
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 8086 - 8098

May 22-27, 2022 c©2022 Association for Computational Linguistics

Fantastically Ordered Prompts and Where to Find Them:
Overcoming Few-Shot Prompt Order Sensitivity

Yao Lu† Max Bartolo† Alastair Moore‡ Sebastian Riedel† Pontus Stenetorp†
†University College London ‡Mishcon de Reya LLP

{yao.lu,m.bartolo,s.riedel,p.stenetorp}@cs.ucl.ac.uk
alastair.moore@mishcon.com

Abstract
When primed with only a handful of training
samples, very large, pretrained language mod-
els such as GPT-3 have shown competitive re-
sults when compared to fully-supervised, fine-
tuned, large, pretrained language models. We
demonstrate that the order in which the sam-
ples are provided can make the difference be-
tween near state-of-the-art and random guess
performance: essentially some permutations
are “fantastic” and some not. We analyse this
phenomenon in detail, establishing that: it is
present across model sizes (even for the largest
current models), it is not related to a specific
subset of samples, and that a given good per-
mutation for one model is not transferable to
another. While one could use a development
set to determine which permutations are per-
formant, this would deviate from the true few-
shot setting as it requires additional annotated
data. Instead, we use the generative nature
of language models to construct an artificial
development set and based on entropy statis-
tics of the candidate permutations on this set,
we identify performant prompts. Our method
yields a 13% relative improvement for GPT-
family models across eleven different estab-
lished text classification tasks.

1 Introduction

Large pretrained language models (PLMs, De-
vlin et al., 2019; Peters et al., 2018; Raffel et al.,
2020; Liu et al., 2019; Yang et al., 2019; Radford
et al., 2019) have shown remarkable performance
when conditioned with an appropriate textual con-
text (Petroni et al., 2019, 2020; Jiang et al., 2020;
Shin et al., 2020; Davison et al., 2019). For exam-
ple, when conditioned on a long document and a
“TL;DR:” token, they can generate a summary of
said document, and when provided a partial ques-
tion (“The theory of relativity was developed by
__”), they can generate the correct answer. Perhaps
most strikingly, when primed with a context con-
sisting of very few training examples, they produce

0.1 0.3 0.8 1.5 2.7 6.7 13 175
Model Parameters (Billion)

50

60

70

80

90

100

SS
T-

2
Ac

cu
ra

cy
 (%

)

0.1 0.3 0.8 1.5 2.7 6.7 13 175
Model Parameters (Billion)

50

60

70

80

90

100

Su
bj

 A
cc

ur
ac

y
(%

)

Figure 1: Four-shot performance for 24 different sam-
ple orders across different sizes of GPT-family models
(GPT-2 and GPT-3) for the SST-2 and Subj datasets.

text classification results that can match those of
fully supervised models. This type of few shot set-
ting, is commonly referred to as “In-context Learn-
ing” (Brown et al., 2020).

A core component of in-context learning is the
text-based prompt that serves as the context. Com-
posing a prompt requires: (i) text linearisation us-
ing a template; and (ii) training sample concate-
nation (See Table 1 for an example). It has been
established that the structure of the template has
a large impact on performance (Shin et al., 2020;
Gao et al., 2020; Schick and Schütze, 2020; Jiang
et al., 2020). However, to the best of our knowl-
edge, no work has studied the effect of the sample
ordering on In-context Learning performance.

Perhaps counter-intuitively, we find that the right
sample order can make as much of a difference as

8086

Example

training set
(the greatest musicians, 1)
(redundant concept, 0)

linearization
Review: the greatest musicians. Sentiment: positive
Review: redundant concept. Sentiment: negative

concatenation

Review: the greatest musicians. Sentiment: positive. Review: redundant
concept. Sentiment: negative
OR
Review: redundant concept. Sentiment: negative. Review: the greatest
musicians. Sentiment: positive

Table 1: Procedures for prompt construction.

the right template. As can be seen in Figure 1,
some permutations have comparable performance
(over 85% accuracy) to supervised training for sen-
timent classification, while others perform close to
random (around 50%). This order sensitivity is uni-
versal across models, and although increasing the
model size somewhat addresses it, the problem is
still present for some text classification tasks (Subj
in Figure 1) for models with billions of parameters.

In our analysis, we find no common denomi-
nator between performant sample orders and that
they are not transferable across different model
sizes and tasks. In a fully-supervised setting, we
could rely on a development set to select among
sample orders. However, this is not desirable in
a few-shot setting where the size of the develop-
ment set is very limited, even unavailable (Perez
et al., 2021) . Instead, we use the generative na-
ture of language models to construct an unlabelled
artificial development set and refer to it as a prob-
ing set. As the probing set is unlabelled, we use
the predicted label distribution statistics and pro-
pose entropy-based metrics to measure the quality
of candidate prompts.Experimental results show
that we can achieve on average 13% relative im-
provement across eleven different established text
classification tasks across all different sizes (four
orders of magnitude) of PLMs.

