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— Using Semi-Supervised Learning (SSL) we can create labeled data from
labeled and unlabeled instances (transductive inference)
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Semi Supervised Learning in Graphs

Given labeled instances L and unlabeled instances U
a weighted Graph G = (V, E, W) is constructed.

V = Vi U Vi the union of labeled and unlabeled nodes
E={w|W(u,v) > e}

e W:V XV = R:=sim(v,w) v,w eV
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What this talk is about

e Graphs model the paradigm of transductive inference.
e Questions:
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What this talk is about

e Graphs model the paradigm of transductive inference.
e Questions:

x What features are used to describe the instances?

x How is the similarity between the instances defined to construct the graph
from feature space?

— What kind of algorithms propagates the labels in a desired way through the
graph?

— How do such algorithms perform?
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Why isn’t this trivial?

e Maxbe kNN could do this as well
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e But: no notion of smoothness
e The mass of the labeled (big) instances get lost.
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(Zhu et al. 2003)
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Label propagation method (LP-ZGL) (Zhu et al. 2003)

e Zhu applied mathematical proven methods used in physics to the SSL
machine learning problem

. 1
T T S T Ghung 2009)

e The algorithm is derived from the model of a gaussian random field

¢ and formulates an objective that minimizes the error from adjacent nodes
having different labels
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Label propagation method (LP-ZGL) (Zhu et al. 2003)

e (' is the set of labels

D is the matrix with Dyu = > Way
veV

L is the Laplician D — W
Y is a matrix with training labels

o Y a matrix with soft label assigments
— then the objective minimized by LP-ZGL is:

i Y/TL?T = Wuv Y/u 7?11 2 1
m{}HZ 1 l Z (Yur 1) (1)

leC u,veV,leC

e The node labels are then computed with loopy belief propagation.
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Adsorption (Baluja et al. 2008)

e Was engineered for the video recommandation system at youtube.

e The graph was constructed by using co-views: v; and v, are connected if
they have been seen by the same user.

e The algorithm iteratively updates the graph with

)A/Ut+1 — Z)nj % Y +pzont B'Z +pzbdnmt N (2)

e pi" s the probability injected by the labeled node
* pi®"*is the probability to continue

o p2tdnmt ig the probability to stop at this node

o pind 4 poont | pabdnmt _ q
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Adsorption (Baluja et al. 2008)

B, = ZZ T @)

o B} is the normalized injected mass from the incident neighbours

e r absorbs the injected mass of the node, if the node isn’t trusted (f.ex. high
degree node)
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Modified Adsorption (MAD) (Talukdar and Crammer 2010)

e Talukdar and Crammer investigated if there is an objective that gets
minimized by Adsorption

e Thereisn't one

e Thus they reformulated the basic ideas of Adsorption into an objective
function that can be optimized

e S,, = lifvis alabeled node
min Y [ (Vi = V) S(Vi = Vi) + po Vi L'V + s |Vi - RIP) - (4)
leC

e 11 - ug are the probabilities as in Adsorption
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® Experiments
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Measure

o All evaluations will use the Mean Reciprocal Rank (MRR)

1 1
MRR_@UEZQW (5)

e () are the tested nodes
e rank(v) is the rank the gold label has in node v
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Datasets

o Freebase

“a large collaborative knowledge base [... which | harvests information
from many open data sets (for instance Wikipedia and MusicBrainz), as
well as from user contributions”

¢ TextRunner
“an open domain IE system* which offers extracted hypernym tuples
e Yago Knowledge Base

“a light-weight and extensible ontology with high coverage [... which ]
contains more than 1 million entities and 5 million facts.” (Suchanek et al.
2007)
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Constructed Graph
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Results

Freecbase-2 Graph, 192 WordNet Classes
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Results

Effect of Per-node Sparsity Constraint

Mean Reciprocal Rank (MRRY
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Results

170 WordNet Classes, 2 Seeds per Class 170 WordNet Classes, 10 Seeds per Class
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Results

YAGO
Attribute

Top-2 WordNet Classes Assigned by MAD
(example instances for each class are shown in brackets)

has_currency

wordnet_country_108544813 (Burma, Afghanistan)
wordnet_region_108630039 (Aosta Valley, Southern Flinders Ranges)

works_at wordnet_scientist_110560637 (Aage Niels Bohr, Adi Shamir)
wordnet_person_100007846 (Catherine Cornelius, Jamie White)
has_capital wordnet_state_108654360 (Agusan del Norte, Bali)
wordnet_region_108630039 (Aosta Valley, Southern Flinders Ranges)
born_in wordnet_boxer_109870208 (George Chuvalo, Fernando Montiel)
wordnet_chancellor_109906986 (Godon Brown, Bill Bryson)
has_isbn wordnet_book_106410904 (Past Imperfect, Berlin Diary)

wordnet magazine_1 06595351 (Railway Age, Investors Chronicle)

Table 2: Top 2 (out of 170) WordNet classes assigned by MAD on 5 randomly chosen YAGO attribute
nodes (out of 80) in the TextRunner + YAGO graph used in Figure 7 (see Section 3.6), with 10 seeds per
class used. A few example instances of each WordNet class is shown within brackets. Top ranked class

for each attribute is shown in bold.
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Conclusion

e MAD outperforms Adsorption and LP-ZGL
e Adding attributes to the graph helps class inference

¢ If you want to do SSL and you can define the edge weights on your
feature space, MAD might currently be the state of the art solution

Questions that haven’t been answered by the author:

e How does the rate of improvement develops with increasing seed size?

e How close are the false postives and would an evaluation with
precision@k be sensible?
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