Word2vec embeddings: CBOW and Skipgram

VL Embeddings

Uni Heidelberg

SS 2019
Skipgram – Intuition

- **Window size:** 2
- **Center word at position** \(t \): Maus

\[
P(w_{t-2}|w_t) \quad P(w_{t-1}|w_t) \quad P(w_{t+1}|w_t) \quad P(w_{t+2}|w_t)
\]

<table>
<thead>
<tr>
<th>Die</th>
<th>kleine</th>
<th>graue</th>
<th>Maus</th>
<th>frißt</th>
<th>den</th>
<th>leckeren</th>
<th>Käse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{t-2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{t-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{t+1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{t+2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Skipgram – Intuition

- Window size: 2
- Center word at position t: frißt

$$P(w_{t-2}|w_t) \quad P(w_{t-1}|w_t) \quad P(w_{t+1}|w_t) \quad P(w_{t+2}|w_t)$$

<table>
<thead>
<tr>
<th>Die</th>
<th>kleine</th>
<th>graue</th>
<th>Maus</th>
<th>frißt</th>
<th>den</th>
<th>leckeren</th>
<th>Käse</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{t-2}</td>
<td>w_{t-1}</td>
<td>w_t</td>
<td>w_{t+1}</td>
<td>w_{t+2}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Skipgram – Intuition

• Window size: 2
• Center word at position t:

\[
P(w_{t-2}|w_t) \quad P(w_{t-1}|w_t) \quad P(w_{t+1}|w_t) \quad P(w_{t+2}|w_t)
\]

Die kleine graue Maus frißt den leckeren Käse

Same probability distribution used for all context words
Skipgram – Objective function

For each position $t = 1, \ldots, T$, predict context words within a window of fixed size m, given center word w_j.

\[
L(\theta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m} P(w_{t+j} | w_t; \theta) \quad (1)
\]

Likelihood =

What is θ?
Skipgram – Intuition

Gradient Descent

Stochastic Gradient Descent

Backpropagation

Skipgram – Objective function

For each position $t = 1, \ldots, T$, predict context words within a window of fixed size m, given center word w_j.

$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m, \ j \neq 0} P(w_{t+j} \mid w_t; \theta)$$ \hspace{1cm} (1)

Likelihood $= \prod_{t=1}^{T} \prod_{-m \leq j \leq m, \ j \neq 0} P(w_{t+j} \mid w_t; \theta)$ \hspace{1cm} θ: vector representations of each word
Skipgram – Objective function

For each position \(t = 1, \ldots, T \), predict context words within a window of fixed size \(m \), given center word \(w_j \).

\[
L(\theta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m, j \neq 0} P(w_{t+j} \mid w_t; \theta) \quad (1)
\]

Objective function (cost function, loss function): Maximise the probability of any context word given the current center word \(w_t \).
Skipgram – Objective function

For each position $t = 1, \ldots, T$, predict context words within a window of fixed size m, given center word w_j.

The objective function $J(\theta)$ is the (average) negative log-likelihood:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log P(w_{t+j} | w_t; \theta) \quad (2)$$
Skipgram – Intuition

Gradient Descent

Stochastic Gradient Descent

Backpropagation

Skipgram – Objective function

For each position \(t = 1, \ldots, T \), predict context words within a window of fixed size \(m \), given center word \(w_j \).

\[
L(\theta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m, j \neq 0} P(w_{t+j} \mid w_t; \theta) \tag{1}
\]

Likelihood = \(L(\theta) \):

\[
J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j} \mid w_t; \theta) \tag{2}
\]

The objective function \(J(\theta) \) is the (average) negative log-likelihood:

Minimising objective function \(\Leftrightarrow \) maximising predictive accuracy.
Objective function – Motivation

- We want to model the probability distribution over mutually exclusive classes
 - measure the difference between predicted probabilities \(\hat{y} \) and ground-truth probabilities \(y \)
 - during training: tune parameters so that this difference is minimised
Negative log-likelihood

