Using Default Logic for Lexical Knowledge

Outline

Definition of Lexical Knowledge Motivation and Advantages DEX – Default Lexical Framework Example Learning Default Classification Trees Example **Default Lexical Rules** Bibliography

Lexical knowledge is knowledge about the morphology, grammar, semantics and usage of words

http://www.fuchstreu.ch/bilder/lexika.jpg

Lexica

- capture lexical knowledge
- identify relations of words

Motivation

- Search engines
- Indexing documents
- Disambiguating words
- Lexical knowledge in relation with context
- Semantic knowledge

- ...

Advantages

- lucid representation
- maintainability
- handling of exceptions
- efficient representation in terms of space

DEX – Default Lexical Knowledge

<u>Query word</u> = A word for which further information is required

Source = A set of words including the query word that is used to identify the

context of a query word

Output = Set of formulae providing lexical knowledge about a query word

Steps

1. Input: Source, query word

Method: context classification trees

Output: primary contexts

2. Input: primary contexts

Method: default context rules

Output: inferred contexts(include primary

contexts)

3. Input: query word, inferred contexts

Method: default lexical rules

Output:lexical knowledge about the query word 9

Example

The bank of a river in a flood plain is usually low

```
Stop words = {The, of, a, in, is}
Source = {bank, river, flood, plain, usually, low}
query word = bank
```

Step 1

Input: Source, query word

Method: Context classification trees

Output: primary context

Context classification tree for river

Primary context: river

⊤ : context(river)
 context(river)

Exkursion vom Beispiel

⊤ : context(finance)
 context(finance)

Exkursion vom Beispiel

Step 2

Input: primary contexts

Method: default context rules

Output: inferred contexts(include primary

contexts)

Primary context = context(river), context(valley)

context(river) \(\Lambda \) context(valley) : context(river - \)

valley)

context(river - valley)

A directed acycled graph of context

Step 3

Input: query word, inferred contexts

Method: default lexical rules

Output: lexical knowledge about the query word

focus(bank) A context(river): synonym(bank, river - bank)

synonym(bank, river - bank)

A Semantic Network for "river"

Learning Context Classification Trees

Steps

- 1. Taking an corpus
- 2. Removing stop words
- Classification of the training examples as either POSITVE or NEGATIVE example for each context

Example

Source = {after, army, blame, bomb, country, government, group, guerilla, kill, last, military, month, more, peace, people, say, separatist, soldier, talk, troops}

Context Classification Tree for "paramilitary incident"

Default Lexical Rules

focus(bank) <u>\Lambda</u> context(river) : synonym(bank, river - bank) synonym(bank, river - bank)

focus(bank) A synonym(bank, river - bank) -> focus(river - bank)

focus(knife) : context(cooking)
located(knife, kitchen)

focus(hull) : context(ship)
made - of(hull, steel)

focus(bank) : context(finance)
category(bank, verb) v category(bank, noun)

focus(bank) : context(river)
 category(bank, noun)

Fruit flies like plants

focus(flies) \(\Lambda \) wordtoleft(fruit) : context(biology) specialization(flies, fruit-flies) \(\Lambda \) category(flies, noun) \(\Lambda \) category(fruit-flies, noun-noun-phrase)

focus(sentence) Λ context(law) : \neg context(writing) $\exists x,y,t(judge(x) \Lambda defendant(y) \Lambda sentence(x,y) \Lambda sentence(y,t))$

Bibliography

A default logic based framework for contextdependent reasoning with lexical knowledge, Anthony Hunter, 2001

Using default logic for lexical knowledge, Anthony Hunter, 1997

Vielen Dank für eure Aufmerksamkeit