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Abstract

While attention-based models have demonstrated the remarkable ability of in-context learn-
ing, the theoretical understanding of how these models acquired this ability through gradient
descent training is still preliminary. Towards answering this question, we study the gradient
descent dynamics of multi-head linear self-attention trained for in-context linear regression.
We examine two parametrizations of linear self-attention: one with the key and query weights
merged as a single matrix (common in theoretical studies), and one with separate key and query
matrices (closer to practical settings). For the merged parametrization, we show the training dy-
namics has two fixed points and the loss trajectory exhibits a single, abrupt drop. We derive an
analytical time-course solution for a certain class of datasets and initialization. For the separate
parametrization, we show the training dynamics has exponentially many fixed points and the
loss exhibits saddle-to-saddle dynamics, which we reduce to scalar ordinary differential equa-
tions. During training, the model implements principal component regression in context with
the number of principal components increasing over training time. Overall, we characterize how
in-context learning abilities evolve during gradient descent training of linear attention, reveal-
ing dynamics of abrupt acquisition versus progressive improvements in models with different
parametrizations.

1 Introduction

Self-attention-based models, such as transformers (Vaswani et al. 2017), exhibit a remarkable ability known
as in-context learning (Brown et al. 2020). That is, these models can solve unseen tasks based on exemplars
in the context of an input prompt. In-context learning is critical to the flexibility of large language models,
allowing them to solve tasks not explicitly included in their training data. However, it remains unclear how
architectures like self-attention acquire this ability through gradient descent training.

Seminal work by Olsson et al. (2022) identified an intriguing trait of the training dynamics of in-context
learning: the in-context learning ability often emerges abruptly, coinciding with an abrupt drop in loss
during training. This abrupt learning phase can reflect the formation of an induction head in the in-context
learning setting (Olsson et al. 2022; Reddy 2024; Singh et al. 2024; Edelman et al. 2024), and also occur
more broadly in transformer training dynamics, such as during grokking (Nanda et al. 2023), extracting
syntactic relations (A. Chen et al. 2024), learning a new step in a multi-step task (Hoffmann et al. 2024), and
learning a higher-order interaction among input tokens (Rende et al. 2024). Furthermore, Singh et al. (2023)
found that in-context learning may often be a transient ability that the transformers acquire and then lose
over the course of long training time, a phenomenon that has since been reproduced in many settings (He et
al. 2024; Anand et al. 2024; B. Chan et al. 2024; Nguyen and Reddy 2024; Park et al. 2024). These findings
underscore the importance of understanding not only the in-context learning ability in trained models, but
also its full training dynamics.
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This work aims to provide a theoretical description of how the in-context learning ability evolves in gradient
descent training. To do so, we consider the increasingly common setup of linear self-attention1 (Von Oswald
et al. 2023) trained on an in-context linear regression task (Garg et al. 2022). The in-context linear regression
task, in which the model needs to perform linear regression on the data in context, is a canonical instantiation
of in-context learning (Garg et al. 2022; Akyürek et al. 2023; Von Oswald et al. 2023; Ahn et al. 2023). The
linear attention model, which has been used in many prior studies (Schlag et al. 2021; Von Oswald et al.
2023; Ahn et al. 2023; Zhang et al. 2024a; Wu et al. 2024; Fu et al. 2024; Mahankali et al. 2024; Duraisamy
2024; Yingcong Li et al. 2024; Yau et al. 2024; Lu et al. 2024; Abedsoltan et al. 2024; Frei and Vardi 2024),
reproduces key optimization properties of practical transformers (Ahn et al. 2024) and is more amenable to
theoretical analysis. Importantly, despite its name, linear attention is a nonlinear model, as it removes the
softmax operation but is still a nonlinear function of the input.

We study two common parametrizations of multi-head linear attention:

(i) ATTNM, linear attention where the key and query matrices in each head are merged into a single
matrix, a reparametrization procedure widely used in theoretical studies on transformers (Ahn et al.
2023; Tian et al. 2023; Ataee Tarzanagh et al. 2023; Zhang et al. 2024a,b; Siyu Chen et al. 2024a; Wu
et al. 2024; Kim and Suzuki 2024; Y. Huang et al. 2024a; Ildiz et al. 2024; Ren et al. 2024; Tarzanagh
et al. 2024; Vasudeva et al. 2024; Lu et al. 2024; Sitan Chen and Yuanzhi Li 2024; Julistiono et al.
2024; Yau et al. 2024; Anwar et al. 2024);

(ii) ATTNS, linear attention with separate key and query matrices, which is closer to the implementation
of attention in real-world transformers (Vaswani et al. 2017).

We specify the fixed points in the loss landscapes, as well as how gradient descent training dynamics tra-
verses the landscape. Our findings are summarized as follows.

• We find two fixed points in the training dynamics of ATTNM, and exponentially many fixed points in
that of ATTNS.

• We show a single, abrupt loss drop in training ATTNM from small initialization and derive an analyti-
cal time-course solution when the input token covariance is white. We show saddle-to-saddle training
dynamics in training ATTNS from small initialization and reduce the high-dimensional training dy-
namics to scalar ordinary differential equations through an ansatz. We demonstrate the rank of the
separate key and query weights affects the dynamics by shortening the duration of certain plateaus.

• We identify the in-context algorithm of the converged and early stopped models. When ATTNM and
ATTNS are trained to convergence, they approximately implement least squares linear regression in
context. When the training of ATTNS early stops during the (m + 1)-th plateau of loss, it approxi-
mately implements principal component regression in context with the first m principal components.

• As a tool for our analysis, we show that when trained on in-context linear regression tasks, ATTNM
is equivalent to a two-layer fully-connected linear network with a cubic feature map as input, and
ATTNS is equivalent to a sum of three-layer convolutional linear networks with the same cubic feature
map as input.

Comparing the two models, we find that the in-context learning ability evolves differently in them: ATTNM
acquires the in-context linear regression ability through one abrupt loss drop, while ATTNS acquires this
ability by progressively improving on in-context principal component regression. This makes a theoretical
case for the progressive acquisition of in-context learning in gradient descent training. Our results also reveal
how parametrization, such as merged versus separate key and query and the rank of the separate key and

1We will refer to linear self-attention as linear attention throughout this paper.
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query weights, impacts the loss landscape and training dynamics. This motivates future research to take the
parametrization factor into account when studying the landscape and dynamics of attention models.

2 Preliminaries

Notation. Non-bold small and capital symbols are scalars. Bold small symbols are column vectors. Bold
capital symbols are matrices. ∥ ·∥ denotes the ℓ2 norm of a vector or the Frobenius norm of a matrix. vec(·)

represents flattening a matrix to a column vector by stacking its columns. For example, vec
[
1 3
2 4

]
=[

1 2 3 4
]⊤. We use i = 1, · · · , H to denote the index of an attention head, µ = 1, · · · , P to denote the

index of a training sample, and n = 1, · · · , N to denote the index of a token within a sample.

2.1 In-Context Linear Regression Task

We study a standard in-context learning task of predicting the next token. The input is a sequence
{x1, y1,x2, y2, · · · ,xN , yN ,xq} and the desired output is yq. We refer to xq as the query token,
{x1, y1,x2, y2, · · · ,xN , yN} as the context, and N as the context length. By convention (Ahn et al. 2023;
Zhang et al. 2024a,b; Siyu Chen et al. 2024a; Y. Huang et al. 2024a), the input sequence is presented to the
model as a matrix X , defined as

X =

[
x1 x2 · · · xN xq

y1 y2 · · · yN 0

]
∈ R(D+1)×(N+1), (1)

where x1, · · · ,xN ,xq ∈ RD and y1, · · · , yN ∈ R.

We are given a dataset {Xµ, yµ,q}Pµ=1 consisting of P samples. All x tokens are independently sampled
from a D-dimensional zero-mean normal distribution with covariance Λ,

xµ,n,xµ,q ∼ N(0,Λ), n = 1, · · · , N, µ = 1, · · · , P. (2)

We consider the in-context linear regression task, where the yn in context and the target output yq are
generated as a linear map of the corresponding xn and xq (Garg et al. 2022). For each sequence Xµ, we
independently sample a task vector wµ from a D-dimensional standard normal distribution

wµ ∼ N (0, I), µ = 1, · · · , P, (3)

and generate

yµ,n = w⊤
µ xµ,n, yµ,q = w⊤

µ xµ,q, n = 1, · · · , N, µ = 1, · · · , P. (4)

Note that the task vector wµ is fixed for all tokens in one sample sequence but varies across different samples,
and is independent of the tokens xµ,1, · · · ,xµ,N ,xµ,q.

2.2 Multi-Head Self-Attention

A standard multi-head softmax self-attention layer (Vaswani et al. 2017) takes matrix X as input and returns
a matrix of the same size,

ATTN(X) = X +

H∑
i=1

W V
i Xsoftmax

(
X⊤WK

i
⊤
WQ

i X

ρ

)
, (5)
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where H is the number of heads, ρ is a scaling factor, and W V
i ,WK

i ,WQ
i are the trainable value, key, and

query matrices in the i-th head. The prediction for yq is the bottom right entry of the output matrix:

ŷq = ATTN(X)D+1,N+1. (6)

In this work, we consider multi-head linear self-attention, where we remove the softmax operation and take
ρ = N . Specifically, we study two common parametrizations of linear attention: (i) linear attention with
merged key and query introduced in Section 2.3 and analyzed in Section 3; (ii) linear attention with separate
key and query introduced in Section 2.4 and analyzed in Section 4.

2.3 Multi-Head Linear Attention with Merged Key and Query

The multi-head linear attention ATTNM with the key and query matrices merged as a single matrix WK⊤
WQ =

WKQ computes

ATTNM(X) = X +
H∑
i=1

1

N
W V

i XX⊤WKQ
i X

= X +
H∑
i=1

[
∗ ∗
v⊤
i vi

] [
1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤
n

1
N

∑
n y

2
n

] [
Ui ∗
u⊤
i ∗

]
X

where we write the value matrix W V
i and the merged key-query matrix WKQ

i as block matrices,

W V
i =

[
∗ ∗
v⊤
i vi

]
, WKQ

i =

[
Ui ∗
u⊤
i ∗

]
.

The blocks have dimensionalities vi ∈ RD, vi ∈ R,Ui ∈ RD×D,ui ∈ RD. The ∗ blocks denote entries that
do not contribute to the computation of ATTN(X)D+1,N+1. With the block matrix notations, the bottom
right entry of ATTNM(X) is

ATTNM(X)D+1,N+1 =
H∑
i=1

[
v⊤
i vi

] [ 1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤
n

1
N

∑
n y

2
n

] [
Ui

u⊤
i

] [
xq

0

]
. (7)

Following Ahn et al. (2023), Zhang et al. (2024a), Kim and Suzuki (2024), and Y. Huang et al. (2024a), we
initialize vi,ui = 0 as they are not required for this model to achieve global minimum loss on the in-context
linear regression task. When vi and ui are initialized to zero, they will remain zero throughout training (see
Appendix C.1). With the reduction vi,ui = 0, the multi-head linear attention with merged key and query
matrices computes

ATTNM(X)D+1,N+1 =
H∑
i=1

viβ
⊤Uixq, (M)

where β denotes the correlation between xn and yn in context,

β ≡ 1

N

N∑
n=1

ynxn. (8)
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2.4 Multi-head Linear Attention with Separate Key and Query

In multi-head attention with separate key and query matrices, we follow the standard practice (Vaswani et al.
2017) of using low-rank key and query matrices where the rank R ≤ D. Additionally, we enforce RH ≥ D
to prevent expressivity limitations from affecting the behaviors we study.2 The multi-head linear attention
ATTNS with separate rank-R key and query matrices computes

ATTNS(X) = X +

H∑
i=1

1

N
W V

i XX⊤WK
i

⊤
WQ

i X

= X +

H∑
i=1

[
∗ ∗
v⊤
i vi

] [
1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤
n

1
N

∑
n y

2
n

] [
ki,1 · · · ki,R

ki,1 · · · ki,R

]q
⊤
i,1 ∗
...