Why is minimising the negative log likelihood equivalent to maximum likelihood estimation (MLE)?

\[L(\theta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m} P(w_{t+j}|w_t; \theta) \]

\[MLE = \arg \max L(\theta, x) \]
Why is minimising the negative log likelihood equivalent to maximum likelihood estimation (MLE)?

\[
L(\theta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m} P(w_{t+j}|w_t; \theta)
\]

\[
MLE = \arg\max \ L(\theta, x)
\]

- The log allows us to convert a product of factors into a summation of factors (nicer mathematical properties)
- \(\arg\max\ x(x)\) is equivalent to \(\arg\min\ (-x)\)

\[
J(\theta) = -\frac{1}{T} \log \ L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j}|w_t; \theta)
\]
Negative log-likelihood

• We can interpret negative log-probability as information content or surprisal

What is the log-likelihood of a model, given an event?

⇒ The negative of the surprisal of the event, given the model:
A model is supported by an event to the extent that the event is unsurprising, given the model.
Cross entropy loss

Negative log likelihood is the same as cross entropy

Recap: Entropy

- If a discrete random variable X has the probability $p(x)$, then the entropy of X is

$$H(X) = \sum_x p(x) \log \frac{1}{p(x)} = - \sum_x p(x) \log p(x)$$

⇒ expected number of bits needed to encode X if we use an optimal coding scheme
Cross entropy loss

Negative log likelihood is the same as cross entropy

Recap: Entropy

- If a discrete random variable X has the probability $p(x)$, then the entropy of X is

$$H(X) = \sum_x p(x) \log \frac{1}{p(x)} = - \sum_x p(x) \log p(x)$$

\Rightarrow expected number of bits needed to encode X if we use an optimal coding scheme

Cross entropy

\Rightarrow number of bits needed to encode X if we use a suboptimal coding scheme $q(x)$ instead of $p(x)$

$$H(p, q) = \sum_x p(x) \log \frac{1}{q(x)} = - \sum_x p(x) \log q(x)$$
Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if $p = q$)
Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if $p = q$)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy
Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if \(p = q \))

Kullback-Leibler (KL) divergence: difference between cross entropy and entropy

\[
KL(p||q) = \sum_x p(x) \log \frac{1}{q(x)} - \sum_x p(x) \log \frac{1}{p(x)} = \sum_x p(x) \log \frac{p(x)}{q(x)}
\]

\(\Rightarrow\) number of extra bits needed when using \(q(x) \) instead of \(p(x) \)
(also known as the relative entropy of \(p \) with respect to \(q \))
Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if \(p = q \))

Kullback-Leibler (KL) divergence: difference between cross entropy and entropy

\[
KL(p\|q) = \sum_x p(x) \log \frac{1}{q(x)} - \sum_x p(x) \log \frac{1}{p(x)} = \sum_x p(x) \log \frac{p(x)}{q(x)}
\]

\(\Rightarrow \) number of extra bits needed when using \(q(x) \) instead of \(p(x) \)

(also known as the relative entropy of \(p \) with respect to \(q \))

Cross entropy:

\[
H(p, q) = - \sum_{x \in X} p(x) \log q(x) = H(p) + KL(p\|q)
\]
Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if $p = q$)

Kullback-Leibler (KL) divergence: difference between cross entropy and entropy

\[
KL(p\|q) = \sum_x p(x) \log \frac{1}{q(x)} - \sum_x p(x) \log \frac{1}{p(x)} = \sum_x p(x) \log \frac{p(x)}{q(x)}
\]

\Rightarrow number of extra bits needed when using $q(x)$ instead of $p(x)$ (also known as the relative entropy of p with respect to q)

Cross entropy:

\[
H(p, q) = - \sum_{x \in X} p(x) \log q(x) = H(p) + KL(p\|q)
\]