To summarise, our contributions are as follows:

1. We study order sensitivity for In-context
Learning, which we show is crucial for the
success of pretrained language models for few-
shot learning.

2. We propose a simple, generation-based prob-
ing method to identify performant prompts
without requiring additional data.

3. Our probing method is universally applica-
ble and effective across different sizes of pre-
trained language models and for different
types of datasets – achieving on average a

Figure 2: Training sample permutations for the In-
context Learning setting. The concatenation of training
samples as well as test data transforms the classifica-
tion task into a sequence generation task.

13% relative improvement over a wide range
of tasks.

2 Order Sensitivity and Prompt Design

In this section, we study the relationship between
permutation performance and various factors. For
the ease of visualisation, we use a fixed random
subset of four samples with a balanced label distri-
bution from the SST-2 dataset and consider all 24
possible sample order permutations. This setup is
illustrated in Figure 2. We also test five randomly-
selected sets of examples and summarised variance
statistics in the experiment section (Section 5).

Although beneficial, increasing model size does
not guarantee low variance We evaluate the or-
der permutations for four different sizes of GPT-2
(0.1B–1.5B)1 and GPT-3 (2.7B–175B). As we can
observe in Figure 1, models can obtain remarkable
few-shot performance. We see that the GPT2-XL
(1.5B) model can even surpass 90% accuracy given
just four samples. This result is comparable to
those of supervised models trained on more than
60,000 samples. However, the performance varia-
tion of different permutations remain a big issue,
especially for “smaller” models.2 The same model
can exhibit nearly perfect behaviour given one sam-
ple order, but then fall back to be on par with a
random baseline for another. While increasing the
model size (by a few order of magnitudes) can
sometimes alleviate the issue, it still cannot resolve
it entirely (especially if we consider tasks other
than SST-2). In contrast, different initialisations of
supervised fine-tuning approaches typically result
in less than 1% standard deviation for their test set
performance (Gao et al., 2020).

1We can also refer these models as GPT2-base, GPT2-
medium, GPT2-Large, and GPT2-XL.

2The smallest model in our experiment is the same size as
BERT-base.

8087

1 2 4 8 16 32
N-shot Training Examples

50

60

70

80

90

100
SS

T-
2

Ac
cu

ra
cy

(%
)

GPT2-Small (0.1B)
GPT2-Medium (0.3B)
GPT2-Large (0.8B)
GPT2-XL (1.5B)

Figure 3: Order sensitivity using different numbers of
training samples.

Adding training samples does not significantly
reduce variance To further explore the order sen-
sitivity of few-shot prompts, we increase the num-
ber of training samples and then sample a subset of
at most 24 different orderings.3 We use the GPT2
family models for this experiment. In Figure 3, we
can observe that increasing the number of training
samples leads to increases in performance. How-
ever, a high level of variance remains, even with
a large number of samples and can even increase.
Based on this, we draw the conclusion that order
sensitivity is likely to be a fundamental issue of
In-context Learning regardless of the number of
training samples.

Performant prompts are not transferable
across models We find that a specific permuta-
tion’s performance may drop from 88.7% to 51.6%
by changing the underlying model from GPT2-XL
(1.5B) to GPT2-Large (0.8B). This suggests that a
particular permutation working well for one model
does not imply that it will provide good results for
another model. To validate this hypothesis, we use
all possible order permutations of the four sam-
ples as prompts – 24 in total. We then perform
prediction conditioned on each of these prompts
for different models and calculate the pairwise
Spearman’s rank correlation coefficient between
the scores. These results are shown in Figure 4.

If there is a common pattern for performant
prompts, we should then be able to observe high
correlation across models. However, the behaviour
of permutations is seemingly random even across

3Bounded at the lower limit by the total number of samples
given, and at the upper limit as there can be up to 64! possible
orders.

0.1B
0.3B

0.8B
1.5B

2.7B
6.7B 13B

175B

175B

13B

6.7B

2.7B

1.5B

0.8B

0.3B

0.1B

M
od

el
 P

ar
am

et
er

s

-0.17 -0.23 -0.35 -0.14 0.05 0.27 -0.22 1.00

-0.24 0.01 -0.12 0.01 0.12 0.04 1.00 -0.22

-0.10 -0.26 0.19 -0.03 0.13 1.00 0.04 0.27

0.07 -0.11 0.10 -0.27 1.00 0.13 0.12 0.05

-0.24 0.20 -0.04 1.00 -0.27 -0.03 0.01 -0.14

0.23 0.08 1.00 -0.04 0.10 0.19 -0.12 -0.35

0.09 1.00 0.08 0.20 -0.11 -0.26 0.01 -0.23

1.00 0.09 0.23 -0.24 0.07 -0.10 -0.24 -0.17

0

1
Spearm

an C
orrelation

Figure 4: Training sample permutation performance
correlation across different models.

