

A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts

Thierry Goeckel

Department of Computational Linguistics

November 25, 2010

Outline

1 Introduction

2 Method

- Architecture
- Context and Subjectivity Detection
- Cut-based classification

3 Evaluation Framework

4 Experimental Results

- Basic Subjectivity extraction
- Incorporating context information

Why Sentiment Analysis

- Opinion rather than facts
- Useful for companies and recommender systems to create subjective summaries

Why Sentiment Analysis

- Opinion rather than facts
- Useful for companies and recommender systems to create subjective summaries

Document Polarity Classification

- Polarity in movie review: “thumbs up” or “thumbs down”
- Previous approaches focused on selecting indicative lexical features as in “good” or “bad”

Document Polarity Classification

- Polarity in movie review: “thumbs up” or “thumbs down”
- Previous approaches focused on selecting indicative lexical features as in “good” or “bad”

Subjectivity Approach

- ① Labeling of sentences as either subjective or objective
- ② Apply a standard machine-learning classifier to the extract

Subjectivity Approach

- Irrelevant or even potentially misleading text is not considered
- Subjectivity extracts accurately represent the sentiment in a compact form
- Results show statistically significant improvement or maintain the same level with a lot less data
- Minimum cut formulation provides an efficient, intuitive and effective means for integrating inter-sentence-level contextual information with traditional bag-of-words features.

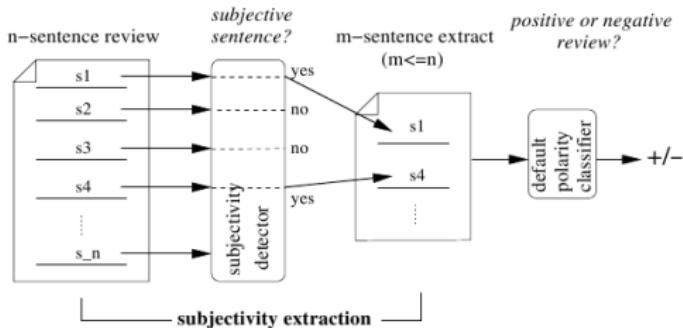
Outline

1 Introduction

2 Method

- Architecture
- Context and Subjectivity Detection
- Cut-based classification

3 Evaluation Framework


4 Experimental Results

- Basic Subjectivity extraction
- Incorporating context information

Subjectivity Detector

- Determines whether sentence is subjective or not
- Combination of sentence-level subjectivity detection with document-level sentiment polarity

Subjectivity Detector

Outline

1 Introduction

2 Method

- Architecture
- Context and Subjectivity Detection
- Cut-based classification

3 Evaluation Framework

4 Experimental Results

- Basic Subjectivity extraction
- Incorporating context information

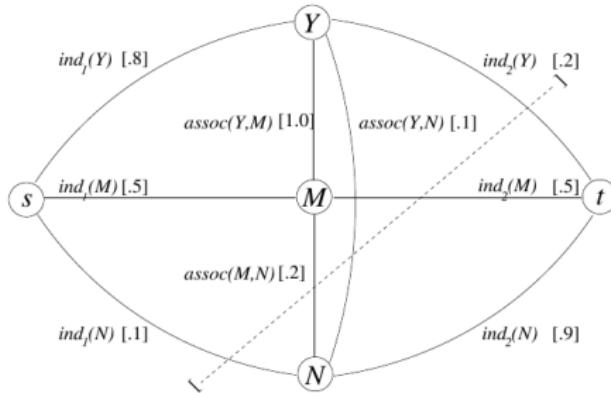
Context and Subjectivity Detection

- *Coherence*: sentences not classified in isolation
- Achieved by an efficient and intuitive algorithm relying on finding *minimum cuts*

Outline

1 Introduction

2 Method


- Architecture
- Context and Subjectivity Detection
- Cut-based classification

3 Evaluation Framework

4 Experimental Results

- Basic Subjectivity extraction
- Incorporating context information

Concepts

- *Classes C_1 and C_2* : positive and negative classes
- *Individual scores $ind_j(x_i)$* : non-negative estimate of each item x_i 's preference for being in C_j
- *Association scores $assoc(x_i, x_k)$* : non-negative estimate of how important it is that x_i and x_k be in the same class.

