Sequence-to-Sequence Reinforcement

Seq2seq RL for NMT: From Simulations to
Human RL

» Where do simulations fall short?
» Real-wold RL only has access to human bandit feedback
= control variates
» Online/on-policy learning raises safety and stability concerns
= offline learning
» Human rewards are not well defined, noisy, and skewed
= reward estimation

Reinforcement Learning, Summer 2019



Sequence-to-Sequence Reinforcement Lear

Offline Learning from Human Feedback:
e-commerce
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> [Kreutzer et al., 2018]: 69k translated item titles (en-es) with
148k individual ratings

> No agreement of paid raters with e-commerce users, low
inter-rater agreement, learning impossible
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Sequence-to-Sequence Reinforcem

Offline Learning from Human Feedback:
e-commerce

> Lessons from e-commerce experiments:
» Offline learning from direct user feedback to e-commerce titles
is equivalent to learning from noise
» Conjecture: Missing reliability and validity of human feedback
in e-commerce experiment
» Need experiment on controlled feedback collection!
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Offline Learning from Controlled Human
Feedback

TRANSLATION: Now i'm saying, ‘computer take the 10 percent
of the sequences that have come to my prescription. *
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» Comparison of judgments on five-point Likert scale to pairwise

preferences

» Feedback collected from ~15 bilinguals for 800 translations

(de-en)?

1Data: nttps://wav.cl.uni-heidelberg.de/statnlpgroup/hunannt/




Sequence-to-Sequence Reinforcement Lear

Reliability and Learnability of Human
Feedback

> Controlled study on main factors in human RL:
1. Reliability: Collect five-point and pairwise feedback on same
data, evaluate intra- and inter-rater agreement.
2. Learnability: Train reward estimators on human feedback,
evaluate correlation to TER on held-out data.

3. RL: Use rewards directly or estimated rewards to improve an
NMT system.

What are your guesses on reliability and learnability—five-point or
pairwise?
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Reliability: a-agreement

Sequence-to-Sequence Reinforcement Learning

Inter-rater

Intra-rater

Rating Type @ Mean @ Stdev «
5-point 0.2308

+ normalization 0.2820 0.4014  0.1907
+ filtering 0.5059 0.5527  0.0470
Pairwise 0.2385 0.5085  0.2096
+ filtering 0.3912 0.7264 0.0533

> Inter- and intra-reliability measured by Krippendorff's o for
5-point and pairwise ratings of 1,000 translations of which 200
translations are repeated twice.

» Filtered variants are restricted to either a subset of

participants or a subset of translations.
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Sequence-to-Sequence Reinforcement

Reliability: Qualitative Analysis

Rating Type Avg. subjective difficulty [1-10]

5-point 4.8
Pairwise 5.69

» Difficulties with 5-point ratings:

» Weighing of error types; long sentences with few essential
errors

> Difficulties with Pairwise ratings (incl. ties):
» Distinction between similar translations
» Ties: no absolute anchoring of the quality of the pair
» Final score: No normalization for individual biases possible
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Sequence-to-Sequence Reinforcement

Learnability: 5-point Feedback

> Inputs are sources x and their translations y

» Given cardinal ratings r, train a regression model with
parameters 1 to minimize the mean squared error (MSE) for
predicted rewards 7:

n

L) = Y0 (00) — Puly)P

i=1
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Sequence-to-Sequence Reinforcement Learning

Learnability: Pairwise Feedback

> Given human preference Q[y! - y?] for translation y; over
translation y;
> Train estimator ,‘5¢[y1 - y2] by minimizing cross-entropy
between predictions and human preferences:
L) = —+ 2'1:(62[3/-1 - y7]log Pyly! > y7]
n P 1 1 1/) 1 1
+QIy? - yillog Pyly? - vil).
with the Bradley-Terry model for preferences

exp fy (y')
exp 7y (y1) + exp Fp(y?)”
> Use Bradley-Terry model’s 7 as reward estimator
[Christiano et al., 2017]

Pyly' - y? =
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inforcement Learni

Reward Estimator Architecture

Source Target 1D Convolution Max over time  Fully connected
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> biLSTM-enhanced bilingual extension of convolutional model
for sentence classification [Kim, 2014]
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Sequence-to-Sequence Reinforcement Learning

Learnability: Results

Model Feedback Spearman’s p with -TER

MSE 5-point norm. 0.2193
+ filtering 0.2341
PW Pairwise 0.1310
+ filtering 0.1255

» Comparatively better results for reward estimation from
cardinal human judgements.

» Overall relatively low correlation, presumably due to
overfitting on small training data set.
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Sequence-to-Sequence Reinforcement

End-to-end Seq2seq RL

1. Tackle the arguably simpler problem of learning a reward
estimator from human feedback first.

2. Then provide unlimited learned feedback to generalize to
unseen outputs in off-policy RL.
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Sequence-to-Sequence Reinforcement Learning

End-to-End RL from Estimated Rewards

Expected Risk Minimiziation from Estimated Rewards
Estimated rewards allow to use minimum risk training
[Shen et al., 2016] s.t. feedback can be collected for k samples:

L(0) =Ep(x)py(ylx) [Fe(¥)]
S k

~ >0 A1) (i)

s=1 =1

> Softmax temperature 7 to control the amount of exploration
by sharpening the sampling distribution
P (y|x) = softmax(o/7) at lower temperatures.

> Subtract the running average of rewards from 7, to reduce
gradient variance and estimation bias.
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Sequence-to-Sequence Reinforcement L

Results on TED Talk Translations
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» Significant improvements over the baseline (27.0 BLEU / 30.7
METEOR / 59.48 BEER):
> Gains of 1.1 BLEU for expected risk (ER) minimization for
estimated rewards.
» Deterministic propensity matching (DPM) on directly logged
human feedback yields up to 0.5 BLEU points.
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Summary

Basic RL:
> Policy evaluation using Dynamic Programming

> Policy optimization using Dynamic Programming, Monte
Carlo, or both: Temporal Difference learning.

» Policy-gradient techniques for direct policy optimization.
Seq2seq RL:
» Seq2seq RL simulations: Bandit Neural Machine Translation.

> Offline learning from deterministically logged feedback:
Deterministic Propensity Matching.

» Seq2seq RL from human feedback: Collecting reliable
feedback, learning reward estimators, end-to-end RL from
estimated rewards.
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