Policy-Gradient Methods

 Policy-Gradient techniques attempt at direct optimization of expected return

 $\mathbb{E}_{\pi_{\theta}}[G_t]$

for parameterized stochastic policy

 $\pi_{\theta}(a|s) = P[A_t = a|S_t = s, \theta].$

- Policy-function is also called actor.
- We will discuss actor-only (optimize parametric policy) and actor-critic (learn both policy and critic parameters in tandem) methods.

One-Step MDPs/Gradient Bandits

Let $p_{\theta}(y)$ denote probability of an action/output, $\Delta(y)$ be the reward/quality of an output.

Objective:
$$\mathbb{E}_{p_{\theta}}[\Delta(y)]$$

Gradient: $\nabla_{\theta}\mathbb{E}_{p_{\theta}}[\Delta(y)] = \nabla_{\theta}\sum_{y} p_{\theta}(y)\Delta(y)$
 $= \sum_{y} \nabla_{\theta}p_{\theta}(y)\Delta(y)$
 $= \sum_{y} \frac{p_{\theta}(y)}{p_{\theta}(y)}\nabla_{\theta}p_{\theta}(y)\Delta(y)$
 $= \sum_{y} p_{\theta}(y)\nabla_{\theta}\log p_{\theta}(y)\Delta(y)$
 $= \mathbb{E}_{p_{\theta}}[\Delta(y)\nabla_{\theta}\log p_{\theta}(y)].$

Score Function Gradient Estimator for Bandit

Bandit Gradient Ascent:

- Sample y_i ~ p_θ,
- ▶ Update $\theta \leftarrow \theta + \alpha(\Delta(y_i)\nabla_{\theta} \log p_{\theta}(y_i)).$
- Update by stochastic gradient g_i = Δ(y_i)∇_θ log p_θ(y_i) yields unbiased estimator of E_{p_θ}[Δ(y)]
- ▶ Intuition: $\nabla_{\theta} \log p_{\theta}(y)$ is called the **score function**.
 - Moving in the direction of g_i pushes up the score of the sample y_i in proportion to its reward Δ(y_i).
 - In RL terms: High reward samples are weighted higher reinforced!
 - Estimator is valid even if $\Delta(y)$ is non-differentiable.

Score Function Gradient Estimator for MDPs

Let $y = S_0, A_0, R_1, \dots, R_T \sim \pi_{\theta}$ be an episode, and $R(y) = R_1 + \gamma R_2 + \dots + \gamma^{T-1}R_T = \sum_{t=1}^T \gamma^{t-1}R_t$ be its total discounted reward.

- Objective: E_{πρ}[R(y)].
- Gradient: $\mathbb{E}_{\pi_{\theta}}[R(y) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(A_t | S_t)].$

Reinforcement Gradient Ascent:

- ▶ Sample episode $y = S_0, A_0, R_1, ..., R_T \sim \pi_{\theta}$, ▶ Obtain reward $R(y) = \sum_{t=1}^{T} \gamma^{t-1} R_t$, ▶ Update $\theta \leftarrow \theta + \alpha(R(y) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(A_t | S_t))$.

General Form of Policy Gradient Algorithms

Formalized for expected per time-step reward with respect to action-value $q_{\pi_{\theta}}(S_t, A_t)$.

- Objective: $\mathbb{E}_{\pi_{\theta}}[q_{\pi_{\theta}}(S_t, A_t)].$
- Gradient: $\mathbb{E}_{\pi_{\theta}}[q_{\pi_{\theta}}(S_t, A_t)\nabla_{\theta}\log \pi_{\theta}(A_t|S_t)].$

Policy Gradient Ascent:

- Sample episode $y = S_0, A_0, R_1, \ldots, R_T \sim \pi_{\theta}$.
- ▶ For each time step *t*:
 - ▶ Obtain reward $q_{\pi_{\theta}}(S_t, A_t)$,
 - ▶ Update $\theta \leftarrow \theta + \alpha(q_{\pi_{\theta}}(S_t, A_t)\nabla_{\theta} \log \pi_{\theta}(A_t|S_t)).$

Policy Gradient Algorithms

- General form for expected per time-step return q_{πθ}(S_t, A_t) is known as **Policy Gradient Theorem** [Sutton et al., 2000].
- Since q_{πθ}(s, a) is normally not known, one can use the actual discounted return G_t at time step t, calculated from sampled episode. This leads to the **REINFORCE** algorithm [Williams, 1992].
- Problems of Policy Gradient Algorithms, esp. REINFORCE:
 - Large variance in discounted returns calculated from sampled episodes.
 - Each gradient update is done independently of past gradient estimates.

Policy Gradient Methods

Variance Reduction by Baselines

Variance of REINFORCE can be reduced by comparison of actual return G_t to a baseline b(s) for state s that is constant with respect to actions a. Example: average return so far.