...
q⊤i,R ∗

X

where we write the value, key, and query weights in block form,

W V
i =

[
∗ ∗
v⊤
i vi

]
, WK

i =

k
⊤
i,1 ki,1
...

...
k⊤
i,R ki,R

 , WQ
i =

q
⊤
i,1 ∗
...

...
q⊤i,R ∗

 .

The blocks have dimensionalities vi, ki,r ∈ R and vi,ki,r, qi,r ∈ RD. Similarly to the case with merged
key and query, we initialize vi = 0, ki,r = 0; they will remain zero throughout training (see Appendix E.1).
With vi = 0 and ki,r = 0, the multi-head linear attention with separate rank-one key and query matrices
computes

ATTNS(X)D+1,N+1 =
H∑
i=1

viβ
⊤ [ki,1 · · · ki,R

] q
⊤
i,1
...

q⊤i,R

xq =
H∑
i=1

R∑
r=1

viβ
⊤ki,rq

⊤
i,rxq, (S)

where β is the input-output correlation in context defined in Equation (8). The expression of Equation (S)
already reveals interesting insight. It implies that linear attention with H heads and rank-R key and query
differs from linear attention with RH heads and rank-one key and query only in the sharing of certain value
weights.

2.5 Gradient Flow Training Dynamics

We train the multi-head linear attention model with gradient descent on mean square error loss. We consider
the population loss, that is the limit of infinite training samples, P → ∞,

L = lim
P→∞

1

P

P∑
µ=1

(yµ,q − ŷµ,q)
2 = E(yq − ŷq)

2 . (9)

We analyze the gradient flow dynamics on the loss, given by

τ
dW

dt
= −1

2

∂L
∂W

= E
[
(yq − ŷq)

∂ŷq
∂W

]
, (10)

where τ is the time constant. The gradient flow dynamics captures the behavior of gradient descent in the
limit of an infinitesimal learning rate.

2In practice, usually RH = D.
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Figure 1: Multi-head linear attention with merged key and query ATTNM(X)D+1,N+1 is equivalent to a
two-layer fully-connected linear network with cubic feature input MLP(z). Left: Schematic of the equiva-
lence. Right: Loss trajectories of linear attention and the fully-connected linear network match well. The
two models are trained with the same data and initialization. Both exhibit the characteristic abrupt loss
drop documented by prior work on the in-context learning dynamics in linear (Von Oswald et al. 2023) and
softmax attention (Singh et al. 2024). Here D = 4, N = 32, H = 8.

3 Linear Attention with Merged Key and Query

We first study multi-head linear attention with the key and query matrices merged as a single matrix, as
described by Equation (M).

3.1 Equivalence to Two-Layer Fully-Connected Linear Networks

The H-head linear attention with input sequence X defined in Equation (M) can be viewed as a two-layer
width-H fully-connected linear network with a cubic feature z(X) as input,

ATTNM(X)D+1,N+1 =

H∑
i=1

viβ
⊤Uixq =

H∑
i=1

vivec(Ui)
⊤vec

(
βx⊤

q

)
= w⊤

2 W1z = MLP(z), (11)

where

w2 =


v1
v2
...
vH

 , W1 =


vec(U1)

⊤

vec(U2)
⊤

...
vec(UH)⊤

 , z(X) = vec
(
βx⊤

q

)
. (12)

The blue expression in Equation (11) can be understood through the definition of the quadratic form β⊤Uixq.
The feature z ∈ RD2

, whose entries are cubic functions of the entries in the original sequence X , is the
input to the equivalent two-layer fully-connected linear network. The stacked value weights correspond
to the second-layer weights w2 ∈ RH of the fully-connected linear network. The stacked merged key-
query weights correspond to the first-layer weights W1 ∈ RH×D2

of the fully-connected linear network. A
schematic of this equivalence is given in Figure 1.

The somewhat surprising and useful fact here is that the linear attention in this regime is equivalent to a
fully-connected linear network (with cubic features of X as input). It is evident that the linear attention is a
cubic function of X given its definition in Equation (M), while it is less evident that the cubic function is a
fully-connected linear network of z(X). This equivalence draws a connection between the well-established
fully-connected linear network and the more recent attention model, enabling us to apply the theoretical
machinery of the former to the latter.
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3.2 Loss Landscape: Two Fixed Points

The gradient flow training dynamics of the linear attention or the equivalent two-layer fully-connected linear
network given in Equation (11) is

τẆ1 = w2

(
E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

))
, (13a)

τẇ2 = W1

(
E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

))⊤
. (13b)

There are two manifolds of fixed points in this dynamical system: one is the unstable fixed point at zero,
denoted M0, and the other is a manifold of stable fixed points at the global minimum, denoted M∗,

M0 = {w2 = 0,W1 = 0} (14a)

M∗ =

{
w2,W1

∣∣∣∣w⊤
2 W1 = E

(
yqz

⊤
)
E
(
zz⊤

)−1
}

(14b)

3.3 Training Dynamics: An Abrupt Drop in the Loss

We have shown the linear attention defined in Equation (M) is equivalent to a fully-connected linear network
with cubic feature input. Since this equivalence holds at the level of the computation of the model, the
equivalence applies to the training dynamics with any initialization and optimizer. Here we discuss the
training dynamics of gradient flow from small initialization, commonly referred to as the rich learning
regime (Woodworth et al. 2020).

With small initialization, the network is initially near the unstable fixed point, M0, at zero. As training
progresses, the network escapes from the unstable fixed point, and subsequently converges to a stable fixed
point on the global minimum manifold, M∗. The time it takes to escape from the unstable fixed point
is approximately τ

∥Λ2∥ ln
1

winit
, where the initialization scale winit is the initial ℓ2 norm of a layer (see Ap-

pendix C.6.1). Because the time to escape from the unstable fixed point starting from small initialization is
long, the loss exhibits an initial plateau followed by an abrupt drop, as validated by simulations in Figure 1.
In particular, when the input token covariance is white Λ = I and the initialization is infinitesimally small,
we derive an analytical time-course solution in Appendix C.5 exploiting the equivalence between linear
attention and linear networks (Saxe et al. 2014) and obtain

ATTNM(X; t)D+1,N+1 = σ(t)β⊤xq, where σ(t) =
e2

√
D t

τ(
1 + 1+D

N

) (
e2

√
D t

τ − 1
)
+

√
D

w2
init

. (15)

Since σ(t) is a rescaled and shifted sigmoid function, the weights and the loss trajectories have sigmoidal
shapes, characterized by a plateau followed by a rapid drop.

3.4 In-Context Algorithm: Least Squares Regression

When the linear attention model converges to the global minimum manifold M∗ at the end of training, the
model implements

ATTNM(X)D+1,N+1 = E
(
yqz

⊤
)
E
(
zz⊤

)−1
z = β⊤

(
Λ+

Λ+ tr(Λ)I

N

)−1

xq, (16)

where the first equality follows directly from Equations (11) and (14b) and the second equality is proved
in Appendix C.4. Equation (16) reveals an intriguing duality: the linear regression solution in the cubic
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feature space of z is the in-context linear regression solution in the original space of the xn, yn token pairs
in a sequence X . The middle expression in Equation (16) is the linear regression solution of fitting yµ,q
with zµ for all training sequences µ = 1, · · · , P . The last expression in Equation (16) is approximately the
in-context linear regression solution, which fits yµ,n with xµ,n(n = 1, · · · , N) for each sequence Xµ. The
approximation is exact when the sequence length N is large:

lim
N→∞

β⊤
(
Λ+

Λ+ tr(Λ)I

N

)−1

xq = β⊤Λ−1xq.

Here β is the x, y correlation in a sequence X , and Λ is the covariance of all x tokens in all training
sequences, which approximates the covariance of x in each individual sequence.

3.5 Conservation Law: All Heads Are Parallel

The weights in a fully-connected linear network are known to obey a conservation law during training
(Fukumizu 1998; Saxe et al. 2014; Du et al. 2018; Ji and Telgarsky 2019)

d

dt

(
w2w

⊤
2 −W1W

⊤
1

)
= 0, (17)

which follows directly from the gradient flow dynamics in Equation (13). Under small initialization, the
quantity w2w

⊤
2 −W1W

⊤
1 ≈ 0 is small at initialization and remains small throughout training. Since the

vector w2 is rank-one, the conservation law forces W1 to also be approximately rank-one, which means
that the rows of W1 are approximately parallel. Since each row of W1 is the vectorized merged key-query
matrix of a head, vec(Ui), a rank-one W1 implies that the key-query weight matrices of all heads are
parallel, differing only in scale. As shown in Figure 6, simulations indeed show that the key-query weights
in different heads are parallel.

4 Linear Attention with Separate Rank-One Key and Query

We now study multi-head linear attention with separate low-rank key and query matrices. Because the rank-
one case captures most of the behaviors of the general rank-R case, we focus on the rank-one case in this
section and defer the rank-R case to Section 5. When R = 1, the model definition in Equation (S) simplifies
to

ATTNS(X)D+1,N+1 =
H∑
i=1

viβ
⊤kiq

⊤
i xq. (18)

4.1 Equivalence to Three-Layer Convolutional Linear Networks

The single-head linear attention with separate rank-one key and query can be viewed as a convolutional
linear network with the cubic feature z defined in Equation (12) as input, and the multi-head case is a sum
of such convolutional linear networks. Specifically, Equation (18) can be rewritten as a sum of H three-layer
convolutional linear networks

ATTNS(X)D+1,N+1 =
H∑
i=1

viq
⊤
i Kiz, where Ki =


k⊤
i 0⊤D . . . 0⊤D

0⊤D k⊤
i . . . 0⊤D

...
...

. . .
...

0⊤D 0⊤D . . . k⊤
i

 ∈ RD×D2
.
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⋯

𝒌𝐻𝒌1

⋯

Figure 2: Multi-head linear attention with separate rank-one key and query ATTNS(X)D+1,N+1 is a sum of
H (number of heads) three-layer convolutional linear networks with the cubic feature z as input. Here we
take D = 3 to avoid clutter. Entries in the vectors are denoted as xq =

[
x1q , x

2
q , x

3
q

]⊤
,β =

[
β1, β2, β3

]⊤.

The matrix Ki is a convolutional matrix with kernel size D and stride D. A schematic of this three-layer
convolutional linear network is provided in Figure 2. We do not explicitly use the equivalence to linear
convolutional networks in our derivations, but it provides intuition and may be of independent interest to
studies on the geometry of linear convolutional networks (Kohn et al. 2022, 2024a,b) and attention (Henry
et al. 2024).

When the number of heads satisfies H ≥ D, the linear attention with separate rank-one key and query,
ATTNS(X), can express any linear map of z(X) and has the same expressivity as linear attention with
merged key and query, ATTNM(X). However, the two models, ATTNM and ATTNS, correspond to multi-
layer linear networks with different connectivity and depths, resulting in different loss landscape (Kohn et al.
2022, 2024a) and training dynamics (Saxe et al. 2014, 2019), which we discuss next.

4.2 Loss Landscape: Exponential Number of Fixed Points

The gradient flow training dynamics of linear attention with separate rank-one key and query, derived in
Appendix D.2, is given by

τ v̇i = k⊤
i

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi, (19a)

τ k̇i = vi

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi, (19b)

τ q̇i = vi

(
Λ2 −Λ

H∑
i′=1

vi′ki′q
⊤
i′ E
(
Λ̂2
))

ki, (19c)

where Λ̂ represents the covariance of tokens {xn}Nn=1 in context and the expectation of Λ̂2 is

E
(
Λ̂2
)
≡ E

(
1

N

N∑
n=1

xnx
⊤
n

)2

= Λ2 +
Λ+ tr(Λ)I

N
Λ (20)

This dynamical system contains 2D fixed points in the function space of ATTNS(X)D+1,N+1. We specify
the fixed points below and prove the validity of them in Appendix D.3.
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Let λ1, · · · , λD be the eigenvalues of covariance matrix Λ arranged in descending order, and e1, · · · , eD be
the corresponding normalized eigenvectors. We use M(Sm) to denote a set of fixed points that correspond
to learning m (m = 0, 1, · · · , D) out of the D eigenvectors,

M(Sm) =
{
v1:H ,k1:H , q1:H

∣∣conditions (C1)-(C3) are met
}
, (21)

where the set Sm specifies the indices of the learned eigenvectors,

Sm ⊆ {1, 2, · · · , D}, |Sm| = m. (22)

The three conditions for Equation (21) are:

(C1) The heads sum up to fit the eigenvectors with indices in set Sm

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d . (23)

(C2) For heads with a nonzero value weight, vi ̸= 0, both ki and qi lie in the span of {ed}d∈Sm .

