
Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: From Simulations to
Human RL

� Where do simulations fall short?
� Real-wold RL only has access to human bandit feedback

⇒ control variates
� Online/on-policy learning raises safety and stability concerns

⇒ offline learning
� Human rewards are not well defined, noisy, and skewed

⇒ reward estimation
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Sequence-to-Sequence Reinforcement Learning

Offline Learning from Human Feedback:
e-commerce

� [Kreutzer et al., 2018]: 69k translated item titles (en-es) with
148k individual ratings

� No agreement of paid raters with e-commerce users, low
inter-rater agreement, learning impossible
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Sequence-to-Sequence Reinforcement Learning

Offline Learning from Human Feedback:
e-commerce

� Lessons from e-commerce experiments:
� Offline learning from direct user feedback to e-commerce titles

is equivalent to learning from noise
� Conjecture: Missing reliability and validity of human feedback

in e-commerce experiment
� Need experiment on controlled feedback collection!
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Sequence-to-Sequence Reinforcement Learning

Offline Learning from Controlled Human
Feedback

vs

� Comparison of judgments on five-point Likert scale to pairwise
preferences

� Feedback collected from ∼15 bilinguals for 800 translations
(de-en)1

1Data: https://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/
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Sequence-to-Sequence Reinforcement Learning

Reliability and Learnability of Human
Feedback

� Controlled study on main factors in human RL:

1. Reliability: Collect five-point and pairwise feedback on same
data, evaluate intra- and inter-rater agreement.

2. Learnability: Train reward estimators on human feedback,
evaluate correlation to TER on held-out data.

3. RL: Use rewards directly or estimated rewards to improve an
NMT system.

What are your guesses on reliability and learnability—five-point or
pairwise?
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Sequence-to-Sequence Reinforcement Learning

Reliability: α-agreement

Inter-rater Intra-rater
Rating Type α Mean α Stdev α

5-point 0.2308
0.4014 0.1907

+ normalization 0.2820
+ filtering 0.5059 0.5527 0.0470

Pairwise 0.2385 0.5085 0.2096
+ filtering 0.3912 0.7264 0.0533

� Inter- and intra-reliability measured by Krippendorff’s α for
5-point and pairwise ratings of 1,000 translations of which 200
translations are repeated twice.

� Filtered variants are restricted to either a subset of
participants or a subset of translations.
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Sequence-to-Sequence Reinforcement Learning

Reliability: Qualitative Analysis

Rating Type Avg. subjective difficulty [1-10]

5-point 4.8
Pairwise 5.69

� Difficulties with 5-point ratings:
� Weighing of error types; long sentences with few essential

errors

� Difficulties with Pairwise ratings (incl. ties):
� Distinction between similar translations
� Ties: no absolute anchoring of the quality of the pair
� Final score: No normalization for individual biases possible
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Sequence-to-Sequence Reinforcement Learning

Learnability: 5-point Feedback

� Inputs are sources x and their translations y

� Given cardinal ratings r , train a regression model with
parameters ψ to minimize the mean squared error (MSE) for
predicted rewards r̂ :

L(ψ) =
1

n

n�

i=1

(r(yi )− r̂ψ(yi ))
2.
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Sequence-to-Sequence Reinforcement Learning

Learnability: Pairwise Feedback

� Given human preference Q[y1 � y2] for translation y1 over
translation y2

� Train estimator P̂ψ[y
1 � y2] by minimizing cross-entropy

between predictions and human preferences:

L(ψ) = −1

n

n�

i=1

�
Q[y1i � y2i ] log P̂ψ[y

1
i � y2i ]

+Q[y2i � y1i ] log P̂ψ[y
2
i � y1i ]

�
,

with the Bradley-Terry model for preferences

P̂ψ[y
1 � y2] =

exp r̂ψ(y
1)

exp r̂ψ(y1) + exp r̂ψ(y2)
.

� Use Bradley-Terry model’s r̂ as reward estimator
[Christiano et al., 2017]
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Sequence-to-Sequence Reinforcement Learning

Reward Estimator Architecture
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� biLSTM-enhanced bilingual extension of convolutional model
for sentence classification [Kim, 2014]
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Sequence-to-Sequence Reinforcement Learning

Learnability: Results

Model Feedback Spearman’s ρ with -TER

MSE 5-point norm. 0.2193
+ filtering 0.2341

PW Pairwise 0.1310
+ filtering 0.1255

� Comparatively better results for reward estimation from
cardinal human judgements.

� Overall relatively low correlation, presumably due to
overfitting on small training data set.
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Sequence-to-Sequence Reinforcement Learning

End-to-end Seq2seq RL

1. Tackle the arguably simpler problem of learning a reward
estimator from human feedback first.

2. Then provide unlimited learned feedback to generalize to
unseen outputs in off-policy RL.
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Sequence-to-Sequence Reinforcement Learning

End-to-End RL from Estimated Rewards

Expected Risk Minimiziation from Estimated Rewards
Estimated rewards allow to use minimum risk training
[Shen et al., 2016] s.t. feedback can be collected for k samples:

L(θ) =Ep(x)pθ(y|x) [r̂ψ(y)]

≈
S�

s=1

k�

i=1

pτθ (ỹ
(s)
i |x(s)) r̂ψ(ỹi)

� Softmax temperature τ to control the amount of exploration
by sharpening the sampling distribution
pτθ (y|x) = softmax(o/τ) at lower temperatures.

� Subtract the running average of rewards from r̂ψ to reduce
gradient variance and estimation bias.
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Sequence-to-Sequence Reinforcement Learning

Results on TED Talk Translations

� Significant improvements over the baseline (27.0 BLEU / 30.7
METEOR / 59.48 BEER):

� Gains of 1.1 BLEU for expected risk (ER) minimization for
estimated rewards.

� Deterministic propensity matching (DPM) on directly logged
human feedback yields up to 0.5 BLEU points.
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Summary

Summary

Basic RL:

� Policy evaluation using Dynamic Programming

� Policy optimization using Dynamic Programming, Monte
Carlo, or both: Temporal Difference learning.

� Policy-gradient techniques for direct policy optimization.

Seq2seq RL:

� Seq2seq RL simulations: Bandit Neural Machine Translation.

� Offline learning from deterministically logged feedback:
Deterministic Propensity Matching.

� Seq2seq RL from human feedback: Collecting reliable
feedback, learning reward estimators, end-to-end RL from
estimated rewards.
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