Minimising $H(p, q)$ \rightarrow minimising the KL divergence from q to p
Cross-entropy loss (or logistic loss)

- Use cross entropy to measure the difference between two distributions \(p \) and \(q \)
- Use total cross entropy over all training examples as the loss

\[
L_{\text{cross-entropy}}(p, q) = - \sum_i p_i \log(q_i)
\]

\[
= - \log(q_t) \quad \text{for hard classification}
\]

where \(q_t \) is the correct class
Cross-entropy loss (or logistic loss)

- Use cross entropy to measure the difference between two distributions \(p\) and \(q\)
- Use total cross entropy over all training examples as the loss

\[
L_{\text{cross-entropy}}(p, q) = - \sum_i p_i \log(q_i)
\]

\[
= -\log(q_t) \quad \text{for hard classification}
\]

where \(q_t\) is the correct class

\[
J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j} | w_t; \theta)
\]

Negative log-likelihood = cross entropy
Skipgram – Objective function

We want to minimise the objective function:

\[J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j}|w_t; \theta) \] (2)

Cross-entropy loss

- \(P(w_{t+j}|w_t; \theta) \)

Question: How to calculate \(P(w_{t+j}|w_t; \theta) \)?
Skipgram – Objective function

We want to minimise the objective function:

\[J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log P(w_{t+j}|w_t; \theta) \]

(2)

- **Question:** How to calculate \(P(w_{t+j}|w_t; \theta) \) ?
- **Answer:** We will use two vectors per word \(w \):
 - \(v_w \) when \(w \) is a center word
 - \(u_w \) when \(w \) is a context word

- Then for a center word \(c \) and a context word \(o \):

\[P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)} \]

(3)
Skipgram – Objective function

We want to minimise the objective function:

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j}|w_t; \theta) \quad (2)$$

• Question: How to calculate $P(w_{t+j}|w_t; \theta)$?
• Answer: We will use two vectors per word w:
 • v_w when w is a center word
 • u_w when w is a context word
• Then for a center word c and a context word o:

$$P(o|c) = \frac{\exp(u_o^Tv_c)}{\sum_{w \in V} \exp(u_w^Tv_c)} \quad (3)$$

Take dot products between the two word vectors, put them in Softmax
Recap: Dot products

- Measure of similarity (well, kind of...)
- Bigger if \(u \) and \(v \) are more similar
 (if vectors point in the same direction)

\[
\begin{align*}
 u^\top v &= u \cdot v = \sum_{i=1}^{n} u_i v_i \\
 P(o|c) &= \frac{\exp(u_o^T v_c)}{\sum_{w=1}^{V} \exp(u_w^T v_c)}
\end{align*}
\]
Softmax function

Standard mapping from \mathbb{R}^V to a probability distribution

$$p_i = \frac{e^{x_i}}{\sum_{j=1}^{N} e^{x_j}}$$

Exponentiate to make positive
Normalise to get probability

- Softmax function maps arbitrary values x_i to a probability distribution p_i
 - max because amplifies probability of largest x_i
 - soft because still assigns some probability to smaller x_i

This gives us a probability estimate $p(w_{t-1}|w_t)$
Difference Sigmoid Function – Softmax

Sigmoid Function
- binary classification in logistic regression
- sum of probabilities not necessarily 1
- activation function

Softmax Function
- multi-classification in logistic regression
- sum of probabilities will be 1
Why two representations for each word?

