))))

The rise of the web brought the information-retrieval paradigm for question an-
swering to the forefront with the TREC QA track beginning in 1999, leading to a
wide variety of factoid and non-factoid systems competing in annual evaluations.

The DeepQA component of the Watson system that won the Jeopardy! challenge
is described in a series of papers in volume 56 of the IBM Journal of Research and
Development; see for example Ferrucci (2012), Lally et al. (2012), Chu-Carroll et al.
(2012), Murdock et al. (2012b), Murdock et al. (2012a), Kalyanpur et al. (2012), and
Gondek et al. (2012).

Question answering is also an important function of modern personal assistant
dialog systems; see Chapter 29 for more.

Exercises
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CHAPTER

28 Dialog Systems and Chatbots

Les lois de la conversation sont en général de ne s’y appesantir sur aucun ob-
jet, mais de passer légèrement, sans effort et sans affectation, d’un sujet à un
autre ; de savoir y parler de choses frivoles comme de choses sérieuses

The rules of conversation are, in general, not to dwell on any one subject,
but to pass lightly from one to another without effort and without affectation;
to know how to speak about trivial topics as well as serious ones;

The Encyclopedia of Diderot, start of the entry on conversation

The literature of the fantastic abounds in inanimate objects magically endowed with
sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s
Frankenstein, there is something deeply touching about creating something and then
having a chat with it. Legend has it that after finishing his sculpture of Moses,
Michelangelo thought it so lifelike that he tapped it on the knee and commanded it
to speak. Perhaps this shouldn’t be surprising. Language is the mark of humanity
and sentience, and conversation or dialog is the most fundamental and speciallyconversation

dialog privileged arena of language. It is the first kind of language we learn as children, and
for most of us, it is the kind of language we most commonly indulge in, whether we
are ordering curry for lunch or buying spinach, participating in business meetings or
talking with our families, booking airline flights or complaining about the weather.

This chapter introduces the fundamental algorithms of conversational agents,conversational
agent

or dialog systems. These programs communicate with users in natural languagedialog system

(text, speech, or even both), and generally fall into two classes.
Task-oriented dialog agents are designed for a particular task and set up to

have short conversations (from as little as a single interaction to perhaps half-a-
dozen interactions) to get information from the user to help complete the task. These
include the digital assistants that are now on every cellphone or on home controllers
(Siri, Cortana, Alexa, Google Now/Home, etc.) whose dialog agents can give travel
directions, control home appliances, find restaurants, or help make phone calls or
send texts. Companies deploy goal-based conversational agents on their websites to
help customers answer questions or address problems. Conversational agents play
an important role as an interface to robots. And they even have applications for
social good. DoNotPay is a “robot lawyer” that helps people challenge incorrect
parking fines, apply for emergency housing, or claim asylum if they are refugees.

Chatbots are systems designed for extended conversations, set up to mimic the
unstructured conversational or ‘chats’ characteristic of human-human interaction,
rather than focused on a particular task like booking plane flights. These systems
often have an entertainment value, such as Microsoft’s ’XioaIce’ (Little Bing 小
冰) system, which chats with people on text messaging platforms. Chatbots are
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also often attempts to pass various forms of the Turing test (introduced in Chapter
1). Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots
have also been used for practical purposes, such as testing theories of psychological
counseling.

Note that the word ‘chatbot’ is often used in the media and in industry as a
synonym for conversational agent. In this chapter we will follow the common usage
in the natural language processing community, limiting the designation chatbot to
this second subclass of systems designed for extended, casual conversation.

Let’s see some examples of dialog systems. One dimension of difference across
systems is how many turns they can deal with. A dialog consists of multiple turns,turn

each a single contribution to the dialog (the terminology is as if dialog is a game in
which I take a turn, then you take a turn, then me, and so on). A turn can consist
of a sentence, although it might be as short as a single word or as long as multiple
sentences. The simplest such systems generally handle a single turn from the user,
acting more like question-answering or command-and-control systems. This is espe-
cially common with digital assistants. For example Fig. 28.1 shows screen captures
from an early version of Apple’s Siri personal assistant from 2014, demonstrating
this kind of single-query behavior.

(a) (b)

Figure 28.1 Two sets of interactions with Siri in 2014. (a) A question (”Find restaurants near me”) returns
restaurants, but the system was unable to interpret a follow-up question (“Are any of them Italian?”). (b) An
alternative followup (“Tell me more about the second one”) similarly fails. This early system’s confusion at
follow-up questions suggests that it is mainly designed for a single interaction.

By contrast, Fig. 28.2 shows that a 2017 version of the Siri digital assistant can
handle slightly longer dialogs, handling a second turn with a follow-up question.

While spoken dialogs with mobile phone digital assistants tend to be short, some
tasks do require longer dialogs. One such task is travel planning and management,
a key concern of dialog systems since the very influential GUS system for planning
airline travel (Bobrow et al., 1977); we’ll see an example in the next section.

Dialogue systems can even be used for much more complex domains like au-
tomatic tutoring. Figure 28.3 shows part of a dialog from the adaptive ITSPOKE
dialog system (Forbes-Riley and Litman, 2011). In this example the system detects
the hesitancy of the student’s first response (“Is it 19.6 m/s?”), and, even though the
answer is correct, decides to explain the answer and ask a follow-up question before
moving on.

Finally, conversational agents can be purely for fun, like the agents designed for
simple chit-chat like Cleverbot, an IR-based chatbot capable of carrying on the kinds
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(a) (b)

Figure 28.2 The same follow-up questions that Siri couldn’t answer in 2014 receive appropriate responses
when posed to Siri in 2017.

Tutor: What will the velocity of the object be a second after that (where the initial
velocity is 9.8 m/s and the acceleration is 9.8 m/s2)?

Student: Is it 19.6 m/s?
Tutor: Good. A second later, its velocity will be 9.8m/s + 9/8 m/s = 19.6 m/s This is

because its acceleration tells us that every second, its velocity increases by 9.8
m/s. So what’ll its velocity be, a second after that?

Student: Um. I’m thinking. 29.4 m/s
Tutor: Right. Now back to the man and his keys. We’ve shown that they both have an

acceleration of 9.8 m/ss. So, how do their velocities compare with each other, at
every second during the fall?

Figure 28.3 The tutoring domain: An excerpt from a tutorial interaction between a physics
student and the ITSPOKE system of Forbes-Riley and Litman (2011) based on the Why2-
Atlas text-based tutoring system (VanLehn et al., 2002).

of conversations shown in Fig. 28.4.

User: Do you like Doctor Who?
Cleverbot: Yes, so funny.
User: What’s your favorite show?
Cleverbot: I don’t have one.
User: What’s your name?
Cleverbot: Jason I already told you.
User: No your real name.
Cleverbot: Stephanie IS my real name.
User: I thought it was Jason?
Cleverbot: How did you come to that conclusion.
User: Because you said so.
Cleverbot: I have to do my homework.
Figure 28.4 Chatbots: A conversation between a user and Cleverbot, an IR-based chatbot
(Carpenter, 2017).

We begin in the next section with chatbots, introducing the three major chatbot
architectures: rule-based systems, information retrieval systems, and transduction
models. We then turn to task-oriented dialog, introducing the frame-based architec-
ture (the GUS architecture) that underlies most modern task-based dialog systems,
the VoiceXML system that is a simple industrial instantiation of the architecture,
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and information on designing and evaluating these systems.

28.1 Chatbots

Chatbots are systems that can carry on extended conversations with the goal ofchatbot

mimicking the unstructured conversational or ‘chats’ characteristic of human-human
interaction,

These systems often have an entertainment value, such as Microsoft’s ’XioaIce’
(Little Bing 小冰) system, which chats with people on text messaging platforms.
Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots have
also been used for practical purposes, such as testing theories of psychological coun-
seling.

Like practically everything else in language processing, chatbot architectures
fall into two classes: rule-based systems and corpus-based systems. Rule-based
systems include the early influential ELIZA and PARRY systems. Corpus-based
systems mine large datasets of human-human conversations, which can be done by
using information retrieval (IR-based systems simply copy a human’s response from
a previous conversation) or by using a machine translation paradigm such as neural
network sequence-to-sequence systems, to learn to map from a user utterance to a
system response.

28.1.1 Rule-based chatbots: ELIZA and PARRY
ELIZA (Weizenbaum, 1966) is the most important chatbot dialog system in the his-
tory of the field, and so we take some time here to describe its algorithm in detail.
ELIZA was designed to simulate a Rogerian psychologist, based on a branch of
clinical psychology whose methods involve drawing the patient out by reflecting pa-
tient’s statements back at them. Rogerian psychology is the rare type of conversation
in which, as Weizenbaum points out, one can “assume the pose of knowing almost
nothing of the real world”. If a patient says “I went for a long boat ride” and the
psychiatrist says “Tell me about boats”, you don’t assume she didn’t know what a
boat is, but rather assume she had some conversational goal. Most chatbots trying to
pass Turing test choose a domain with similar properties.

Let’s look at the most famous ELIZA conversation, excerpted (deleting some
material with ...) from a full interaction given in the original paper:

Men are all alike.

IN WHAT WAY

They’re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I’m depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

..

..

WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?

My father

YOUR FATHER

You are like my father in some ways.
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WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice that.

WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

You don’t argue with me.

WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU

My father is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

As we summarized briefly in Chapter 1, ELIZA worked by pattern/transform
rules like the following one:

(0 YOU 0 ME) [pattern]

->

(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer

You hate me

into:

WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence.

The architecture is summarized in Fig. 28.5.

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response←Apply the transform in r to sentence
if w = ’my’

future←Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response←Apply the transform for the NONE keyword to sentence
or

response←Pop the top response from the memory stack
return(response)

Figure 28.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm come
from the particular transforms associated with each keyword.

Keywords are associated with a rank, with specific words being more highly
ranked, and more general words ranking lower. Consider the following user sen-
tence:

I know everybody laughed at me
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Because it has the word “I”, this sentence could match the following rule whose
keyword is I:

(I *) -> (You say you 2)

producing:

YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

But as Weizenbaum points out, “I” is a very general word and its keywords lead
to very general responses. Instead the keyword “everybody” is much more interest-
ing, since someone using universals like everybody or always is probably “referring
to some quite specific event or person”. Therefore, ELIZA prefers to respond with
the pattern associated with the more specific keyword everybody (implementing by
just assigning ”everybody” rank 5 and ”I” rank 0 in the lexicon), whose rule thus
transforms the sentence to:

WHO IN PARTICULAR ARE YOU THINKING OF?

If no keyword matches, ELIZA chooses a non-commital response like “PLEASE
GO ON”, “THAT’S VERY INTERESTING”, or “I SEE”.

Finally, ELIZA has a clever memory trick that accounts for the very last sen-
tence of the conversation above. Whenever the word “my” is the highest ranked
keyword, ELIZA will randomly select a transform on the MEMORY list, apply it to
the sentence, and store it on the stack:

(MEMORY MY

(0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)

(0 MY 0 = EARLIER YOU SAID YOUR 3)

(0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3

Later, if no keyword matches a sentence, ELIZA will return the top of the MEM-
ORY queue instead. 1

People became deeply emotionally involved with the program. Weizenbaum
tells the story of one of his staff who would ask Weizenbaum to leave the room
when she talked with ELIZA. When Weizenbaum suggested that he might want to
store all the ELIZA conversations for later analysis, people immediately pointed
out the privacy implications, which suggested that they were having quite private
conversations with ELIZA, despite knowing that it was just software.

Eliza’s framework is still used today; modern chatbot system tools like ALICE
are based on updated versions of ELIZA’s pattern/action architecture.

A few years after ELIZA, another chatbot with a clinical psychology focus,
PARRY (Colby et al., 1971), was used to study schizophrenia. In addition to ELIZA-
like regular expressions, the PARRY system including a model of its own mental
state, with affect variables for the agent’s levels of fear and anger; certain topics of
conversation might lead PARRY to become more angry or mistrustful. If PARRY’s
anger variable is high, he will choose from a set of “hostile” outputs. If the input
mentions his delusion topic, he will increase the value of his fear variable and then
begin to express the sequence of statements related to his delusion. Parry was the
first known system to pass the Turing test (in 1972!); psychiatrists couldn’t distin-
guish text transcripts of interviews with PARRY from transcripts of interviews with
real paranoids (Colby et al., 1972).

1 Fun fact: because of its structure as a queue, this MEMORY trick is the earliest known hierarchical
model of discourse in natural language processing.
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28.1.2 Corpus-based chatbots
Corpus-based chatbots, instead of using hand-built rules, mine conversations of
human-human conversations, or sometimes mine the human responses from human-
machine conversations. Serban et al. (2017) summarizes some such available cor-
pora, such as conversations on chat platforms, on Twitter, or in movie dialog, which
is available in great quantities and has been shown to resemble natural conversation
(Forchini, 2013). Chatbot responses can even be extracted from sentences in corpora
of non-dialog text.

There are two types of corpus-based chatbots: systems based on information re-
trieval, and systems based on supervised machine learning based on sequence trans-
duction.

Like rule-based chatbots (but unlike frame-based dialog systems), most corpus-
based chatbots tend to do very little modeling of the conversational context. Instead
they tend to focus on generating a single response turn that is appropriate given the
user’s immediately previous utterance. For this reason they are often called response
generation systems. Corpus-based chatbots thus have some similarity to questionresponse

generation
answering systems, which focus on single responses while ignoring context or larger
conversational goals.