(C3) For heads with a zero value weight, vi = 0, at least one of ki or qi lies in the span of {ed}d∈Sm .

Since there are
(
D
m

)
possible ways of choosing m out of D indices to define Sm in Equation (22), the total

number of possible choices summed over m = 0, · · · , D is
∑D

m=0

(
D
m

)
= 2D. Each choice corresponds to

a different condition (C1) in Equation (23) and thus a different function, ATTNS(X)D+1,N+1. Therefore,
the gradient flow dynamics in Equation (19) has 2D fixed points in the function space.

In comparison with Section 3.2 where there were two fixed points in the dynamics of linear attention with
merged key and query, there are now 2D fixed points for linear attention with separate key and query. The
two fixed points for linear attention with merged key and query in Equation (14) are contained in the 2D

fixed points in the separate case: the zero fixed point in Equation (14a) corresponds to M(S0), i.e., learning
no eigenvector; the global minimum fixed point in Equation (14b) corresponds to M(SD), i.e., learning all
D eigenvectors.

4.3 Training Dynamics: Saddle-to-Saddle Dynamics

Building on the exponentially many fixed points we have identified, we now analyze which fixed points are
actually visited in gradient flow training and in what order. We find that starting from small initialization,
the model visits (D + 1) out of the 2D fixed points and exhibits saddle-to-saddle dynamics.

With small initialization, the model is initially near the unstable zero fixed point, M0 = M(∅). As training
progresses, the model sequentially visits the fixed points in M1,M2, · · · ,MD where

M1 = M({1}),
M2 = M({1, 2}),
· · ·

MD = M({1, 2, · · · , D}).

That is, the model trained from small initialization sequentially learns to fit the first eigenvector (the eigen-
vector of Λ with the largest eigenvalue), the second eigenvector, and so on. As shown in Figure 3a, the loss
goes through D abrupt drops in training, each corresponding to the transition from one fixed point to the
next. The abrupt drops of loss are separated by plateaus, during which the model lingers in an unstable fixed
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Figure 3: Multi-head linear attention with separate rank-one key and query exhibits saddle-to-saddle dy-
namics. (a) The loss trajectory has D abrupt drops, separated by plateaus (six runs from different random
initialization are plotted). The loss at each plateau matches our theoretical prediction in Equation (24)
(dashed gray lines). (b) The value weight vi in each head for one of the runs in (a) is plotted in solid blue
curves. The numerical solutions of vi from Equation (26) are plotted in dashed blue curves and match the
simulations well. The shades of blue distinguish different heads. (c) The key weights during the loss plateau
are plotted in color. When the model moves from one fixed point to the next, the key weight in a head ki

aligns with a new eigenvector of the input token covariance Λ. The key weights k1:4 and the eigenvectors
e1:4 are rows in the heatmaps. A video of the dynamics is provided at URL. Here D = 4, N = 32, H = 5,
and Λ has eigenvalues 0.4, 0.3, 0.2, 0.1 and eigenvectors as plotted in (c).

point. Because the time required for a head to learn the eigenvector ed from small initialization scales with
λ−2
d (see Appendix D.6), an eigenvector associated with a larger eigenvalue is learned faster. This explains

why the model learns to fit the eigenvectors sequentially in descending order of the eigenvalues, as well as
why we empirically see the later plateaus last longer in Figure 3a.

When the model is at a fixed point in Mm, we compute the loss in Appendix D.4 and obtain

L(Mm) = tr(Λ)−
m∑
d=1

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

. (24)

Equation (24) is highly interpretable in the limit of a large sequence length N . The loss, L(Mm), is the sum
of the eigenvalues associated with the remaining unlearned eigenvectors

lim
N→∞

L(Mm) = tr(Λ)−
m∑
d=1

λd =

D∑
d=m+1

λd.

Thus, the loss decreases by the amount of approximately λm during the m-th abrupt loss drop. We plot
Equation (24) as dashed gray lines in Figure 3a and find they match the plateaus of simulated loss trajectories
well.

When the model reaches Mm from small initialization, its weights take on a highly structured form, which
is a specific instance of the general definition in Equation (21). As shown in Figure 3c, the key and query
weights in a head grow in scale and align with a new eigenvector of the input token covariance Λ during
each abrupt loss drop. Based on simulations in Figure 3 and derivations in Appendices D.5 and D.6, we
propose an ansatz that during the (m+ 1)-th plateau and the subsequent abrupt drop of loss (0 ≤ m < D),
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the weights are approximately given by3

ki = qi = viei, vi = λ
− 1

3
i

(
1 +

1 + tr(Λ)/λi

N

)− 1
3

, 1 ≤ i ≤ m, (25a)

ki = qi = vi(t)em+1, i = m+ 1, (25b)

ki = qi = 0, vi = 0, m+ 2 ≤ i ≤ H, (25c)

where vm+1(t) is small during the (m + 1)-th loss plateau and will grow during the (m + 1)-th abrupt
loss drop. Equation (25) implies that the ℓ2 norms of vi,ki, qi in a head are equal, which is a consequence
of small initialization and the conservation law in Equation (79). With this ansatz, the high-dimensional
training dynamics during the (m + 1)-th plateau and the subsequent abrupt drop of loss reduces to an
ordinary differential equation about vm+1(t):

τ v̇i = λ2
m+1v

2
i − λ3

m+1

(
1 +

1 + tr(Λ)/λm+1

N

)
v5i , i = m+ 1. (26)

Equation (26) is a separable differential equation but does not admit a general analytical solution of vm+1(t)
in terms of t (see Equation (67)). Nonetheless, it greatly simplifies the high-dimensional dynamics in Equa-
tion (19) and provides a good approximation of the true dynamics: during each plateau and the subsequent
abrupt loss drop, weights in one of the heads grow in scale with the key and query weights aligning with the
next eigenvector, while the rest of the heads remain approximately unchanged. In Figure 3b, we compare the
numerical solution of Equation (26) with the value weights trajectories in the simulation and find excellent
agreement.

In summary, the loss trajectory of linear attention with separate rank-one key and query trained from small
initialization exhibits D abrupt drops, each followed by a plateau. The amount of the m-th abrupt loss drop
(1 ≤ m ≤ D) is approximately the eigenvalue λm, during which the key and query weights in an attention
head grow in scale and align with the eigenvector em.

4.4 In-Context Algorithm: Principal Component Regression

When the linear attention model is at a fixed point in Mm, based on Equation (23), the model imple-
ments

ATTNS(X)D+1,N+1 = β⊤
m∑
d=1

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d xq. (27)

In the limit of a large sequence length N , Equation (27) simplifies and can be interpreted as principal
component regression in context with m principal components

lim
N→∞

ATTNS(X)D+1,N+1 = w⊤Λ
m∑
d=1

λ−1
d ede

⊤
d xq = w⊤

m∑
d=1

ede
⊤
d xq.

Here w is the task vector for the sequence X , and
∑m

d=1 ede
⊤
d xq is query input xq projected onto the

first m principal components. Hence, if training stops during the (m + 1)-th plateau, the linear attention
approximately implements the principal component regression algorithm in context with m principal com-
ponents.

3We trivially permute the heads so that the head aligned with the d-th eigenvector have index d. The signs of any two among
vi,ki, qi can be flipped with trivial effect on the analysis.
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Figure 4: Multi-head linear attention with separate low-rank key and query exhibits saddle-to-saddle dy-
namics, with the duration of plateaus depending on the rank R. Solid black curves are loss trajectories from
six random initializations. Dashed gray lines mark the loss values predicted by Equation (24) at nine fixed
points, which are L(M0),L(M1), · · · ,L(M8) from top to bottom. The four panels differ only in the rank
of the key and query weights. Here D = 8, N = 32, H = 9, Λ has trace 1 and eigenvalues λd ∝ d−1.

After the model has undergone D plateaus, it converges to the global minimum fixed point, MD, and
approximately implements principal component regression in context with all D components, which is least
square regression. Thus, the linear attention model with either merged or separate key and query undergoes
different training dynamics but converges to the same global minimum solution.

5 Linear Attention with Separate Low-Rank Key and Query

The linear attention model with separate rank-R key and query shares many behaviors with its rank-one
counterpart. For loss landscape, linear attention with rank-R key and query has the same 2D fixed points in
the function space as its linear counterpart, corresponding to the model implementing in-context principal
component regression with a subset of all D principal components (see Appendix E.3).

For training dynamics, the loss trajectories differ slightly depending on the rank R. We plot the loss trajec-
tories with input token dimension D = 8 and different ranks R = 1, 2, 4, 8 in Figure 4. For R = 1, the
loss exhibits plateaus at eight values L(Mm) (m = 0, 1, · · · , 7). For R = 2, the loss exhibits plateaus at
four values L(Mm) (m = 0, 2, 4, 6), and either brief plateaus or no plateau at the other four values. For
R = 4, the loss exhibits conspicuous plateaus at only two values L(Mm) (m = 0, 4). To summarize, with
rank-R key and query, the loss trajectory exhibits conspicuous plateaus at value L(Mm) for m that divides
R.

The difference in the loss trajectories arises from the structure of the model defined in Equation (S). Each
attention head has a single value weight vi that is associated with all R pairs of key and query weights in
that head, ki,r, qi,r (r = 1, · · · , R). During a conspicuous plateau, a new value weight escapes from the
unstable zero fixed point and grows in scale. Once the value weight has grown, it leads to larger gradient
updates for all the key and query weights in that head, speeding up their escape from the zero fixed point.
Hence, in the rank-R case, a conspicuous plateau occurs when m divides R, corresponding to learning a
new head from small initialization. Brief or no plateau occurs when m does not divide R, corresponding to
learning a new pair of key and query weights in a head whose value weight has already grown, as shown in
Figure 8. See Appendix E.4 for more details.

13



6 Related Work

6.1 Theory of Linear Attention

Recent theoretical research on linear attention has investigated its expressivity (Vladymyrov et al. 2024;
Gatmiry et al. 2024), learnability (Yau et al. 2024), loss landscape (Mahankali et al. 2024; Yingcong Li et al.
2024), convergence (Zhang et al. 2024a,b; Ren et al. 2024; Fu et al. 2024), and generalization (Wu et al.
2024; Mahankali et al. 2024; Duraisamy 2024; Lu et al. 2024; Abedsoltan et al. 2024; Frei and Vardi 2024).
The seminal work by Zhang et al. (2024a) analyzed the gradient flow training dynamics of linear attention
to prove convergence guarantees, showing what the model converges to at the end of training. Our work
also analyzes the gradient flow training dynamics but goes beyond existing convergence results to describe
the entire training process. Moreover, we study multi-head attention with merged or separate key and query
weights, while Zhang et al. (2024a) focused on single-head attention with merged key and query.