- We create two representations for each word in the corpus:
 1. \(w \) as a context word
 2. \(w \) as a center word
- Easier to compute \(\rightarrow \) we can optimise vectors separately
- Also works better in practice...
Skipgram – Predict the label

Dot product compares similarity of o and c
Larger dot product \Rightarrow larger probability

$$p(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$ \hspace{1cm} (6)

After taking exponent, normalise over entire vocab
Skipgram – Predict the label

Dot product compares similarity of o and c
Larger dot product = larger probability

$$p(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$ \hspace{1cm} (6)

After taking exponent, normalise over entire vocab

- For training the model, compute for all words in the corpus:

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j}|w_t; \theta)$$
Skipgram – Training the model

• Recall: θ represents all model parameters, in one long vector
• For d-dimensional vectors and V-many words:

$$\theta = \begin{bmatrix} v_{aas} \\ v_{amaranth} \\ \vdots \\ v_{zoo} \\ u_{aas} \\ u_{ameise} \\ \vdots \\ u_{zoo} \end{bmatrix} \in \mathbb{R}^{2dV}$$

• Remember: every word has two vectors $\Rightarrow 2d$
• We now optimise the parameters θ
Skipgram – Training the model

Generative model: predict the context for a given center word

- We have an objective function:
 \[J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j} | w_t) \]

- We want to minimise the negative log-likelihood (maximise the probability we predict)

- Probability distribution: \(p(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)} \)

- How do we know how to change the parameters (i.e. the word vectors)?
Generative model: predict the context for a given center word

- We have an objective function:

\[J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j} | w_t) \]

- We want to minimise the negative log-likelihood (maximise the probability we predict)

- Probability distribution:

\[p(o | c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)} \]

- How do we know how to change the parameters (i.e. the word vectors)? → Use the gradient
Minimising the objective function

We want to optimise (maximise or minimise) our objective function

- How do we know how to change the parameters?

Use the gradient

- Gradient $\nabla J(\theta)$ of a function gives direction of steepest ascent

- Gradient Descent is an algorithm to minimise $J(\theta)$
Gradient Descent – Intuition

- Idea:
 - for a current value of θ, calculate gradient of $J(\theta)$
 - then take a small step in the direction of the negative gradient
 - repeat
Gradient Descent – Intuition

- Find local minimum for a given cost function
 - at each step, GD tells us in which direction to move to lower the cost

- No guarantee that we find the best global solution!
Gradient Descent – Intuition

- How do we know the direction?
- Best guess: move in the direction of the slope (gradient) of the cost function

- Arrows: gradient of the cost function at different points
Gradient Descent – Intuition

• Gradient of a function
 • vector that points in the direction of the steepest ascent

• Gradient is deeply connected to its derivative

• Derivative f' of a function
 • a single number that indicates how fast the function is rising when moving in the direction of its gradient

• $f'(p)$: value of f' at point p
 • $f'(p) > 0 \Rightarrow f$ is going up
 • $f'(p) < 0 \Rightarrow f$ is going down
 • $f'(p) = 0 \Rightarrow f$ is flat
Gradient-Based Optimisation

Given some function $y = f(x)$ with $x, y \in \mathbb{R}$

- We want to optimise (maximise or minimise) it by updating x

$$\min_{x \in \mathbb{R}} f(x)$$
Gradient-Based Optimisation

Given some function $y = f(x)$ with $x, y \in \mathbb{R}$

- $\min_{x \in \mathbb{R}} f(x)$
Gradient-Based Optimisation

Given some function $y = f(x)$ with $x, y \in \mathbb{R}$

- $\min_{x \in \mathbb{R}} f(x)$
Gradient-Based Optimisation

Given some function $y = f(x)$ with $x, y \in \mathbb{R}$

- the derivative $f'(x)$ of this function is $\frac{dy}{dx}$
- gives the slope of $f(x)$ at point x

⇒ tells us how to change x
to make a small improvement in y:

$$x_i = x_{i-1} - \alpha f'(x_i)$$

$\alpha =$ step size or learning rate
Gradient-Based Optimisation

Given some function \(y = f(x) \) with \(x, y \in \mathbb{R} \)

- the derivative \(f'(x) \) of this function is \(\frac{dy}{dx} \)
- gives the slope of \(f(x) \) at point \(x \)

 \[x_i = x_{i-1} - \alpha f'(x_i) \]