IR-based chatbots

The principle behind information retrieval based chatbots is to respond to a user’s
turn X by repeating some appropriate turn Y from a corpus of natural (human) text.
The differences across such systems lie in how they choose the corpus, and how they
decide what counts as an human appropriate turn to copy.

A common choice of corpus is to collect databases of human conversations.
These can come from microblogging platforms like Twitter or Sina Weibo (微博).
Another approach is to use corpora of movie dialog. Once a chatbot has been put
into practice, the turns that humans use to respond to the chatbot can be used as
additional conversational data for training.

Given the corpus and the user’s sentence, IR-based systems can use any retrieval
algorithm to choose an appropriate response from the corpus. The two simplest
methods are the following:
1. Return the response to the most similar turn: Given user query q and a con-
versational corpus C, find the turn t in C that is most similar to q (for example has
the highest cosine with q) and return the following turn, i.e. the human response to t
in C:

r = response
(

argmax
t∈C

qT t
||q||t||

)
(28.1)

The idea is that we should look for a turn that most resembles the user’s turn, and
return the human response to that turn (Jafarpour et al. 2009, Leuski and Traum 2011).
2. Return the most similar turn: Given user query q and a conversational corpus
C, return the turn t in C that is most similar to q (for example has the highest cosine
with q):

r = argmax
t∈C

qT t
||q||t||

(28.2)

The idea here is to directly match the users query q with turns from C, since a
good response will often share words or semantics with the prior turn.
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In each case, any similarity function can be used, most commonly cosines com-
puted either over words (using tf-idf) or over embeddings.

Although returning the response to the most similar turn seems like a more in-
tuitive algorithm, returning the most similar turn seems to work better in practice,
perhaps because selecting the response adds another layer of indirection that can
allow for more noise (Ritter et al. 2011, Wang et al. 2013).

The IR-based approach can be extended by using more features than just the
words in the q (such as words in prior turns, or information about the user), and
using any full IR ranking approach. Commercial implementations of the IR-based
approach include Cleverbot (Carpenter, 2017) and Microsoft’s ’XioaIce’ (Little Bing
小冰) system (Microsoft, ).

Instead of just using corpora of conversation, the IR-based approach can be used
to draw responses from narrative (non-dialog) text. For example, the pioneering
COBOT chatbot (Isbell et al., 2000) generated responses by selecting sentences from
a corpus that combined the Unabomber Manifesto by Theodore Kaczynski, articles
on alien abduction, the scripts of “The Big Lebowski” and “Planet of the Apes”.
Chatbots that want to generate informative turns such as answers to user questions
can use texts like Wikipedia to draw on sentences that might contain those answers
(Yan et al., 2016).

Sequence to sequence chatbots

An alternate way to use a corpus to generate dialog is to think of response generation
as a task of transducing from the user’s prior turn to the system’s turn. This is
basically the machine learning version of Eliza; machine learning from a corpus to
transduce a question to an answer.

This idea was first developed by using phrase-based machine translation (Ritter
et al., 2011) to translate a user turn to a system response. It quickly became clear,
however, that the task of response generation was too different from machine trans-
lation. In machine translation words or phrases in the source and target sentences
tend to align well with each other; but in conversation, a user utterance may share
no words or phrases with a coherent response.

Instead, (roughly contemporaneously by Shang et al. 2015, Vinyals and Le 2015,
and Sordoni et al. 2015) transduction models for response generation were modeled
instead using sequence to sequence (seq2seq) models (Chapter 25), as shown in
Fig. 28.6.

How are you ?

I’m fine . EOS

Encoding Decoding

EOS I’m fine .

Figure 28.6 A sequence to sequence model for neural response generation in dialog.

A number of modifications are required to the basic seq2seq model to adapt it for
the task of response generation. For example basic seq2seq models have a tendency
to produce predictable but repetitive and therefore dull responses like “I’m OK” or
“I don’t know” that shut down the conversation. This can be addressed by changing
the objective function for seq2seq model training to a mutual information objective,
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or by modifying a beam decoder to keep more diverse responses in the beam (Li
et al., 2016a).

Another problem with the simple SEQ2SEQresponse generation architecture is
its inability to model the longer prior context of the conversation. This can be done
by allowing the model to see prior turns, such as by using a hierarchical model that
summarizes information over multiple prior turns (Lowe et al., 2017b).

Finally, SEQ2SEQresponse generators focus on generating single responses, and
so don’t tend to do a good job of continuously generating responses that cohere
across multiple turns. This can be addressed by using reinforcement learning, as
well as techniques like adversarial networks, to learn to choose responses that make
the overall conversation more natural (Li et al. 2016b, Li et al. 2017).

Fig. 28.7 shows some sample responses generated by a vanilla SEQ2SEQmodel,
and from a model trained by an adversarial algorithm to produce responses that are
harder to distinguish from human responses (Li et al., 2017).

Input tell me ... how long have you had this falling sickness ?
Vanilla-SEQ2SEQ i’m not a doctor.
Adversarial a few months, i guess .

Input so i had the doctors test sammy ’s response to conditioning .
Vanilla-SEQ2SEQ sammy wrote the test sammy wrote the test .
Adversarial so he took the pills .

Input they didn ’t have much success with this problem commander .
Vanilla-SEQ2SEQ they ’re not the only ones who have been in the system .
Adversarial can we find someone else ?

Figure 28.7 Sample responses generated by a SEQ2SEQmodel trained either with a vanilla
maximum likelihood objective, or adversarially trained to produce sentences that are hard for
an adversary to distinguish from human sentences (Li et al., 2017).

Evaluating Chatbots

Chatbots are generally evaluated by humans. The slot-filling evaluations used for
task-based dialogue (Section 28.2.3) aren’t appropriate for this task (Artstein et al.,
2009), and word-overlap metrics like BLEU for comparing a chatbot’s response to a
human response turn out to correlate very poorly with human judgments (Liu et al.,
2016). BLEU performs poorly because there are so many possible responses to any
given turn; word-overlap metrics work best when the space of responses is small and
lexically overlapping, as is the case in machine translation.

While human evaluation is therefore required for evaluating chatbots, there are
beginning to be models for automatic evaluation. The ADEM (Lowe et al., 2017a)
classifier is trained on a set of responses labeled by humans with how appropriate
they are, and learns to predict this label from the dialogue context and the words in
the system response.

Another paradigm is adversarial evaluation (Bowman et al. 2016, Kannan andadversarial
evaluation

Vinyals 2016, Li et al. 2017), inspired by the Turing test. The idea is to train a
“Turing-like” evaluator classifier to distinguish between human-generated responses
and machine-generated responses. The more successful a response generation sys-
tem is at fooling this evaluator, the better the system.
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28.2 Frame Based Dialog Agents

Modern task-based dialog systems are based on a domain ontology, a knowledgedomain
ontology

structure representing the kinds of intentions the system can extract from user sen-
tences. The ontology defines one or more frames, each a collection of slots, andframe

slot defines the values that each slot can take. This frame-based architecture was first
introduced in 1977 in the influential GUS system for travel planning (Bobrow et al.,
1977), and has been astonishingly long-lived, underlying most modern commercial
digital assistants. Figure 28.8 shows a conversation with the original GUS system.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight:
Client: P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego that leaves

at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 28.8 The travel domain: A transcript of an actual dialog with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a GUS-style frame specifies what the system needs to know,
and the filler of each slot is constrained to values of a particular semantic type. In
the travel domain, for example, a slot might be of type city (hence take on values
like San Francisco, or Hong Kong) or of type date, airline, or time:

Slot Type
ORIGIN CITY city
DESTINATION CITY city
DEPARTURE TIME time
DEPARTURE DATE date
ARRIVAL TIME time
ARRIVAL DATE date

Types in GUS, as in modern frame-based dialog agents, may have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE

MONTH NAME

DAY (BOUNDED-INTEGER 1 31)
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YEAR INTEGER

WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY)]

28.2.1 Control structure for frame-based dialog
The control architecture of frame-based dialog systems is designed around the frame.
The goal is to fill the slots in the frame with the fillers the user intends, and then per-
form the relevant action for the user (answering a question, or booking a flight).
Most frame-based dialog systems are based on finite-state automata that are hand-
designed for the task by a dialog designer.

What city are you leaving from?

Do you want to go from
 <FROM> to <TO> on <DATE>?

Yes

Where are you going?

What date do you want to leave?

Is it a one-way trip?

What date do you want to return?

Do you want to go from <FROM> to <TO> 
on <DATE> returning on <RETURN>?

No

No Yes

Yes
No

Book the flight

Figure 28.9 A simple finite-state automaton architecture for frame-based dialog.

Consider the very simple finite-state control architecture shown in Fig. 28.9,
implementing a trivial airline travel system whose job is to ask the user for the
information for 4 slots: departure city, a destination city, a time, and whether the trip
is one-way or round-trip. Let’s first associate with each slot a question to ask the
user:

Slot Question
ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

Figure 28.9 shows a sample dialog manager for such a system. The states of
the FSA correspond to the slot questions, user, and the arcs correspond to actions
to take depending on what the user responds. This system completely controls the
conversation with the user. It asks the user a series of questions, ignoring (or misin-
terpreting) anything that is not a direct answer to the question and then going on to
the next question.

The speaker in control of any conversation is said to have the initiative in theinitiative

conversation. Systems that completely control the conversation in this way are thus
called system-initiative. By contrast, in normal human-human dialog, initiativesystem-

initiative
shifts back and forth between the participants (Bobrow et al. 1977, Walker and Whit-
taker 1990).
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The single-initiative finite-state dialog architecture has the advantage that the
system always knows what question the user is answering. This means the system
can prepare the speech recognizer with a language model tuned to answers for this
question, and also makes natural language understanding easier. Most finite-state
systems also allow universal commands that can be said anywhere in the dialog,universal

like help, to give a help message, and start over (or main menu), which returns
the user to some specified main start state,. Nonetheless such a simplistic finite-state
architecture is generally applied only to simple tasks such as entering a credit card
number, or a name and password.

For most applications, users need a bit more flexibility. In a travel-planning
situation, for example, a user may say a sentence that fills multiple slots at once:
(28.3) I want a flight from San Francisco to Denver one way leaving after five

p.m. on Tuesday.
Or in cases where there are multiple frames, a user may say something to shift

frames, for example from airline reservations to reserving a rental car:
(28.4) I’d like to book a rental car when I arrive at the airport.

The standard GUS architecture for frame-based dialog systems, used in various
forms in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assis-
tant, therefore follows the frame in a more flexible way. The system asks questions
of the user, filling any slot that the user specifies, even if a user’s response fills mul-
tiple slots or doesn’t answer the question asked. The system simply skips questions
associated with slots that are already filled. Slots may thus be filled out of sequence.
The GUS architecture is thus a kind of mixed initiative, since the user can take atmixed initiative

least a bit of conversational initiative in choosing what to talk about.
The GUS architecture also has condition-action rules attached to slots. For ex-

ample, a rule attached to the DESTINATION slot for the plane booking frame, once
the user has specified the destination, might automatically enter that city as the de-
fault StayLocation for the related hotel booking frame.

Once the system has enough information it performs the necessary action (like
querying a database of flights) and returns the result to the user.

We mentioned in passing the linked airplane and travel frames. Many domains,
of which travel is one, require the ability to deal with multiple frames. Besides
frames for car or hotel reservations, we might need frames with general route in-
formation (for questions like Which airlines fly from Boston to San Francisco?),
information about airfare practices (for questions like Do I have to stay a specific
number of days to get a decent airfare?).

In addition, once we have given the user a options (such as a list of restaurants),
we can even have a special frame for ‘asking questions about this list’, whose slot is
the particular restaurant the user is asking for more information about, allowing the
user to say ‘the second one’ or ‘the Italian one’.

Since users may switch from frame to frame, the system must be able to disam-
biguate which slot of which frame a given input is supposed to fill and then switch
dialog control to that frame.

Because of this need to dynamically switch control, the GUS architecture is a
production rule system. Different types of inputs cause different productions to
fire, each of which can flexibly fill in different frames. The production rules can
then switch control according to factors such as the user’s input and some simple
dialog history like the last question that the system asked.

Commercial dialog systems provide convenient interfaces or libraries to make
it easy to build systems with these kinds of finite-state or production rule systems,
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for example providing graphical interfaces to allow dialog modules to be chained
together.

28.2.2 Natural language understanding for filling slots
The goal of the natural language understanding component is to extract three things
from the user’s utterance. The first task is domain classification: is this user fordomain

classification
example talking about airlines, programming an alarm clocks, or dealing with their
calendar? Of course this 1-of-n classification tasks is unnecessary for single-domain
systems that are focused on, say, only calendar management, but multi-domain di-
alog systems are the modern standard. The second is user intent determination:intent

determination
what general task or goal is the user trying to accomplish? For example the task
could be to Find a Movie, or Show a Flight, or Remove a Calendar Appointment.
Finally, we need to do slot filling: extract the particular slots and fillers that the userslot filling

intends the system to understand from their utterance with respect to their intent.
From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL

INTENT: SHOW-FLIGHTS

ORIGIN-CITY: Boston

ORIGIN-DATE: Tuesday

ORIGIN-TIME: morning

DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK

INTENT: SET-ALARM

TIME: 2017-07-01 0600-0800

The task of slot-filling, and the simpler tasks of domain and intent classification,
are special cases of the task of semantic parsing discussed in Chapter ??. Dialogue
agents can thus extract slots, domains, and intents from user utterances by applying
any of the semantic parsing approaches discussed in that chapter.

