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Outline

Chinese Whispers Algorithm
Experiments

Demo

Remark: Resources are denoted at the end of the slides, but citations in the slides are not quoted by apostrohps. 
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● only minimal linguistic knowledge
→ knowledge-free and unsupervised methods

● optimal representation of language data 
→ graph models

– no storage of zero-values or not relevant values

● possible tasks: clustering of objects: in NLP:
– language separation
– part-of-speech tagging
– word sense induction
– ...

Motivation
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● Chinese Whispers is a simple, but efficient randomized graph-clustering 
algorithm.

– works on a weighted, undirected co-occurrence graph
● nodes: words
● weighted vertices: relations between words ~ co-occurrence 

– handles also very large graphs
– run-time complexity: linear in the number of edges
– output: a non-hierarchical (flat) partitioning of the graph

● Clustering is the process of grouping together objects based on their 
similarity to each other.

– similarity → weights of the vertices according to the co-occurrence 
significance of two words

Chinese Whispers
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● It is motivated by the game, where participants whisper words to each other. 
– The game’s goal is to arrive at some funny derivative of the original 

message by passing it through several noisy channels.

● CW algorithm: the same message = the same group of elements
● ~ The nodes of the graph whisper their label to each other, until every 

node agrees with its adjacent nodes on some label.

Chinese Whispers: Naming
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● sentence separated, tokenized text
– tokens → nodes
– co-occurrence significance (above a threshold) between tokens → 

vertices

● context range in co-occurrence calculation: 
– sentence-based co-occurrences: all (relevant) words in a sentence
– neighbor-based co-occurrences: words in an x-word window left 

and right from the current word

● co-occurrence significance: according to likelihood ratio: Ted Dunning 
(1993): Accurate  Methods  for  the  Statistics of  Surprise  and  Coincidence. 
Computational Linguistics. 19(1), pp. 61-74.

Chinese Whispers: Input
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Chinese Whispers: Algorithm (v1)

Initialization:
    Assign different labels to every node in the graph; 
For iteration i from 1 to total_iterations { 
    
    For each word w in the graph, randomized order { 
        label of w = highest ranked label in neighbourhood of w;
        
         
    } 
}
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Chinese Whispers: Algorithm (v1)

● Main loop: Change the class labels of the current node according to the 
weights of their connected nodes (neighbors).

● Neighbor labels will be ranked: For each class label in the neighborhood, 
the sum of the weights of edges to the word in question is taken as score for 
ranking. → The current node gets the label of highest score.

Initialization:
    Assign different labels to every node in the graph; 
For iteration i from 1 to total_iterations { 
    
    For each word w in the graph, randomized order { 
        label of w = highest ranked label in neighbourhood of w;
        
         
    } 
}
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Chinese Whispers: Algorithm

● update according local 
neighborhood

● update „top“: The 
strongest class is the 
class whose sum of edge 
weights to the current 
node is maximal.

● if multiple strongest 
classes → random choice 

e.g. for current node A
- strength(L3) = 6+3 = 9
- strength(L4) = 8            → change label L1 to L3

 - strength(L2) = 5 
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Chinese Whispers: Algorithm
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● Difference: A word probably gets a random, yet unused label.
– Reason: to avoid too greedy label updates in small graphs – Without 

the mutation, the whole graph would tend to get only one label.

Initialization:
    Assign different labels to every node in the graph; 
For iteration i from 1 to total_iterations { 
    mutation_rate = 1/(i2); 
    For each word w in the graph, randomized order { 
        label of w = highest ranked label in neighbourhood of w;
        with probability mutation_rate:
               label of w = new class label; 
    } 
}

Chinese Whispers: Algorithm (v2)
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Chinese Whispers: Updating labels

● Updating the class labels:
– continuous / immediately: changes in the same iteration
– stepwise: in the next iteration

→ Regions of the same class stabilize during the iteration and grow until 
they reach the border of a stable region of another class. 

● Nodes that are not connected by any edge are discarded from the clustering 
process, which possibly leaves a portion of nodes unclustered.  

● Convergence: formally, the algorithm does not converge → stop criterion
– no more changes in the label set

● after only a small number (< 20) of iterations, even in graphs 
of 1 million nodes and more

● Weighted graphs converges faster than unweighted.
– defined number of iterations
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Chinese Whispers: Updating labels

● Tie (here for the middle node): equal strength for each possible label

● → converge to a pair of oscillating class matrices.
– probably caused by the stepwise update of the class matrix
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Chinese Whispers: Output

● The result of CW is a hard partitioning (~ one node gets only one label) of 
the given graph.

– The number of partitions emerges in the process.
– It is possible to obtain a soft partitioning (~ possibly more than one 

label per node) by assigning a class distribution to each node.
● CW is non-deterministic: The clustering the same graph several times can 

result in different outcomes. 
● With increasing iterations, clusters become self-preserving: If a strongly 

connected cluster happens to be homogeneous with respect to class labels, 
it will never be infected by a few connections from other clusters. 

● Comparison with Min-Cut (Wu & Leahy 1993): 
– CW does not find an optimal hierarchical clustering, but yields a non-

hierarchical (flat) partition.
– CW does not require any threshold as input parameter.
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Experiments

● on unweighted, synthetic graphs

● Experiments:
– language separation
– word class acquisition
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Experiments: Language separation

● Co-occurrence type: sentence-based

● Corpus: equal fractions of seven European languages (Dutch, Estonian, 
English, French, German, Icelandic and Italian)

– 100, 200, 500, 1’000, 5’000, 10’000, 50’000 and 100’000 sentences 
of each language

– ambiguous words: used in more than one language → members of 
several graphs, connecting them

→ By CW-partitioning, the graph is split into its monolingual parts.

