Policy Evaluation by Monte-Carlo (MC) Sampling

- **Monte-Carlo Policy Evaluation**
 - Sample episodes $S_0, A_0, R_1, \ldots, R_T \sim \pi$.
 - For each sampled episode:
 - Increment state counter $N(s) \leftarrow N(s) + 1$.
 - Increment total return $S(s) \leftarrow S(s) + G_t$.
 - Estimate mean return $V(s) = S(s) / N(s)$.

- Learns v_π from episodes sampled under policy π, thus **model-free**.
- Updates can be done at first step or at every time step t where state s is visited in episode.
- Converges to v_π for large number of samples.
Incremental Mean

Use definition of incremental mean μ_k s.t.

$$
\mu_k = \frac{1}{k} \sum_{j=1}^{k} x_j \\
= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right) \\
= \frac{1}{k} (x_k + (k - 1) \mu_{k-1}) \\
= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1}).
$$
Incremental Monte-Carlo Updates

- **Incremental Monte-Carlo Policy Evaluation**
 - For each sampled episode, for each step t:
 - $N(S_t) \leftarrow N(S_t) + 1$,
 - $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$.

- Can be seen as **incremental update towards actual return**.

- α can be $\frac{1}{N(S_t)}$ or more general term $\alpha > 0$.
Policy Evaluation by Temporal Difference (TD) Learning

- **TD(0):**
 - For each sampled episode, for each step t:

 \[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]

- **Combines sampling and recursive computation** by updating toward estimated return $R_{t+1} + \gamma V(S_{t+1})$.

- Recall $R_{t+1} + \gamma V(S_{t+1})$ from Bellman Expectation Equation, here called *TD target*.

- $\delta_t = (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$ is called *TD error*.
TD Learning with n-Step Returns

n-Step Returns:

- $G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$.
- $G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$.
- \[\vdots \]
- $G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$.

n-Step TD Learning:

- $V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$.

Exercise: How can Incremental Monte Carlo be recovered by TD(n)? Monte Carlo: $G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$.
TD Learning with \(\lambda\)-Weighted Returns

\(\lambda\)-Returns:
- Average \(n\)-Step Returns using
 \[
 G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)},
 \]
 where \(\lambda \in [0, 1]\).

TD(\(\lambda\)) Learning:
- \(V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t) \right) \).

Exercise: How can TD(0) be recovered from TD(\(\lambda\))? \(\lambda = 0 \Rightarrow G_t^{\lambda} = G_t^{(1)} = TD(0)\).
Policy Optimization by Q-Learning

- **Q-Learning** [Watkins and Dayan, 1992]:
 - For each sampled episode:
 - Initialize S_t.
 - For each step t:
 - Sample A_t, observe R_{t+1}, S_{t+1}.
 - $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t))$.
 - $S_t \leftarrow S_{t+1}$.

- Q-Learning combines sampling and TD(0)-style recursive computation for policy optimization.
- Recall $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$ from Bellman Optimality Equation.
Summary: Monte-Carlo and Temporal-Difference Learning

- **MC** has zero bias, but high variance that grows with number of random actions, transitions, rewards in computation of return.

- **TD** techniques
 - reduce variance since TD target depends on a single random action, transition, reward,
 - can learn from incomplete episodes and can use online updates,
 - introduce bias and use approximations which are exact only in special cases.
Summary: Value-Based/Critic-Only Methods

- All techniques discussed so far, DP, MC, and TD, focus on value-functions, not policies.
- Value-function is also called critic, thus critic-only methods.
- Value-based techniques are inherently indirect in learning approximate value-function and extracting near-optimal policy.
- Overview over DP, MC, and TD in [Sutton and Barto, 1998] and [Szepesvári, 2009].
- Problems:
 - Closeness to optimal policy cannot be quantified.
 - Continuous action spaces have to be discretized in order to fit into MDP model.
 - Focus is on deterministic instead of on stochastic policies.