The method used in the original GUS system, and still quite common in indus-
trial applications, is to use hand-written rules, often as part of the condition-action
rules attached to slots or concepts.

For example we might just define a regular expression consisting of a set strings
that map to the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

We can build more complex automata that instantiate sets of rules like those
discussed in Chapter 20, for example extracting a slot filler by turning a string
like Monday at 2pm into an object of type date with parameters (DAY, MONTH,
YEAR, HOURS, MINUTES).

Rule-based systems can be even implemented with full grammars. Research sys-
tems like the Phoenix system (Ward and Issar, 1994) consists of large hand-designed
semantic grammars with thousands of rules. A semantic grammar is a context-freesemantic

grammar
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grammar in which the left-hand side of each rule corresponds to the semantic entities
being expressed (i.e., the slot names) as in the following fragment:

SHOW → show me | i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR |

morning | afternoon | evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston | San Francisco | Denver |Washington

Semantic grammars can be parsed by any CFG parsing algorithm (see Chap-
ter 12), resulting in a hierarchical labeling of the input string with semantic node
labels, as shown in Fig. 28.10.

S

DEPARTTIME

morning

DEPARTDATE

Tuesdayon

DESTINATION

FranciscoSanto

ORIGIN

Bostonfrom

FLIGHTS

flights

SHOW

meShow

Figure 28.10 A semantic grammar parse for a user sentence, using slot names as the internal parse tree nodes.

Whether regular expressions or parsers are used, it remains only to put the fillers
into some sort of canonical form, for example by normalizing dates as discussed in
Chapter 20.

A number of tricky issues have to be dealt with. One important issue is negation;
if a user specifies that they “can’t fly Tuesday morning”, or want a meeting ”any time
except Tuesday morning”, a simple system will often incorrectly extract “Tuesday
morning” as a user goal, rather than as a negative constraint.

Speech recognition errors must also be dealt with. One common trick is to make
use of the fact that speech recognizers often return a ranked N-best list of hypoth-N-best list

esized transcriptions rather than just a single candidate transcription. The regular
expressions or parsers can simply be run on every sentence in the N-best list, and
any patterns extracted from any hypothesis can be used.

As we saw earlier in discussing information extraction, the rule-based approach
is very common in industrial applications. It has the advantage of high precision,
and if the domain is narrow enough and experts are available, can provide sufficient
coverage as well. On the other hand, the hand-written rules or grammars can be both
expensive and slow to create, and hand-written rules can suffer from recall problems.

A common alternative is to use supervised machine learning. Assuming a train-
ing set is available which associates each sentence with the correct semantics, we
can train a classifier to map from sentences to intents and domains, and a sequence
model to map from sentences to slot fillers.

For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we might first apply a simple 1-of-N classifier (logistic regression, neural network,
etc.) that uses features of the sentence like word N-grams to determine that the
domain is AIRLINE and and the intent is SHOWFLIGHT.
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Next to do slot filling we might first apply a classifier that uses similar features
of the sentence to predict which slot the user wants to fill. Here in addition to
word unigram, bigram, and trigram features we might use named entity features or
features indicating that a word is in a particular lexicon (such as a list of cities, or
airports, or days of the week) and the classifer would return a slot name (in this case
DESTINATION, DEPARTURE-DAY, and DEPARTURE-TIME). A second classifier can
then be used to determine the filler of the named slot, for example a city classifier that
uses N-grams and lexicon features to determine that the filler of the DESTINATION
slot is SAN FRANCISCO.

An alternative model is to use a sequence model (MEMMs, CRFs, RNNs) to
directly assign a slot label to each word in the sequence, following the method
used for other information extraction models in Chapter 20 (Pieraccini et al. 1991,
Raymond and Riccardi 2007, Mesnil et al. 2015, Hakkani-Tür et al. 2016). Once
again we would need a supervised training test, with sentences paired with IOBIOB

(Inside/Outside/Begin) labels like the following:

O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O

I want to fly to San Francisco on Monday afternoon please

In IOB tagging we introduce a tag for the beginning (B) and inside (I) of each
slot label, and one for tokens outside (O) any slot label. The number of tags is thus
2n+1 tags, where n is the number of slots.

Any IOB tagger sequence model can then be trained on a training set of such
labels. Traditional sequence models (MEMM, CRF) make use of features like word
embeddings, word unigrams and bigrams, lexicons (for example lists of city names),
and slot transition features (perhaps DESTINATION is more likely to follow ORIGIN
than the other way around) to map a user’s utterance to the slots. An MEMM (Chap-
ter 10) for example, combines these features of the input word wi, its neighbors
within l words wi+l

i−l , and the previous k slot tags si−1
i−k to compute the most likely slot

label sequence S from the word sequence W as follows:

Ŝ = argmax
S

P(S|W )

= argmax
S

∏
i

P(si|wi+l
i−l ,s

i−1
i−k)

= argmax
S

∏
i

exp

(∑
i

wi fi(si,wi+l
i−l ,s

i−1
i−k)

)
∑

s′∈slotset
exp
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i

wi fi(s′,wi+l
i−l , t

i−1
i−k )

) (28.5)

Current neural network architectures, by contrast, don’t generally make use of
an explicit feature extraction step. A typical LSTM-style architecture is shown in
Fig. 28.11. Here the input is a series of words w1...wn (represented as embeddings
or as 1-hot vectors) and the output is a series of IOB tags s1...sn plus the domain and
intent. Neural systems can combine the domain-classification and intent-extraction
tasks with slot-filling simply by adding a domain concatenated with an intent as the
desired output for the final EOS token.

One the sequence labeler has tagged the user utterance, a filler string can be ex-
tracted for each slot from the tags (e.g., ”San Francisco”), and these word strings
can then be normalized to the correct form in the ontology (perhaps the airport
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h0 h1 h2 hn hn+1

w0 w1 w2 wn <EOS>

s0 s1 s2 sn d+i

Figure 28.11 An LSTM architecture for slot filling, mapping the words in the input (repre-
sented as 1-hot vectors or as embeddings) to a series of IOB tags plus a final state consisting
of a domain concatenated with an intent.

code‘SFO’). This normalization can take place by using homonym dictionaries (spec-
ifying, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are often
bootstrapped from rule-based systems in a semi-supervised learning manner. A rule-
based system is first built for the domain, and a test-set is carefully labeled. As new
user utterances come in, they are paired with the labeling provided by the rule-based
system to create training tuples. A classifier can then be trained on these tuples, us-
ing the test-set to test the performance of the classifier against the rule-based system.
Some heuristics can be used to eliminate errorful training tuples, with the goal of in-
creasing precision. As sufficient training samples become available the resulting
classifier can often outperform the original rule-based system (Suendermann et al.,
2009), although rule-based systems may still remain higher-precision for dealing
with complex cases like negation.

28.2.3 Evaluating Slot Filling
An intrinsic error metric for natural language understanding systems for slot filling
is the Slot Error Rate for each sentence:

Slot Error Rate for a Sentence =
# of inserted/deleted/subsituted slots
# of total reference slots for sentence

(28.6)

Consider a system faced with the following sentence:

(28.7) Make an appointment with Chris at 10:30 in Gates 104

which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate, slot
precision, recall, and F-score can also be used.

A perhaps more important, although less fine-grained, measure of success is an
extrinsic metric like task error rate. In this case, the task error rate would quantify
how often the correct meeting was added to the calendar at the end of the interaction.
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28.2.4 Other components of frame-based dialog
We’ve focused on the natural language understanding component that is the core of
frame-based systems, but here we also briefly mention other modules.

The ASR (automatic speech recognition) component takes audio input from a
phone or other device and outputs a transcribed string of words, as discussed in
Chapter 31. Various aspects of the ASR system may be optimized specifically for
use in conversational agents.

Because what the user says to the system is related to what the system has just
said, language models in conversational agent depend on the dialog state. For ex-
ample, if the system has just asked the user “What city are you departing from?”,
the ASR language model can be constrained to just model answers to that one ques-
tion. This can be done by training an N-gram language model on answers to this
question. Alternatively a finite-state or context-free grammar can be hand written
to recognize only answers to this question, perhaps consisting only of city names or
perhaps sentences of the form ‘I want to (leave|depart) from [CITYNAME]’. Indeed,
many simple commercial dialog systems use only non-probabilistic language mod-
els based on hand-written finite-state grammars that specify all possible responses
that the system understands. We give an example of such a hand-written grammar
for a VoiceXML system in Section 28.3.

A language model that is completely dependent on dialog state is called a re-
strictive grammar, and can be used to constrain the user to only respond to therestrictive

grammar
system’s last utterance. When the system wants to allow the user more options, it
might mix this state-specific language model with a more general language model.

The language generation module of any dialog system produces the utteranceslanguage
generation

that the system says to the user. Frame-based systems tend to use template-based
generation, in which all or most of the words in the sentence to be uttered to thetemplate-based

generation
user are prespecified by the dialog designer. Sentences created by these templates
are often called prompts. Templates might be completely fixed (like ‘Hello, howprompt

can I help you?’), or can include some variables that are filled in by the generator,
as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

These sentences are then passed to the TTS (text-to-speech) component (see
Chapter 32).

More sophisticated statistical generation strategies will be discussed in Sec-
tion 29.5 of Chapter 30.

28.3 VoiceXML

There are a wide variety of commercial systems that allow developers to implement
frame-based dialog systems, such as the user-definable skills in Amazon Alexa or the
actions in Google Assistant. Such industrial systems provide libraries for defining
the rules for detecting a particular user intent and filling in slots, and for expressing
the architecture for controlling which frames and actions the system should take at
which times.

Instead of focusing on one of these commercial engines, we introduce here a sim-
ple declarative formalism that has similar capabilities to each of them: VoiceXML,VoiceXML

the Voice Extensible Markup Language (http://www.voicexml.org/), an XML-

http://www.voicexml.org/
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based dialog design language used to create simple frame-based dialogs. Although
VoiceXML is simpler than a full commercial frame-based system (it’s deterministic,
and hence only allows non-probabilistic grammar-based language models and rule-
based semantic parsers), it’s still a handy way to get a hands-on grasp of frame-based
dialog system design.

A VoiceXML document contains a set of dialogs, each a menu or a form. A form
is a frame, whose slots are called fields. The VoiceXML document in Fig. 28.12
shows three fields for specifying a flight’s origin, destination, and date. Each field
has a variable name (e.g., origin) that stores the user response, a prompt, (e.g.,prompt

Which city do you want to leave from), and a grammar that is passed to the speech
recognition engine to specify what is allowed to be recognized. The grammar for the
first field in Fig. 28.12 allows the three phrases san francisco, barcelona, and new
york.

The VoiceXML interpreter walks through a form in document order, repeatedly
selecting each item in the form, and each field in order.

<noinput>
I’m sorry, I didn’t hear you. <reprompt/>
</noinput>

<nomatch>
I’m sorry, I didn’t understand that. <reprompt/>
</nomatch>

<form>
<block> Welcome to the air travel consultant. </block>
<field name="origin">

<prompt> Which city do you want to leave from? </prompt>
<grammar type="application/x=nuance-gsl">

[(san francisco) barcelona (new york)]
</grammar>
<filled>

<prompt> OK, from <value expr="origin"/> </prompt>
</filled>

</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<grammar type="application/x=nuance-gsl">

[(san francisco) barcelona (new york)]
</grammar>
<filled>

<prompt> OK, to <value expr="destination"/> </prompt>
</filled>

</field>
<field name="departdate" type="date">

<prompt> And what date do you want to leave? </prompt>
<filled>

<prompt> OK, on <value expr="departdate"/> </prompt>
</filled>

</field>
<block>

<prompt> OK, I have you are departing from <value expr="origin"/>
to <value expr="destination"/> on <value expr="departdate"/>

</prompt>
send the info to book a flight...

</block>
</form>

Figure 28.12 A VoiceXML script for a form with three fields, which confirms each field
and handles the noinput and nomatch situations.

The prologue of the example shows two global defaults for error handling. If the
user doesn’t answer after a prompt (i.e., silence exceeds a timeout threshold), the
VoiceXML interpreter will play the <noinput> prompt. If the user says something
that doesn’t match the grammar for that field, the VoiceXML interpreter will play the
<nomatch> prompt. VoiceXML provides a <reprompt/> command, which repeats
the prompt for whatever field caused the error.

The <filled> tag for a field is executed by the interpreter as soon as the field
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has been filled by the user. Here, this feature is used to confirm the user’s input.
VoiceXML 2.0 specifies seven built-in grammar types: boolean, currency,

date, digits, number, phone, and time. By specifying the departdate field as
type date, a date-specific language model will be passed to the speech recognizer.