 \(\alpha = \text{step size or learning rate} \)

- **Gradient Descent**: reduce \(f(x) \) by moving \(x \) in small steps with the opposite sign of the derivative
Gradient-Based Optimisation

Given some function $y = f(x)$ with $x, y \in \mathbb{R}$

- the derivative $f'(x)$ of this function is $\frac{dy}{dx}$
- gives the slope of $f(x)$ at point x

\Rightarrow tells us how to change x
to make a small improvement in y:

$x_i = x_{i-1} - \alpha f'(x_i)$ \hspace{1cm} $\alpha = \text{step size or learning rate}$

- Gradient Descent: reduce $f(x)$ by moving x in small steps with the opposite sign of the derivative

What if we have functions with multiple inputs?
Gradient Descent with multiple inputs

- We can use partial derivatives \(\frac{\partial}{\partial x_i} f(x) \)
 - measures how \(f \) changes as only \(x_i \) increases at point \(x \)

- Gradient of \(f \):
 - gives direction of steepest ascent \(\nabla_x f(x) \)
 - vector containing all partial derivatives for \(f(x) \)

- Element \(i \) of the gradient \(\nabla \) is the partial derivative of \(f \) with respect to \(x_i \)
Gradient Descent with multiple inputs

- We can use partial derivatives $\frac{\partial}{\partial x_i} f(x)$
 - measures how f changes as only x_i increases at point x

- Gradient of f:
 - gives direction of steepest ascent $\nabla_x f(x)$
 - vector containing all partial derivatives for $f(x)$

- Element i of the gradient ∇ is the partial derivative of f with respect to x_i

Which direction should we step to decrease the function?
Gradient Descent with multiple inputs

- We can use partial derivatives $\frac{\partial}{\partial x_i} f(x)$
 - measures how f changes as only x_i increases at point x

- Gradient of f:
 - gives direction of steepest ascent $\nabla_x f(x)$
 - vector containing all partial derivatives for $f(x)$

- Element i of the gradient ∇ is the partial derivative of f with respect to x_i

Which direction should we step to decrease the function?

- Gradient descent algorithm:
 - compute $\nabla_x f(x)$
 - take small step in $-\nabla_x f(x)$ direction
 - repeat
Gradient Descent with multiple inputs

- We can use partial derivatives \(\frac{\partial}{\partial x_i} f(x) \)
 - measures how \(f \) changes as only \(x_i \) increases at point \(x \)

- **Gradient of \(f \):**
 - gives direction of steepest ascent \(\nabla_x f(x) \)
 - vector containing all partial derivatives for \(f(x) \)

- Element \(i \) of the gradient \(\nabla \) is the partial derivative of \(f \) with respect to \(x_i \)

Which direction should we step to decrease the function?

- **Gradient descent algorithm:**
 - compute \(\nabla_x f(x) \)
 - take small step in \(-\nabla_x f(x) \) direction
 - repeat

- Minimise \(f \) by applying small updates to \(x \): \(x' = x - \alpha \nabla_x f(x) \)
Gradient Descent with multiple inputs

Critical points in 2D (one input value):

Ideally, we would like to arrive at the global minimum, but this might not be possible.

This local minimum performs nearly as well as the global one, so it is an acceptable halting point.

This local minimum performs poorly and should be avoided.
Gradient Descent with multiple inputs

Critical points in 3D:

- Local Minima
- Global Minima
- Saddle Point
Gradient Descent with multiple inputs

- Update equation (in matrix notation):
 \[\theta^{\text{new}} = \theta^{\text{old}} - \alpha \nabla_\theta J(\theta) \]
 \[\alpha = \text{step size or learning rate} \]

- Update equation (for a single parameter):
 \[\theta_j^{\text{new}} = \theta_j^{\text{old}} - \alpha \frac{\partial}{\partial \theta_j^{\text{old}}} J(\theta) \]
Gradient Descent with multiple inputs

• **Problem:** $J(\theta)$ is a function of all windows in the corpus (extremely large!)

