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Introduction

What this paper is about

The PageRank? algorithm is applied to a graph built of meaningfully
interconnected WordNet synsets to perform word sense disambiguation
(WSD). — “pageranking” WordNet

?(Brin and Page, 1998)
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WSD: Motivation

assigning the most appropriate meaning to a polysemous word within a
given context

Application:
@ machine translation
knowledge acquisition

o
@ common sense reasoning
o
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WSD: supervised vs. unsupervised learning

Supervised learning
labeled data (e.g. words with sense tags) gets transformed into feature
vectors which are then used in an automatic learning process

@ pro: higher performance

@ con: only usable for words for which sense tagged data can be
provided by large corporas

Unsupervised Learning
works with unlabeled data and therefore on any unseen text; aka the
open-text knowledge-based approach

@ pro: larger coverage; applicable to all words in open-text

@ con: lower performance
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WSD: open-text knowledge-based algorithms

Four Main Types
@ Lesk algorithms
@ Semantic similarity
© Selectional preferences
© Heuristic-based methods
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Preliminaries: The PageRank Algorithm

= iterative graph-based ranking algorithm

o Let G = (V, E) be a graph with V: a set of vertices and E: a set of
edges from V x V
@ For a given vertex V; let ...

o In(V;) be the set of vertices that point to V;
o Out(V;) be the set of outgoing edges from V;

@ The PageRank of Vj; is given by
S(v;
SVi)= A =d) +d=*3 e |ou(f,('vi>|
e d: dumping factor set between 0 and 1 (the authors used 0.85)

PageRank decides how important a vertex is within a graph by giving each
vertex a score. The score associated with a vertex is determined based on
the votes that are cast for it, and the score of the vertices casting these

votes.
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Preliminaries: WordNet as a Graph ()

About WordNet!

@ lexical database for English
@ nouns, verbs, adjectives and adverbs are grouped into sets of
cognitive synonyms (synsets)
o each synset expresses a distinct concept

e synsets are interlinked by means of conceptual-semantic and lexical
relations (like IS-A, HAS-A, PART-OF . ..)

What to tell your grandmother
WordNet is a network of meaningfully related words and concepts.

'http://wordnet.princeton.edu/
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Preliminaries: WordNet as a Graph (II)

Graph representation

@ vertices = synsets

e edges = semantic relations (SR) or sets of semantic relations

The graph can be constructed directed as well as undirected.
Every graph representation of an input text is a subgraph of the WordNet
graph. (we'll see Text Synset Graphs in a minute)
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Preliminaries: Semantic Relations (= edges)

Basic semantic relations

— Explicitly encoded by WordNet:

hypernymy, hyponymy, meronymy, holonymy, entailment, causality,
attribute, pertainimy

Derived semantic relations

— Combinations of two or more basic semantic relations
Example:

@ hypernymy + hyponymy = coordinate-relation (identifies synsets that
share the same hypernym: dog#1 and wolf#1 share canine#1)

@ xlink-relation: combines all basic SR’s and the coordinate-relation to
one relation
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e The PageRank Disambiguation Algorithm
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g

The PageRank Disambiguation Algorithm
Step 1:
/ Preprocessing

{ raw text /[ |:

word
meaning
annotated

x—
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Step 1: Preprocessing

Task: Suit-up! the input data

© text gets tokenized and annotated with PoS-Tags
@ identification of collocations

© identification of named entities
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Step 2: Graph construction

Task: Construct a graph of the input text ( Text Synset Graph)

© add vertices
for all open-class words in the input text, add all identified WordNet
synsets as vertices in the graph (named entities and modal/auxiliary
verbs are not considered)

© add edges

add an edge between all vertices in the graph that can be linked by a
given semantic relation

The Text Synset Graph is a subgraph of WordNet.
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Step 3: PageRank

Task: Score the vertices

Q initialize graph
a small value is assigned to each vertex (Rada et al. used an initial
value of 1)

@ iterate until convergence
takes about 25-30 iterations
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Step 4: Assign word meanings

Task: dito.

@ Win: a word-sense is uniquely identifiable
after iteration over the ambiguous words in the text the synset that
has the highest PageRank score was found

@ Fail: no word-sense can be found
assign the word with a random sense (uninformed algortihm) or with
the first sense in WordNet (informed algortihm)
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@ Related Algorithms and Improvements
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Related Algorithms: The Lesk Algorithm (1)

Classic LESK

o first introduced by Michael E. Lesk, 1986

@ one of the first algorithms capable of disambiguating all words in
open text

@ uses a dictionary for disambiguation (dictionary entries = senses)

Procedure

© compare the different senses for the current word with the senses of
all other words in context

@ choose the sense with the highest overlap
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Related Algorithms: The Lesk Algorithm (II)

Simplified LESK
— Problem Classic LESK: Explosion of word sense combinations

Example
“I saw a man who is 108 years old and can still walk and tell jokes”.