<noinput> I’m sorry, I didn’t hear you. <reprompt/> </noinput>

<nomatch> I’m sorry, I didn’t understand that. <reprompt/> </nomatch>

<form>
<grammar type="application/x=nuance-gsl">
<![CDATA[
Flight ( ?[

(i [wanna (want to)] [fly go])
(i’d like to [fly go])
([(i wanna)(i’d like a)] flight)

]
[

( [from leaving departing] City:x) {<origin $x>}
( [(?going to)(arriving in)] City:x) {<destination $x>}
( [from leaving departing] City:x

[(?going to)(arriving in)] City:y) {<origin $x> <destination $y>}
]
?please

)
City [ [(san francisco) (s f o)] {return( "san francisco, california")}

[(denver) (d e n)] {return( "denver, colorado")}
[(seattle) (s t x)] {return( "seattle, washington")}

]
]]> </grammar>

<initial name="init">
<prompt> Welcome to the consultant. What are your travel plans? </prompt>

</initial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>

<prompt> OK, from <value expr="origin"/> </prompt>
</filled>

</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<filled>

<prompt> OK, to <value expr="destination"/> </prompt>
</filled>

</field>
<block>

<prompt> OK, I have you are departing from <value expr="origin"/>
to <value expr="destination"/>. </prompt>

send the info to book a flight...
</block>

</form>

Figure 28.13 A mixed-initiative VoiceXML dialog. The grammar allows sentences that
specify the origin or destination cities or both. The user can respond to the initial prompt by
specifying origin city, destination city, or both.

Figure 28.13 gives a mixed initiative example, allowing the user to answer ques-
tions in any order or even fill in multiple slots at once. The VoiceXML interpreter
has a guard condition on fields, a test that keeps a field from being visited; the default
test skips a field if its variable is already set.

Figure 28.13 also shows a more complex CFG grammar with two rewrite rules,
Flight and City. The Nuance GSL grammar formalism uses parentheses () to
mean concatenation and square brackets [] to mean disjunction. Thus, a rule like
(28.8) means that Wantsentence can be expanded as i want to fly or i want

to go, and Airports can be expanded as san francisco or denver.
(28.8) Wantsentence (i want to [fly go])

Airports [(san francisco) denver]

VoiceXML grammars allow semantic attachments, such as the text string ("denver,
colorado") the return for the City rule, or a slot/filler , like the attachments for the
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TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 28.14 User satisfaction survey, adapted from Walker et al. (2001).

Flight rule which fills the slot (<origin> or <destination> or both) with the
value passed up in the variable x from the City rule.

Because Fig. 28.13 is a mixed-initiative grammar, the grammar has to be ap-
plicable to any of the fields. This is done by making the expansion for Flight a
disjunction; note that it allows the user to specify only the origin city, the destination
city, or both.

28.4 Evaluating Dialogue Systems

Evaluation is crucial in dialog system design. If the task is unambiguous, we can
simply measure absolute task success (did the system book the right plane flight, or
put the right event on the calendar).

To get a more fine-grained idea of user happiness, we can compute a user satis-
faction rating, having users interact with a dialog system to perform a task and then
having them complete a questionnaire. For example, Fig. 28.14 shows multiple-
choice questions of the sort used by Walker et al. (2001); responses are mapped into
the range of 1 to 5, and then averaged over all questions to get a total user satisfaction
rating.

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is often useful to have performance
evaluation heuristics that correlate well with human satisfaction. A number of such
factors and heuristics have been studied. One method that has been used to classify
these factors is based on the idea that an optimal dialog system is one that allows
users to accomplish their goals (maximizing task success) with the least problems
(minimizing costs). We can then study metrics that correlate with these two criteria.

Task completion success: Task success can be measured by evaluating the cor-
rectness of the total solution. For a frame-based architecture, this might be the per-
centage of slots that were filled with the correct values or the percentage of subtasks
that were completed. Interestingly, sometimes the user’s perception of whether they
completed the task is a better predictor of user satisfaction than the actual task com-
pletion success. (Walker et al., 2001).

Efficiency cost: Efficiency costs are measures of the system’s efficiency at helping
users. This can be measured by the total elapsed time for the dialog in seconds, the
number of total turns or of system turns, or the total number of queries (Polifroni
et al., 1992). Other metrics include the number of system non-responses and the
“turn correction ratio”: the number of system or user turns that were used solely
to correct errors divided by the total number of turns (Danieli and Gerbino 1995,
Hirschman and Pao 1993).
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Quality cost: Quality cost measures other aspects of the interactions that affect
users’ perception of the system. One such measure is the number of times the
ASR system failed to return any sentence, or the number of ASR rejection prompts.
Similar metrics include the number of times the user had to barge-in (interrupt the
system), or the number of time-out prompts played when the user didn’t respond
quickly enough. Other quality metrics focus on how well the system understood and
responded to the user. The most important is the slot error rate described above,
but other components include the inappropriateness (verbose or ambiguous) of the
system’s questions, answers, and error messages or the correctness of each question,
answer, or error message (Zue et al. 1989, Polifroni et al. 1992).

28.5 Dialogue System Design

The user plays a more important role in dialog systems than in most other areas of
speech and language processing, and thus this area of language processing is the one
that is most closely linked with the field of Human-Computer Interaction (HCI).

How does a dialog system developer choose dialog strategies, prompts, error
messages, and so on? This process is often called voice user interface design, andvoice user

interface
generally follows the user-centered design principles of Gould and Lewis (1985):

1. Study the user and task: Understand the potential users and the nature of the
task by interviews with users, investigation of similar systems, and study of related
human-human dialogs.

2. Build simulations and prototypes: A crucial tool in building dialog systems is
the Wizard-of-Oz system. In wizard system, the users interact with what they thinkWizard-of-Oz

system
is a software system but is in fact a human operator (“wizard”) behind some disguis-
ing interface software (Gould et al. 1983, Good et al. 1984, Fraser and Gilbert 1991).
The name comes from the children’s book The Wizard of Oz (Baum, 1900), in which
the Wizard turned out to be just a simulation controlled by a man behind a curtain
or screen.

A Wizard-of-Oz system can be used to
test out an architecture before implementa-
tion; only the interface software and databases
need to be in place. General the wizard gets
input from the user, has a graphical interface
to a database to run sample queries based on
the user utterance, and then has a way to out-
put sentences, either by typing them or by
some combination of selecting from a menu
and typing. The wizard’s linguistic output can
be disguised by a text-to-speech system or,
more frequently, by using text-only interac-
tions.

The results of a wizard-of-oz system can
also be used as training data to training a pilot
dialog system. While wizard-of-oz systems
are very commonly used, they are not a per-
fect simulation; it is difficult for the wizard to
exactly simulate the errors, limitations, or time constraints of a real system; results
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of wizard studies are thus somewhat idealized, but still can provide a useful first idea
of the domain issues.

3. Iteratively test the design on users: An iterative design cycle with embedded
user testing is essential in system design (Nielsen 1992, Cole et al. 1997, Yankelovich
et al. 1995, Landauer 1995). For example in a famous anecdote in dialog design his-
tory , an early dialog system required the user to press a key to interrupt the system
Stifelman et al. (1993). But user testing showed users barged in, which led to a re-
design of the system to recognize overlapped speech. The iterative method is also
important for designing prompts that cause the user to respond in normative ways.

There are a number of good books on conversational interface design (Cohen
et al. 2004, Harris 2005, Pearl 2017).

28.6 Summary

Conversational agents are a crucial speech and language processing application
that are already widely used commercially.

• Chatbots are conversational agents designed to mimic the appearance of in-
formal human conversation. Rule-based chatbots like ELIZA and its modern
descendants use rules to map user sentences into system responses. Corpus-
based chatbots mine logs of human conversation to learn to automatically map
user sentences into system responses.

• For task-based dialogue, most commercial dialog systems use the GUS or
frame-based architecture, in which the designer specifies a domain ontology,
a set of frames of information that the system is designed to acquire from the
user, each consisting of slots with typed fillers

• A number of commercial systems allow developers to implement simple frame-
based dialog systems, such as the user-definable skills in Amazon Alexa or the
actions in Google Assistant. VoiceXML is a simple declarative language that
has similar capabilities to each of them for specifying deterministic frame-
based dialog systems.

• Dialog systems are a kind of human-computer interaction, and general HCI
principles apply in their design, including the role of the user, simulations
such as Wizard-of-Oz systems, and the importance of iterative design and
testing on real users.

Bibliographical and Historical Notes
The earliest conversational systems were chatbots like ELIZA (Weizenbaum, 1966)
and PARRY (Colby et al., 1971). ELIZA had a widespread influence on popular
perceptions of artificial intelligence, and brought up some of the first ethical ques-
tions in natural language processing —such as the issues of privacy we discussed
above as well the role of algorithms in decision-making— leading its creator Joseph
Weizenbaum to fight for social responsibility in AI and computer science in general.
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Another early system, the GUS system (Bobrow et al., 1977) had by the late
1970s established the main frame-based paradigm that became the dominant indus-
trial paradigm for dialog systems for over 30 years.

In the 1990s, stochastic models that had first been applied to natural language
understanding began to be applied to dialogue slot filling (Miller et al. 1994, Pierac-
cini et al. 1991).

By around 2010 the GUS architecture finally began to be widely used commer-
cially in phone-based dialogue systems like Apple’s SIRI Bellegarda (2013) and
other digital assistants.

The rise of the web and online chatbots brought new interest in chatbots and gave
rise to corpus-based chatbot architectures around the turn of the century, first using
information retrieval models and then in the 2010s, after the rise of deep learning,
with sequence-to-sequence models.

Exercises
28.1 Write a finite-state automaton for a dialogue manager for checking your bank

balance and withdrawing money at an automated teller machine.

28.2 A dispreferred response is a response that has the potential to make a persondispreferred
response

uncomfortable or embarrassed in the conversational context; the most com-
mon example dispreferred responses is turning down a request. People signal
their discomfort with having to say no with surface cues (like the word well),
or via significant silence. Try to notice the next time you or someone else
utters a dispreferred response, and write down the utterance. What are some
other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye gaze and body gestures.

28.3 When asked a question to which they aren’t sure they know the answer, peo-
ple display their lack of confidence by cues that resemble other dispreferred
responses. Try to notice some unsure answers to questions. What are some
of the cues? If you have trouble doing this, read Smith and Clark (1993) and
listen specifically for the cues they mention.

28.4 Build a VoiceXML dialogue system for giving the current time around the
world. The system should ask the user for a city and a time format (24 hour,
etc) and should return the current time, properly dealing with time zones.

28.5 Implement a small air-travel help system based on text input. Your system
should get constraints from users about a particular flight that they want to
take, expressed in natural language, and display possible flights on a screen.
Make simplifying assumptions. You may build in a simple flight database or
you may use a flight information system on the Web as your backend.

28.6 Augment your previous system to work with speech input through VoiceXML.
(Or alternatively, describe the user interface changes you would have to make
for it to work via speech over the phone.) What were the major differences?

28.7 Design a simple dialogue system for checking your email over the telephone.
Implement in VoiceXML.

28.8 Test your email-reading system on some potential users. Choose some of the
metrics described in Section 28.4 and evaluate your system.
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29 Advanced Dialog Systems

A famous burlesque routine from the turn of the last century plays on the difficulty
of conversational understanding by inventing a baseball team whose members have
confusing names:

C: I want you to tell me the names of the fellows on the St. Louis team.
A: I’m telling you. Who’s on first, What’s on second, I Don’t Know is on third.
C: You know the fellows’ names?
A: Yes.
C: Well, then, who’s playing first?
A: Yes.
C: I mean the fellow’s name on first.
A: Who.
C: The guy on first base.
A: Who is on first.
C: Well what are you askin’ me for?
A: I’m not asking you – I’m telling you. Who is on first.

Who’s on First – Bud Abbott and Lou Costello’s version of an
old burlesque standard.

Of course outrageous names of baseball players are not a normal source of dif-
ficulty in conversation. What this famous comic conversation is pointing out is that
understanding and participating in dialog requires knowing whether the person you
are talking to is making a statement or asking a question. Asking questions, giving
orders, or making informational statements are things that people do in conversa-
tion, yet dealing with these kind of actions in dialogue—what we will call dialog
acts— is something that the GUS-style frame-based dialog systems of Chapter 29
are completely incapable of.

In this chapter we describe the dialog-state architecture, also called the belief-
state or information-state architecture. Like GUS systems, these agents fill slots,
but they are also capable of understanding and generating such dialog acts, actions
like asking a question, making a proposal, rejecting a suggestion, or acknowledging
an utterance and they can incorporate this knowledge into a richer model of the state
of the dialog at any point.

Like the GUS systems, the dialog-state architecture is based on filling in the slots
of frames, and so dialog-state systems have an NLU component to determine the
specific slots and fillers expressed in a user’s sentence. Systems must additionally
determine what dialog act the user was making, for example to track whether a user
is asking a question. And the system must take into account the dialog context (what
the system just said, and all the constraints the user has made in the past).

Furthermore, the dialog-state architecture has a different way of deciding what to
say next than the GUS systems. Simple frame-based systems often just continuously
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ask questions corresponding to unfilled slots and then report back the results of some
database query. But in natural dialogue users sometimes take the initiative, such as
asking questions of the system; alternatively, the system may not understand what
the user said, and may need to ask clarification questions. The system needs a dialog
policy to decide what to say (when to answer the user’s questions, when to instead
ask the user a clarification question, make a suggestion, and so on).

Figure 29.1 shows a typical architecture for a dialog-state system. It has six
components. As with the GUS-style frame-based systems, the speech recognition
and understanding components extract meaning from the input, and the generation
and TTS components map from meaning to speech.

The parts that are different than the simple GUS system are the dialog state
tracker which maintains the current state of the dialog (which include the user’s
most recent dialog act, plus the entire set of slot-filler constraints the user has ex-
pressed so far) and the dialog policy, which decides what the system should do or
say next.