0.1B
0.3B

0.8B
1.5B

2.7B
6.7B 13B

175B

175B

13B

6.7B

2.7B

1.5B

0.8B

0.3B

0.1B

M
od

el
 P

ar
am

et
er

s
-0.26 -0.20 0.09 -0.66 -0.26 0.77 -0.54 1.00

-0.09 0.09 -0.37 0.77 -0.49 -0.09 1.00 -0.54

-0.49 0.03 -0.49 -0.43 -0.49 1.00 -0.09 0.77

0.71 0.20 0.31 0.09 1.00 -0.49 -0.49 -0.26

0.37 0.31 0.09 1.00 0.09 -0.43 0.77 -0.66

0.26 0.09 1.00 0.09 0.31 -0.49 -0.37 0.09

-0.31 1.00 0.09 0.31 0.20 0.03 0.09 -0.20

1.00 -0.31 0.26 0.37 0.71 -0.49 -0.09 -0.26

0

1

Spearm
an C

orrelation

Figure 5: Training label pattern permutation perfor-
mance correlation across different models.

different sizes of the same model. For example,
the 175B and 2.7B model only has a correlation of
0.05, this means a good permutation for the 2.7B
model is in no way guaranteed that it will also yield
good performance for the 175B model.

Performant label orderings are not consistent
across models In addition to training example
ordering, we also explore label ordering for train-
ing prompts. We use all patterns of the above-
mentioned full permutations – six different label
patterns.4 We then compute the pairwise Spearman
correlation across different models as described in
the previous paragraph. As shown in Figure 5, the
behaviour of label orderings is once again seem-
ingly random across different sizes of the same
model. It is thus not possible to identify a label

4NNPP, NPNP, NPPN, PNNP, PNPN, PPNN, where P/N
respectively denotes positive/negative

8088

51.6 85.2
SST-2 Accuracy(%)

0

50

100

150

200

250
N

um
be

r
of

 E
xa

m
pl

es
positive
negative

orginal calibrated

55

60

65

70

75

80

85

SS
T-

2
Ac

cu
ra

cy
 (%

)

Figure 6: Left: Predicted SST-2 label distribution un-
der different prompts. Right: 2-shot calibrated perfor-
mance (Zhao et al., 2021) of all possible permutations
on GPT2-XL (1.5B).

ordering that is performant across different models.

Degenerate behaviour of bad prompts We per-
form error analysis across performant and non-
performant prompts and observe that the majority
of failing prompts suffer from highly unbalanced
predicted label distributions (Figure 6, left). An in-
tuitive way to address this would be by calibrating
the output distribution, along the lines of Zhao et al.
(2021). However, we find that although calibration
leads to much higher performance, the variance
remains high (Figure 6, right).

3 Methodology

The previous section demonstrates that prompt or-
der can have a substantial effect on performance,
with some orderings of the same prompts for the
same model providing random performance, and
other “better” orderings providing performance
competitive with supervised approaches. This sug-
gests that there could be various ways of selecting
prompt orders to achieve better performance, but
the challenge is to do so automatically and without
the need for additional labels (e.g., a development
set).

Hence, in this section, we explore the question
of: “How can we automatically generate a ‘prob-
ing set’ to find performant prompt orderings”? We
approach this by: (i) for a randomly-selected set of
training samples, we use every possible ordering
permutation of this set as candidates; (ii) construct-
ing a probing set by querying the language model
using all candidate prompts as context; and (iii)
use this probing set to identify the best ordering by
ranking them using a probing metric.

3.1 Sampling from the Language Model to
Construct a Probing Set

We propose a simple methodology to automati-
cally construct a “probing set”, by directly sam-

pling from the language model itself. This ap-
proach makes it possible to generate probing sets
automatically, without access to any additional
data. Concretely, given a set of training samples
S = {(xi, yi)}, i = 1, · · · , n, where xi and yi
denote the sentence and label of the ith training
sample. We then define a transformation T , map-
ping each sample into natural language space, such
that ti = T (xi, yi). ti is therefore a text sequence
of the ith training sample using the template defined
by T . In this work, we use a simple transformation
function T such that T (xi, yi) = input:xi type:yi.
This transforms each sample into a standard for-
mat sentence, which linearises each element in
the set into natural language space defined as
S

′
= {ti}, i = 1, · · · , n.
We then define a full permutation function group

of n training samples, F = {fm},m = 1, · · · , n!,
where each function fm takes S

′
as input and out-

puts cm: the concatenation of a unique permutation.
In our case, sampling four training samples at ran-
dom gives up to 24 possible ordering permutations
of the transformed samples.

For each prompt candidate cm, we then sam-
ple from the language model to obtain the probing
sequence gm ∼ P (·|cm; θ), where θ denotes the
parameters of the pretrained language model. We
stop decoding from the language model upon gen-
erating the special end-of-sentence token defined
by a template, or reach the generation length limit.
Our probing set construction method is illustrated
in Figure 7, where the objective is to generate a
probing set that shares a similar distribution to the
training samples.

We run this sampling process for all possible
prompt ordering permutations and extract prob-
ing samples from them (T −1(g)). Then gather
extracted samples together to form the probing set
D = T −1(g1)⊕...⊕T −1(gn!). Although the prob-
ing set contains predicted label for each sentence,
there is no guarantee on the validity of these labels.
Therefore, we discard them from the probing set as
we are only interested in sampling probes from the
language model corresponding to the input distri-
bution.