 • So $\nabla_\theta J(\theta)$ is very expensive to compute
 \Rightarrow Takes too long for a single update!

• **Solution:** Stochastic Gradient Descent

 • Repeatedly sample windows and update after each one
Stochastic Gradient Descent (SGD)

Goal: find parameters θ that reduce cost function $J(\theta)$

Algorithm 1 Pseudocode for SGD

1: Input:
2: – function $f(x; \theta)$
3: – training set of inputs x_1, \ldots, x_n and gold outputs y_1, \ldots, y_n
4: – loss function J
5: while stopping criteria not met do
6: Sample a training example x_i, y_i
7: Compute the loss $J(f(x_i; \theta), y_i)$
8: $\nabla \leftarrow$ gradients of $J(f(x_i; \theta), y_i)$ w.r.t. θ
9: Update $\theta \leftarrow \theta - \alpha \nabla$
10: end while
11: return θ
Stochastic Gradient Descent (SGD)

Goal: find parameters θ that reduce cost function $J(\theta)$

- Impact of learning rate α:
 - too low \rightarrow learning proceeds slowly
 - initial α too low \rightarrow learning may become stuck with high cost
Stochastic Gradient Descent (SGD)

Goal: find parameters θ that reduce cost function $J(\theta)$

- Important property of SGD (and related minibatch or online gradient-based optimization)
 - computation time per update does not grow with increasing number of training examples
Stochastic Gradient Descent (SGD)

\[\theta = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_{19.998} \\ w_{19.999} \\ w_{20.000} \end{bmatrix} \]
Stochastic Gradient Descent (SGD)

\[\theta = \begin{bmatrix}
 w_0 \\
 w_1 \\
 w_2 \\
 \vdots \\
 w_{19.998} \\
 w_{19.999} \\
 w_{20.000}
\end{bmatrix} \]

\[-\nabla J(\theta) = \begin{bmatrix}
 0.31 \\
 0.03 \\
 -1.25 \\
 \vdots \\
 0.78 \\
 -0.37 \\
 0.16
\end{bmatrix} \]
Stochastic Gradient Descent (SGD)

$$\theta = \begin{bmatrix}
 w_0 \\
 w_1 \\
 w_2 \\
 \vdots \\
 w_{19.998} \\
 w_{19.999} \\
 w_{20.000}
\end{bmatrix}$$

$$-\nabla J(\theta) = \begin{bmatrix}
 0.31 \\
 0.03 \\
 -1.25 \\
 \vdots \\
 0.78 \\
 -0.37 \\
 0.16
\end{bmatrix}$$

- w_0 should increase somewhat
- w_1 should increase a little
- w_2 should decrease a lot

- $w_{19.998}$ should increase a lot
- $w_{19.999}$ should decrease somewhat
- $w_{20.000}$ should increase a little
Stochastic Gradient Descent (SGD)

\[\theta = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_{19.998} \\ w_{19.999} \\ w_{20.000} \end{bmatrix} \]

\[-\nabla J(\theta) = \begin{bmatrix} 0.31 \\ 0.03 \\ -1.25 \\ \vdots \\ 0.78 \\ -0.37 \\ 0.16 \end{bmatrix} \]

- \[w_0 \text{ should increase somewhat} \]
- \[w_1 \text{ should increase a little} \]
- \[w_2 \text{ should decrease a lot} \]
- \[w_{19.998} \text{ should increase a lot} \]
- \[w_{19.999} \text{ should decrease somewhat} \]
- \[w_{20.000} \text{ should increase a little} \]

Average over all training data
Encodes the relative importance of each weight
Stochastic Gradient Descent (SGD)

- Make a **forward pass** through the network to compute the output
- Take the output that the network predicts
- Take the output that it *should predict*
- Compute the total cost of the network $J(\theta)$