DIALOG STATE TRACKING OVERVIEW

LEAVING FROM DOWNTOWN

LEAVING AT ONE P M

ARRIVING AT ONE P M

0.6

0.2

0.1

{ from: downtown }

{ depart-time: 1300 }

{ arrive-time: 1300 }

0.5

0.3

0.1

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.10

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.15

from:        downtown
to:          airport
depart-time: --
confirmed:   no
score:       0.65

Automatic Speech 
Recognition (ASR)

Spoken Language 
Understanding (SLU)

Dialog State 
Tracker (DST)

Dialog Policy

act:  confirm
from: downtown

FROM DOWNTOWN, 
IS THAT RIGHT?

Natural Language 
Generation (NLG)Text to Speech (TTS)

Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three

5

Figure 29.1 Architecture of a dialog-state system for task-oriented dialog from Williams et al. (2016).

As of the time of this writing, no commercial system uses a full dialog-state ar-
chitecture, but some aspects of this architecture are beginning to appear in industrial
systems, and there are a wide variety of these systems in research labs.

Let’s turn first to a discussion of dialog acts.

29.1 Dialog Acts

A key insight into conversation—due originally to the philosopher Wittgenstein
(1953) but worked out more fully by Austin (1962)—is that each utterance in a
dialog is a kind of action being performed by the speaker. These actions are com-
monly called speech acts; here’s one taxonomy consisting of 4 major classes (Bachspeech acts
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and Harnish, 1979):

Constatives: committing the speaker to something’s being the case (answering, claiming,
confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do something (advising, ask-
ing, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action (promising, planning,
vowing, betting, opposing)

Acknowledgments: express the speaker’s attitude regrading the hearer with respect to some so-
cial action (apologizing, greeting, thanking, accepting an acknowledgment)

A user ordering a dialog system to do something (‘Turn up the music’) is issuing
a DIRECTIVE. A user asking a question to which the system is expected to answer
is also issuing a DIRECTIVE: in a sense the user is commanding the system to an-
swer (‘What’s the address of the second restaurant’). By contrast, a user stating a
constraint (‘I am flying on Tuesday’) is issuing an ASSERTIVE. A user thanking the
system is issuing an ACKNOWLEDGMENT. The dialog act expresses an important
component of the intention of the speaker (or writer) in saying what they said.

While this idea of speech acts is powerful, modern systems expand these early
taxonomies of speech acts to better describe actual conversations. This is because a
dialog is not a series of unrelated independent speech acts, but rather a collective act
performed by the speaker and the hearer. In performing this joint action the speaker
and hearer must constantly establish common ground (Stalnaker, 1978), the set ofcommon

ground
things that are mutually believed by both speakers.

The need to achieve common ground means that the hearer must ground thegrounding

speaker’s utterances. To ground means to acknowledge, to make it clear that the
hearer has understood the speaker’s meaning and intention. People need closure or
grounding for non-linguistic actions as well. For example, why does a well-designed
elevator button light up when it’s pressed? Because this indicates to the elevator
traveler that she has successfully called the elevator. Clark (1996) phrases this need
for closure as follows, after Norman (1988):

Principle of closure. Agents performing an action require evidence, sufficient
for current purposes, that they have succeeded in performing it.

Grounding is also important when the hearer needs to indicate that the speaker
has not succeeded. If the hearer has problems in understanding, she must indicate
these problems to the speaker, again so that mutual understanding can eventually be
achieved.

Clark and Schaefer (1989) point out a continuum of methods the hearer B can
use to ground the speaker A’s utterance, ordered from weakest to strongest:

Continued attention: B shows she is continuing to attend and therefore remains satisfied with
A’s presentation.

Next contribution: B starts in on the next relevant contribution.
Acknowledgment: B nods or says a continuer like uh-huh, yeah, or the like, or an assess-

ment like that’s great.
Demonstration: B demonstrates all or part of what she has understood A to mean, for

example, by reformulating (paraphrasing) A’s utterance or by collabo-
rative completion of A’s utterance.

Display: B displays verbatim all or part of A’s presentation.

Let’s look for examples of grounding in a conversation between a human travel
agent and a human client in Fig. 29.2.
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C1: . . . I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight

115.
C7: OK.

Figure 29.2 Part of a conversation between a travel agent (A) and client (C).

Utterance A1 shows the strongest form of grounding, in which the hearer dis-
plays understanding by repeating verbatim part of the speaker’s words: in May,

This particular fragment doesn’t have an example of an acknowledgment, but
there’s an example in another fragment:

C: He wants to fly from Boston to Baltimore
A: Uh huh

The word uh-huh here is a backchannel, also called a continuer or an acknowl-backchannel

continuer edgment token. A backchannel is a (short) optional utterance that acknowledges the
content of the utterance of the other and that doesn’t require an acknowledgment by
the other (Yngve 1970, Jefferson 1984, Schegloff 1982, Ward and Tsukahara 2000).

The third grounding method is to start in on the relevant next contribution, for
example in Fig. 29.2, where the speaker asks a question (A2) and the hearer (C3)
answers it.

In a more subtle act of grounding, the speaker can combine this method with the
previous one. For example, notice that whenever the client answers a question, the
agent begins the next question with And. The And indicates to the client that the
agent has successfully understood the answer to the last question:

Speech acts are important for practical dialog systems, which need to distin-
guish a statement from a directive, and which must distinguish (among the many
kinds of directives) an order to do something from a question asking for informa-
tion. Grounding is also crucial in dialog systems. Consider the unnaturalness of this
example from Cohen et al. (2004):

(29.1) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Without an acknowledgment, the caller doesn’t know that the system has under-
stand her ‘No’. The use of Okay below adds grounding, making (29.2) a much more
natural response than (29.1):

(29.2) System: Did you want to review some more of your personal profile?
Caller: No.
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System: Okay, what’s next?

Tag Example
THANK Thanks
GREET Hello Dan
INTRODUCE It’s me again
BYE Alright bye
REQUEST-COMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I’m booked all day
ACCEPT Saturday sounds fine
REQUEST-SUGGEST What is a good day of the week for you?
INIT I wanted to make an appointment with you
GIVE REASON Because I have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-

Figure 29.3 The 18 high-level dialog acts for a meeting scheduling task, from the
Verbmobil-1 system (Jekat et al., 1995).

The ideas of speech acts and grounding are combined in a single kind of action
called a dialog act, a tag which represents the interactive function of the sentencedialog act

being tagged. Different types of dialog systems require labeling different kinds of
acts, and so the tagset—defining what a dialog act is exactly— tends to be designed
for particular tasks.

Figure 29.3 shows a domain-specific tagset for the task of two people scheduling
meetings. It has tags specific to the domain of scheduling, such as SUGGEST, used
for the proposal of a particular date to meet, and ACCEPT and REJECT, used for
acceptance or rejection of a proposal for a date, but also tags that have more general
function, like CLARIFY, used to request a user to clarify an ambiguous proposal.

Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialog and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) χ X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X χ Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X χ Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) χ X Negate and give corrected value a = x
DENY(a = x) χ X Deny that a = x
BYE() X X Close a dialog

Figure 29.4 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Figure 29.4 shows a tagset for a restaurant recommendation system, and Fig. 29.5
shows these tags labeling a sample dialog from the HIS system (Young et al., 2010).
This example also shows the content of each dialog acts, which are the slot fillers
being communicated.
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Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)

S: You are looking for a restaurant. What
type of food do you like?

confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,

food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)

S: Yes, Roma is in the moderate price
range.

affirm(name = "Roma", pricerange =

moderate)

U: What is the phone number? request(phone)

S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")

U: Ok, thank you goodbye. bye()
Figure 29.5 A sample dialog from the HIS System of Young et al. (2010) using the dialog acts in Fig. 29.4.

Dialog acts don’t just appear discretely and independently; conversations have
structure, and dialogue acts reflect some of that structure. One aspect of this struc-
ture comes from the field of conversational analysis or CA (Sacks et al., 1974)conversational

analysis
which focuses on interactional properties of human conversation. CA defines ad-
jacency pairs (Schegloff, 1968) as a pairing of two dialog acts, like QUESTIONSadjacency pair

and ANSWERS, PROPOSAL and ACCEPTANCE (or REJECTION), COMPLIMENTS and
DOWNPLAYERS, GREETING and GREETING.

The structure, composed of a first pair part and asecond pair part, can help
dialog-state models decide what actions to take. However, dialog acts aren’t always
followed immediately by their second pair part. The two parts can be separated by a
side sequence (Jefferson 1972, Schegloff 1972). One very common side sequenceside sequence

in dialog systems is the clarification question, which can form a subdialogue be-subdialogue

tween a REQUEST and a RESPONSE as in the following example caused by speech
recognition errors:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Let’s see, going where on the 5th?
User: Going to Hong Kong.

System: OK, here are some flights...

Another kind of dialogue structure is the pre-sequence, like the following ex-pre-sequence

ample where a user starts with a question about the system’s capabilities (“Can you
make train reservations”) before making a request.

User: Can you make train reservations?
System: Yes I can.
User: Great, I’d like to reserve a seat on the 4pm train to New York.

A dialog-state model must be able to both recognize these kinds of structures
and make use of them in interacting with users.



29.2 • DIALOG STATE: INTERPRETING DIALOGUE ACTS 447

29.2 Dialog State: Interpreting Dialogue Acts

The job of the dialog-state tracker is to determine both the current state of the frame
(the fillers of each slot), as well as the user’s most recent dialog act. Note that the
dialog-state includes more than just the slot-fillers expressed in the current sentence;
it includes the entire state of the frame at this point, summarizing all of the user’s
constraints. The following example from Mrkšić et al. (2017) shows the required
output of the dialog state tracker after each turn:

User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food
User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

How can we interpret a dialog act, deciding whether a given input is a QUES-
TION, a STATEMENT, or a SUGGEST (directive)? Surface syntax seems like a use-
ful cue, since yes-no questions in English have aux-inversion (the auxiliary verb
precedes the subject), statements have declarative syntax (no aux-inversion), and
commands have no syntactic subject:

(29.3) YES-NO QUESTION Will breakfast be served on USAir 1557?
STATEMENT I don’t care about lunch.
COMMAND Show me flights from Milwaukee to Orlando.

Alas, the mapping from surface form to dialog act is complex. For example, the
following utterance looks grammatically like a YES-NO QUESTION meaning some-
thing like Are you capable of giving me a list of. . . ?:

(29.4) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whether the system was capa-
ble of giving a list; this utterance was a polite form of a REQUEST, meaning some-
thing like Please give me a list of. . . . What looks on the surface like a QUESTION
can really be a REQUEST.

Conversely, what looks on the surface like a STATEMENT can really be a QUES-
TION. The very common CHECK question (Carletta et al. 1997, Labov and Fan-
shel 1977) asks an interlocutor to confirm something that she has privileged knowl-
edge about. CHECKS have declarative surface form:

A OPEN-OPTION I was wanting to make some arrangements for a trip that I’m going
to be taking uh to LA uh beginning of the week after next.

B HOLD OK uh let me pull up your profile and I’ll be right with you here.
[pause]

B CHECK And you said you wanted to travel next week?
A ACCEPT Uh yes.

Utterances that use a surface statement to ask a question or a surface question
to issue a request are called indirect speech acts. These indirect speech acts have aindirect speech

act
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rich literature in philosophy, but viewed from the perspective of dialog understand-
ing, indirect speech acts are merely one instance of the more general problem of
determining the dialog act function of a sentence.

Many features can help in this task. To give just one example, in spoken-
language systems, prosody or intonation (Chapter ??) is a helpful cue. Prosodyprosody

intonation or intonation is the name for a particular set of phonological aspects of the speech
signal the tune and other changes in the pitch (which can be extracted from the fun-
damental frequency F0) the accent, stress, or loudness (which can be extracted from
energy), and the changes in duration and rate of speech. So, for example, a rise
in pitch at the end of the utterance is a good cue for a YES-NO QUESTION, while
declarative utterances (like STATEMENTS) have final lowering: a drop in F0 at thefinal lowering

end of the utterance.

29.2.1 Sketching an algorithm for dialog act interpretation
Since dialog acts places some constraints on the slots and values, the tasks of dialog-
act detection and slot-filling are often performed jointly. Consider the task of deter-
mining that

I’d like Cantonese food near the Mission District

has the structure

inform(food=cantonese,area=mission)).

The joint dialog act interpretation/slot filling algorithm generally begins with
a first pass classifier to decide on the dialog act for the sentence. In the case of
the example above, this classifier would choosing inform from among the set of
possible dialog acts in the tag set for this particular task. Dialog act interpretation is
generally modeled as a supervised classification task, trained on a corpus in which
each utterance is hand-labeled for its dialog act, and relying on a wide variety of
features, including unigrams and bigrams (show me is a good cue for a REQUEST, are
there for a QUESTION), parse features, punctuation, dialog context, and the prosodic
features described above.

A second pass classifier might use any of the algorithms for slot-filler extraction
discussed in Section 28.2.2 of Chapter 29, such as CRF or RNN-based IOB tagging.
Alternatively, a multinominal classifier can be used to choose between all possible
slot-value pairs, again using any of the feature functions defined in Chapter 29. This
is possible since the domain ontology for the system is fixed, so there is a finite
number of slot-value pairs.