6.2 Theory of Training Dynamics In Attention Models

Another line of recent research studied the training dynamics of softmax attention models, revealing stage-
wise dynamics that reflects various phenomena across different settings. These phenomena include the
increasing rank of weights (Boix-Adsera et al. 2023), the formation of an induction head (Nichani et al.
2024; Siyu Chen et al. 2024b; Wang et al. 2024), shifting attention to tokens with high co-occurrence with
the query (Tian et al. 2023), learning new tasks in a multi-task dataset (Siyu Chen et al. 2024a), learning
features with different probabilities of appearance in the dataset (Y. Huang et al. 2024a), or learning higher-
order interactions among input tokens (Rende et al. 2024; Edelman et al. 2024). Given the intractability of
softmax attention training dynamics in general, these studies made certain assumptions to enable theoretical
analyses, including restricted weights (Boix-Adsera et al. 2023; Siyu Chen et al. 2024a; Rende et al. 2024;
Edelman et al. 2024), specifically chosen datasets (Y. Huang et al. 2024a), and a simpler layer-wise training
algorithm in place of standard gradient descent (Tian et al. 2023; Nichani et al. 2024; Siyu Chen et al. 2024b;
Wang et al. 2024). In comparison, our work leverages the linear attention model without softmax operation,
enabling us to study in fine detail the dynamics of standard gradient descent training without restrictions
on weights. Namely, we derive an analytical time-course solution and a reduction of high-dimensional
dynamics to a one-dimensional ordinary differential equation for the two models we study. Furthermore, we
characterize how parametrization (i.e., merged or separate key and query, and rank of the separate key and
query weights) impacts the loss landscape and training dynamics, an aspect not previously examined.

7 Discussion

We studied the gradient flow training dynamics of multi-head linear attention and demonstrated how it
acquires in-context learning abilities in training. We begin with a simple setting of linear attention with
merged key and query trained for in-context linear regression, following the setting in seminal works (Von
Oswald et al. 2023; Ahn et al. 2023; Zhang et al. 2024a). We show an abrupt loss drop in training and give an
analytical time-course solution in the case of a white input token covariance and small initialization.

However, a single abrupt loss drop does not fully capture the development of in-context learning abilities
in training practical transformers, where the abilities continue to develop throughout training (Xia et al.
2023; Park et al. 2024). We thus extend our analysis to a parametrization closer to the attention in practi-
cal transformers, that is attention with separate key and query. In the separate case, we find that the loss
exhibits saddle-to-saddle dynamics with multiple abrupt drops. The in-context learning ability evolves pro-
gressively, manifesting as implementing a principal component regression algorithm in context with the
number of principal components increasing over time. Building on prior findings showing that transformers
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Figure 5: Dynamics of in-context and in-weight learning in linear attention. The training set is the same
as the in-context linear regression described in Section 2.1 except that we fix a certain portion of the task
vectors w to elicit in-weight learning. The model is multi-head linear attention with merged key and query.
Left: Training loss, in-weight learning test loss, and in-context learning test loss of linear attention trained
on a dataset with 60% of task vectors fixed. Right: Training loss of linear attention on datasets with different
portions of fixed task vectors. The portion is denoted by color and labeled in the legend. Corresponding test
loss trajectories are provided in Figure 10. Here D = 4, N = 32, H = 8,Λ = I/D.

can implement different forms of in-context learning (Bai et al. 2023; Lampinen et al. 2024), we show that
different forms of in-context learning can indeed emerge in gradient descent training. By identifying the
in-context algorithm at different times in training, we characterize how the linear attention model develops
increasingly sophisticated in-context learning abilities over time.

7.1 Future Direction: Training Dynamics of In-Context and In-Weight Learning

In this work, we focused on the training dynamics of in-context learning abilities. Other than in-context
learning, attention models can also learn in weight, that is solving the task by memorizing the map between
the query input and the target output without using the information in context. The arbitration between
in-context and in-weight learning may depend on the properties of the training data (S. Chan et al. 2022).
To focus on the dynamics of in-context learning, we considered a purely in-context learning task, which is
in-context linear regression with the task vector sampled from a zero-mean standard normal distribution,
w ∼ N (0, I). Since memorizing any particular task vector does not effectively decrease the loss, linear
attention develops only in-context learning ability during training, as shown in Figure 10a.

If the task vector w follows a different distribution, the training dynamics involves the development of both
in-context and in-weight learning abilities. When fixing a portion of the task vectors and sampling the rest
from N (0, I), we find that the linear attention model first learns in weight and then learns in context, as
shown in Figure 5 (left). We vary the portion of fixed task vectors and plot the training loss trajectories in
Figure 5 (right) and the test loss trajectories in Figure 10. The larger the portion of fixed task vectors, the
lower the loss the model can achieve by memorizing the fixed task vector in weight. We indeed observe the
training loss and in-weight learning test loss are lower right after the first abrupt loss drop when the portion
is larger. Future research can build on our findings on the dynamics of in-context learning and explore its
interactions with in-weight learning.

7.2 Implications for Future Theory

In our analysis, we draw connections between linear attention and multi-layer linear networks, which allow
us to employ the rich theoretical machinery built for linear networks (Baldi and Hornik 1989; Fukumizu
1998; Saxe et al. 2014, 2019; Arora et al. 2018; Ji and Telgarsky 2019; Atanasov et al. 2022) to help
understand linear attention. We mainly leverage these connections to understand the training dynamics of
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linear attention. Beyond training dynamics, many other theoretical results for linear networks can be readily
applied to linear attention through the equivalence we draw. For example, the convergence guarantee for
multi-head linear attention trained on in-context linear regression tasks can be obtained from the convergence
proofs for deep linear networks (Arora et al. 2019; Shamir 2019). In contrast, without the equivalence,
Zhang et al. (2024a) previously obtained a convergence guarantee for single-head linear attention, which
required highly non-trivial derivations. Hence, we believe the connections we draw are useful in enabling
the applications of theory from one architecture to the other.

Additionally, our results on linear attention with merged versus separate key and query reveal that the
parametrization choice significantly impacts the loss landscape and training dynamics. This comparison
can motivate future research concerning landscape and dynamics to examine how the phenomena may or
may not be influenced by the parametrization choice.
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Appendix

A Additional Related Work

A broader body of theoretical literature have explored the transformers training dynamics but addressed
different problem from ours, such as the effect of initialization (Makkuva et al. 2024), convergence results
(Song et al. 2024; R. Huang et al. 2024), sample complexity guarantees (Ildiz et al. 2024), scaling limits
(Bordelon et al. 2024), and implicit regularization (Ataee Tarzanagh et al. 2023; Tarzanagh et al. 2024;
Julistiono et al. 2024; Vasudeva et al. 2024; Sheen et al. 2024). Other studies considered special training
regimes, such as the neural tangent kernel regime (Jang et al. 2024) and the mean-field regime (Kim and
Suzuki 2024). A few works focused on vision transformers (Jelassi et al. 2022; Jiang et al. 2024; Y. Huang
et al. 2024b). In contrast, our works focuses on characterizing the process of training and the development
of in-context learning abilities over time.

B Additional Preliminaries

B.1 Data Statistics

Recall that we use β to denote the in-context correlation between xn and yn in a sequence X , as defined in
Equation (8). We additionally denote the in-context covariance of xn in a sequence as Λ̂

Λ̂ ≡ 1

N

N∑
n=1

xnx
⊤
n . (28)

We can thus write XX⊤/N as a block matrix

1

N
XX⊤ =

[
1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤
n

1
N

∑
n y

2
n

]
=

[
1
Nxqx

⊤
q + Λ̂ β

β⊤ w⊤Λ̂w

]
. (29)

Due to the definition of the in-context linear regression task, we have that

β = Λ̂w. (30)

We will need a second-order statistics of Λ̂,

E
(
Λ̂2
)
= E

(
1

N

N∑
n=1

xnx
⊤
n

)2

=
1

N2
E

∑
n̸=n′

xnx
⊤
nxn′x⊤

n′ +
N∑

n=1

xnx
⊤
nxnx

⊤
n


=

N − 1

N
E
(
xnx

⊤
n

)
E
(
xn′x⊤

n′

)
+

1

N
E
(
xnx

⊤
nxnx

⊤
n

)
=

N − 1

N
Λ2 +

1

N

(
2Λ2 + tr(Λ)Λ

)
= Λ2 +

Λ+ tr(Λ)I

N
Λ. (31)

We note that the eigenvectors of E
(
Λ̂2
)

are the same as those of Λ, which are e1, · · · , eD,

E
(
Λ̂2
)
ed =

(
1 +

1

N

)
Λ2ed +

tr(Λ)

N
Λed =

[(
1 +

1

N

)
λ2
d +

tr(Λ)

N
λd

]
ed.
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We denote the eigenvalues of E(Λ̂2) corresponding to eigenvectors e1, · · · , eD as a1, · · · , aD. These eigen-
values are given by

ad =

[(
1 +

1

N

)
λ2
d +

tr(Λ)

N
λd

]
= λ2

d

(
1 +

1 + tr(Λ)/λd

N

)
. (32)

The matrix E(Λ̂2) can be expressed through its eigen-decomposition, which will be useful in later deriva-
tions:

E
(
Λ̂2
)
=

D∑
d=1

adede
⊤
d . (33)

B.2 Initialization

For linear attention with merged key and query, we initialize the entries of the value and the merged key-
query weights as

vi ∼ N (0, w2
init/H), Ud,d′

i ∼ N (0, w2
init/HD2). (34)

At initialization, the following ℓ2 norms are√√√√ H∑
i=1

v2i ,

√√√√ H∑
i=1

∥Ui∥2 ∼ O(winit). (35)

For linear attention with separate rank-R key and query, we initialize the entries of the value, key, and query
weights as

vi ∼ N (0, w2
init/H), kdi,r ∼ N (0, w2

init/HRD), qdi,r ∼ N (0, w2
init/HRD). (36)

At initialization, the following ℓ2 norms are√√√√ H∑
i=1

v2i ,

√√√√ H∑
i=1

R∑
r=1

∥ki,r∥2,

√√√√ H∑
i=1

R∑
r=1

∥qi,r∥2 ∼ O(winit). (37)

B.3 Kronecker Product

The Kronecker product, denoted as ⊗, is defined for two matrices of arbitrary sizes. The Kronecker product
of the matrix A ∈ Rp×q and the matrix B ∈ Rr×s is a block matrix of shape pr × qs

A⊗B =

a11 · · · a1q
...

. . .
...

ap1 · · · apq

⊗B =

a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

 .

Based on the definition, it holds for any pair of column vectors a and b

a⊗ b = vec(ba⊤).

We quote some properties of the Kronecker product to be used in our derivations:

(cA)⊗B = A⊗ (cB) = c(A⊗B) for any scalar c, (38a)

(A⊗B)⊤ = A⊤ ⊗B⊤ for any matrices A,B, (38b)

(A⊗B)−1 = A−1 ⊗B−1 for invertible matrices A,B, (38c)

(A⊗B)(C ⊗D) = (AC)⊗ (BD) for compatible matrices A,B,C,D, (38d)

(B⊤ ⊗A)vec(M) = vec(AMB) for compatible matrices A,B,M . (38e)
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C Linear Attention with Merged Key and Query

C.1 Justification for Zero Blocks Assumption

We prove our claim that vi and ui in Equation (7) remain zero throughout training if their initialization is
zero.

Proof. The bottom right entry of ATTNM(X) is given by Equation (7), which is

ŷq =
H∑
i=1

(
v⊤
i

(
Λ̂+

1

N
xqx

⊤
q

)
Ui + viβ

⊤Ui + v⊤
i βu

⊤
i + viw

⊤Λ̂wu⊤
i

)
xq

If we initialize vi,ui = 0, ŷq is

ŷq =

H∑
i=1

viβ
⊤Uixq = w⊤Λ̂

H∑
i=1

viUixq.

We now calculate the gradient updates of vi,ui and prove their gradients are zero if their initialization is
zero. The gradient update of vi contains E(w), which is zero as defined in Equation (3). Specifically, we
have, from Equation (10),

τ v̇i = E
[
(yq − ŷq)

((
Λ̂+

1

N
xqx

⊤
q

)
Ui + βu⊤

i

)
xq

]
= E

[(
w⊤xq −w⊤Λ̂

H∑
i=1

viUixq

)(
Λ̂+

1

N
xqx

⊤
q

)
Uixq

]

= Ew(w)⊤E

[(
xq − Λ̂

H∑
i=1

viUixq

)(
Λ̂+

1

N
xqx

⊤
q

)
Uixq

]
= 0. (39)

Note that we separated the expectation of w because of the independence between w and all x tokens.