3.2 Probing Metrics

Once we have constructed a probing set for a given
set of samples, we can now use that probing set
to identify the best possible prompt ordering for
that particular sample set. Here, we explore two

8089

Figure 7: Our probing set construction method, showing the various possible ordering permutations of the ran-
domly selected training samples, the resulting generation for each permutation, and the concatenation of each into
a probing set. Note that we discard the generated labels, as there is no guarantee that these generated labels are
correct.

methods for selecting the best ordering: Global
Entropy (GlobalE), and Local Entropy (LocalE).

Global Entropy (GlobalE) The motivation be-
hind GlobalE is to identify prompts of specific sam-
ple orderings that avoid the issue of extremely un-
balanced predictions (as we have previously es-
tablished it as key problem for non-performant
prompts). We compute the predicted label ŷi for
data point (x

′
i, y

′
i) under context cm as follows:

ŷi,m = argmax
v∈V

P (v|cm ⊕ T (x
′
i); θ) (1)

For each label v ∈ V (where V denotes the
target label set), we compute the label probability
over the probing set as:

pvm =

∑
i 1{ŷi,m=v}

|D|
(2)

We then use the predicted category label entropy
as the GlobalE score for cm as follows:

GlobalEm =
∑
v∈V
−pvm log pvm (3)

Local Entropy (LocalE) The motivation behind
LocalE is that if a model is overly confident for all
probing inputs, then it is likely that the model is not
behaving as desired. At the very least, it is poorly
calibrated, which could also be an indication of
a poor capability to appropriately differentiate be-
tween classes. Similar to the GlobalE computation,
we calculate the prediction probability of a data
point (x

′
i, y

′
i) over the target labels v ∈ V under

context cm, as follows:

pvi,m = P
(x

′
i,y

′
i)∼D

(v|cm ⊕ T (x
′
i); θ), v ∈ V (4)

We then calculate the average prediction entropy
per data point as the LocalE score:

LocalEm =

∑
i

∑
v∈V −pvi,m log pvi,m
|D|

(5)

As we now have a way to score each prompt order-
ing, based on its effect against the probing set, we
can rank each prompt ordering by performance as
measured by GlobalE or LocalE respectively.

4 Experimental Setup

We use four different sizes of GPT-2 (Radford et al.,
2019) (with 0.1B, 0.3B, 0.8B, and 1.5B parame-
teers) and two sizes of GPT-3 (Brown et al., 2020)
(with 2.7B, and 175B parameters). Due to limited
context window size (up to 1024 word-pieces for
the GPT-2 series of models), we use a 4-shot setting
for all datasets except AGNews and DBPedia. Our
experiments are based on the open-source check-
points of GPT-2 models and access to the OpenAI
GPT-3 API.5 For probing set generation, we restrict
the maximum generation length to 128. We also
use sampling with a temperature, t, of 2, and we
also make use of block n-gram repetitions (Paulus
et al., 2018) to encourage diverse generation.

We use 24 different permutations for each set
of randomly selected training samples and use 5
different sets (except for GPT-3 with 175B parame-
ters, where we only do two sets with 12 different
permutation due to the high monetary cost) for each
experiment, giving a total of 120 runs. We report
the mean and standard deviation of the correspond-
ing evaluation metric over 5 different sets.

For performant prompt selection, we rank candi-
date prompts using the LocalE and GlobalE prob-

5https://openai.com/api/

8090

SST-2 SST-5 DBPedia MR CR MPQA Subj TREC AGNews RTE CB

Majority 50.9 23.1 9.4 50.0 50.0 50.0 50.0 18.8 25.0 52.7 51.8
Finetuning (Full) 95.0 58.7 99.3 90.8 89.4 87.8 97.0 97.4 94.7 80.9 90.5

GPT-2 0.1B 58.97.8 29.04.9 44.99.7 58.67.6 58.46.4 68.97.1 52.10.7 49.24.7 50.811.9 49.72.7 50.11.0
LocalE 65.23.9 34.43.4 53.34.9 66.06.3 65.03.4 72.56.0 52.91.3 48.03.9 61.05.9 53.03.3 49.91.6
GlobalE 63.85.8 35.82.0 56.14.3 66.45.8 64.82.7 73.54.5 53.01.3 46.13.7 62.15.7 53.03.0 50.31.6
Oracle 73.51.7 38.24.0 60.54.2 74.34.9 70.84.4 81.32.5 55.21.7 58.14.3 70.32.8 56.82.0 52.11.3