Both classifiers can be built from any standard multinominal classifier (logis-
tic regression, SVM), using the various features described above, or, if sufficient
training data is available, can be built with end-to-end neural models.

29.2.2 A special case: detecting correction acts
Some dialog acts are important because of their implications for dialog control. If a
dialog system misrecognizes or misunderstands an utterance, the user will generally
correct the error by repeating or reformulating the utterance. Detecting these user
correction acts is therefore quite important. Ironically, it turns out that correctionsuser correction

acts
are actually harder to recognize than normal sentences! In fat, corrections in one
early dialog system (the TOOT system) had double the ASR word error rate of non-
corrections Swerts et al. (2000)! One reason for this is that speakers sometimes
use a specific prosodic style for corrections called hyperarticulation, in which thehyperarticula-

tion
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utterance contains some exaggerated energy, duration, or F0 contours, such as I said
BAL-TI-MORE, not Boston (Wade et al. 1992, Levow 1998, Hirschberg et al. 2001).
Even when they are not hyperarticulating, users who are frustrated seem to speak in
a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be
either exact repetitions or repetitions with one or more words omitted, although they
may also be paraphrases of the original utterance. (Swerts et al., 2000). Detecting
these reformulations or correction acts can be done by any classifier; some stan-
dard features used for this task are shown below (Levow 1998, Litman et al. 1999,
Hirschberg et al. 2001, Bulyko et al. 2005, Awadallah et al. 2015):

lexical features words like “no”, “correction”, “I don’t”, or even swear words, utterance length
semantic features overlap between the candidate correction act and the user’s prior utterance (computed

by word overlap or via cosines over embedding vectors)
phonetic features phonetic overlap between the candidate correction act and the user’s prior utterance

(i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic features hyperarticulation, increases in F0 range, pause duration, and word duration, generally

normalized by the values for previous sentences
ASR features ASR confidence, language model probability

29.3 Dialogue Policy

The goal of the dialog policy is to decide what action the system should take next,dialog policy

that is, what dialog act to generate. We begin in the next section by introducing one
specific dialog policy decision, relating to confirmation: how we confirm to the user
what we think she said. We then sketch a basic policy algorithm that could apply
to all decisions. Finally, once a speech act has been generated, the natural language
generation component needs to generate the text of a response to the user.

29.3.1 Generating Dialogue Acts: Confirmation and Rejection
Modern dialog systems often make mistakes. It is therefore important for dialog
systems to make sure that they have achieved the correct interpretation of the user’s
input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

Various strategies can be employed for confirmation with the user. When using
the explicit confirmation strategy, a system asks the user a direct question to con-explicit

confirmation
firm the system’s understanding, like the two examples below in which the system
asks a (boldface) yes-no confirmation questions:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes
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When using the implicit confirmation strategy, a system instead uses the demon-implicit
confirmation

stration or display grounding strategies described above, repeating back the system’s
understanding as part of asking the next question, as in the two examples below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialog fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.

In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

Various factors can be used as features to the dialog policy in deciding whether
to use explicit confirmation, implicit confirmation, or rejection. For example, the
confidence that the ASR system assigns to an utterance can be used by explicitly
confirming low-confidence sentences. Recall from page ?? that confidence is a met-
ric that the speech recognizer can assign to its transcription of a sentence to indi-
cate how confident it is in that transcription. Confidence is often computed from
the acoustic log-likelihood of the utterance (greater probability means higher confi-
dence), but prosodic features can also be used in confidence prediction. For example,
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utterances with large F0 excursions or longer durations, or those preceded by longer
pauses, are likely to be misrecognized (Litman et al., 2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds α , β , and γ:

< α low confidence reject
≥ α above the threshold confirm explicitly
≥ β high confidence confirm implictly
≥ γ very high confidence don’t confirm at all

29.4 A simple policy based on local context

The goal of the dialog policy at turn i in the conversation is to predict which action
Ai to take, based on the entire dialog state. The state could mean the entire sequence
of dialog acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai∈A

P(Ai|(A1,U1, ...,Ai−1,Ui−1) (29.5)

We can simplify this by maintaining as the dialog state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current state of the frame Framei
(which slots are filled and with what) and the last turn by the system and user:

Âi = argmax
Ai∈A

P(Ai|Framei−1,Ai−1,Ui−1) (29.6)

Given a large enough corpus of conversations, these probabilities can be esti-
mated by a classifier. Getting such enormous amounts of data can be difficult, and
often involves building user simulators to generate artificial conversations to train
on.

29.5 Natural language generation in the dialog-state model

Once a dialog act has been decided, we need to generate the text of the response
to the user. The task of natural language generation (NLG) in the information-state
architecture is often modeled in two stages, content planning (what to say), andcontent

planning
sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialog policy, which

has chosen the dialog act to generate, and perhaps also chosen some some additional
attributes (slots and values) that the planner wants to implicitly confirm to the user.
Fig. 29.6 shows a sample input structure from the policy/content planner, and one
example of a resulting sentence that the sentence realizer could generate from this
structure.

Let’s walk through the sentence realization stage for the example in Fig. 29.6,
which comes from the classic information state statistical NLG system of Oh and
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4.1. Template-based generation

Our NLG module started off with around 50 templates. The number of templates
grew as we added more functionality to our system. The largest expansion came
with the addition of a ‘‘help’’ speech act, which added 16 templates to provide context-
sensitive help messages. Additional information about the template system is available in
Oh (2000). Note that templates are not simple sentence frames with variable slots. They
also need to include a computational component that deals with options For example, for
the template ‘‘What time would you like to travel from {departure_city} on {depar-
ture_date}?’’, if the input frame did not contain values for the attributes {departure_city}
and {departure_date}, instead of generating the ungrammatical sentence ‘‘What time
would you like to travel from on?’’, it would generate ‘‘What time would you like to
travel?’’. This reduces the number of templates significantly, but only at the expense of
introducing more complexity to the templates, especially for templates that can have as
many as ten different attributes. Hence, the amount of time the developer needs to spend
on crafting and maintaining the templates does not decrease significantly. At one point,
the number of templates grew to nearly one hundred, some of them very complex and
cumbersome to maintain. Axelrod (2000) has alluded to similar requirements in the
system that he has described.

4.2. Development of corpus-based stochastic generator

What is perhaps more important than reducing development time is being able to
generate utterances that promote a natural interaction with the user. One of the diffi-
culties for a template writer is choosing the right words, the template system’s equiv-
alent of lexical selection. Often, the words that the template writer chooses for a given
utterance are different from what the domain expert would use. This mismatch may
hamper a smooth interaction because when a system utterance contains unfamiliar
words in that domain, not only does it sound unnatural, but it may also lead the user to
confusion or an inappropriate response.

One solution might be to base the generator on a corpus of task-oriented human–
human conversations between a domain expert and a client. We could, for example,
take the expert’s utterances and use them directly as templates. This is very simple, but
is not practical, as one would need to find an utterance for every possible combination
of attributes.

The statistical n-gram language model provides an alternative representation. The
n-gram language model has the advantage that it is simple to build and understand, and

Figure 3. An input frame to NLG in the Communicator.

392 A.H. Oh and A.I. Rudnicky

Figure 29.6 An input frame to NLG and a resulting output sentence, in the Communicator
system of Oh and Rudnicky (2000).

query arrive city hotel hotel chain inform flight earlier
query arrive time hotel hotel info inform flight earliest
query confirm hotel need car inform flight later
query depart date hotel need hotel inform flight latest
query depart time hotel where inform flight returning
query pay by card inform airport inform not avail
query preferred airport inform confirm utterance inform num flights
query return date inform epilogue inform price
query return time inform flight other
hotel car info inform flight another

Figure 29.7 Dialog acts in the CMU communicator system of Oh and Rudnicky (2000).

Rudnicky (2000), part of the CMU Communicator travel planning dialog system.
Notice first that the policy has decided to generate the dialog act QUERY with the
argument DEPART TIME. Fig. 29.7 lists the dialog acts in the Oh and Rudnicky
(2000) system, each of which combines an act with a potential argument. The input
frame in Fig. 29.6 also specifies some additional filled slots that should be included
in the sentence to the user (depart airport BOS, and the depart date).

The sentence realizer acts in two steps. It will first generate a delexicalizeddelexicalized

string like:

What time on [depart date] would you like to leave [depart airport]?

Delexicalization is the process of replacing specific words with a generic rep-
resentation of their slot types. A delexicalized sentence is much easier to generate
since we can train on many different source sentences from different specific dates
and airports. Then once we’ve generating the delexicalized string, we can simply use
the input frame from the content planner to relexicalize (fill in the exact departurerelexicalize

date and airport).
To generate the delexicalized sentences, the sentence realizer uses a large corpus

of human-human travel dialogs that were labeled with the dialog acts from Fig. 29.7
and the slots expressed in each turn, like the following:

QUERY DEPART TIME And what time would you like to leave [depart city Pittsburgh]?
QUERY ARRIVE CITY And you’re flying into what city?
QUERY ARRIVE TIME What time on [arrive date May 5]?
INFORM FLIGHT The flight departs [depart airport PGH] at [depart time 10 am] and arrives

[arrive city Seattle] at [arrive time 12:05 their time].

This corpus is then delexicalized, and divided up into separate corpora for each
dialog act. Thus the delexicalized corpus for one dialog act, QUERY DEPART TIME
might be trained on examples like:
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And what time would you like to leave depart city?
When would you like to leave depart city?
When would you like to leave?
What time do you want to leave on depart date?
OK, on depart date, what time do you want to leave?

A distinct N-gram grammar is then trained for each dialog act. Now, given
the dialog act QUERY DEPART TIME, the system samples random sentences from
this language model. Recall from the the ”Shannon” exercise of 44 that this works
(assuming a bigram LM) by first selecting a bigram (< s>,< w>) according to its
bigram probability in the language model, then drawing a bigram starting with <
w> according to its bigram probability, and so on until a full sentence is generated.
The probability of each successive word wi being generated from utterance class u
is thus

P(wi) = P(wi|wi−1,wi−2, ...,wi−(n−1),u) (29.7)

Each of these randomly sampled sentences is then assigned a score based on
heuristic rules that penalize sentences that are too short or too long, repeat slots, or
lack some of the required slots from the input frame (in this case, depart airport and
depart date). The best scoring sentence is then chosen. Let’s suppose in this case
we produce the following (delexicalized) sentence:

What time on depart date would you like to leave depart airport?

This sentence is then relexicalized from the true values in the input frame, re-
sulting in the final sentence:

What time on October fifth would you like to leave Boston?

More recent work has replaced the simplistic N-gram part of the generator with
neural models, which similarly learn to map from an input frame to a resulting sen-
tence (Wen et al. 2015a, Wen et al. 2015b).

It’s also possible to design NLG algorithms that are specific to a particular di-
alog act. For example, consider the task of generating clarification questions, inclarification

questions
cases where the speech recognition fails to understand some part of the user’s ut-
terance. While it is possible to use the generic dialog act REJECT (“Please repeat”,
or “I don’t understand what you said”), studies of human conversations show that
humans instead use targeted clarification questions that reprise elements of the mis-
understanding (Purver 2004, Ginzburg and Sag 2000, Stoyanchev et al. 2013).

For example, in the following hypothetical example the system reprises the
words “going” and “on the 5th” to make it clear which aspect of the user’s turn
the system needs to be clarified:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Going where on the 5th?

Targeted clarification questions can be created by rules (such as replacing “go-
ing to UNKNOWN WORD” with “going where”) or by building classifiers to guess
which slots might have been misrecognized in the sentence (Chu-Carroll and Car-
penter 1999, Stoyanchev et al. 2014, Stoyanchev and Johnston 2015).
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29.6 Advanced: Markov Decision Processes

The policy we described in Section 29.4, deciding what actions the system should
take based just on the current filled slots and the users last utterance, has a problem:
it looks only at the past of the dialog, completely ignoring whether the action we
take is likely to lead to a successful outcome (a correctly booked flight or filled-in
calendar).

But we can’t know whether the outcome is successful until long after the current
utterance we are trying to plan. Reinforcement learning is the branch of machine
learning that deals with models that learn to maximize future rewards.

This is an extremely active area of research, so we give here just the simplest
intuition for this direction, based on an oversimplified model of dialog as a Markov
decision process.Markov

decision process
A Markov decision process or MDP is characterized by a set of states S an agentMDP

can be in, a set of actions A the agent can take, and a reward r(a,s) that the agent
receives for taking an action in a state. Given these factors, we can compute a policy
π that specifies which action a the agent should take when in a given state s so as to
receive the best reward.

To understand each of these components, we need to look at a tutorial example
in which the state space is extremely reduced. Let’s look at a trivial pedagogical
frame-and-slot example from Levin et al. (2000), a “Day-and-Month” dialog system
whose goal is to get correct values of day and month for a two-slot frame through
the shortest possible interaction with the user.

In principle, a state of an MDP could include any possible information about the
dialog, such as the complete dialog history so far. Using such a rich model of state
would make the number of possible states extraordinarily large. So a model of state
is usually chosen that encodes a much more limited set of information, such as the
values of the slots in the current frame, the most recent question asked to the user, the
user’s most recent answer, the ASR confidence, and so on. For the Day-and-Month
example, let’s represent the state of the system as the values of the two slots day and
month. There are 411 states (366 states with a day and month (counting leap year),
12 states with a month but no day (d = 0, m = 1,2, ...,12), 31 states with a day but
no month (m = 0, d = 1,2, ...,31), and a special initial state si and final state s f .