@ count of senses per word: see(26), man(11), year(4), old(8), can(5),
still(4), walk(10), tell(8), joke(3)

@ possible sense combinations: 43.929.600

Simplification

Directly compare the dictionary entry of one word with its context words
without looking at every context words dictionary entry.
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Related Algorithms: Most Frequent Sense

— simple algorithm: just picks the most frequent sense for any given word
as the correct one

@ possible because WordNet keeps track of the frequency of each word
meaning within a sense-annotated corpus
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Improvements

(1) Combining PageRank and Lesk
@ use LESK to provide a basic ordering of senses for a given word

@ let the PageRank algorithm run; if two senses have similar PageRank
values, they will keep their LESK ordering, otherwise PageRank
overrides LESK

(11) Combining PageRank with Most Frequent Sense
To disambiguate a word. ..
@ order senses according to their WordNet frequency

@ calculate a combined rank for a sense from its PageRank and its
WordNet frequency by multiplication?

2or with a special formula, see (Mihalcea et al., 2004), section 5.4 for details
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© Evaluation
@ The Data
@ Uninformed vs. Informed Algorithms
@ Results
@ Discussion
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Evaluation: The Data

Algorithms are tested on a benchmark of sense-annotated texts (manually
annotated by a lexicographer) taken from the following datasets:

@ SemCor: five randomly selected files from different topics
o SENSEVAL-2 dataset for the English all words task

Average size of a file is 600-800 open-class words.
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Uninformed vs. Informed Algorithms

Uninformed Algorithms

The sense ordering provided by the dictionary (WordNet) is not used by
the algorithms. To ensure this point, the senses get shuffled with a
uniform distribution.

Random baseline: assigns a random sense to each word in the text

Informed Algorithms

The algorithms use the sense ordering provided by WordNet.

“Most frequent sense” as baseline: assigns the most frequent sense to
each word in the text
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Evaluation Results (I): Uninformed Algorithms

Table 1: WSD accuracy without integration of WordNet sense order

Size(words) Random  Lesk  PageRank PageRank+Lesk

SEMCOR

law 825 37.12% 39.62%  46.42% 49.36%
sports 808 2995% 33.00%  40.59% 46.18%
education 898 37.63% 4133%  46.88% 52.00%
debates 799 40.17% 4238%  47.830% 50.52%
entertainment 802 3927% 43.05%  43.89% 49.31%
AVERAGE 826 36.82% 3987%  45.11% 49 47%
SENSEVAL-2

doo 471 2897% 4394%  43.94% 47.77%

do1 784 4547% 52.65%  54.46% 57.39%

do2 514 3924% 4961%  54.28% 56.42%
AVERAGE 590 3789% 48.73%  50.89% 53.86%

| AVERAGE (ALL) 740 37.22% 43.19% 4727% 51.16% |
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Evaluation Results (I1): Informed Algorithms

Table 2: WSD accuracy with integration of WordNet sense order

Size(words)  MFS Lesk  PageRank PageRank+Lesk

SEMCOR

law 825 69.09% 72.65%  73.21% 73.97%
sports 808 5730% 6421%  68.31% 68.31%
education 898 64.03% 6933%  71.65% 71.53%
debates 799 66.33% 7007%  71.14% 71.67%
entertainment 802 59.72% 6498%  66.02% 66.16%
AVERAGE 826 6324% 6824%  70.06% 70.32%
SENSEVAL-2

doo 471 51.70% 53.07%  58.17% 57.74%

do1 784 60.80% 64.28%  67.85% 68.11%

do2 514 5597% 62.84%  63.81% 64.39%
AVERAGE 590 56.15% 60.06%  63.27% 63.41%

[ AVERAGE (ALL) 740 60.58% 6517% 67.51% 67.72% |
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Discussion

Some observations
@ The new algorithm always exceeds the baseline by a large margin

@ No matter if it uses word sense ordering or not, it always performs
better than LESK

@ The combined method (PageRank + LESK) always outperforms all
other algorithms (perhaps because of an increase of redundancy
through integration of an extra knowledge element)
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@ Conclusion
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Conclusion

@ The authors proposed a new PageRank-based, unsupervised
knowledge-based WSD algorithm that outperforms all other known
knowledge-based algorithms.

@ The uninformed version of the algorithm is highly portable to other
languages, because it only relies on dictionary information (no sense
frequencies needed).
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