The gradient update of vi contains Ew

(
w⊤Λ̂ww⊤

)
, whose entries are linear combinations of third mo-

ments of the zero-mean normal random variable w, and are thus zero. Specifically, we have

τ u̇i = E
[(

v⊤
i β + viw

⊤Λ̂w
)
(yq − ŷq)xq

]
= E

[
viw

⊤Λ̂w

(
w⊤xq −w⊤Λ̂

H∑
i=1

viUixq

)
xq

]

= Ew

(
w⊤Λ̂ww⊤

)
E

[
vi

(
xq − Λ̂

H∑
i=1

viUixq

)
xq

]
= 0. (40)
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C.2 Gradient Flow Equations

We here derive the gradient flow dynamics for linear attention with merged key and query given in Equa-
tion (13).

For linear attention with merged key and query, the prediction for the query output can be written as ŷq =
w⊤

2 W1z due to Equation (11). Based on the gradient flow training rule in Equation (10), the gradient flow
dynamics is

τẆ1 = E
[
w2

(
yq −w⊤

2 W1z
)
z⊤
]
= w2

(
E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

))
,

τẇ2 = E
[
W1

(
yq −w⊤

2 W1z
)
z
]
= W1

(
E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

))⊤
,

which was introduced in Equation (13) in the main text.

C.3 Fixed Points

To find the fixed points, we set the gradients in Equation (13) to zero

τẆ1 = w2

(
E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

))
set
= 0,

τẇ2 = W1

(
E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

))⊤ set
= 0,

which yield the two manifolds of fixed points introduced in Equation (14) in the main text:

w2 = 0, W1 = 0 ⇒ M0 = {w2 = 0,W1 = 0},

E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

)
= 0 ⇒ M∗ =

{
w2,W1

∣∣w⊤
2 W1 = E

(
yqz

⊤
)
E
(
zz⊤

)−1
}
.

C.4 Duality of the Global Minimum Solution

We here prove the second equality in Equation (16), that is

E
(
yqz

⊤
)
E
(
zz⊤

)−1
z = β⊤

(
Λ+

Λ+ tr(Λ)I

N

)−1

xq.

This equality implies the intriguing duality that the linear regression solution in the cubic feature space of z
is the in-context linear regression solution in the xn, yn token space for each sequence.

Proof. We first calculate the input and input-output correlations in the cubic feature space. We denote
Λq ≡ E

(
xqx

⊤
q

)
. While Λq = Λ, this equality is not used in this proof.

We substitute in z = xq ⊗ β,β = Λ̂w and use the properties of the Kronecker product listed in Ap-
pendix B.3 to obtain

E
(
yqz

⊤
)
= E

[
x⊤
q w(x⊤

q ⊗ β⊤)
]

= E
(
x⊤
q ⊗ x⊤

q ww⊤Λ̂
)

= E
(
x⊤
q ⊗ x⊤

q Λ̂
)

= Evec
(
Λ̂xqx

⊤
q

)⊤
= vec(ΛΛq)

⊤. (41)
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Similarly, we have

E
(
zz⊤

)
= E

[
(xq ⊗ β)(x⊤

q ⊗ β⊤)
]

= E
[
(xqx

⊤
q )⊗ (ββ⊤)

]
= E(xqx

⊤
q )⊗ E(Λ̂ww⊤Λ̂)

= Λq ⊗ E
(
Λ̂2
)

= Λq ⊗
(
Λ2 +

Λ+ tr(Λ)I

N
Λ

)
, (42)

where we substituted in E
(
Λ̂2
)

obtained from Equation (31) into the last equality. Using Equation (38c),

the inverse of E
(
zz⊤) is

E
(
zz⊤

)−1
= Λ−1

q ⊗
(
Λ+

Λ+ tr(Λ)I

N

)
Λ−1 (43)

Multiplying Equations (41) and (43) finishes the proof

E
(
yqz

⊤
)
E
(
zz⊤

)−1
z = vec(ΛΛq)

⊤Λ−1
q ⊗

(
Λ+

Λ+ tr(Λ)I

N

)
Λ−1(xq ⊗ β)

= vec

[(
Λ+

Λ+ tr(Λ)I

N

)
Λ−1ΛΛqΛ

−1
q

]⊤
(xq ⊗ β)

= vec

[(
Λ+

Λ+ tr(Λ)I

N

)−1
]⊤

(xq ⊗ β)

= β⊤
(
Λ+

Λ+ tr(Λ)I

N

)−1

xq.

■

C.5 Analytical Time-Course Solution for White Covariance

We include a derivation of the time-course solution of two-layer fully-connected linear network with white
input covariance and vanishing initialization following Saxe et al. (2014), and then apply it to linear atten-
tion. With vanishing initialization, the conserved quantity given in Equation (17) is exactly zero throughout
learning,

w2w
⊤
2 −W1W

⊤
1 = 0.

Hence, there exists a unit norm vector m such that W1 = w2m
⊤. With the assumption of white covariance,

E
(
zz⊤) = αID2 , Saxe et al. (2014) and Atanasov et al. (2022) have shown that the unit norm vector m is

parallel with the correlation between yq and z throughout training, that is

W1 = w2m
⊤, where m =

E(yqz)
∥E(yqz)∥

. (44)

We substitute Equation (44) and the white covariance assumption, E
(
zz⊤) = αID2 , into the gradient flow

dynamics given in Equation (13) and obtain

τẇ2 = w2m
⊤
(
E(yqz)− αw⊤

2 w2m
)
= w2

(
γ − αw⊤

2 w2

)
, where γ ≡ ∥E(yqz)∥.
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Notice that the square of the ℓ2 norm of w2 follows a solvable ordinary differential equation. Let s = w⊤
2 w2.

The dynamics of s(t) is

τ ṡ = 2w⊤
2 τẇ2 = 2w⊤

2 w2

(
γ − αw⊤

2 w2

)
= 2s(γ − αs). (45)

We can solve this differential equation by separating variables and integrating both sides,∫ s(t)

s(0)

1

s(γ − αs)
ds =

∫ t

0

2

τ
dt ⇒ 1

γ
ln

s(t)(γ − αs(0))

s(0)(γ − αs(t))
=

2

τ
t.

The solution of s(t) is given by

s(t) =
γe2γ

t
τ

α
(
e2γ

t
τ − 1

)
+ γ

s(0)

.

The time-course of the total weights is given by

w⊤
2 W1 = s(t)m⊤ = s(t)

E(yqz)⊤

∥E(yqz)⊤∥
. (46)

We now apply this solution to linear attention. If the input token covariance is identity, Λ = ID, we calculate
the input and input-output correlations in the cubic feature space according to Equations (41) and (42) and
get

E
(
yqz

⊤
)
= vec(ID)

⊤,

E
(
zz⊤

)
= ID ⊗

(
1 +

1 +D

N

)
ID =

(
1 +

1 +D

N

)
ID2 .

The parameters in the dynamics of the equivalent two-layer fully-connected linear network are

α = 1 +
1 +D

N
, γ = ∥vec(ID)∥ =

√
D. (47)

Substituting Equation (47) into Equation (46), we obtain

w⊤W1(t) = s(t)
vec(ID)⊤√

D
, where s(t) =

√
De2

√
D t

τ(
1 + 1+D

N

) (
e2

√
D t

τ − 1
)
+

√
D

s(0)

.

Due to the equivalence between linear attention and the two-layer fully-connected linear network given in
Equation (11), we obtain

ATTNM(X; t)D+1,N+1 = w⊤
2 W1z = s(t)

vec(ID)⊤√
D

xq ⊗ β =
1√
D
s(t)β⊤IDxq =

1√
D
s(t)β⊤xq.

which is Equation (15) in the main text where we have rewritten σ(t) = s(t)/
√
D.

The time-course of loss can also be expressed in terms of σ(t) as

L(t) =
(
1− 2σ(t) +

(
1 +

1 +D

N

)
σ(t)2

)
D. (48)
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C.6 Training Dynamics for General Covariance

C.6.1 Early Dynamics Predicts Duration of Plateau

For a general input covariance matrix, the full time-course solution to two-layer fully-connected linear
networks is currently unavailable. Nonetheless, the training dynamics is well understood and we can analyze
the early phase dynamics to estimate the duration of the loss plateau.

In the early phase of training when the loss plateaus, the weights have not moved much away from their
small initialization. The training dynamics of W1 is mainly driven by the first term in Equation (13a), and
similarly for w2 in Equation (13b)

τẆ1 = w2

(
E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

))
= w2E

(
yqz

⊤
)
+O(w3

init),

τẇ2 = W1

(
E
(
yqz

⊤
)
−w⊤

2 W1E
(
zz⊤

))⊤
= W1E (yqz) +O(w3

init).

Thus, the early training dynamics is well approximated by the linear dynamical system

τẆ1 = w2E
(
yqz

⊤
)
, τẇ2 = W1E (yqz) .

In the case of nonwhite covariance, the change of variable in Equation (44) is valid in the early phase of
training but no longer valid when the loss starts to decrease appreciably (Atanasov et al. 2022). For the early
training dynamics, we apply the change of variable in Equation (44) and obtain

τẇ2 = w2m
⊤E (yqz) = γw2.

Recall that s = w⊤
2 w2. The early phase dynamics of s(t) is approximately

τ ṡ = 2γs.

We solve the differential equation and obtain

t =
τ

2γ
(ln s(t)− ln s(0)).

Due to small initialization, ln s(t) at the end of the plateau is much smaller compared to − ln s(0). Hence,
the duration of the initial plateau of loss, tplateau, is

tplateau ≈ τ

2γ
ln

1

s(0)
. (49)

Here, the scalar γ is

γ ≡ ∥E(yqz)∥ =
∥∥∥E(w⊤xqvec(βx

⊤
q )
)∥∥∥ =

∥∥∥E(w⊤xqβx
⊤
q

)∥∥∥
F

=
∥∥∥E(Λ̂ww⊤xqx

⊤
q

)∥∥∥
F

=
∥∥∥E(Λ̂)Ew

(
ww⊤

)
Exq

(
xqx

⊤
q

)∥∥∥
F

=
∥∥Λ2

∥∥
F (50)

Substituting Equation (50) into Equation (49), we obtain the approximate duration of the loss plateau

tplateau ≈ τ

2 ∥Λ2∥F
ln

1

s(0)
≈ τ

∥Λ2∥F
ln

1

winit
, (51)

where we used the definition s(0) = ∥w2(0)∥2 = w2
init.
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Figure 6: The dynamics of weights in multi-head linear attention with merged key and query can be pre-
dicted with statistics of the training dataset. We plot the weights at different times in training, correspond-
ing to the loss trajectories in Figure 1 (right). The weights in linear attention (first column) stay close to
the weights in the fully-connected linear network (second column) throughout training. During the initial
plateau, the vectorized key-query weights in attention vec(U1), · · · ,vec(Ui) and the first-layer weight
in the fully-connected network W1 are rank-one and align with the correlation between the output and the
cubic feature input E

(
yqz

⊤) (top row). At convergence, vec(U1), · · · ,vec(Ui) in attention and W1 in
the fully-connected linear network are rank-one and align with the linear regression solution in the cubic
feature space E

(
yqz

⊤)E (zz⊤)−1 (middle row), which is also the in-context linear regression solution in
the original token space Λ−1 (bottom row) as described by Equation (16). The approximate equality in the
third column is exact when the sequence length N → ∞.

C.6.2 Weights Dynamics

For a white input covariance, the training dynamics reduces to a scalar ordinary differential equation about
s(t) given in Equation (45). For a general input covariance, the vector m in the change of variable defined in
Equation (44) rotates during training. As shown in the top row of Figure 6, during the initial loss plateau, the
rows of the first-layer weight align with the input-output correlation E

(
yqz

⊤) but do not change appreciably
in scale (Atanasov et al. 2022). Later, when the loss decreases rapidly, the first-layer weight grows in scale
and rotates to align with the global minimum solution, E

(
yqz

⊤)E (zz⊤)−1. The alignment and rotation
behaviors apply to the rows of the first-layer weight in the fully-connected network, corresponding to the
merged key-query weights in the different heads in linear attention, as shown in Figure 6.