Actions of an MDP dialog system might include generating particular speech
acts, or performing a database query to find out information. For the Day-and-Month
example, Levin et al. (2000) propose the following actions:

• ad : a question asking for the day
• am: a question asking for the month
• adm: a question asking for both the day and the month
• a f : a final action submitting the form and terminating the dialog

Since the goal of the system is to get the correct answer with the shortest inter-
action, one possible reward function for the system would integrate three terms:

R =−(wini +wene +w f n f ) (29.8)

The term ni is the number of interactions with the user, ne is the number of errors,
n f is the number of slots that are filled (0, 1, or 2), and the ws are weights.

Finally, a dialog policy π specifies which actions to apply in which state. Con-
sider two possible policies: (1) asking for day and month separately, and (2) asking
for them together. These might generate the two dialogs shown in Fig. 29.8.
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d=0
m=0

d=D
m=0

d=D
m=M

d=-1
m=-1

d=D
m=M

d=-1
m=-1

d=0
m=0

Which day? Which month?

What date? Goodbye.

Goodbye.

Policy 1 (directive)

Policy 2 (open)

c1 = -3wi + 2pdwe

c2 = -2wi + 2powe

Figure 29.8 Two policies for getting a month and a day. After Levin et al. (2000).

In policy 1, the action specified for the no-date/no-month state is to ask for a day,
and the action specified for any of the 31 states where we have a day but not a month
is to ask for a month. In policy 2, the action specified for the no-date/no-month state
is to ask an open-ended question (Which date) to get both a day and a month. The
two policies have different advantages; an open prompt can lead to shorter dialogs
but is likely to cause more errors, whereas a directive prompt is slower but less
error-prone. Thus, the optimal policy depends on the values of the weights w and
also on the error rates of the ASR component. Let’s call pd the probability of the
recognizer making an error interpreting a month or a day value after a directive
prompt. The (presumably higher) probability of error interpreting a month or day
value after an open prompt we’ll call po. The reward for the first dialog in Fig. 29.8
is thus −3×wi + 2× pd ×we. The reward for the second dialog in Fig. 29.8 is
−2×wi + 2× po×we. The directive prompt policy, policy 1, is thus better than
policy 2 when the improved error rate justifies the longer interaction, that is, when
pd− po >

wi
2we

.
In the example we’ve seen so far, there were only two possible actions, and hence

only a tiny number of possible policies. In general, the number of possible actions,
states, and policies is quite large, and so the problem of finding the optimal policy
π∗ is much harder.

Markov decision theory together with classical reinforcement learning gives us
a way to think about this problem. First, generalizing from Fig. 29.8, we can think
of any particular dialog as a trajectory in state space:

s1→a1,r1 s2→a2,r2 s3→a3,r3 · · · (29.9)

The best policy π∗ is the one with the greatest expected reward over all trajec-
tories. What is the expected reward for a given state sequence? The most common
way to assign utilities or rewards to sequences is to use discounted rewards. Herediscounted

reward
we compute the expected cumulative reward Q of a sequence as a discounted sum
of the utilities of the individual states:

Q([s0,a0,s1,a1,s2,a2 · · · ]) = R(s0,a0)+ γR(s1,a1)+ γ
2R(s2,a2)+ · · · , (29.10)

The discount factor γ is a number between 0 and 1. This makes the agent care
more about current rewards than future rewards; the more future a reward, the more
discounted its value.

Given this model, it is possible to show that the expected cumulative reward
Q(s,a) for taking a particular action from a particular state is the following recursive
equation called the Bellman equation:Bellman

equation
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Q(s,a) = R(s,a)+ γ

∑
s′

P(s′|s,a)max
a′

Q(s′,a′) (29.11)

What the Bellman equation says is that the expected cumulative reward for a
given state/action pair is the immediate reward for the current state plus the expected
discounted utility of all possible next states s′, weighted by the probability of moving
to that state s′, and assuming that once there we take the optimal action a′.

Equation 29.11 makes use of two parameters. We need a model of P(s′|s,a),
that is, how likely a given state/action pair (s,a) is to lead to a new state s′. And
we also need a good estimate of R(s,a). If we had lots of labeled training data, we
could simply compute both of these from labeled counts. For example, with labeled
dialogs, to estimate P(s′|s,a) we could simply count how many times we were in
a given state s, and out of that how many times we took action a to get to state s′.
Similarly, if we had a hand-labeled reward for each dialog, we could build a model
of R(s,a).

Given these parameters, there is an iterative algorithm for solving the Bellman
equation and determining proper Q values, the value iteration algorithm (Suttonvalue iteration

and Barto 1998, Bellman 1957). See Russell and Norvig (2002) for the details of
the algorithm.

How do we get enough labeled training data to set these parameters? This is
especially worrisome since in real problems the number of states s is extremely
large. The most common method is to build a simulated user. The user interacts with
the system millions of times, and the system learns the state transition and reward
probabilities from this corpus. For example Levin et al. (2000) build a generative
stochastic model that given the system’s current state and actions, produced a frame-
slot representation of a user response; the parameters of the simulated user were
estimated from a corpus of ATIS dialogs.

The MDP is only useful in small toy examples and is not used in practical dialog
systems. A more powerful model, the partially observable Markov decision process,
or POMDP, adds extra latent variables to represent our uncertainty about the true
state of the dialog. Both MDPs and POMDPs, however, have problems due to com-
putational complexity and due to their reliance on simulations that don’t reflect true
user behavior.

Recent research has therefore focused on ways to build real task-based systems
that nonetheless make use of this reinforcement learning intuition, often by adding
reinforcement learning to deep neural networks. This is an exciting new area of
research, but a standard paradigm has yet to emerge.

29.7 Summary

• In dialog, speaking is a kind of action; these acts are referred to as speech
acts. Speakers also attempt to achieve common ground by acknowledging
that they have understand each other. The dialog act combines the intuition
of speech acts and grounding acts.

• The dialog-state or information-state architecture augments the frame-and-
slot state architecture by keeping track of user’s dialog acts and includes a
policy for generating its own dialog acts in return.

• Policies based on reinforcement learning architecture like the MDP and POMDP
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offer ways for future dialog reward to be propagated back to influence policy
earlier in the dialog manager.

Bibliographical and Historical Notes
The idea that utterances in a conversation are a kind of action being performed by
the speaker was due originally to the philosopher Wittgenstein (1953) but worked out
more fully by Austin (1962) and his student John Searle. Various sets of speech acts
have been defined over the years, and a rich linguistic and philosophical literature
developed, especially focused on explaining the use of indirect speech acts.

The idea of dialog acts draws also from a number of other sources, including
the ideas of adjacency pairs, pre-sequences, and other aspects of the international
properties of human conversation developed in the field of conversation analysis
(see Levinson (1983) for an introduction to the field).

This idea that acts set up strong local dialogue expectations was also prefigured
by Firth (1935, p. 70), in a famous quotation:

Most of the give-and-take of conversation in our everyday life is stereotyped
and very narrowly conditioned by our particular type of culture. It is a sort
of roughly prescribed social ritual, in which you generally say what the other
fellow expects you, one way or the other, to say.

Another important research thread modeled dialog as a kind of collaborative be-
havior, including the ideas of common ground (Clark and Marshall, 1981), reference
as a collaborative process (Clark and Wilkes-Gibbs, 1986), joint intention (Levesque
et al., 1990), and shared plans (Grosz and Sidner, 1980).

The information state model of dialogue was also strongly informed by analytic
work on the linguistic properties of dialog acts and on methods for their detection
(Sag and Liberman 1975, Hinkelman and Allen 1989, Nagata and Morimoto 1994,
Goodwin 1996, Chu-Carroll 1998, Shriberg et al. 1998, Stolcke et al. 2000, Gravano
et al. 2012).

Two important lines of research focused on the computational properties of con-
versational structure. One line, first suggested at by Bruce (1975), suggested that
since speech acts are actions, they should be planned like other actions, and drew
on the AI planning literature (Fikes and Nilsson, 1971). An agent seeking to find
out some information can come up with the plan of asking the interlocutor for the
information. An agent hearing an utterance can interpret a speech act by running the
planner “in reverse”, using inference rules to infer from what the interlocutor said
what the plan might have been. Plan-based models of dialogue are referred to as
BDI models because such planners model the beliefs, desires, and intentions (BDI)BDI

of the agent and interlocutor. BDI models of dialogue were first introduced by Allen,
Cohen, Perrault, and their colleagues in a number of influential papers showing how
speech acts could be generated (Cohen and Perrault, 1979) and interpreted (Perrault
and Allen 1980, Allen and Perrault 1980). At the same time, Wilensky (1983) intro-
duced plan-based models of understanding as part of the task of interpreting stories.

Another influential line of research focused on modeling the hierarchical struc-
ture of dialog. Grosz’s pioneering (1977) dissertation first showed that “task-oriented
dialogs have a structure that closely parallels the structure of the task being per-
formed” (p. 27), leading to her work with Sidner and others showing how to use
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similar notions of intention and plans to model discourse structure and coherence in
dialogue. See, e.g., Lochbaum et al. (2000) for a summary of the role of intentional
structure in dialog.

The idea of applying reinforcement learning to dialogue first came out of AT&T
and Bell Laboratories around the turn of the century with work on MDP dialogue
systems (Walker 2000, Levin et al. 2000, Singh et al. 2002) and work on cue phrases,
prosody, and rejection and confirmation. Reinforcement learning research turned
quickly to the more sophisticated POMDP models (Roy et al. 2000, Lemon et al. 2006,
Williams and Young 2007) applied to small slot-filling dialogue tasks.

More recent work has applied deep learning to many components of dialogue
systems.
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Màrquez, L., Carreras, X., Litkowski, K. C., and Stevenson,
S. (2008). Semantic role labeling: An introduction to the
special issue. Computational linguistics, 34(2), 145–159.

Marshall, I. (1983). Choice of grammatical word-class with-
out GLobal syntactic analysis: Tagging words in the LOB
corpus. Computers and the Humanities, 17, 139–150.

Marshall, I. (1987). Tag selection using probabilistic meth-
ods. In Garside, R., Leech, G., and Sampson, G. (Eds.), The
Computational Analysis of English, pp. 42–56. Longman.

Martin, J. H. (1986). The acquisition of polysemy. In ICML
1986, Irvine, CA, pp. 198–204.

Masterman, M. (1957). The thesaurus in syntax and seman-
tics. Mechanical Translation, 4(1), 1–2.

Mays, E., Damerau, F. J., and Mercer, R. L. (1991). Con-
text based spelling correction. Information Processing and
Management, 27(5), 517–522.

McCallum, A. (2005). Information extraction: Distilling
structured data from unstructured text. ACM Queue, 3(9),
48–57.

McCallum, A., Freitag, D., and Pereira, F. C. N. (2000).
Maximum entropy Markov models for information extrac-
tion and segmentation. In ICML 2000, pp. 591–598.

McCallum, A. and Nigam, K. (1998). A comparison of event
models for naive bayes text classification. In AAAI/ICML-
98 Workshop on Learning for Text Categorization, pp. 41–
48.

McCawley, J. D. (1998). The Syntactic Phenomena of En-
glish. University of Chicago Press.

McClelland, J. L. and Elman, J. L. (1986). The TRACE
model of speech perception. Cognitive Psychology, 18, 1–
86.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of
ideas immanent in nervous activity. Bulletin of Mathemat-
ical Biophysics, 5, 115–133. Reprinted in Neurocomput-
ing: Foundations of Research, ed. by J. A. Anderson and E
Rosenfeld. MIT Press 1988.

McDonald, R., Crammer, K., and Pereira, F. C. N. (2005).
Online large-margin training of dependency parsers. In
ACL-05, Ann Arbor, pp. 91–98.

McDonald, R. and Nivre, J. (2011). Analyzing and integrat-
ing dependency parsers. Computational Linguistics, 37(1),
197–230.

