
Reinforcement Learning

Summer 2019

Stefan Riezler

Computational Lingustics & IWR
Heidelberg University, Germany

riezler@cl.uni-heidelberg.de

Reinforcement Learning, Summer 2019 1(86)

Overview

Overview

� Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

� Dynamic programming techniques for policy evaluation and
policy optimization

� Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

� Policy-gradient methods: Score function gradient
estimators, actor-critic methods

� Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

� Off-policy/counterfactual seq2seq reinforcement learning

� Seq2seq reinforcment learning from human feedback

Reinforcement Learning, Summer 2019 2(86)

Overview

Textbooks

� Richard S. Sutton and Andrew G. Barto (2018, 2nd edition):
Reinforcement Learning: An Introduction. MIT Press.

� http://incompleteideas.net/sutton/book/

the-book-2nd.html

� Csaba Szepesvári (2010). Algorithms for Reinforcement
Learning. Morgan & Claypool.

� https://sites.ualberta.ca/~szepesva/RLBook.html

� Dimitri Bertsekas and John Tsitsiklis (1996). Neuro-Dynamic
Programming. Athena Scientific.

� = another name for deep reinforcement learning, contains a lot
of proofs, analog version can be ordered at
http://www.athenasc.com/ndpbook.html

Reinforcement Learning, Summer 2019 3(86)

Introduction

Reinforcement Learning (RL) Philosopy

� Hedoninistic learning system that wants something, and
adapts its behavior in order to maximize a special signal or
reward from its environment.

� Interactive learning by trial and error, using consequences of
own actions in uncharted territory to learn to maximize
expected reward.

� Weak supervision signal since no gold standard examples from
expert are available.

Reinforcement Learning, Summer 2019 4(86)

Introduction

Reinforcement Learning Schema

� RL as Google DeepMind would like to see it (image from
David Silver):

Reinforcement Learning, Summer 2019 5(86)

Introduction

Reinforcement Learning Schema

� A real-world example: Interactive Machine Translation

� action = predicting a target word
� reward = per-sentence translation quality
� state = source sentence and target history

Reinforcement Learning, Summer 2019 6(86)

Introduction

Reinforcement Learning Schema

Agent/system and environment/user interact

� at each of a sequence of time steps t = 0, 1, 2, . . .,

� where agent receives a state representation St ,

� on which basis it selects an action At ,

� and as a consequence, it receives a reward Rt+1,

� and finds itself in a new state St+1.

Goal of RL: Maximize the total amount of reward an agent
receives in such interactions in the long run.

Reinforcement Learning, Summer 2019 7(86)

Markov Decision Processes

Formalizing User/Environment: Markov
Decision Processes (MDPs)

A Markov decision process is a tuple �S,A,P,R� where
� S is a set of states,

� A is a finite set of actions,

� P is a state transition probability matrix s.t.
Pa
ss� = P[St+1 = s �|St = s,At = a],

� R is a reward function s.t. Ra
s = E[Rt+1|St = s,At = a].

Reinforcement Learning, Summer 2019 8(86)

Markov Decision Processes

Dynamics of MDPs

One-step dynamics of the environment under the Markov property
is completely specified by probability distribution over pairs of next
state and reward s �, r , given state and action s, a:

� p(s �, r |s, a) = P[St+1 = s �,Rt+1 = r |St = s,At = a].

Exercise: Specify Pa
ss� and Ra

s in terms of p(s �, r |s, a).
Pa
ss� = p(s �|s, a) = �

r∈R p(s �, r |s, a),
Ra

s =
�

r∈R r
�

s�∈S p(s �, r |s, a).

Reinforcement Learning, Summer 2019 9(86)

Markov Decision Processes

Formalizing Agent/System: Policies

A stochastic policy is a distribution over actions given states s.t.

� π(a|s) = P[At = a|St = s].

� A policy completely specifies the behavior of an agent/system.

� Policies are parameterized πθ, e.g. by a linear model or a
neural nework - we use π to denote πθ if unambiguous.

� Deterministic policies a = π(s) also possible.