GPT-2 0.3B 61.013.2 25.95.9 51.77.0 54.27.8 56.79.4 54.58.8 54.47.9 52.64.9 47.710.6 48.82.6 50.25.3
LocalE 75.34.6 31.03.4 47.13.7 65.26.6 70.96.3 67.67.2 66.79.3 53.03.9 51.27.3 51.81.0 47.14.2
GlobalE 78.75.2 31.75.2 58.35.4 67.05.9 70.76.7 68.36.9 65.810.1 53.34.6 59.67.2 51.11.9 50.33.7
Oracle 85.54.3 40.56.3 65.27.6 74.76.1 80.45.4 77.32.3 79.42.4 63.32.9 68.48.0 53.91.3 62.57.4

GPT-2 0.8B 74.510.3 34.78.2 55.012.5 64.613.1 70.912.7 65.58.7 56.49.1 56.52.7 62.211.6 53.22.0 38.88.5
LocalE 81.15.5 40.34.7 56.77.5 82.64.2 85.43.8 73.64.8 70.44.2 56.21.7 62.78.1 53.31.6 38.45.2
GlobalE 84.84.1 46.91.1 67.73.6 84.32.9 86.72.5 75.83.1 68.66.5 57.22.3 70.73.6 53.51.5 41.24.5
Oracle 88.91.8 48.40.7 72.33.3 87.51.1 89.90.9 80.34.9 76.64.1 62.11.5 78.11.3 57.31.0 53.25.3

GPT-2 1.5B 66.810.8 41.76.7 82.62.5 59.111.9 56.99.0 73.98.6 59.710.4 53.13.3 77.67.3 55.01.4 53.84.7
LocalE 76.78.2 45.13.1 83.81.7 78.15.6 71.88.0 78.53.6 69.75.8 53.63.1 79.33.7 56.81.1 52.63.9
GlobalE 81.83.9 43.54.5 83.91.8 77.95.7 73.46.0 81.42.1 70.96.0 55.53.0 83.91.2 56.31.2 55.14.6
Oracle 86.11.5 50.91.0 87.31.5 84.02.7 80.33.3 85.11.4 79.95.7 59.02.3 86.10.7 58.20.6 63.94.3

GPT-3 2.7B 78.010.7 35.36.9 81.11.8 68.012.9 76.811.7 66.510.3 49.12.9 55.34.4 72.94.8 48.61.9 50.40.7
LocalE 81.06.0 42.34.7 80.31.7 75.64.1 79.05.5 72.55.8 54.24.2 54.02.6 72.34.6 50.41.9 50.50.8
GlobalE 80.24.2 43.24.3 81.20.9 76.13.8 80.33.4 73.04.3 54.34.0 56.72.0 78.11.9 51.31.8 51.20.8
Oracle 89.80.7 48.01.1 85.41.6 87.40.9 90.10.7 80.91.4 60.310.3 62.84.2 81.32.9 53.43.1 52.51.4

GPT-3 175B 93.90.6 54.42.5 95.40.9 94.60.7 91.01.0 83.21.5 71.27.3 72.12.7 85.11.7 70.82.8 75.15.1
LocalE 93.80.5 56.01.7 95.50.9 94.50.7 91.30.5 83.31.7 75.04.6 71.83.2 85.90.7 71.91.4 74.64.2
GlobalE 93.90.6 53.22.1 95.70.7 94.60.2 91.70.4 82.00.8 76.33.5 73.62.5 85.71.0 71.81.9 79.93.3
Oracle 94.70.2 58.2 96.70.2 95.50.2 92.60.4 85.50.8 81.14.9 77.01.2 87.70.6 74.70.4 83.00.9

Table 2: Our main results on subset of the validation set. To fit the data within the GPT-2 model context win-
dow size, we use 1-shot for DBPedia, 2-shot for AGNews, 4-shot for other datasets. All the baseline results are
calculated based on 5 different random seeds over 24 train context permutations. LocalE and GlobalE results are
calculated based on the top 4 context permutations using our proposed approach. For the GPT-3 175B, we only
use 2 seeds with 12 different permutations due to a limited computation budget.

ing metrics over the automatically generated prob-
ing set. We then select top k samples ranked by
highest entropy values, where k = 4 in our exper-
iments, of the available 24 permutations as per-
formant prompts. Finally, we use these perfor-
mant prompts to evaluate performance on various
datasets and demonstrate both better performance
and reduced variance. We also provide results for
a majority baseline, which always predicts the ma-
jority label in the dataset, as a lower-bound of per-
formance. We also provide an oracle to show the
upper-bound of performance by selecting the top
four performant orderings based on prompt perfor-
mance on the validation set.

4.1 Evaluation Datasets

Similar to previous work (Gao et al., 2020; Zhao
et al., 2021), we use eleven text classification
datasets ranging from sentiment classification to
textual entailment. Further details of the datasets
are provided in the Appendix. For evaluation, we

sub-sample 256 samples of the validation sets for
all datasets to control for the GPT-3 inference costs
as it requires the usage of a monetary paid-for API.

5 Results

We report experimental results in Table 2 and ob-
serve consistent improvements for both LocalE and
GlobalE across all tasks.