McDonald, R., Pereira, F. C. N., Ribarov, K., and Hajič, J.
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Séaghdha, D. O. (2010). Latent variable models of selec-
tional preference. In ACL 2010, pp. 435–444.
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Bourlard, H., 120
Bowman, S. R., 426
Boyd-Graber, J., 324
Brants, T., 53, 54, 155–157,

165
Bresnan, J., 188, 194, 212
Brevdo, E., 121
Brill, E., 70, 71, 243, 406,

408
Brin, S., 375
Briscoe, T., 239, 243, 324,

325
Broadhead, M., 375
Brockett, C., 425, 426
Brockmann, C., 391
Brody, S., 322, 324
Broschart, J., 144
Brown, P. F., 295–297
Bruce, B. C., 457
Bruce, R., 308, 324
Bruce, R. F., 326
Brysbaert, M., 340
Bu, J., 325
Buchholz, S., 269
Buck, C., 46
Budanitsky, A., 73, 322
Bullinaria, J. A., 298
Bulyko, I., 59, 449
Bunker, R. T., 309
Burchardt, A., 266
Burges, C., 424
Burget, L., 298
Burkett, D., 88, 90
Burnett, D., 439
Byrd, R. H., 97

Cafarella, M., 375
Cafarella, M. J., 375
Cai, Q., 416
Candito, M., 269
Canon, S., 243
Cardie, C., 284, 322, 325,

374
Carletta, J., 447
Carmel, D., 417
Carpenter, B., 453
Carpenter, R., 420, 425
Carpuat, M., 325
Carreras, X., 395
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Séaghdha, D. O., 395
Sebastiani, F., 325, 332,

333
Seddah, D., 269
See, A., 370
Segal, J., 39
Sekine, S., 239
Selfridge, J. A., 44
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numerals

as closed class, 144

object, syntactic
frequency of pronouns

as, 220
observation bias, 162
observation likelihood

role in forward, 129
role in Viterbi, 133, 153

OCR, 73

old information, and word
order, 221

on-line sentence-processing
experiments, 242

one sense per collocation,
314

one-hot, 293
one-hot vector, 117
one-of, 85
OntoNotes, 324
OOV (out of vocabulary)

words, 46
OOV rate, 46
open class, 143
Open Information

Extraction, 363
open vocabulary system

unknown words in, 46
operation list, 27
operator precedence, 14, 14
optical character

recognition, 73
optionality

of determiners, 176
use of ? in regular

expressions for, 12
ordinal number, 177
overfitting, 97

parallel distributed
processing, 120

parent annotation, 224
parse tree, 170, 173
parsed corpus, 242
parsing

ambiguity, 197
chunking, 205
CKY, 200, 218
CYK, see CKY
evaluation, 238
history, 210
partial, 205
probabilistic CKY, 218
relation to grammars,

174
shallow, 205
syntactic, 197
well-formed substring

table, 210
part-of-speech

adjective, 144
adverb, 144
as used in CFG, 170
closed class, 143, 144
greeting, 145
interjection, 145
negative, 145
noun, 143
open class, 143
particle, 144
subtle distinction

between verb and
noun, 144

usefulness of, 142
verb, 144

part-of-speech tagger
PARTS, 165
TAGGIT, 164

part-of-speech tagging, 143,
147

ambiguity and, 147
amount of ambiguity in

Brown corpus, 148
and morphological

analysis, 162
capitalization, 157
feature templates, 158
for phrases, 147
history of, 164
Hungarian, 162
Stanford tagger, 162
state of the art, 148
SVMTool, 162
Turkish, 162
Twitter data, 166
unknown words, 156

part-whole, 304
partial parsing, 205
particle, 144
PARTS tagger, 165
parts-of-speech, 142
passage retrieval, 405
path-length based

similarity, 318
pattern, regular expression,

11
PCFG, 213

for disambiguation, 214
lack of lexical sensitivity,

221
lexicalized, 242
parse probability, 214
poor independence

assumption, 220
rule probabilities, 213
use in language

modeling, 216
PDP, 120
Penn Treebank, 182

for statistical parsing,
218

POS tags for phrases,
147

tagging accuracy, 148
tagset, 145, 146

Penn Treebank
tokenization, 23

per-word entropy, 56
perceptron, 106
perplexity, 42, 57

as weighted average
branching factor, 42

defined via
cross-entropy, 57

personal pronoun, 145
personality, 341
personalized page rank, 314
phones

in spell checking, 72
phrasal verb, 144
phrase-structure grammar,

169, 194
pipe, 14
The Pirates of Penzance,

348
planning

and speech acts, 457
shared plans, 457

plural, 176
pointwise mutual

information, 275,
331

politeness marker, 145
polysemy, 301
POMDP, 456
Porter stemmer, 25
POS, 142
possessive NP, 196
possessive pronoun, 145
postdeterminer, 177
postmodifier, 177
postposed constructions,

169
Potts diagram, 334
PP, 171
PPMI, 276
pre-sequence, 446
precedence, 14
precedence, operator, 14
Precision, 84
precision, 208

in NER, 353
predeterminer, 178
predicate, 180
predicate-argument

relations, 180
preference semantics, 324
preposed constructions, 169
prepositional phrase, 177

attachment, 221
constituency, 171
preposing, 169

prepositions, 144
as closed class, 144

pretraining, 117
primitive decomposition,

392
prior probability, 63, 77
probabilistic CKY

algorithm, 217, 218
probabilistic parsing, 217

by humans, 239
productions, 170
progressive prompting, 450
projection layer, 118, 294
prompt, 435
prompts, 434
pronoun, 145

and old information, 221
as closed class, 144
personal, 145
possessive, 145
wh-, 145

PropBank, 381
proper noun, 143
propositional meaning, 303
prosody, 448
PROTO-AGENT, 380
PROTO-PATIENT, 380
pseudoword, 392
PTAG, 243
PTRANS, 393
punctuation
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for numbers
cross-linguistically,
23

for sentence
segmentation, 26

part-of-speech tags, 146
stripping before

part-of-speech
tagging, 147

tokenization, 22
treated as words, 19
treated as words in LM,

45

qualia structure, 325
quantifier

as part of speech, 177
query

reformulation in QA, 405
question

classification, 402
factoid, 400

question answering
evaluation, 415
factoid questions, 400
query reformulation in,

405

random forests, 100
range, regular expression,

12
rapid reprompting, 450
RDF, 356
RDF triple, 356
RE

regular expression, 11
reading time, 239
real-word spelling errors,

61
Recall, 84
recall, 208

in NER, 353
reformulation, 443
register in RE, 18
regression

lasso, 98
ridge, 98

regular expression, 11, 31
substitutions, 17

regularization, 97
rejection

conversation act, 450
relation extraction, 348
relative

temporal expression, 365
relative entropy, 390
relative frequency, 39
relative pronoun, 178
relexicalize, 452
ReLU, 105
reporting events, 369
Resnik similarity, 320
resolve, 148
response generation, 424
restrictive grammar, 434
restrictive relative clause,

178
ReVerb, 363

reversives, 304
rewrite, 170
Riau Indonesian, 144
ridge regression, 98
role-filler extraction, 372
row vector, 273
rules

context-free, 170
context-free, expansion,

170, 174
context-free, sample, 171

S as start symbol in CFG,
170

sampling
used in clustering, 316

saturated, 105
“Schoolhouse Rock”, 142
SCISOR, 374
sclite package, 32
script

Schankian, 383
scripts, 371
second-order

co-occurrence, 275
seed pattern in IE, 359
seed tuples, 359
segmentation

Chinese word, 24
maximum matching, 24
sentence, 26
word, 22

selectional association, 390
selectional preference

strength, 390
selectional preferences

pseudowords for
evaluation, 392

selectional restriction, 387
representing with events,

388
violations in WSD, 390

semantic concordance, 308
semantic distance, 317
semantic drift in IE, 360
semantic feature, 285
semantic grammars, 430
semantic network

for word sense
disambiguation, 324

semantic relations in IE,
354

table, 355
semantic role, 377, 378,

380
Semantic role labeling, 384
sense

accuracy in WSD, 311
word, 301

SENSEVAL
and WSD evaluation, 311

SENSEVAL corpus, 308
sentence

segmentation, 26
sentence realization, 451
sentence segmentation, 11
sentential complements,

179

sentiment
origin of term, 345

sentiment analysis, 74
sentiment lexicons, 82
SentiWordNet, 332
sequence model, 122
Shakespeare

N-gram approximations
to, 44

shallow parse, 205
shared plans, 457
shift-reduce parsing, 250
side sequence, 446
sigmoid, 103
significance test

MAPSSWE for
chunking, 209

McNemar, 209
Simplified Lesk, 311
skip-gram, 290
skip-gram with negative

sampling, 292
slot filling, 375, 430
slots, 427
smoothing, 46, 46

absolute discounting, 51
add-one, 47
discounting, 47
for HMM POS tagging,

155
interpolation, 49
Katz backoff, 50
Kneser-Ney discounting,

51
Laplace, 47
linear interpolation, 50

softmax, 110
Soundex, 72
spam detection, 74
sparse vectors, 286
speech acts, 442
spell checking

pronunciation, 72
spelling correction

use of N-grams in, 35
SPELLING CORRECTION

ALGORITHM, 64, 72
spelling errors

context-dependent, 61
correction, EM, 65
detection, real words, 67
noisy channel model for

correction, 64
non-word, 61
real word, 61

split, 223
split and merge, 225
SRILM, 59
Stanford tagger, 162
start symbol, 170
stationary stochastic

process, 56
statistical parsing, 217
statistical significance

MAPSSWE for
chunking, 209

McNemar test, 209
stem, 25

Stemming, 11
stemming, 25
stop words, 79
strong equivalence of

grammars, 187
structural ambiguity, 197
stupid backoff, 54
subcategorization

and probabilistic
grammars, 212

tagsets for, 180
subcategorization frame,

180
examples, 180

subcategorize for, 180
subdialogue, 446
subject, syntactic

frequency of pronouns
as, 220

in wh-questions, 175
subjectivity, 326, 345
substitutability, 194
substitution in TAG, 195
substitution operator

(regular
expressions), 17

superordinate, 304
Supertagging, 232
supertagging, 243
Support Vector Machine

(SVM), 100
SVD, 286

truncated, 289
SVM (Support Vector

Machine), 100
SVMs, 100
SVMTool, 162
Switchboard, 146
Switchboard Corpus, 19
synonyms, 303
synset, 305
syntactic categories, 142
syntactic disambiguation,

199
syntactic movement, 182
syntax, 168

origin of term, 142
system-initiative, 428

t-test, 278
for word similarity, 278

TAG, 195, 243
TAGGIT, 164
tagset, 142

difference between Penn
Treebank and
Brown, 147

history of Penn
Treebank, 147

Penn Treebank, 145, 146
table of Penn Treebank

tags, 146
tanh, 105
technai, 142
template filling, 349, 371
template recognition, 372
template, in IE, 371
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template-based generation,
434

temporal adverb, 144
temporal anchor, 368
temporal expression

absolute, 365
recognition, 349
relative, 365

temporal expressions, 349
temporal normalization,

366
term

clustering, 323, 324
term frequency, 278
term-document matrix, 271
term-term matrix, 273
terminal symbol, 170
test set, 41

development, 42
how to choose, 42

text categorization, 74
bag of words assumption,

76
naive Bayes approach, 76
unknown words, 79

text normalization, 10
part-of-speech tagging,

147
tf-idf, 278
thematic grid, 379
thematic role, 378

and diathesis alternation,
380

examples of, 378
problems, 380

theme, 378
theme, as thematic role, 378
there, existential in English,

145
thesaurus, 323
TimeBank, 370
tokenization, 10

sentence, 26
word, 22

tokens, word, 20
topic (information

structure), 221
topic modeling, 316
trace, 175, 182
training oracle, 255
training set, 41

cross-validation, 86
how to choose, 42

Transformations and
Discourse Analysis
Project (TDAP),
164

transition probability
role in forward, 129
role in Viterbi, 133, 153

transitive verbs, 180
TREC, 417
Tree Adjoining Grammar

(TAG), 195
adjunction in, 195
probabilistic, 243
substitution in, 195

treebank, 182, 218
trellis, Viterbi, 153
trigram, 40
triple stores, 401
truncated SVD, 289
Turkish

part-of-speech tagging,
162

turn correction ratio, 437
turns, 419
Twitter

part-of-speech tagging,
166

type raising, 190
typed dependency structure,

245
types

word, 20

ungrammatical sentences,
172

unique beginner, 306
unit production, 200
unit vector, 280
universal, 429
Universal Dependencies,

247
Unix, 11
<UNK>, 46
unknown words

in N-grams, 46
in part-of-speech

tagging, 156
in text categorization, 79

user-centered design, 438
utterance, 19

V (vocabulary), 63
value iteration, 456

variance
tradeoff with bias in

learning, 100
vector, 103, 271
vector length, 279
vector space, 271
vector space model, 271
verb, 144

copula, 145
modal, 145
phrasal, 144

verb alternations, 380
verb phrase, 171, 179
Viterbi

trellis, 153
Viterbi algorithm, 28, 132

backtrace in, 133
decoding in MEMM, 160
history of, 140

VITERBI ALGORITHM,
133, 153

voice user interface, 438
VoiceXML, 434
VP attachment, 221

weak equivalence of
grammars, 187

WEBQUESTIONS, 416
well-formed substring

table, 210
WFST, 210
wh-non-subject-question,

175
wh-phrase, 175, 175
wh-pronoun, 145
wh-subject-questions, 175
wh-word, 175
wildcard, regular

expression, 13
Wizard-of-Oz system, 438
word

boundary, regular
expression notation,
14

closed class, 143
definition of, 19
fragment, 19
function, 143, 164
open class, 143
punctuation as, 19
tokens, 20
types, 20

word embedding, 291

word error rate, 24
word normalization, 22
word relatedness, 317
word segmentation, 22
word sense, 301
word sense disambiguation,

see WSD
word sense induction, 316
word shape, 159, 351
word similarity, 317
word tokenization, 22
word-word matrix, 273
word2vec, 290
wordform, 20

and lemma, 300
versus lemma, 20

WordNet, 305, 305
WSD, 307

AI-oriented efforts, 323
all-words task, 308
bootstrapping, 314, 324
decision tree approach,

324
evaluation of, 311
history, 323
history of, 325
lexical sample task, 307
neural network

approaches, 324
robust approach, 324
supervised machine

learning, 324
unsupervised machine

learning, 316
use of bag-of-words

features, 309
use of collocational

features, 309
WSI, 316
WSJ, 146

X-bar schemata, 194

Yarowsky algorithm, 314
yes-no questions, 174, 447
yield, 215
Yonkers Racetrack, 55

Z, normalization factor in
MaxEnt, 93

zero-width, 19
zeros, 45
zeugma, 302
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