Software Projects

Julia Kreutzer, Stefan Riezler

SS 2019
Projects Overview

Simple seq2seq learning using joeynmt

- joeynmt is a minimalist framework for neural machine translation, developed especially for educational purposes
- Your task is to add features to joeynmt that are necessary for seq2seq tasks beyond supervised machine translation
- Each project is a re-implementation of an interesting task, based on a single paper
- Your goal is to become proficient in s2s learning, not scientific innovation
Projects Overview

Sample projects

- Neural machine translation without parallel data
- Task-oriented dialogue without database execution
- Text summarization without simple baselines
Project 1: NMT without parallel data

Neural machine translation

- Standard approaches to NMT such as RNNs with attention [Bahdanau et al., 2015] are part of the core implementation of joeynmt
- Standard training is performed by supervised learning on parallel sentences in source and target language

Challenge

- How far can one get by learning to translate from monolingual corpora only?
- How needs joeynmt to be extended in order to achieve this?
Project 1: NMT without parallel data

Neural machine translation

- Standard approaches to NMT such as RNNs with attention [Bahdanau et al., 2015] are part of the core implementation of joeynmt
- Standard training is performed by supervised learning on parallel sentences in source and target language

Challenge

- How far can one get by learning to translate from monolingual corpora only?
- How needs joeynmt to be extended in order to achieve this?
Approach

- **Reconstruction** [Lample et al., 2018, Artetxe et al., 2018]
 - Map sentences from monolingual corpora in two different languages into the same latent space
 - Learn to translate by learning to reconstruct in both languages
 - Reconstruct source from noise version of it, using autoencoder, in order to learn about structure
 - Reconstruct source from self-generated translation, in order to learn about translation
Project 2: Dialogue without database execution

Task-oriented dialogue systems

- Standard approaches apply seq2seq models similar to those used in NMT to “parallel” data consisting of sequence of turns of a dialogue [Vinyals and Le, 2015]
- Standard training is performed by supervised learning to predict the next dialogue turn

Challenge

- As soon as a knowledge base needs to be accessed in the dialogue, end-to-end differentiability is broken. What about using attention mechanism for soft incorporation of KB while still preserving trainability?
- How needs joeynmt to be extended in order to perform task-oriented dialogue-turn prediction?
Project 2: Dialogue without database execution

Task-oriented dialogue systems

- Standard approaches apply seq2seq models similar to those used in NMT to “parallel” data consisting of sequence of turns of a dialogue [Vinyals and Le, 2015]
- Standard training is performed by supervised learning to predict the next dialogue turn

Challenge

- As soon as a knowledge base needs to be accessed in the dialogue, end-to-end differentiability is broken. What about using attention mechanism for soft incorporation of KB while still preserving trainability?
- How needs joeynmt to be extended in order to perform task-oriented dialogue-turn prediction?
Approach

- Key-value retrieval network [Eric et al., 2017]
 - Separate attention over encoder states and KB keys
 - Combine both to get distribution over target vocabulary
Project 3: Summarization without first-sentence baseline

Extractive summarization

- Standard approaches apply seq2seq models similar to those used in NMT to “parallel” data consisting of sentences and keep/drop decision [Nallapati et al., 2017]
- Standard training is performed by supervised learning to predict which sentence to keep in summary

Challenge

- News articles can be summarized by simply extracting the first three sentences. What about using non-news data like WikiHow [Koupaee and Wang, 2018]?
- How needs joeynmt to be extended in order to perform extractive summarization?
Project 3: Summarization without first-sentence baseline

Extractive summarization

- Standard approaches apply seq2seq models similar to those used in NMT to “parallel” data consisting of sentences and keep/drop decision [Nallapati et al., 2017]
- Standard training is performed by supervised learning to predict which sentence to keep in summary

Challenge

- News articles can be summarized by simply extracting the first three sentences. What about using non-news data like WikiHow [Koupaee and Wang, 2018]?
- How needs joeynmt to be extended in order to perform extractive summarization?
Approach

- RNN-based summarization [Nallapati et al., 2017]
 - Bottom layer operates on words, top layer on sentences
 - Classification layer decides whether or not sentence belongs into summary
References

In Proceedings of the 31st Conference on Artificial Intelligence (AAAI), San Francisco, CA, USA.

A neural conversational model.
In Proceedings of the ICML Deep Learning Workshop, Lille, France.