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Methodology of Machine Learning

Theory of machine learning
Goal:

Learn a mathematical function to make predictions on unseen test
data, based on given training data of inputs and outputs, without
explicit programmed instructions on how to perform the task.

Learning functional relationships between inputs and outputs builds
on methods of mathematical optimization. [Bottou et al., 2018]

Important twist: Optimize prediction performance in
expectation, thus enabling generalization to unseen data.
[von Luxburg and Schölkopf, 2011, Kawaguchi et al., 2022, Shen et al., 2021]
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Methodology of Machine Learning

Practical workflow of supervised machine learning experiments
The train-dev-test paradigm:

Optimize a model on given training data,
tune meta-parameters on development data,
evaluate the model using a standard automatic evaluation metric on
benchmark test data.

Define SOTA by best achieved result, publish code and data, and
report corresponding meta-parameter settings.
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Methodology of Machine Learning

New paradigm: Practical workflow of in-context learning with LLMs
The pretrain-finetune/prompt paradigm:

Access a pretrained LLM,
finetune/prompt model on task-specific data,
evaluate the model using a standard automatic evaluation metric on
benchmark test data.

Define SOTA by best achieved result, publish code and fine-tuning
data, and report corresponding meta-parameters/prompts.
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Inherent Nondeterminism in Deep Learning

Sources of randomness and variability
Non-convex optimization under stochasticity in weight
initialization, dropout, data shuffling and batching. [Dauphin et al., 2014]

Implementation-level nondeterminism in floating-point truncation
error due to random accumulation ordering in parallel GPU threads.
[Pham et al., 2021, Gundersen et al., 2022]

Algorithmic factors of nondeterminism in choice of optimizers,
meta-parameters and model architecture.
[Henderson et al., 2018, Schmidt et al., 2021, D’Amour et al., 2022]

Data-level variability in pre-processing, evaluation metrics, data
splits [Post, 2018, Chen et al., 2022, Gorman and Bedrick, 2019, Søgaard et al., 2021].
Prompt-level variability in number, ordering, and similarity metric
of in-context examples. [Han et al., 2023]
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The Quest for Replicability

Replicability = training reproducibility of SOTA results under
exactly same circumstances

Nondeterminism in deep learning is spoiling the party
Implementation-level nondeterminism is partly irreducible, leading to
variability even for training runs in identical settings. [Zhuang et al., 2022]

Slight changes in training settings can reverse relations between
baseline and SOTA. [Reimers and Gurevych, 2017, Melis et al., 2018]

Results on ever-growing data may be impossible to replicate, even if
code and data are shared [Kaplan et al., 2020, Chowdhery et al., 2022].
For API-served black-box commercial LLMs, replicability of research
is put in the hands of commercial providers.
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Crisis Management

Checklists:
Quest for replicability fostered by sharing data, code, meta-parameter
settings, e.g., on paperswithcode.com
[Pineau et al., 2021, Heil et al., 2021, Lucic et al., 2022]

Unintended side effect: Conclusions that can be drawn from such
experiments are restricted to statements about a single training
configuration on a single test set.
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Crisis Management

Does AI face a replicability crisis? [Hutson, 2018]

Or is replicability uninteresting and not worth having?
[Drummond, 2009, Belz et al., 2021]

➡ Quest for replicability of SOTA result under exactly same
circumstances is asking the wrong question!
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An Alternative: Inferential Reproducibility

Inferential reproducibility
Question: Can qualitatively similar conclusions be drawn from an
independent replication of a study? [Goodman et al., 2016]

Inferential reproducibility in machine learning:
Embrace certain types of nondeterminism as inherent and
irreducible conditions of measurement that contribute to variance
in performance evaluation in an interesting way.
Our focus: Which conclusions about comparison SOTA-baseline can
be drawn across data properties under variability of
meta-parameters?
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Talk Outline

Model-based statistical methods for significance and reliability
testing

Interpretable statistical model: Linear mixed effects models
(LMEM), trained on predictions of machine learning models.
Significance testing under data/meta-parameter variation by
generalized likelihood ratio test (GLRT) on nested LMEM models.
Reliability coefficient and variance component analysis (VCA) of
meta-parameter and data effect of LMEM models.
A Worked-Through Example: Inferential reproducibility of
fine-tuning pre-trained LLMs [Aghajanyan et al., 2021]
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Significance
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Significance Testing under Measurement Variations

State-of-the-art: Statistical significance testing is mostly ignored
in NLP and ML in general. [Marie et al., 2021, Ulmer et al., 2022]

Goal: Start reproducibility analysis by significance testing, w/ and
w/o incorporation of variability in meta-parameters and data.
Method:

Train LMEMs on performance scores of baseline and SOTA models,
obtained w/ or w/o meta-parameter variation during training.
Apply GLRT to system effect parameter of LMEM.
Analyze significance w/ and w/o meta-parameter variation,
conditional on data properties.
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Significance Testing under Measurement Variations