D Linear Attention with Separate Rank-One Key and Query

D.1 Justification for Zero Blocks Assumption

This is a special case of linear attention with separate rank-R key and query. The proof for the more general
rank-R case can be found in Appendix E.1.

D.2 Gradient Flow Equations

We here derive the gradient flow dynamics for linear attention with separate rank-one key and query intro-
duced in Equation (19).

Based on the gradient flow training rule in Equation (10), the gradient flow dynamics for the value, key, and
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query weights in the i-th head are

τ v̇i = k⊤
i E
(
β(yq − ŷq)x

⊤
q

)
qi, (52a)

τ k̇i = viE
(
β(yq − ŷq)x

⊤
q

)
qi, (52b)

τ q̇i = viE
(
xq(yq − ŷq)β

⊤
)
ki. (52c)

We calculate the common term in Equation (52), that is

E
(
β(yq − ŷq)x

⊤
q

)
= E

[
β

(
w⊤xq −

H∑
i=1

viβ
⊤kiq

⊤
i xq

)
x⊤
q

]

= E

[
Λ̂ww⊤

(
I −

H∑
i=1

viΛ̂kiq
⊤
i

)
xqx

⊤
q

]

= E
(
Λ̂
)
Ew

(
ww⊤

)
Exq

(
xqx

⊤
q

)
− E

(
Λ̂ww⊤Λ̂

) H∑
i=1

vikiq
⊤
i Exq

(
xqx

⊤
q

)
= Λ2 − E

(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ (53)

Substituting Equation (53) into Equation (52), we arrive at the same equations as Equation (19) in the main
text

τ v̇i = k⊤
i

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi,

τ k̇i = vi

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi,

τ q̇i = vi

(
Λ2 −Λ

H∑
i′=1

vi′ki′q
⊤
i′ E
(
Λ̂2
))

ki.

where the data statistics E
(
Λ̂2
)

is calculated in Equation (31).

D.3 Validity of Fixed Points

We prove that the fixed points given in Equation (21) are valid.

Proof. When the model is at a fixed point in set M(Sm), it satisfies Equation (23). Equation (23) can be
rewritten using ad (defined in Equation (32)) as

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λd

ad
ede

⊤
d . (55)
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Using Equations (33) and (55), we can simplify a common term in the gradient descent dynamics in Equa-
tion (19) to

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ =

D∑
d=1

λ2
dede

⊤
d −

D∑
d′=1

ad′ed′e
⊤
d′

∑
d∈Sm

λd

ad
ede

⊤
d Λ

=

D∑
d=1

λ2
dede

⊤
d −

∑
d∈Sm

λdede
⊤
d Λ

=
∑
d/∈Sm

λ2
dede

⊤
d . (56)

Substituting Equation (56) into Equation (19), we obtain the gradient flow dynamics when the model is at a
fixed point in M(Sm)

τ v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 qi, (57a)

τ k̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 qi, (57b)

τ q̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

ki. (57c)

(i) For the heads with a nonzero value weight, vi ̸= 0, the key and query weights at a fixed point satisfy
condition (C2) for Equation (21), that is the key and query weights lie in the span of {ed}d∈Sm and
thus can be written as

ki =
∑
d∈Sm

bded, bd ∈ R, (58a)

qi =
∑
d∈Sm

cded, cd ∈ R. (58b)

Substituting Equation (58) into the gradient flow dynamics given in Equation (57), we obtain

τ v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

τ k̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

τ q̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

bd′ed′ = 0,

where we have used the fact that e⊤d ed′ = 0 if d ̸= d′, because eigenvectors of the covariance matrix
Λ are orthogonal.
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(ii) For the heads with a zero value weight, vi = 0, the gradients of the key and query weights in Equa-
tions (57b) and (57c) contain vi and are thus zero, k̇i = 0, q̇i = 0. Further, the key and query weights
of a head with a zero value weight satisfy condition (C3) for Equation (21). Without loss of gener-
ality, suppose that qi lies in the span of {ed}d∈Sm , that is qi satisfies Equation (58b). Substituting
Equation (58b) into the gradient of vi given in Equation (57a), we obtain

v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

where we have again used the fact that eigenvectors of Λ are orthogonal.

Hence, when the model has weights specified in Equation (21), the gradients of the weights are zero, mean-
ing that the fixed points are valid. ■

D.4 Loss Value at A Fixed Point

We derive the loss when the model is at a fixed point in set M(Sm), where the loss is given by

L(M(Sm)) = tr(Λ)−
∑
d∈Sm

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

. (59)

Equation (24) in the main text follows directly from Equation (59) when taking Sm = {1, 2, · · · ,m}.

Proof. We substitute Equations (33) and (55) into the mean square loss and obtain

L(M(Sm)) = E(yq − ŷq)
2

= E

w⊤xq −
∑
d∈Sm

λd

ad
w⊤Λ̂ede

⊤
d xq

2

= E

x⊤
q

I −
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

Ew(ww⊤)

I −
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

xq


= E

x⊤
q

I −
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

I −
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

xq


= E

x⊤
q

I − 2
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d +

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

2xq

 . (60)
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Since Λ̂ is independent of xq, we can calculate the expectation of the purple and teal terms first,

E

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

 =
∑
d∈Sm

λd

ad
Λede

⊤
d =

∑
d∈Sm

λ2
d

ad
ede

⊤
d ,

E

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

2 = E

∑
d∈Sm

λ2
d

a2d
ede

⊤
d Λ̂Λ̂ede

⊤
d +

∑
d,d′∈Sm,d ̸=d′

λdλd′

adad′
Λ̂ede

⊤
d ed′e

⊤
d′Λ̂


=
∑
d∈Sm

λ2
d

a2d
ede

⊤
d E
(
Λ̂Λ̂

)
ede

⊤
d + 0

=
∑
d∈Sm

λ2
d

a2d
ede

⊤
d

D∑
d′=1

ad′ed′e
⊤
d′ede

⊤
d

=
∑
d∈Sm

λ2
d

ad
ede

⊤
d .

Substituting them back into Equation (60), we get

L(M(Sm)) = E

x⊤
q

I − 2
∑
d∈Sm

λ2
d

ad
ede

⊤
d +

∑
d∈Sm

λ2
d

ad
ede

⊤
d

xq


= E

x⊤
q

I −
∑
d∈Sm

λ2
d

ad
ede

⊤
d

xq


= E

(
x⊤
q xq

)
−
∑
d∈Sm

λ2
d

ad
E
(
x⊤
q ede

⊤
d xq

)
= tr(Λ)−

∑
d∈Sm

λ2
d

ad
e⊤d Λed

= tr(Λ)−
∑
d∈Sm

λ3
d

ad

We plug in the definition of ad in Equation (32) and arrive at the desired result:

L(M(Sm)) = tr(Λ)−
∑
d∈Sm

λ3
d

1

λ2
d

(
1 +

1 + tr(Λ)/λd

N

)−1

= tr(Λ)−
∑
d∈Sm

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

.

■

D.5 Saddle-to-Saddle Dynamics: From M0 to M1

We denote the time at which the loss has just undergone the d-th abrupt drop as td (d = 1, . . . , D), as
illustrated in Figure 7.
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Figure 7: Illustration of t1, · · · , tD. The loss trajectory plotted is one of the trajectories of linear attention
with separate rank-one key and query in Figure 3a. The time td (d = 1, . . . , D) denotes the time when the
loss has just undergone the d-th abrupt drop.

D.5.1 Alignment During the Plateau.

In the initial loss plateau, the weights have not moved much away from their small initialization and thus
the training dynamics are mainly driven by the first terms in Equation (19), which are

τ v̇i = k⊤
i Λ

2qi +O(w5
init), (61a)

τ k̇i = viΛ
2qi +O(w5

init), (61b)

τ q̇i = viΛ
2ki +O(w5

init). (61c)

With a small initialization scale winit, the key and query weights in a head evolve approximately as

τ
d

dt

[
ki

qi

]
= vi

[
0 Λ2

Λ2 0

] [
ki

qi

]
. (62)

The matrix
[
0 Λ2

Λ2 0

]
∈ R2D×2D has eigenvalues

{
λ2
d,−λ2

d

}D
d=1

, corresponding to eigenvectors

[
0 Λ2

Λ2 0

] [
ed
ed

]
= λ2

d

[
ed
ed

]
,

[
0 Λ2

Λ2 0

] [
ed
−ed

]
= −λ2

d

[
ed
−ed

]
, d = 1, · · · , D.

where recall that λd, ed(d = 1, · · · , D) are eigenvalues and eigenvectors of Λ. Hence, the solution to
Equation (62) takes the following form[

ki(t)
qi(t)

]
=

1

2

D∑
d=1

e⊤d (ki(0) + qi(0)) exp

(
λ2
d

τ

∫ t

0
vi(t

′)dt′
)[

ed
ed

]

+
1

2

D∑
d=1

e⊤d (ki(0)− qi(0)) exp

(
−
λ2
d

τ

∫ t

0
vi(t

′)dt′
)[

ed
−ed

]
.

(63)

If vi > 0, the first summation term in Equation (63) grows and the second summation term decays. The key
and query weights ki, qi both grow in size along the directions of the eigenvectors ed. If vi < 0, the first
summation term in Equation (63) decays and the second summation term grows. The key and query weights
ki, qi grow in opposite directions, ed and −ed respectively. In either case, the multiplication vikiq

⊤
i grows

along ede
⊤
d .
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D.5.2 Reduction to Scalar Dynamics with An Alignment Ansatz.

The dominating term in Equation (63) is the term with the largest positive eigenvalue. In other words, the
key and query weights grow the fastest along the first eigenvector e1 and thus are approximately aligned
with e1. Motivated by this insight, we make an ansatz that the key and query weights in a head are exactly
aligned with e1 and the rest of the heads are zero4:

k1 = q1 = v1e1, (64a)

ki = qi = 0, vi = 0, i = 2, · · · , H. (64b)

Note that Equation (64) also assumes that the ℓ2 norms of k1, q1, v1 are equal, which is true under vanishing
initialization due to the conservation law in Equation (79). This ansatz can greatly simplify the training
dynamics and provide a good approximation of the true dynamics, where weights in one of the heads grow
in scale with the key and query weights aligning with e1, while the rest of the heads remain near zero from
time 0 to t1.

We substitute the ansatz into the training dynamics in Equation (19) to reduce the high-dimensional dynam-
ics to a one-dimensional ordinary differential equation. To do that, we first calculate the common expectation
term in the training dynamics with the ansatz,

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ = Λ2 −

D∑
d=1

adede
⊤
d v

3
1e1e

⊤
1 Λ = Λ2 − λ1a1e1e

⊤
1 v

3
1 (65)

where a1 is the first eigenvalue of E(Λ̂2) defined in Equation (32). Substituting Equations (64) and (65) into
Equation (19), we find that the training dynamics of the first head simplify and the dynamics of the rest of
the heads are zero

τ v̇1 = v21e
⊤
1

(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1 − λ1a1v

5
1,

τ k̇1 = v21

(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1e1 − λ1a1v

5
1e1,

τ q̇1 = v21

(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1e1 − λ1a1v

5
1e1,

v̇i = 0, k̇i = 0, q̇i = 0, i = 2, · · · , H.