Entropy-based probing is effective for perfor-
mant prompt selection regardless of model size
We find that GlobalE achieves, on average, a
13% relative improvement across the eleven dif-
ferent sentence classification tasks in comparison
to prompts that do not make use of probing. LocalE
provides results slightly inferior to GlobalE, with
an average 9.6% relative improvement over the
baseline model. Our selected performant prompts
also demonstrate considerably lower variance than
using all candidate prompts.

8091

Ranking using Entropy-based probing is robust
In Figure 8, we visualise the average performance
when varying K for the top K prompt selection.
K = 24 corresponds to using all sampled prompt
orders, which is equivalent to the baseline model
performance in Table 2. We can observe that the
slope of curves are negative for all datasets, suggest-
ing that our method can rank performant prompts
effectively. Though K = 1 can provide good per-
formance for most cases, in our experiments, we
use K = 4 as preliminary experiments indicated
that it yielded stable performance across datasets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
TopK

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

SST-2
SST-5
DBPedia
MR
CR
MPQA
Subj
TREC
AGNews
RTE
CB

Figure 8: Average performance of different Top K per-
mutation selection on GPT2-Large (0.8B)

Entropy-based probing is effective across tem-
plates We evaluate Entropy-based probing for
four different templates similar to Gao et al. (2020)
and Zhao et al. (2021) (Table 4) for the SST-2
dataset. Experimental results in Table 3 indicate
that Entropy-based probing is valid for different
templates. We also observe that the randomness
across different templates is similar to Section 2.
These findings suggest that Entropy-based probing
is not sensitive to specific templates, as it consis-
tently provides improvements for all cases.

Performant permutation selection is a safe op-
tion for In-context Learning We find that for
models that suffer from high prompt variance, our
prompt selection process can show large improve-
ments – up to 30% relative improvement. Fur-
thermore, for tasks with low initial prompt perfor-
mance variance, our method does not negatively im-
pact performance. Our prompt selection provides
marginal improvement at worse and on average a
13% relative improvement in the most cases.

Sentence-pair tasks remain challenging for
smaller-sized models even with performant per-
mutation selection For the CB and RTE datasets,

Template 1 Template 2 Template 3 Template 4

GPT-2 0.1B 58.97.8 57.56.8 58.17.4 56.66.6
LocalE 65.23.9 60.74.6 65.44.8 61.04.7
GlobalE 63.85.8 59.02.9 64.34.8 63.54.8

GPT-2 0.3B 61.013.2 63.911.3 68.311.8 59.26.4
LocalE 75.34.6 70.07.2 80.24.2 62.23.4
GlobalE 78.75.2 73.34.5 81.34.1 62.84.3

GPT-2 0.8B 74.510.3 66.610.6 70.310.5 63.78.9
LocalE 81.15.5 80.05.6 73.76.2 71.34.5
GlobalE 84.84.1 80.93.6 79.83.9 70.75.3

GPT-2 1.5B 66.810.8 80.47.6 54.57.9 69.110.5
LocalE 76.78.2 83.13.6 66.97.5 72.75.5
GlobalE 81.83.9 83.43.2 67.26.1 74.25.3

Table 3: Prompt selection performance of different tem-
plates on SST-2

ID Template Label Mapping

1
Review: {Sentence}
Sentiment: {Label}

positive/negative

2
Input: {Sentence}
Prediction: {Label}

positive/negative

3
Review: {Sentence}
Sentiment: {Label}

good/bad

4 {Sentence} It was {Label} good/bad

Table 4: Different Templates for SST-2

the performance of GPT-2 models is not signif-
icantly different from that of a random baseline.
Despite this, we find that our method for identify-
ing performant prompts can still provide minimal
performance gains, although these are still within
the levels of a random guess or majority vote. One
reason for this could be that, for these particular
sizes of models on these tasks, no good prompt
exists. As such, optimising the prompt is not par-
ticularly effective in this setting. This is further
supported by the observation that prompt selection
can considerably improve performance on both CB
and RTE at larger model sizes (particularly so for
the GPT-3 175B parameter model). In fact, we
find that prompt selection using GlobalE improves
performance by 4.9% for GPT-3 175B on CB. This
indicates that our method is widely applicable to
all model sizes, and across all tasks, as long as they
already possess some existing classification ability
that can be improved through prompt design.

Entropy-based probing outperforms using sub-
sets of the training data for tuning If one was
not to rely on generation, an alternative approach
to prompt selection could be to split the (limited)
training data to form a validation set. To compare

8092

GPT-2 0.1B GPT-2 0.3B GPT-2 0.8B GPT-2 1.5B

Baseline 58.97.8 61.013.2 74.510.3 66.810.8
LocalE 65.23.9 75.34.6 81.15.5 76.78.2
GlobalE 63.85.8 78.75.2 84.84.1 81.83.9
Split Training Set 62.85.3 64.26.1 75.16.8 71.47.8

Table 5: Comparing our method with splitting the train-
ing set into train and development for SST-2.

against this approach, we split the 4-shot training
samples (same setting as in Table 2) in half. We
then select the top four performing prompts using
validation set performance. As can be seen in Ta-
ble 5, this approach consistently outperforms the
baseline. However, both Entropy-based probing
methods consistently provides better performance
across all model sizes.