GLRTs based on LMEMS
Response variables Y for LMEM training: Evaluation scores for
meta-parameter variations of baseline and SOTA.
GLRT: Train LMEMs with fixed effect βc accounting for
competing systems on performance scores of baseline and SOTA
systems, and compare their likelihood ratio.
Pairing of systems on the sentence level: Incorporation of
random sentence effect bs allows incorporation of meta-parameter
variations and reduces residual variance.
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Significance Testing under Measurement Variations

The nested models setup [Pinheiro and Bates, 2000]

Restricted null hypothesis model not distinguishing between
systems:

m0 : Y = β + bs + ϵres ,

where β is fixed effect for common mean for both systems, bs is
random effect for sentence-specific deviation with variance σ2

s , and
residual error ϵres with variance σ2

res .
General model with different means for baseline and SOTA:

m1 : Y = β + βc · Ic + bs + ϵres ,

where indicator function Ic activates fixed effect βc for deviation of
competing SOTA model from the baseline mean β when data point
was obtained by a SOTA evaluation.
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Significance Testing under Measurement Variations

GLRTs in the nested models setup
Restricted model m0 is special case ("nested") of more general
model m1 since it restricts factor βc to zero.
Let ℓ0 be likelihood of restricted model m0, ℓ1 be likelihood of more
general model m1, intuition of GLRT is to reject the null hypothesis
if the test statistic of likelihood ratio

λ =
ℓo
ℓ1

yields values close to zero.
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Significance Testing under Measurement Variations

Analyzing significance conditional on data properties
Extend models m0 and m1 by a fixed effect βd modeling a test
data property d like segment length, readability, or word rarity.
Add interaction effect βcd to assess expected system performance
for different levels of d .
Perform GLRT comparing

m′
1 : Y = β + βd + (βc + βcd) · Ic + bs + ϵres

to null hypothesis model

m′
0 : Y = β + βd + bs + ϵres .

Stefan Riezler and Michael Hagmann 16 / 50



Reliability
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Reliability of Measurements

State-of-the-art: Bootstrap confidence intervals ("error bars")
around evaluation scores under meta-parameter variation.
[Lucic et al., 2018, Henderson et al., 2018]

Goal:
Analyze sources of variability in performance evaluation,
analyze interaction of meta-parameters with data properties,
compute coefficient to quantify general robustness of a model.

Method:
Variance component analysis (VCA): Untangle sources of
variability in measurement.
Reliability coefficient: Assess general robustness of model by ratio
of substantial variance out of total variance.
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Variance Component Analysis

VCA in classical ANOVA [Fisher, 1925, Searle et al., 1992]

Example: Specify model with random effects for variation in outcome
Y between sentences s and between settings of meta-parameter r .
Tautological decomposition:

Y = µ+ (µs − µ) + (µr − µ) + (Y − µs − µr + µ),

grand mean µ of observed evaluation score across all levels of
meta-parameter r and sentences s,
deviation νs = (µs − µ) of mean µs for sentence s from µ,
deviation νr = (µr − µ) of mean µr for meta-parameter r from µ,
residual error, reflecting deviation of observed score Y from what
would be expected given the first three terms.
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Variance Component Analysis

VCA in classical ANOVA [Fisher, 1925, Searle et al., 1992]

Components in decomposition are uncorrelated with each other.
Total variance σ2(Y ) can be decomposed into following independent
variance components:

σ2(Y ) = σ2
s + σ2

r + σ2
res ,

σ2
s and σ2

r denote variance due to sentences and meta-parameters,
σ2
res denotes residual variance, including variance due to interactions

of s and r .
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Estimation of Variance Components by LMEMs

Y = µ︸︷︷︸
=:β0

+(µs − µ)︸ ︷︷ ︸
=:bs

+(µr − µ)︸ ︷︷ ︸
=:br

+(Y − µs − µr + µ)︸ ︷︷ ︸
=:ϵ

.

where

b =

[
br
bs

]
∼ N (

[
0
0

]
,

[
σ2
r 0
0 σ2

s

]
), ϵ ∼ N (0, σ2

residual).

Each component µf − µ modeled as component bf of random
effects vector b,
corresponding variance component σ2

f modeled as component of
variance-covariance matrix ψθ.

Stefan Riezler and Michael Hagmann 21 / 50



Modeling Interactions with Data Properties in LMEMs

Y = β0 + bs + βf + βd + βfd + ϵ.

Identify facet f with large variance contribution σ2
f in VCA.

