Policy Evaluation by Monte-Carlo (MC) Sampling

- Monte-Carlo Policy Evaluation
 - ▶ Sample episodes $S_0, A_0, R_1, \ldots, R_T \sim \pi$.
 - ► For each sampled episode:
 - ▶ Increment state counter $N(s) \leftarrow N(s) + 1$.
 - ▶ Increment total return $S(s) \leftarrow S(s) + G_t$.
 - ▶ Estimate mean return V(s) = S(s)/N(s).
- Learns v_{π} from episodes sampled under policy π , thus model-free
- Updates can be done at first step or at every time step t where state s is visited in episode.
- ▶ Converges to v_{π} for large number of samples.

Incremental Mean

Use definition of incremental mean μ_k s.t.

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} (x_k + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1}).$$

Incremental Monte-Carlo Updates

- ► Incremental Monte-Carlo Policy Evaluation
 - For each sampled episode, for each step t:

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)).$$

- ► Can be seen as incremental update towards actual return.
- α can be $\frac{1}{N(S_t)}$ or more general term $\alpha > 0$.

Policy Evaluation by Temporal Difference (TD) Learning

- ► TD(0):
 - For each sampled episode, for each step t:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right).$$

- Combines sampling and recursive computation by updating toward estimated return R_{t+1} + \(\gamma V(S_{t+1})\).
- ▶ Recall $R_{t+1} + \gamma V(S_{t+1})$ from Bellman Expectation Equation, here called *TD target*.
- $\delta_t = (R_{t+1} + \gamma V(S_{t+1}) V(S_t))$ is called *TD error*.

TD Learning with *n*-Step Returns

n-Step Returns:

$$G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1}).$$

$$G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2}).$$

•
$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n}).$$

n-Step TD Learning:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right).$$

Exercise: How can Incremental Monte Carlo be recovered by TD(n)? Monte Carlo: $G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$.

TD Learning with λ -Weighted Returns

λ -Returns:

Average n-Step Returns using

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)},$$

where $\lambda \in [0,1]$.

TD(\lambda) Learning:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t) \right).$$

Exercise: How can TD(0) be recovered from TD(λ)?

$$\lambda = 0 \Rightarrow G_t^{\lambda} = G_t^{(1)} = TD(0).$$

Policy Optimization by Q-Learning

- Q-Learning [Watkins and Dayan, 1992]:
- For each sampled episode:
 - ▶ Initialize S_t .
 - ► For each step t:
 - ▶ Sample A_t, observe R_{t+1}, S_{t+1}.
 - $P(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') Q(S_t, A_t)).$
 - \triangleright $S_t \leftarrow S_{t+1}$.
- Q-Learning combines sampling and TD(0)-style recursive computation for policy optimization.
- ▶ Recall $R_{t+1} + \gamma \max_{a'} Q(S_{t+1,a'})$ from Bellman Optimality Equation.

Summary: Monte-Carlo and Temporal-Difference Learning

- MC has zero bias, but high variance that grows with number of random actions, transitions, rewards in computation of return.
- ► **TD** techniques
 - reduce variance since TD target depends on a single random action, transition, reward.
 - can learn from incomplete episodes and can use online updates,
 - introduce bias and use approximations which are exact only in special cases.

Summary: Value-Based/Critic-Only Methods

- All techniques discussed so far, DP, MC, and TD, focus on value-functions, not policies.
- ▶ Value-function is also called **critic**, thus critic-only methods.
- Value-based techniques are inherently indirect in learning approximate value-function and extracting near-optimal policy.
- Overview over DP, MC, and TD in [Sutton and Barto, 1998] and [Szepesvári, 2009].
- Problems:
 - Closeness to optimal policy cannot be quantified.
 - Focus is on deterministic instead of on stochastic policies.