● Minimal size of a cluster: containing at least 1.8% of all words in the co-
occurrence graph. All smaller clusters were regarded as noise. 

● Language-ambiguous words are assigned to only one language (hard 
partitioning).
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Experiments: Language separation
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Experiments: Language separation
– small world graphs

● The multilingual graph looks like a small world 
graph.

● Small-world network/graph: 
The typical distance L between two randomly 
chosen nodes (~ the shortest path length 
between the two nodes) grows proportionally to 
the logarithm of the number of nodes N in the 
network:      
= Most pairs of nodes will be connected by 
at least one short path.

→ The mean-shortest path length is small.
→ contains cliques and near-cliques: sub-
networks which have connections between 
almost any two nodes within them. 

L N ∝ log N 
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Experiments: Language separation

● Output: seven large 
clusters + many very 
small clusters (noise)

● Best results: English: 
Precision > 99.9%, 
Recall > 98.1% for all 
experiments

● Worst results: Estonian: 
Precision > 99.3%, 
Recall 86.7–93.7 % for 
all experiments
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Experiments: Language separation
– error analysis

● Estonian corpus: legal texts are difficult to cluster. 
– about 3% of the texts are dates or law paragraph ciphers: e.g. 

“10.12.96 jõust.01.01.97 - RT I 1996 , 89 , 1590.” 

● In all languages difficult: 
– enumerations of sport teams 
– short headlines
– proper names → many company names were usually classified as 

English 
– bilingual sentences: e.g.  “Frönsku orðin "cinéma vérité" þýða 

"kvikmyndasannleikur".” (Icelandic)
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Experiments: Language separation
– error analysis

● Experiments with fewer than 100 sentences resulted in more than 7 (ca. 11) 
clusters.

– Reason: The significant co-occurrences were too small in numbers 
and too noisy in quality. 

● Similar languages are only slightly more difficult to separate than languages 
of different families. 

– (Except corpora with too large bias towards the main language.)
– Even German dialects could be identified in large German corpora. 
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Experiments: Word Class Acquis.

● Corpus: British National Corpus (BNC), excluding the most frequent 2000 
words.

● Edges: between words sharing at least four left and right neighbors. 
● Golden standard: Lexicon with the most frequent tag for each word in BNC

● The largest clusters:
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Experiments: Word Class Acquis.

● In total, CW produced 282 clusters, of which 26 exceed a size of 100. 

● The weighted average of cluster purity (i.e. the number of predominant 
tags divided by cluster size): 88.8%.

● As POS tagging is not a system for its own sake, but serves as a 
preprocessing step for systems building upon it, the names and the number 
of categories are very often not important. 
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Conclusions

● Unsupervised clustering of language data is possible and works with the 
same high accuracy as the well-known supervised approaches.

– Only requirement on data: word boundaries and sentences for the 
calculation of significant co-occurrences.

● CW: 
– parameter-free, unsupervised method
– is robust with respect to the number and the mass distribution of the 

involved data
– almost perfect results, reliable results also with small data sets
– is capable of handling very large graphs in reasonable time
– chooses the number of classes on its own and can handle 

clusters of different sizes
– non-deterministic
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Demo: GUI

● The implementation is written in Java and platform independent.
http://wortschatz.uni-leipzig.de/~cbiemann/software/CW.zip

● Main panel:
– input: the source of the graph to be clustered: files (nodes-file + 

edges-file) or database
– destination of the output: files or database
– displaying the outcome of the algorithm: interactive graph window or 

diagram (latter showing quantitative characteristics of the result)
● Graph:

– only undirected graphs, i.e. weight(n1, n2) = weight(n2, n1)

– edge weights: positive integer values
● if all weights have the same value, then the graph is 

unweighted

http://wortschatz.uni-leipzig.de/~cbiemann/software/CW.zip
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Demo: Output

● Output as graph:
– views: labeled and unlabeled nodes
– the size of the nodes is changeable
– zoom function
– shows results of each iteration step by step
– Different colors represent different classes. – if mouse over a node, 

you get information on to what extent the node belongs to different 
classes

– subgraph view

● Output as diagram: draws the distribution of cluster sizes in a graph.
– Also a comparison of several algorithm options in the diagram is 

possible.
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Demo: Options

● Custom changing of algorithm parameters (expert panel):
– minimum/maximum degree of nodes
– minimum edge weight threshold
– number of iterations
– algorithm strategy, mutation
– update strategy

● Algorithm strategies: 
– top: sums over the weights of neighborhood’s classes
– dist log, dist nolog: downgrades the influence of a neighboring node 

by its degree (number of edges of node): weight / degree
– vote: the same as top but needs a minimum threshold for a class 

change to take place
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Demo: Options

● Update strategies: 
– stepwise: The updates are not performed immediately, but take 

effect in the next iteration.
– continuous: A node can spread its class in the same iteration as it 

received it. The continuous option converges faster. 

● Default setting: top, keep class rate 0, mutation constant with rate 0 (no 
mutation) and continuous update. 
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