Analyze interaction of facet f with data property d :
Change random effect bf to fixed effect βf ,
Add fixed effect βd modeling test data characteristics,
Add interaction effect βfd modeling interaction between data
property d and facet f .
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Reliability Coefficient

Intra-class correlation coefficient (ICC) [Fisher, 1925]

Fundamental interpretation as measure of proportion of variance
that is attributable to objects of measurement.
Ratio of variance between objects of interest σ2

B to the total variance
σ2
total , including variance within objects of interest σ2

W .

ICC =
σ2
B

σ2
total

=
σ2
B

σ2
B + σ2

W

.

Name of coefficient is derived from goal of measuring how strongly
objects in the same class are grouped together: Variance between
objects of interest should outweigh variance within!
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Inferential Reproducibility
- A Worked-Through Example
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A Worked-Through Example

BART-RXF: Better Fine-Tuning by Reducing Representational
Collapse [Aghajanyan et al., 2021]

SOTA on paperswithcode.com for text summarization task on
CNN/Dailymail and RedditTIFU datasets.
Baseline: BART [Lewis et al., 2020]

SOTA Model: Approximate trust region method by constraining
updates on embeddings f and classifier g during fine-tuning in order
not to forget original pre-trained representations.

LR3F (f , g , θ) = L(θ) + λKLsym(g · f (x)||g · f (x + z))

where z ∼ N (0, σ2I ) or z ∼ U(−σ, σ).
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A Worked-Through Example

Experimental setup and SOTA results
Datasets hosted on paperwithcode.com

train/dev/test split for Reddit not given, used split of [Zhong et al., 2020].
Reported meta-parameter ranges: λ ∈ [0.001, 0.01, 0.1], noise
distribution N or U , maximum result of 10 random seeds .

Seeds of random number generator not given, used new 18 random
seeds for baseline and 5 for SOTA.

Results reported in [Aghajanyan et al., 2021]:
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Significance Testing for Training Reproducibility

baseline - SOTA p-value effect size

Rouge1 1.99e − 14 −0.101
Rouge2 0.00000000114 −0.0803
RougeL 1.35e − 15 −0.105

Rouge [Lin and Hovy, 2003] evaluation of best baseline versus best SOTA
model on CNN/DailyMail shows significant improvements of best
SOTA model over baseline with small effect sizes.
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A First Step towards Inferential Reproducibility:
Significance Conditional on Data Properties

Measuring difficulty of summarization data
Word rarity [Platanios et al., 2019]: Negative log of empirical probabilities
of words in segment, higher value means higher rarity.
Flesch-Kincaid readability [Kincaid et al., 1975]: Pro-rates
words/sentences and syllables/word; in principle unbounded, usually
interpreted as ranging from 0 (difficult) to 100 (easy).
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Interaction of Performance with Data Properties

Significant difference in performance slope regarding reading ease.
Performance for SOTA system increases faster for easier inputs.
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Interaction of Performance with Data Properties

Significant difference in performance with respect to word rarity.
SOTA is better than baseline for inputs with lower word rarity.
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Significance Testing for Inferential Reproducibility

Incorporating meta-parameter variation into significance testing
Grid search over 18 random seeds for baseline, 30 SOTA models for
3 λ values × 2 noise distributions × 5 random seeds.

baseline - SOTA p-value effect size

Rouge1 0.0 0.390
Rouge2 0.0 0.301
RougeL 0.0 0.531

Relations turned around: Baseline significantly better than
SOTA, at medium effect size!
Performance variation of baseline model over 18 random seeds
negligible (standard deviations < 0.2% for Rouge-X scores)
➡ Reliability analysis of SOTA model!
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Reliability Analysis for Inferential Reproducibility

Reliability coefficient and variance component analysis

Variance component v Variance σ2
v Percent

summary_id 0.00992 62.7
lambda 0.00131 8.31
random_seed 0.0000766 0.48
noise_distribution 0.0000318 0.2
residual 0.00449 28.3

Only moderate value of reliability coefficient.
Largest variance component for Rouge2 estimate due to
regularization constant λ.
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Interaction of Meta-Parameters with Data Properties

Significant drop in performance of SOTA model across levels of
reading difficulty for regularization constant λ = 0.1.
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Interaction of Meta-Parameters with Data Properties

Significant drop in performance of SOTA model for regularization
constant λ = 0.1, especially for rare words.
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Reproducibility Results on RedditTIFU

Interesting data since much harder to read (mean readability score of
−348.9).
Significant improvement of best SOTA over baseline only for Rouge2
at small effect size.
No significant improvements of SOTA over baseline if
meta-parameter variation is taken into account.
Reliability coefficients of around 80% with negligible variance
contributions from λ values.
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Interpretation of Statistical Analysis

Losing or winning a new SOTA score strongly depends on finding the
sweet spot of a single meta-parameter (here: λ) – paper’s goal
was explicitly to reduce instability across meta-parameter settings!
Performance improvements by fine-tuning mostly on easy-to-read
and frequent-word inputs – less than one quarter of the
CNN/Dailynews data.
Lacking robustness against data variability – new random split
on RedditTIFU negates gains reported for split used in paper.
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Conclusion

Stefan Riezler and Michael Hagmann 37 / 50



Conclusion

Inferential Reproducibility
Reliability, significance, and reproducibility are methodological pillars
of empirical science.
Easily neglected in race for improved state-of-the-art results on
benchmark data.
Classical statistical methods come to the rescue to analyze
inferential reproducibility!