6 Related Work

Unified Interface Design for NLP Most previ-
ous work focuses on shared-parameters models,
pretrain on some tasks, then fine-tune for different
tasks, e.g. ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019), etc. Eventually, leading to multi-
ple task-specific models. There has for some time
been attempts to design a unified interface for NLP
tasks (Kumar et al., 2016; Raffel et al., 2020).In
parallel with these works, GPT-2 (Radford et al.,
2019) shows that appending trigger tokens (e.g.
“TL;DR”) at the end of language model input can
cause language models to behave like summari-
sation models. The zero-shot capability of lan-
guage models shows the potential to unify NLP
tasks into a language modelling framework where
fine-tuning is not necessary to achieve good perfor-
mance. Furthermore, GPT-3 (Brown et al., 2020)
shows that task-agnostic, few-shot performance
can be improved by scaling up language models. It
can sometimes even become competitive with prior
state-of-the-art fine-tuning approaches.

Prompt Design for PLMs The core challenge
of prompt design is to convert training data (if it
exists) into a text sequence. Most work on prompt
design focuses on how to make prompts more com-
patible with language models. Petroni et al. (2019)
uses human effort to design natural language sen-
tences and then perform token prediction given the
input context. However, hand-crafted templates
require significant human effort and is likely to end
up with sub-optimal performance. Recent work has
explored automatic template construction: Schick
and Schütze (2020) uses cloze-style tasks to con-

struct templates, Gao et al. (2020) uses an external
language model to generate templates, and Shin
et al. (2020) uses gradient-guided search to find
templates that maximise performance. Jiang et al.
(2020) uses a mining-based method to create multi-
ple diverse templates automatically.

Order Sensitivity of Prompt Design Gao et al.
(2020) demonstrated that finetuning-based ap-
proaches are not as order sensitive as In-context
Learning. Making use of a standard-size training
set, Liu et al. (2021) used nearest neighbour search
to retrieve the most relevant training samples for
a specific test sample. They were successful in
retrieving relevant samples and concluded that af-
ter retrieving them the order in which they are
provided in the prompt has little to no effect on
performance. While our study is fundamentally
different from theirs in that we do not make use
of a standard-size training set, we do come to the
opposite conclusion. All previous work on prompt
design focuses on the textual quality of the prompt
and, to the best of our knowledge, none has studied
order sensitivity in detail.

True Few-shot Learning Perez et al. (2021)
evaluated few-shot capability of LMs when a held-
out validation set is not available. Experimental
result suggested that previous work overestimate
the few-shot ability of LMs in this (true few-shot
learning) setting. Our work instead use the gen-
erative nature of language models to construct a
probing set without relying on held-out examples.
We show that our probing method is better than
relying on held out examples (Figure 5) and thus
enables true few-shot learning.

7 Conclusion

We have shown that few-shot prompts suffer from
order sensitivity, in that for the same prompt the
order in which samples are provided can make the
difference between state-of-the-art and random per-
formance. In our analysis of the problem, we estab-
lished that it is present across tasks, model sizes,
prompt templates, samples, and number of training
samples. To alleviate this problem, we introduced
a novel probing method that exploits the generative
nature of language models to construct an artificial
development set. We were able to identity perfor-
mant permutations using entropy-based statistics
over this set, leading to an on average 13% im-
provement across eleven text classification tasks.

8093

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Joe Davison, Joshua Feldman, and Alexander M Rush.
2019. Commonsense knowledge mining from pre-
trained models. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1173–1178.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, pages 107–
124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer,
James Bradbury, Ishaan Gulrajani, Victor Zhong,
Romain Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural
language processing. In International conference on
machine learning, pages 1378–1387. PMLR.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL-04), pages 271–278.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 115–124.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. arXiv
preprint arXiv:2105.11447.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktäschel, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. In Automated
Knowledge Base Construction.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language mod-
els are unsupervised multitask learners. In OpenAI
Blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Timo Schick and Hinrich Schütze. 2020. It’s
not just size that matters: Small language mod-
els are also few-shot learners. arXiv preprint
arXiv:2009.07118.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with

8094

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250

automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Ellen M Voorhees and Dawn M Tice. 2000. Building
a question answering test collection. In Proceedings
of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 200–207.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2):165–210.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Xiang Zhang, Junbo Zhao, and Yann Lecun. 2015.
Character-level convolutional networks for text clas-
sification. Advances in Neural Information Process-
ing Systems, 2015:649–657.

Tony Z Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
arXiv preprint arXiv:2102.09690.