Propagate the error back through the network
Stochastic Gradient Descent (SGD)

- Make a **forward pass** through the network to compute the output
- Take the output that the network predicts
- Take the output that it *should predict*
- Compute the total cost of the network $J(\theta)$

Propagate the error back through the network

\Rightarrow Backpropagation

- procedure to compute the gradient of the cost function:

 Compute the partial derivatives $\frac{\partial J(\theta)}{\partial w}$ and $\frac{\partial J(\theta)}{\partial b}$ of the cost function $J(\theta)$ with respect to any weight w or bias b in the network.
Stochastic Gradient Descent (SGD)

- Make a **forward pass** through the network to compute the output
- Take the output that the network predicts
- Take the output that it *should predict*
- Compute the total cost of the network $J(\theta)$

Propagate the error back through the network

⇒ **Backpropagation**

- procedure to compute the gradient of the cost function:

 How do we have to change the weights and biases in order to change the cost?
Parameter initialisation

- Before we start training the network we have to initialise the parameters
 - Why not use zero as initial values?
 - Not a good idea, outputs will be the same for all nodes
 - Instead, use small random numbers, e.g.:
 - use normally distributed values around zero $N(0, 0.1)$
 - use Xavier initialisation (Glorot and Bengio 2010)
 - for debugging: use fixed random seeds
- Now let’s start the training:
 - predict labels
 - compute loss
 - update parameters
Forward pass

- Computes the output of the network
- Each node’s output depends only on itself and on its incoming edges
- Traverse the nodes and compute the output of each node, given the already computed outputs of its predecessors

Forward pass

- Computes the output of the network
- Each node’s output depends only on itself and on its incoming edges
- Traverse the nodes and compute the output of each node, given the already computed outputs of its predecessors

\[
a^l_j = \sigma \left(\sum_k w_{jk}^l a_k^{l-1} + b_j^l \right)
\]

Forward pass

- Computes the output of the network
- Each node’s output depends only on itself and on its incoming edges
- Traverse the nodes and compute the output of each node, given the already computed outputs of its predecessors

\[a^l = \sigma(w^l a^{l-1} + b^l) \]

Forward pass

- Computes the output of the network
- Each node’s output depends only on itself and on its incoming edges
- Traverse the nodes and compute the output of each node, given the already computed outputs of its predecessors

In vector terminology

\[z^l = w^l a^{l-1} + b^l \quad a^l = \sigma(z^l) \]

Parameter update for a 1-layer network

- After a single forward pass, predict the output \hat{y}
- Compute the cost J (a single scalar value), given the predicted \hat{y} and the ground truth y
- Take the derivative of the cost J w.r.t w and b
- Update w and b by a fraction (learning rate) of dw and db
Parameter update for a 1-layer network

Forward pass:
\[Z = W^\top X + b \]
\[\hat{y} = A = \sigma(Z) \]

Use the chain rule:
\[\frac{dJ}{dW} = \frac{dJ}{dA} \cdot \frac{dA}{dZ} \cdot \frac{dZ}{dW} \]
\[\frac{dJ}{db} = \frac{dJ}{dA} \cdot \frac{dA}{dZ} \cdot \frac{dZ}{db} \]

Update \(w \) and \(b \):
\[W = W - \alpha \frac{dJ}{dW} \]
\[b = b - \alpha \frac{dJ}{db} \]

Parameter update for a 2-layer network

Forward pass:

\[Z^{[1]} = W^{[1] \top} X + b^{[1]} \]
\[A^{[1]} = \sigma(Z^{[1]}) \]
\[Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]} \]
\[\hat{y} = A^{[2]} = \sigma(Z^{[2]}) \]