Enter interpretable LMEMs and general GLRTs as analysis tools.
Statistical methods like GLRT or VCA are justified by identifiability
and consistency of maximum likelihood estimators.
Wide applicability, well established software.
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Thank you!
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Data, Code, Literature

Textbook:
Paper: Towards Inferential Reproducibility of Machine Learning
Research, Michael Hagmann and Stefan Riezler, ICLR 2023.
Data & code: https://www.cl.uni-heidelberg.de/
statnlpgroup/empirical_methods/
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Background
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Background: LMEMs

General Form of Model

For given dataset of N input-output pairs {(xn, yn)}Nn=1, general
form of an LMEM is

Y = Xβ + Zb + ϵ.

Y are N stacked response variables,
X and Z known design matrices,
β fixed effects,
b random effects,
ϵ residual errors,
where b ∼ N (0, ψθ), ϵ ∼ N (0,Λθ).

Notation following [Wood, 2017].
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Background: LMEMs

Estimation
Fixed effects can be observed exhaustively and are modeled as
parameters of a standard linear model.
Random effects are modeled as normally distributed random
variables, and corresponding observations are treated as random
samples from a larger population.
LMEMs look like a linear model, however, linear combination of fixed
effect predictor variables and normally distributed random
components yields nonlinear objective.
Several packages exist for efficient estimation.
See [Pinheiro and Bates, 2000, Demidenko, 2013, Bates et al., 2015].
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Background: LMEMs and ANOVA

Comparison to ANOVA
LMEMs offer Flexibility!

General estimation procedure that is not design-driven.
Elegant handling of missing data situations.
Flexible modeling, e.g., random-effects-only models.

Further reading:
[McCulloch and Searle, 2001, West et al., 2007, Baayen et al., 2008, Barr et al., 2013]
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Background: The Generalized Likelihood Ratio Test

Let ℓ0 be likelihood of restricted model (setting parameter for
deviation of models to zero), and ℓ1 likelihood of more general model.
Null hypothesis H0 is assumption that restricted model is adequate.

Generalized Likelihood Ratio Test (GLRT)
A GLRT computes the likelihood ratio

λ =
ℓ0
ℓ1
,

and rejects H0 if 0 < λ ≤ λ∗ where λ∗ is chosen such that
P(0 < λ ≤ λ∗|H0 is true ) = α for a significance level α.
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Background: The Generalized Likelihood Ratio Test

Interpretation of 0 < λ ≤ 1:
Values of λ close to 1 suggest that restricted model (H0) explains
the data as well as more complex model (H1)
H0 should be accepted for large values of λ
Conversely, values close to 0 suggest that the data are not very
compatible with the parameter values in the restricted model
H0 should be rejected for small values of λ
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Background: The Generalized Likelihood Ratio Test

χ2 distribution of likelihood ratio statistic [Wilks, 1938]

W = −2 log λ = 2 log ℓ1
ℓ0

= 2(log ℓ1 − log ℓ0) ∼ χ2,
where χ2 distribution has k1 − k0 degrees of freedom if general
model has k1 parameters and restricted model has k0 parameters
Reject H0 if observed value w is greater than (1 − α)-quantile, i.e.,
if p-value p := PH0(W > w) is smaller than rejection level α.
Further reading: [Pawitan, 2001, Davison, 2003, van der Vaart, 1998].
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Background: Reliability Coefficient

General reliability coefficient φ [Brennan, 2001]

Ratio of substantial variance σ2
s to the sum of itself and absolute

error variance σ2
∆, defined for facets f1, f2, . . . and selected

interactions f1 : f2, . . . , all modeled as random effects:

φ =
σ2
s

σ2
s + σ2

∆

, where σ2
∆ = σ2

f1 + σ2
f2 + . . .

+ σ2
f1:f2 + · · ·+ σ2

res .
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Background: Reliability Coefficient

Reliability coefficient φ applied to NLP/data science
Reliability of performance evaluation across replicated
measurements is assessed as the ratio by which the amount of
substantial variance outweighs the total error variance.

Variance should explained by variance between test sentences, not by
variance-inducing facets like meta-parameter settings or by
unspecified facets of measurement procedure.
Interpretation of threshold on ratio:

Values less than 50%, between 50% and 75%, between 75% and
90%, and above 90%, indicative of poor, moderate, good, and
excellent reliability [Koo and Li, 2016]
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