We further substitute in k̇1 = v̇1e1, q̇1 = v̇1e1 and find that the high-dimensional training dynamics reduce
to one-dimensional dynamics about v1(t)

τ v̇1 = λ2
1v

2
1 − λ1a1v

5
1

τ v̇1e1 = λ2
1v

2
1e1 − λ1a1v

5
1e1

τ v̇1e1 = λ2
1v

2
1e1 − λ1a1v

5
1e1

⇒ τ v̇1 = λ2
1v

2
1 − λ1a1v

5
1 (66)

Equation (66) is a separable ordinary differential equation. By separating variables and integrating both
sides, we can solve t in terms of v1

λ2
1

τ
t =

∫
1

v21 −
a1
λ1
v21

dv1

=

3

√
a1
λ1

6

ln


3

√
a21
λ2
1
v21 +

3

√
a1
λ1
v1 + 1

3

√
a21
λ2
1
v21 − 2 3

√
a1
λ1
v1 + 1

− 2
√
3 tan−1

2 3

√
a1
λ1
v1 + 1

√
3


− 1

v1
. (67)

4We trivially let the head aligned with e1 to have index 1.
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Since Equation (67) does not have a straight-forward inverse, we cannot obtain a general analytical solution
of v1(t) in terms of t. Nonetheless, we can readily generate numerical solutions and obtain approximate ana-
lytical solutions when v1 is near its small initialization to estimate the duration of the first loss plateau.

When v1 is small, the dominating term in Equation (66) is λ2
1v

2
1 and thus the dynamics can be approximated

by

τ v̇i = λ2
1v

2
i ⇒ t =

τ

λ2
1

(
1

vi(0)
− 1

vi(t)

)
.

At the end of the plateau, v1(t) has grown to be much larger than v1(0). Hence, the duration of the first loss
plateau, t1, is

t1 ≈
τ

λ2
1v1(0)

. (68)

D.6 Saddle-to-Saddle Dynamics: From Mm to Mm+1

In Appendix D.5, we have analyzed the training dynamics from time 0 to t1, during which the model moves
from saddle M0 to saddle M1. We now analyze the general saddle-to-saddle dynamics from time tm to
tm+1 (m = 0, · · · , D − 1), during which the model moves from Mm to Mm+1.

D.6.1 Alignment During the Plateau.

Based on our dynamics analysis from time 0 to t1 and by induction, the weights during the m-th plateau
are approximately described by Equation (25). Namely, there are m heads whose key and query weights
have grown and become aligned with the first m eigenvectors while weights in the rest of the heads have not
moved much from their small initialization. Thus, similarly to Equation (57), the heads that are near small
initialization have the following training dynamics

τ v̇i = k⊤
i

(
D∑

d=m+1

λ2
dede

⊤
d

)
qi +O(w5

init),

τ k̇i = vi

(
D∑

d=m+1

λ2
dede

⊤
d

)
qi +O(w5

init),

τ q̇i = vi

(
D∑

d=m+1

λ2
dede

⊤
d

)
ki +O(w5

init).

With a small initialization scale winit, the key and query weights in this head evolve approximately as

τ
d

dt

[
ki

qi

]
= vi

[
0 Ω
Ω 0

] [
ki

qi

]
, where Ω =

D∑
d=m+1

λ2
dede

⊤
d . (69)

The matrix
[
0 Ω
Ω 0

]
∈ R2D×2D has 2m zero eigenvalues and (2D − 2m) nonzero eigenvalues, which are{

λ2
d,−λ2

d

}D
d=m+1

. The nonzero eigenvalues correspond to eigenvectors[
0 Ω
Ω 0

] [
ed
ed

]
= λ2

d

[
ed
ed

]
,

[
0 Ω
Ω 0

] [
ed
−ed

]
= −λ2

d

[
ed
−ed

]
, d = m+ 1, · · · , D.
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Hence, the solution to Equation (69) takes the following the form[
ki(t)
qi(t)

]
=

1

2

D∑
d=m+1

e⊤d (ki(tm) + qi(tm)) exp

(
λ2
d

τ

∫ t

tm

vi(t
′)dt′

)[
ed
ed

]

+
1

2

D∑
d=m+1

e⊤d (ki(tm)− qi(tm)) exp

(
−
λ2
d

τ

∫ t

tm

vi(t
′)dt′

)[
ed
−ed

]

+
m∑
d=1

e⊤d (ki(tm) + qi(tm))

[
ed
ed

]
.

(70)

For vi > 0, the first term grows and the second term decays with time. The third term does not change with
respect to time.

D.6.2 Reduction to Scalar Dynamics with An Alignment Ansatz.

The dominating term in Equation (70) is the term with the largest positive eigenvalue. In other words, during
the (m+1)-th plateau, the key and query weights that are still near small initialization grow the fastest along
the (m + 1)-th eigenvector em+1. Based on this insight, we make the ansatz in Equation (25). This ansatz
can reduce the high-dimensional training dynamics to a one-dimensional ordinary differential equation and
provides a good approximation of the true dynamics, where weights in one of the heads grow in scale with
the key and query weights aligning with em+1, while the rest of the heads do not change much from time
tm to tm+1.

To calculate the training dynamics in Equation (19) with the ansatz, we first calculate a common term with
the ansatz

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ = Λ2 −

D∑
d=1

adede
⊤
d

(
m∑
i=1

λd

ad
eie

⊤
i + v3m+1em+1e

⊤
m+1

)
Λ

= Λ2 −
m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
m+1 (71)

By substituting Equations (25) and (71) into Equation (19), we find that the dynamics for the heads with
index i ̸= m+ 1 are zero

v̇i = 0, k̇i = 0, q̇i = 0, i ̸= m+ 1.
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For the head with index i = m+ 1, the dynamics reduce to one-dimensional dynamics about vi(t)

τ v̇i = v2i e
⊤
m+1

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i − λm+1am+1v

5
i

τ k̇i = τ v̇iem+1 = v2i

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i em+1 − λm+1am+1v

5
i em+1

τ q̇i = τ v̇iem+1 = v2i

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i em+1 − λm+1am+1v

5
i em+1

⇒ τ v̇i = λ2
m+1v

2
i − λm+1am+1v

5
i (72)

Equation (72) is the same ordinary differential equation as Equation (66) modulo the constant coefficients.
Therefore, with the same analysis, we can estimate the duration of the (m+ 1)-th loss plateau.

When vm+1 is small, the dominating term in Equation (72) is λ2
m+1v

2
i and thus the dynamics is well ap-

proximated by

τ v̇m+1 = λ2
m+1v

2
m+1 ⇒ t− tm =

τ

λ2
m+1

(
1

vm+1(tm)
− 1

vm+1(t)

)
.

At the end of the plateau, vm+1(tm+1) has grown to be much larger than vm+1(tm). Hence, the duration of
the (m+ 1)-th loss plateau is

tm+1 − tm ≈ τ

λ2
m+1vm+1(tm)

. (73)

We note that the Equation (73) involves vm+1(tm), which depends on the random initialization and the
dynamics from time 0 to tm. This explains why we observe the variance of tm increases with a larger m,
that is the timing of a later abrupt loss drop varies more across random seeds as shown in Figure 3a.

D.7 Weight Configuration with Minimal L2 Norm

We prove that Equation (25) with vm+1 = 0 is the weight configuration with minimal ℓ2 norm that satisfies
Equation (23). To do this, we find the weight configuration with minimal ℓ2 norm satisfying a general
equality constrain and apply the solution to Equation (23).

Consider the equality constrained optimization problem

minimize
H∑
i=1

v2i + ∥ki∥2 + ∥qi∥2

subject to
H∑
i=1

vikiq
⊤
i = A

where A is a positive semi-definite matrix.
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Proof. We use Lagrange multiplier to solve this equality constrained optimization problem. First, we con-
struct the Lagrangian function L(M) where the Lagrange multiplier M ∈ RD×D is a symmetric matrix

L(M) =
1

2

H∑
i=1

(
v2i + ∥ki∥2 + ∥qi∥2

)
+ vec(M)⊤vec

(
A−

H∑
i=1

vikiq
⊤
i

)

=
1

2

H∑
i=1

(
v2i + ∥ki∥2 + ∥qi∥2

)
+ tr

[
M

(
A−

H∑
i=1

vikiq
⊤
i

)]

Differentiating the Lagrangian with respect to all the variables and setting them to zero, we get

∂L

∂vi
= vi − k⊤

i Mqi = 0 (74a)

∂L

∂ki
= ki − viMqi = 0 (74b)

∂L

∂qi
= qi − viMki = 0 (74c)

∂L

∂M
= A−

H∑
i=1

vikiq
⊤
i = 0 (74d)

One possible solution is that the value, key, and query weights in a head are all zero

vi = 0,ki = qi = 0. (75)

If the weights are not zero, we can substitute Equation (74c) into Equation (74b) and get

ki = viMqi = v2iM
2ki,

which implies that ki is an eigenvector of M2 and thus an eigenvector of M . Let us denote ki = ∥ki∥e
where e is a normalized eigenvector of M with eigenvalue η. Substituting ki = ∥ki∥e into Equations (74b)
and (74c) and rearranging, we get

ki = qi = vie, vi =
1

η
. (76)

We now try to solve the Lagrange multiplier M . Multiplying Equation (74c) by q⊤i on the right and sum-
ming over i = 1, · · · , H , we get

H∑
i=1

qiq
⊤
i =

H∑
i=1

viMkiq
⊤
i = MA. (77)

Suppose that the query weight qj in the j-th head is nonzero and aligns with a different eigenvector of M
than qi. By multiplying Equation (77) by q⊤j on the left, we find that qj is an eigenvector of A

q⊤j

H∑
i=1

qiq
⊤
i = q⊤j MA ⇒ ∥qj∥2q⊤j = ηq⊤j A

v3i q
⊤
j = q⊤j A
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where we have used the fact that eigenvectors of a symmetric matrix are orthogonal to each other. Hence,
Equation (76) suggests that the nonzero key and query weights are eigenvectors of matrix A and v3i is equal
to the corresponding eigenvalue.

For the optimization problem, the weights in each head must satisfy either Equation (75) or Equation (76).
The optimal solution is that there are H − rank(A) heads with zero weights and rank(A) heads with
nonzero weights. The nonzero heads have weights

ki = qi = viei, vi = ξ
1
3
i , i = 1, · · · ,rank(A), (78)

where ξi, ei are eigenvalues and eigenvectors of A. The indices of heads can be trivially permuted. The
signs of any two among vi,ki, qi can be flipped without affecting the optimization problem. ■

We apply the solution in Equation (78) to find a weight configuration with the minimal ℓ2 norm that satisfies
Equation (23). Equation (23) can be rewritten as Equation (55), namely

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λd

ad
ede

⊤
d .

The matrix on the right hand side has rank m and eigenvalues and eigenvectors λd/ad, ed (d ∈ Sm). Thus,
the weight configuration with minimal ℓ2 norm has (H − m) heads with zero weights and m heads with
nonzero weights. The nonzero heads have weights

ki = qi = viei, vi =

(
λd

ad

) 1
3

= λ
− 1

3
i

(
1 +

1 + tr(Λ)/λi

N

)− 1
3

, i = 1, · · · ,m.

This is the same weight configuration as Equation (25) with vm+1 = 0.

D.8 Conservation Law

The gradient flow dynamics of linear attention with separate rank-one key and query in Equation (19) implies
a conservation law. The value, key, and query weights in a head obey

d

dt

(
k⊤
i ki − q⊤i qi

)
= 0,

d

dt

(
k⊤
i ki − v2i

)
= 0, (79)

Under small initialization, the quantities k⊤
i ki − q⊤i qi ≈ 0 and k⊤

i ki − v2i ≈ 0 are small at initialization
and remain small throughout training. Thus, the conservation law enforces the ℓ2 norms of the value, key,
and query to be approximately the same throughout training, ∥ki∥2 ≈ ∥qi∥2 ≈ v2i .

We here prove that Equation (79) holds regardless of the choice of the loss function.