Update :

$$\theta \leftarrow \theta + \alpha (G_t - b(S_t)) \nabla_{\theta} \log \pi_{\theta} (A_t | S_t)).$$

- Can be interpreted as Control Variate [Ross, 2013]:
 - ▶ Goal is to augment random variable X (= stochastic gradient) with highly correlated variable Y such that Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y) is reduced.
 - ▶ Gradient remains unbiased since $\mathbb{E}[X Y + \mathbb{E}[Y]] = \mathbb{E}[X]$.

Policy Gradient Methods

Variance Reduction by Baselines

Exercise: Show that $\mathbb{E}[Y] = 0$ for constant baselines. Proof:

$$\mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(a|s)b(s)] = \sum_{a} \pi_{\theta}(a|s) \frac{\nabla_{\theta}\pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}b(s)$$
$$= b(s)\nabla_{\theta} \sum_{a} \pi_{\theta}(a|s)$$
$$= b(s)\nabla_{\theta} 1$$
$$= 0.$$

Actor-Critic Methods

- Learning a critic in order to get an improved estimate of the expected return will also reduce variance.
 - ▶ **Critic:** TD(0) update for linear approximation $q_{\pi_a}(s, a) \approx q_w(s, a) = \phi(s, a)^\top w$.
 - Actor: Policy gradient update reinforced by $q_w(s, a)$.

Simple Actor-Critic [Konda and Tsitsiklis, 2000]:

Sample $a \sim \pi_{\theta}$.

For each step t:

- ▶ Sample reward $r \sim \mathcal{R}_{s}^{a}$, transition $s' \sim \mathcal{P}_{s,\cdot}^{a}$, action $a' \sim \pi_{\theta}(s', \cdot)$,
- $\flat \quad \delta \leftarrow r + \gamma q_w(s', a') q_w(s, a),$
- $\blacktriangleright \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) q_{w}(\mathbf{s}, \mathbf{a}),$
- $w \leftarrow w + \beta \delta \phi(s, a)$,
- ▶ $a \leftarrow a', s \leftarrow s'$.
- True online updates of policy π_{θ} in each step!

Bias and Compatible Function Approximation

- Approximating $q_{\pi_{ heta}}(s,a) \approx q_w(s,a)$ introduces bias. Unless
 - 1. Value approximator is **compatible** with the policy, i.e., the change in value equals the score function s.t.

$$\nabla_w q_w(s,a) = \nabla_\theta \log \pi_\theta(s,a),$$

2. Parameters w are set to minimize the squared error

$$\epsilon = \mathbb{E}_{\pi_{\theta}}[(q_{\pi_{\theta}}(s,a) - q_w(s,a))^2],$$

Then policy gradient is exact:

 $\mathbb{E}_{\pi_{\theta}}[q_{\pi_{\theta}}(s,a)\nabla_{\theta}\log\pi_{\theta}(a|s)] = \mathbb{E}_{\pi_{\theta}}[q_{w}(s,a)\nabla_{\theta}\log\pi_{\theta}(a|s)].$

Policy Gradient Methods

Bias and Compatible Function Approximation

Exercise: Prove the Compatible Function Approximation Theorem. Proof: At MSE, $\nabla_{\rm w}\epsilon=$ 0. Thus

$$\begin{split} \mathbb{E}_{\pi_{\theta}}[(q_{\pi_{\theta}}(s,a)-q_{\mathsf{w}}(s,a))\nabla_{\mathsf{w}}q_{\mathsf{w}}(s,a)] &= 0, \\ \mathbb{E}_{\pi_{\theta}}[(q_{\pi_{\theta}}(s,a)-q_{\mathsf{w}}(s,a))\nabla_{\theta}\log\pi_{\theta}(s,a)] &= 0, \\ \mathbb{E}_{\pi_{\theta}}[q_{\pi_{\theta}}(s,a)\nabla_{\theta}\log\pi_{\theta}(a|s)] &= \mathbb{E}_{\pi_{\theta}}[q_{\mathsf{w}}(s,a)\nabla_{\theta}\log\pi_{\theta}(a|s)]. \end{split}$$

Advantage Actor-Critic

- Combine idea of baseline with actor-critic by using advantage function that compares action-value function q_{π_θ}(s, a) to state-value function v_{π_θ}(s) = E_{a∼π}[q_{π_θ}(s, a)].
- Use approximate TD error

$$\delta_{w} = r + \gamma v_{w}(s') - v_{w}(s),$$

where state-value is approximated by $v_w(s)$, and action-value is approximated by sample $q_w(s') = r + \gamma v_w(s')$.

- ▶ Update Actor: $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a|s)(q_w(s') v_w(s)).$
- ▶ Update Critic: w = arg min_w(q_w(s') v_w(s))².

Summary: Policy-Gradient Methods

- Build upon huge knowlegde in stochastic optimization which provides excellent theoretical understanding of convergence properties.
- Gradient-based techniques are model-free since MDP transation matrix is not dependent on θ.
- Problem of high variance in actor-only methods can be mitigated by the critic's low-variance estimate of expected return.