
Reinforcement Learning

Summer 2019

Stefan Riezler

Computational Lingustics & IWR
Heidelberg University, Germany

riezler@cl.uni-heidelberg.de

Reinforcement Learning, Summer 2019 1(86)



Overview

Overview

� Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

� Dynamic programming techniques for policy evaluation and
policy optimization

� Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

� Policy-gradient methods: Score function gradient
estimators, actor-critic methods

� Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

� Off-policy/counterfactual seq2seq reinforcement learning

� Seq2seq reinforcment learning from human feedback

Reinforcement Learning, Summer 2019 2(86)



Overview

Textbooks

� Richard S. Sutton and Andrew G. Barto (2018, 2nd edition):
Reinforcement Learning: An Introduction. MIT Press.

� http://incompleteideas.net/sutton/book/

the-book-2nd.html

� Csaba Szepesvári (2010). Algorithms for Reinforcement
Learning. Morgan & Claypool.

� https://sites.ualberta.ca/~szepesva/RLBook.html

� Dimitri Bertsekas and John Tsitsiklis (1996). Neuro-Dynamic
Programming. Athena Scientific.

� = another name for deep reinforcement learning, contains a lot
of proofs, analog version can be ordered at
http://www.athenasc.com/ndpbook.html

Reinforcement Learning, Summer 2019 3(86)



Introduction

Reinforcement Learning (RL) Philosopy

� Hedoninistic learning system that wants something, and
adapts its behavior in order to maximize a special signal or
reward from its environment.

� Interactive learning by trial and error, using consequences of
own actions in uncharted territory to learn to maximize
expected reward.

� Weak supervision signal since no gold standard examples from
expert are available.

Reinforcement Learning, Summer 2019 4(86)



Introduction

Reinforcement Learning Schema

� RL as Google DeepMind would like to see it (image from
David Silver):

Reinforcement Learning, Summer 2019 5(86)



Introduction

Reinforcement Learning Schema

� A real-world example: Interactive Machine Translation

� action = predicting a target word
� reward = per-sentence translation quality
� state = source sentence and target history

Reinforcement Learning, Summer 2019 6(86)



Introduction

Reinforcement Learning Schema

Agent/system and environment/user interact

� at each of a sequence of time steps t = 0, 1, 2, . . .,

� where agent receives a state representation St ,

� on which basis it selects an action At ,

� and as a consequence, it receives a reward Rt+1,

� and finds itself in a new state St+1.

Goal of RL: Maximize the total amount of reward an agent
receives in such interactions in the long run.

Reinforcement Learning, Summer 2019 7(86)



Markov Decision Processes

Formalizing User/Environment: Markov
Decision Processes (MDPs)

A Markov decision process is a tuple �S,A,P,R� where
� S is a set of states,

� A is a finite set of actions,

� P is a state transition probability matrix s.t.
Pa
ss� = P[St+1 = s �|St = s,At = a],

� R is a reward function s.t. Ra
s = E[Rt+1|St = s,At = a].

Reinforcement Learning, Summer 2019 8(86)



Markov Decision Processes

Dynamics of MDPs

One-step dynamics of the environment under the Markov property
is completely specified by probability distribution over pairs of next
state and reward s �, r , given state and action s, a:

� p(s �, r |s, a) = P[St+1 = s �,Rt+1 = r |St = s,At = a].

Exercise: Specify Pa
ss� and Ra

s in terms of p(s �, r |s, a).
Pa
ss� = p(s �|s, a) = �

r∈R p(s �, r |s, a),
Ra

s =
�

r∈R r
�

s�∈S p(s �, r |s, a).

Reinforcement Learning, Summer 2019 9(86)



Markov Decision Processes

Formalizing Agent/System: Policies

A stochastic policy is a distribution over actions given states s.t.

� π(a|s) = P[At = a|St = s].

� A policy completely specifies the behavior of an agent/system.

� Policies are parameterized πθ, e.g. by a linear model or a
neural nework - we use π to denote πθ if unambiguous.

� Deterministic policies a = π(s) also possible.