Proof. We can use the generic gradient flow equation in Equation (10) to calculate the gradients of k⊤
i ki, q

⊤
i qi,

and v2i ,

dk⊤
i ki

dt
= 2k⊤

i

dki

dt
= 2E

(
−k⊤

i

dL
dŷq

dŷq
dki

)
= 2E

(
− dL
dŷq

vik
⊤
i βq

⊤
i xq

)
dq⊤i qi
dt

= 2q⊤i
dqi
dt

= 2E
(
−q⊤i

dL
dŷq

dŷq
dqi

)
= 2E

(
− dL
dŷq

viq
⊤
i xqk

⊤
i β

)
dv2i
dt

= 2vi
dvi
dt

= 2E
(
−vi

dL
dŷq

dŷq
dvi

)
= 2E

(
− dL
dŷq

viβ
⊤kiq

⊤
i xq

)
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We see that the gradients of k⊤
i ki, q

⊤
i qi, and v2i are equal, regardless of the specific choice of the loss

function L. Hence, the following conservation law holds for any loss function:

d

dt

(
k⊤
i ki − q⊤i qi

)
= 0,

d

dt

(
k⊤
i ki − v2i

)
= 0.

■

E Linear Attention with Separate Low-Rank Key and Query

E.1 Justification for Zero Blocks Assumption

We initialize vi = 0, ki,r = 0 (i = 1, · · · , H, r = 1, · · · , R), and prove that they will stay zero throughout
training.

Proof. The bottom right entry of the output of linear attention with separate rank-R key and query is

ŷq ≡ ATTNS(X)D+1,N+1

=
H∑
i=1

[
v⊤
i vi

] [ 1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤
n

1
N

∑
n y

2
n

] [
ki,1 · · · ki,R

ki,1 · · · ki,R

]q
⊤
i,1
...

q⊤i,R

xq

=

H∑
i=1

(
v⊤
i

(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,r + viβ

⊤
R∑

r=1

ki,rq
⊤
i,r + v⊤

i β

R∑
r=1

ki,rq
⊤
i,r + viw

⊤Λ̂w
R∑

r=1

ki,rq
⊤
i,r

)
xq

If we initialize vi = 0, ki,r = 0, ŷq is

ŷq =

H∑
i=1

R∑
r=1

viβ
⊤ki,rq

⊤
i,rxq = w⊤Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq.

We now calculate the gradient updates of vi = 0, ki,r = 0 and prove their gradients are zero if their
initialization is zero. The gradient update of vi contains E(w), which is zero as defined in Equation (3).
Similarly to Equation (39), we have

τ v̇i = E

[
(yq − ŷq)

((
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,r + β

R∑
r=1

ki,rq
⊤
i,r

)
xq

]

= E

[(
w⊤xq −w⊤Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq

)(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,rxq

]

= Ew(w)⊤E

[(
xq − Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq

)(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,rxq

]
= 0.

The gradient update of ki,r contains Ew

(
w⊤Λ̂ww⊤

)
, whose entries are linear combinations of third mo-
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ments the zero-mean normal random variable w, and are thus zero. Similarly to Equation (40), we have

τ k̇i,r = E
[(

v⊤
i β + viw

⊤Λ̂w
)
(yq − ŷq)q

⊤
i,rxq

]
= E

[
viw

⊤Λ̂w

(
w⊤xq −w⊤Λ̂

H∑
i=1

R∑
r′=1

viki,r′q
⊤
i,r′xq

)
q⊤i,rxq

]

= Ew

(
w⊤Λ̂ww⊤

)
E

[
vi

(
xq − Λ̂

H∑
i=1

R∑
r′=1

viki,r′q
⊤
i,r′xq

)
q⊤i,rxq

]
= 0.

■

E.2 Gradient Flow Equations

Based on the gradient flow training rule in Equation (10), the gradient flow dynamics of linear attention with
separate rank-R key and query is

τ v̇i =
R∑

r=1

k⊤
i,rE

(
β(yq − ŷq)x

⊤
q

)
qi,r =

R∑
r=1

k⊤
i,r

(
Λ2 − E

(
Λ̂2
) H∑

i=1

R∑
r′=1

viki,r′q
⊤
i,r′Λ

)
qi,r, (80a)

τ k̇i,r = viE
(
β(yq − ŷq)x

⊤
q

)
qi,r = vi

(
Λ2 − E

(
Λ̂2
) H∑

i=1

R∑
r′=1

viki,r′q
⊤
i,r′Λ

)
qi,r, (80b)

τ q̇i,r = vik
⊤
i,rE (β(yq − ŷq)xq) = vi

(
Λ2 −Λ

H∑
i=1

R∑
r′=1

viqi,r′k
⊤
i,r′E

(
Λ̂2
))

ki,r. (80c)

where i = 1, · · · , H, r = 1, · · · , R , and the data statistics E
(
Λ̂2
)

is calculated in Equation (31).

E.3 Fixed Points

We use M(Sm) to denote a set of fixed points that correspond to learning m (m = 0, 1, · · · , D) out of the
D eigenvectors,

M(Sm) =

{
v1:H ,WK

1:H ,WQ
1:H

∣∣∣∣conditions (C1)-(C3) are met
}
, (81)

where the set Sm specifies the indices of the learned eigenvectors,

Sm ⊆ {1, 2, · · · , D}, |Sm| = m. (82)

The three conditions for Equation (81) are:

(C1) The heads sum up to fit the eigenvectors with indices Sm

H∑
i=1

R∑
r=1

viki,rq
⊤
i,r =

∑
d∈Sm

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d . (83)

(C2) For heads with a nonzero value weight, vi ̸= 0, ki,r, qi,r (r = 1, · · · , R) all lie in the span of
{ed}d∈Sm .

45



(C3) For heads with a zero value weight, vi = 0,

R∑
r=1

∑
d/∈Sm

λ2
dk

⊤
i,rede

⊤
d qi,r = 0. (84)

With the same reasoning as Appendix D.3, one can show the weights satisfying these three conditions have
zero gradients and thus are fixed points. Though conditions (C1,C3) do not explicitly specify the weights,
they are feasible conditions. One possible weight configuration that satisfies all three conditions is to let
ki,r, qi,r (r ̸= 1) be zero and let vi,ki,1, qi,1 be the same as the fixed point for linear attention with rank-one
key query, where the low-rank case falls back into the rank-one case. Therefore, the fixed points described
in Equation (81) are valid and feasible. Linear attention with separate rank-R key and query has the same
2D fixed points in the function space as its rank-one counterpart.

E.4 Saddle-to-Saddle Dynamics
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(b) R = 3
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(c) R = 4

Figure 8: Loss and value weights trajectories. The setting is the same as Figure 3b except different ranks
R = 2, 3, 4. In the rank-one case in Figure 3b, value weights in four heads grow, each corresponding to
an abrupt loss drop from L(Mm) to L(Mm+1) (m = 0, 1, 2, 3). In the rank-R case, a new value weight
grows big from small initialization when the loss decreases from L(Mm) to L(Mm+1) for m that divides
R. Here D = 4, N = 32, H = 5, and Λ has eigenvalues 0.4, 0.3, 0.2, 0.1.

Figure 9: Loss trajectories. Same as Figure 4 but with ranks R = 3, 5, 6, 7. Here D = 8, N = 32, H = 9,
Λ has trace 1 and eigenvalues λd ∝ d−1.

For linear attention with rank-R key and query, the gradient updates of the key and query weights in Equa-
tion (80), k̇i,r, q̇i,r, include the factor vi, which is the shared across ranks r = 1, · · · , R but unique to each
head. In linear attention with rank-one key and query initialized with small weights, the weights in a head,
vi,ki, qi, escape from the unstable zero fixed point to drive the first abrupt drop of loss. Similarly, in the
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rank-R model, the value weight vi and a pair of key and query weights ki,r, qi,r in a head escape from the
zero fixed point to drive the first abrupt drop of loss.

However, the subsequent dynamics differ between the the rank-one and rank-R models. In the rank-one
model, the loss will undergo a conspicuous plateau until weights in a new head, vi′ ,ki′ , qi′ (i

′ ̸= i), escape
from the zero fixed point to grow. By contrast, in the rank-R model (R > 1), the loss will plateau briefly
or not plateau because a new pair of key and query weights in the same i-th head, ki,r′ , qi,r′ (r

′ ̸= r), can
quickly grow to drive the loss drop. A new pair of key and query weights in the i-th head grows faster than
the key and query weights in a new head, because the value weight in the i-th head, vi, has already grown
during the first abrupt loss drop. Since the gradient updates of all key and query weights in the i-th head
include the factor vi, a larger value weight leads to larger gradient updates for the associated key and query
weights. We plot the value weights with D = 4 and ranks R = 1, 2, 3, 4 in Figures 3b and 8 to show: the
loss drop after a conspicuous plateau corresponds to a new value weight escaping from zero, while the loss
drop after a brief plateau does not.

We plot the loss trajectories with D = 8 and different ranks in Figure 9 to complement Figure 4 in the main
text.

E.5 Conservation Law

The gradient flow dynamics of linear attention with separate key and query in Equation (80) implies a
conservation law. The value, key, and query weights in a head obey

d

dt

(
k⊤
i,rki,r − q⊤i,rqi,r

)
= 0,

d

dt

(
R∑

r=1

k⊤
i,rki,r − v2i

)
= 0. (85)

We here prove that Equation (85) holds regardless of the choice of the loss function.

Proof. We can use the generic gradient flow equation in Equation (10) to calculate the relevant gradients
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dt
= 2E

(
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i

dL
dŷq

dŷq
dki,r

)
= 2E

(
− dL
dŷq

vik
⊤
i,rβq

⊤
i,rxq

)
(86a)
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(
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viq
⊤
i,rxqk

⊤
i,rβ

)
(86b)
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Comparing Equations (86a) and (86b), we see that the following holds regardless of the specific choice of
the loss function L

dk⊤
i,rki,r

dt
=

dq⊤i,rqi,r

dt
.

Similarly, comparing Equations (86a) and (86b) with Equation (86c), we obtain

R∑
r=1

dk⊤
i,rki,r

dt
=

dv2i
dt

.

■
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F Training Dynamics of In-Context and In-Weight Learning

For the in-context linear regression task we focused on in the main text, we sample the task vectors for all
training sequences from a standard normal distribution, w ∼ N (0, I). In this case, the linear attention
model only develops in-context learning ability as shown in Figure 10a.

In Figure 10, we let the task vector for some of the training sequences be fixed and sample the rest from a
standard normal distribution to elicit in-weight learning ability. We plot the training loss, in-context learning
test loss, and in-weight learning test loss for varying portions of fixed task vectors in Figure 10. Unlike
Figure 10a, the dynamics of in-context and in-weight learning dynamics interact and possibly compete
when there are training sequences with a fixed task vector.

Technically, the consequence of fixing some of the task vectors is that Equations (39) and (40) break. In
other words, we cannot assume the certain blocks of the value and the merged key-query matrices are zero
as in Appendix C.1. Without the zero block assumption, the linear attention model implements

ŷq =

H∑
i=1

(
v⊤
i

(
Λ̂+

1

N
xqx

⊤
q

)
Ui + viβ

⊤Ui + v⊤
i βu

⊤
i + vi

1

N

N∑
n=1

y2nu
⊤
i

)
xq. (87)

Equation (87) include not only a linear map of the cubic feature z = vec(βx⊤
q ) but also linear maps of

additional features,
(
Λ̂+ 1

Nxqx
⊤
q

)
⊗ xq,

1
N

∑N
n=1 y

2
nxq. Future work could analyze the gradient descent

dynamics of the model described by Equation (87), building on our results on the dynamics of in-context
learning to incorporate the dynamics of in-weight learning.
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Figure 10: Training loss, in-weight learning test loss, and in-context learning test loss of linear attention
with merged key and query corresponding to Figure 5. The training set is the same as the in-context linear
regression task described in Section 2.1 except that a portion of the task vectors w are fixed. The portion
of fixed task vectors indicates how much training samples can be fitted with the in-weight learning solution,
that is memorizing the fixed task vector. The in-context learning test loss is evaluated on test sequences
whose task vectors are all sampled from N (0, I). The in-weight learning test loss is evaluated on test
sequences whose task vector is the same fixed task vector from the training set. Here D = 4, N = 32, H =
8,Λ = I/D.
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