Reinforcement Learning, Summer 2019 10(86)

Dynamic Programming

Policy Evaluation and Policy Optimization

Two central tasks in RL:

� Policy evaluation (a.k.a. prediction): Evaluate the
expected reward for a given policy.

� Policy optimization (a.k.a. learning/control): Find the
optimal policy / optimize a parametric policy under the
expected reward criterion.

Reinforcement Learning, Summer 2019 11(86)

Dynamic Programming

Return and Value Functions

� The total discounted return from time-step t for discount
γ ∈ [0, 1] is

� Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
�∞

k=0 γ
kRt+k+1.

� The action-value function qπ(s, a) on an MDP is the
expected return starting from state s, taking action a, and
following policy π s.t.

� qπ(s, a) = Eπ[Gt |St = s,At = a].

� The state-value function vπ(s) on an MDP is the expected
return starting from state s and following policy π s.t.

� vπ(s) = Eπ[Gt |St = s] = Ea∼π[qπ(s, a)].

Reinforcement Learning, Summer 2019 12(86)

Dynamic Programming

Bellman Expectation Equation

The state-value function can be decomposed into immediate
reward plus discounted value of successor state s.t.

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]

=
�

a∈A
π(a|s)

�
Ra

s + γ
�

s�∈S
Pa
ss�vπ(s

�)

�
.

In matrix notation:

vπ = Rπ + γPπvπ.

v(1)
...

v(n)

 =

R1
...

Rn

+ γ

P11 . . . P1n
...

Pn1 . . . Pnn

v(1)
...

v(n)

Reinforcement Learning, Summer 2019 13(86)

Dynamic Programming

Policy Evaluation by Linear Programming

The value of vπ can be found directly by solving the linear
equations of the Bellman Expectation Equation:

� Solving linear equations:

vπ = (I− γPπ)−1Rπ

� Only applicable to small MDPs.

Exercise: Derive vπ from the Bellman Expectation Equaition.

vπ = Rπ + γPπvπ

(I− γPπ)vπ = Rπ

vπ = (I− γPπ)−1Rπ

Reinforcement Learning, Summer 2019 14(86)

Dynamic Programming

Policy Evaluation by Dynamic Programming
(DP)

Value of vπ can also be found by iterative application of Bellman
Expectation Equation:

� Iterative policy evaluation:

vk+1 = Rπ + γPπvk .

� Performs dynamic programming by recursive decomposition
of Bellman equation.

� Can be parallelized (or backed up asynchronously), thus
applicable to large MDPs.

� Converges to vπ.

Reinforcement Learning, Summer 2019 15(86)

Dynamic Programming

Policy Optimization using Bellman Optimality
Equation

An optimal policy π∗ can be found by maximizing over the optimal
action-value function q∗(s, a) = maxπ qπ(s, a) s.t.

π∗(s) = argmax
a

q∗(s, a).

The optimal value functions are recursively related by the Bellman
Optimality Equation:

q∗(s, a) = Eπ∗ [Rt+1 + γmax
a�

q∗(St+1, a
�)|St = s,At = a]

= Ra
s + γ

�

s�∈S
Pa
ss� max

a�
q∗(s �, a�).

Reinforcement Learning, Summer 2019 16(86)

Dynamic Programming

Policy Optimization by Value Iteration

The Bellman Optimality Equation is non-linear and requires
iterative solutions such as value iteration by dynamic programming:

� Value iteration for q-function:

qk+1(s, a) = Ra
s + γ

�

s�∈S
Pa
ss� max

a�
qk(s

�, a�).

� Converges to q∗(s, a).

Reinforcement Learning, Summer 2019 17(86)

Dynamic Programming

Summary: Dynamic Programming

� Earliest RL algorithms with well-defined convergence
properties.

� Bellman equation gives recursive decomposition for iterative
solution to various problems in policy evaluation and policy
optimization.

� Can be trivially parallelized or even run asynchronously.

� We need to know a full MDP model with all transitions
and rewards, and touch all of them in learning!

Reinforcement Learning, Summer 2019 18(86)