Reinforcement Learning, Summer 2019 10(86)



Dynamic Programming

Policy Evaluation and Policy Optimization

Two central tasks in RL:

� Policy evaluation (a.k.a. prediction): Evaluate the
expected reward for a given policy.

� Policy optimization (a.k.a. learning/control): Find the
optimal policy / optimize a parametric policy under the
expected reward criterion.

Reinforcement Learning, Summer 2019 11(86)



Dynamic Programming

Return and Value Functions

� The total discounted return from time-step t for discount
γ ∈ [0, 1] is

� Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
�∞

k=0 γ
kRt+k+1.

� The action-value function qπ(s, a) on an MDP is the
expected return starting from state s, taking action a, and
following policy π s.t.

� qπ(s, a) = Eπ[Gt |St = s,At = a].

� The state-value function vπ(s) on an MDP is the expected
return starting from state s and following policy π s.t.

� vπ(s) = Eπ[Gt |St = s] = Ea∼π[qπ(s, a)].

Reinforcement Learning, Summer 2019 12(86)



Dynamic Programming

Bellman Expectation Equation

The state-value function can be decomposed into immediate
reward plus discounted value of successor state s.t.

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]

=
�

a∈A
π(a|s)

�
Ra

s + γ
�

s�∈S
Pa
ss�vπ(s

�)

�
.

In matrix notation:

vπ = Rπ + γPπvπ.



v(1)
...

v(n)


 =



R1
...

Rn


+ γ



P11 . . . P1n
...

Pn1 . . . Pnn






v(1)
...

v(n)




Reinforcement Learning, Summer 2019 13(86)



Dynamic Programming

Policy Evaluation by Linear Programming

The value of vπ can be found directly by solving the linear
equations of the Bellman Expectation Equation:

� Solving linear equations:

vπ = (I− γPπ)−1Rπ

� Only applicable to small MDPs.

Exercise: Derive vπ from the Bellman Expectation Equaition.

vπ = Rπ + γPπvπ

(I− γPπ)vπ = Rπ

vπ = (I− γPπ)−1Rπ

Reinforcement Learning, Summer 2019 14(86)



Dynamic Programming

Policy Evaluation by Dynamic Programming
(DP)

Value of vπ can also be found by iterative application of Bellman
Expectation Equation:

� Iterative policy evaluation:

vk+1 = Rπ + γPπvk .

� Performs dynamic programming by recursive decomposition
of Bellman equation.

� Can be parallelized (or backed up asynchronously), thus
applicable to large MDPs.

� Converges to vπ.

Reinforcement Learning, Summer 2019 15(86)



Dynamic Programming

Policy Optimization using Bellman Optimality
Equation

An optimal policy π∗ can be found by maximizing over the optimal
action-value function q∗(s, a) = maxπ qπ(s, a) s.t.

π∗(s) = argmax
a

q∗(s, a).

The optimal value functions are recursively related by the Bellman
Optimality Equation:

q∗(s, a) = Eπ∗ [Rt+1 + γmax
a�

q∗(St+1, a
�)|St = s,At = a]

= Ra
s + γ

�

s�∈S
Pa
ss� max

a�
q∗(s �, a�).

Reinforcement Learning, Summer 2019 16(86)



Dynamic Programming

Policy Optimization by Value Iteration

The Bellman Optimality Equation is non-linear and requires
iterative solutions such as value iteration by dynamic programming:

� Value iteration for q-function:

qk+1(s, a) = Ra
s + γ

�

s�∈S
Pa
ss� max

a�
qk(s

�, a�).

� Converges to q∗(s, a).

Reinforcement Learning, Summer 2019 17(86)



Dynamic Programming

Summary: Dynamic Programming

� Earliest RL algorithms with well-defined convergence
properties.

� Bellman equation gives recursive decomposition for iterative
solution to various problems in policy evaluation and policy
optimization.

� Can be trivially parallelized or even run asynchronously.

� We need to know a full MDP model with all transitions
and rewards, and touch all of them in learning!

Reinforcement Learning, Summer 2019 18(86)