Use the chain rule:

\[dW^{[2]} = \frac{dJ}{dW^{[2]}} = \frac{dJ}{dA^{[2]}} \frac{dA^{[2]}}{dZ^{[2]}} \frac{dZ^{[2]}}{dW^{[2]}} \]
\[db^{[2]} = \frac{dJ}{db^{[2]}} = \frac{dJ}{dA^{[2]}} \frac{dA^{[2]}}{dZ^{[2]}} \frac{dZ^{[2]}}{db^{[2]}} \]
\[dW^{[1]} = \frac{dJ}{dW^{[2]}} = \frac{dJ}{dA^{[2]}} \frac{dA^{[2]}}{dZ^{[2]}} \frac{dZ^{[2]}}{dA^{[1]}} \frac{dA^{[1]}}{dZ^{[1]}} \frac{dZ^{[1]}}{dW^{[1]}} \]
\[db^{[1]} = \frac{dJ}{db^{[2]}} = \frac{dJ}{dA^{[2]}} \frac{dA^{[2]}}{dZ^{[2]}} \frac{dZ^{[2]}}{dA^{[1]}} \frac{dA^{[1]}}{dZ^{[1]}} \frac{dZ^{[1]}}{db^{[1]}} \]

Update \(w \) and \(b \):

\[W^{[1]} = W^{[1]} - \alpha \frac{dJ}{dW^{[1]}} \]
\[b^{[1]} = b^{[1]} - \alpha \frac{dJ}{db^{[1]}} \]
\[W^{[2]} = W^{[2]} - \alpha \frac{dJ}{dW^{[2]}} \]
\[b^{[2]} = b^{[2]} - \alpha \frac{dJ}{db^{[2]}} \]
Training with SGD and backpropagation

- Randomly initialise parameters \(w \) and \(b \)
- For iteration 1 .. \(N \); do
 - predict \(\hat{y} \) based on \(w, b \) and \(x \)
 - compute the loss (or cost) \(J \)
 - find \(\frac{dJ}{dW} \) and \(\frac{dJ}{db} \)
 - update \(w \) and \(b \) using \(dw \) and \(db \)

With increasing number of layers in the network: computation complexity increases exponentially

\(\Rightarrow \) use dynamic programming
Training with SGD and backpropagation

- **Backpropagation:**
 - efficient method for computing gradients in a directed computation graph (e.g. a NN)
 - implementation of chain rule of derivatives,
 - allows us to compute all required partial derivatives in linear time in terms of the graph size

- **Stochastic Gradient Descent**
 - optimisation method, based on the analysis of the gradient of the objective function

- **Backpropagation** is often used in combination with **SGD**

Gradient computation: backprop
Optimisation: SGD, Adam, Rprop, BFGS, ...
Skipgram

V_{x1}, $d \times V$, $d \times 1$

$W = Wv_c$

$e^{x_i} \over \sum e^{x_i}$

Lecture slide from C. Manning, Stanford University (CS224n, Lecture 2)
Gradient Descent – Sup up

• To minimise $J(\theta)$ over the entire corpus:
 compute gradients for all windows

• Updates for each element of θ

$$
\theta_j^{\text{new}} = \theta_j^{\text{old}} - \alpha \nabla_\theta J(\theta)
$$

• α step size (or learning rate)

Gradient descent is the most basic tool to minimise functions

• But: very inefficient for large corpora!
 Instead: Update parameters after each window t

→ Stochastic gradient descent (SGD)

$$
\theta_j^{\text{new}} = \theta_j^{\text{old}} - \alpha \nabla_\theta J_t(\theta)
$$
Skipgram in a nutshell

• Train a simple neural network with a single hidden layer
• Throw away the network, only keep the learned weights of the hidden layer ⇒ word embeddings
Skipgram in a nutshell

- Train a simple neural network with a single hidden layer
- Throw away the network, only keep the learned weights of the hidden layer ⇒ word embeddings

Limitations of the model
- Normalisation factor is computationally expensive

\[p(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w=1}^{V} \exp(u_w^T v_c)} \]

- Solution: Skipgram with negative sampling
 (randomly sample “negative” instances from the copurs)