8095

Dataset Prompt Label Mapping

SST-2
Review: contains no wit , only labored gags
Sentiment: negative

positive/negative

SST-5
Review: apparently reassembled from the cutting-room floor of any given daytime soap .
Sentiment: terrible

terrible/bad/okay/good/great

MR
Review: lame sweet home leaves no southern stereotype unturned .
Sentiment: negative

negative/positive

CR
Review: bluetooth does not work on this phone .
Sentiment: negative

negative/positive

MPQA
Review: dangerous situation
Sentiment: negative

negative/positive

Subj
Input: too slow , too boring , and occasionally annoying .
Type: subjective

subjective/objective

TREC
Question: When did the neanderthal man live ?
Type: number

description/entity/expression/
human/location/number

AGNews
input: Wall St. Bears Claw Back Into the Black (Reuters).
type: business

world/sports/business/technology

DBPedia
input: CMC Aviation is a charter airline based in Nairobi Kenya.
type: company

company/school/artist/athlete/politics/
transportation/building/nature/village/
animal/plant/album/film/book

CB

premise: It was a complex language. Not written down but handed down.
One might say it was peeled down.

hypothesis: the language was peeled down
prediction: true

true/false/neither

RTE
premise: No Weapons of Mass Destruction Found in Iraq Yet.
hypothesis: Weapons of Mass Destruction Found in Iraq.
prediction: False

True/False

Table 6: Prompt template and label mapping for different tasks.

8096

Notation Description Examples

x sentence nice movie
y label positive

T (x)
template-based transformation
without label

Review: nice movie

T (x,y) template-based transformation
Review: nice movie
Sentiment: positive

T −1(T (x,y))
extract (sentence, label) pair
from text sequence

(nice movie, positive)

Table 7: Examples of transformation notations.

Dataset # of Classes Avg. Len. Balanced

SST-2 (Socher et al., 2013) 2 12.4 Yes
SST-5 (Socher et al., 2013) 5 23.1 No
MR (Pang and Lee, 2005) 2 25.7 Yes
CR (Hu and Liu, 2004) 2 22.1 Yes
MPQA (Wiebe et al., 2005) 2 3.9 Yes
Subj (Pang and Lee, 2004) 2 28.9 Yes
TREC (Voorhees and Tice, 2000) 6 11.6 No
AGNews (Zhang et al., 2015) 4 53.8 Yes
DBPedia (Zhang et al., 2015) 14 65.5 Yes
CB (De Marneffe et al., 2019) 3 69.7/8.4 No
RTE (Dagan et al., 2005) 2 55.3/11.9 Yes

Table 8: Statistics of evaluation datasets, average
length is calculated based on GPT-2 sentence-piece
length. For sentence-pair tasks, we report each sen-
tence’s average length separately.

8097

Dataset Synthetic data

SST-2
not sure where to even begin
the only real film on our watch lists
no one will care because it is just one story

SST-5
not a bad documentary, but the story feels tacked on.
one that i have never liked and was always too long to understand and not enjoyable in parts.
This movie is the opposite of what it pretentious title implies.

DBPedia
Gweno Mott’s book: Gweno is a New Yorker cartoonist published by Little, Brown, 1995/2002/2013.
L. Ego Equestrians is North America’s first dedicated equine show in Las Vegas.
Graphed is a graph visualization package from the GraphViz project.

MR
a solid first film for the debut helmer.
A good deal more of the material in his previous films can be found here but this film does not come across [...]
it is so effective and engaging It feels more real And at some point, maybe it was about [...]

CR
It works just the same, i just prefer my iPhone 6.
the battery last so long for me it feels like ive already had my phone a year.
works great with both phones

MPQA
this is really going nowhere
why does it look so angry??
Excellent book and will get a good reputation

Subj
this will become apparent as it gets older.
how about something more subtle to show this girl’s love?
a perfect summary of an episode where the entire series is one massive meta romp, with [...]

TREC
Whales can hold 4 gallons. Whaler can also be written as: What whale is named Whalerel?
To a certain degree, how do human eyes perceive colour?
From where does our moon orbit, in Earth’s Solar System?

AGNews
Google buys for $11bn: A-Z and thesaurus online, music search; photo service and TV site [...]
Saudi-born billionaire takes $5 Billion Hit With Bankrupt. Saudi millionaire Sultan Al-Amoudi said [...]
China’s ’Sesame’ takes over for South Korea in world TV race as US TV loses market dominance.[...]

RTE

Premise: The Tuareg are a nomadic people who live in the Sahara desert.
Hypothesis: Tuareg are nomadic people who lived in the Sahara desert before the arrival of the Arabs.

Premise: In the early 1940s, the United States and the Soviet Union were at war with Germany.
Hypothesis: Germany was at war with the United States and Russia.

Premise: Water is a precious commodity.
Hypothesis: Water is not a precious commodity.

CB

Premise: In the back corner of Melissa’s classroom her father walked through the door and walked across the front. [...]
Hypothesis: his curiosity was directed towards some, something other than Melissa

Premise: Maggie took Gloria out for a drive to the nearby city limits of Fort Myers on Tuesday
Hypothesis: he couldn’t bear looking down his nose at all the other houses

Premise: There was one in Dallas. When it came out in New Jersey. And there were,[...]
Hypothesis: I would never see that movie

Table 9: Artificial development set generated by GPT2-XL (1.5B). We random select three examples per dataset.
Long sentences are trimmed due to limited space.

8098