Partition Cost

$$\sum_{x \in C_1} ind_2(x) + \sum_{x \in C_2} ind_1(x) + \sum_{\substack{x_i \in C_1, \\ x_k \in C_2}} assoc(x_i, x_k).$$

Definition

A cut (S, T) of G is a partition of its nodes into sets $S = \{s\} \cup S'$ and $T = \{t\} \cup T'$, where $s \notin S'$, $t \notin T'$. Its cost $cost(S, T)$ is the sum of the weights of all the edges crossing from S to T . A minimum cut of G is one of minimum cost.

Practical Advantages

- Co-ordination of algorithms deriving the individual scores and methods assigning the association scores.
- Use of *maximum-flow* algorithms with polynomial asymptotic running times

Default Polarity Classifiers

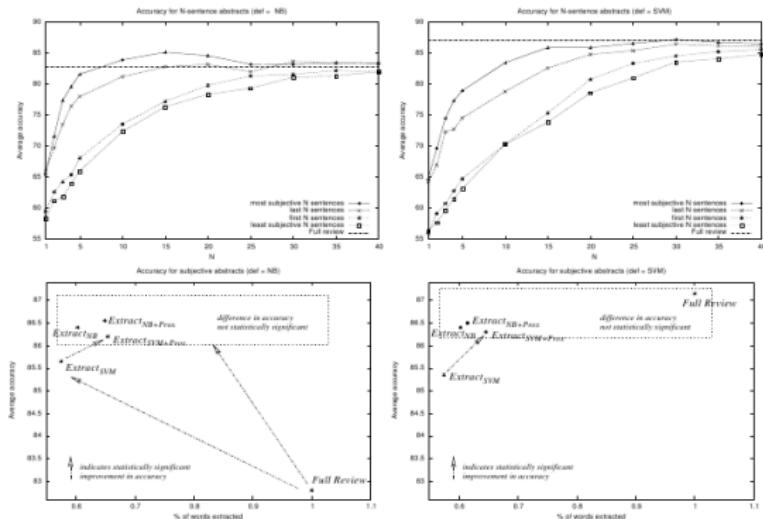
- Test data contains 1000 positive and 1000 negative reviews of movies released pre-2002
- Default popularity classifiers
 - Tested: support vector machines (SVMs)
 - Tested: naive Bayes (NB)
- Used: Unigram-presence features

Default Polarity Classifiers

- Test data contains 1000 positive and 1000 negative reviews of movies released pre-2002
- Default popularity classifiers
 - Tested: support vector machines (SVMs)
 - Tested: naive Bayes (NB)
 - Used: Unigram-presence features

Subjectivity Dataset

- Web mining on rottentomatoes.com and imdb.com
 - Subjective data: 5000 “snippets” from rottentomatoes.com
 - objective data: 5000 sentences of plot summaries from imdb.com
 - “snippets” and sentences at least ten words long and from movies released after 2001 (to prevent overlap with polarity dataset)


Subjectivity Detectors

- Polarity classifiers as “basic” sentence-level subjectivity detectors
 - to produce extracts of original reviews
- Creation of a family of cut-based subjectivity detectors
 - determine the subjectivity status of all the sentences per-item and pairwise relationship information
 - Using either Naive Bayes or SVMs
 - Association scores set either to zero
 - or to degree of proximity controlled by three parameters:
 - Threshold T : maximum distance of two sentences to be still “proximal”
 - Non-increasing function $f(d)$: decay of influence of proximal sentences with respect to distance d
 - The constant c : controls the relative influence of the association scores

Experiments

- First, the basic subjectivity extraction algorithms (on sentence-level) are examined
- Second, the more sophisticated form of subjectivity extraction with context information is evaluated (using min-cut paradigm)
 - Subjectivity extracts improve polarity classification, otherwise at least same accuracy as with the full review
 - The created extracts are both smaller and more effective as input to a default polarity classifier than the original text

Results

Outline

1 Introduction

2 Method

- Architecture
- Context and Subjectivity Detection
- Cut-based classification

3 Evaluation Framework

4 Experimental Results

- Basic Subjectivity extraction
- Incorporating context information

Basic Subjectivity Extraction

- NB produces better results than SVM method
- Achieves 86,4% (vs. 82,8% without extraction)
 - Extracts preserve (and even clarify) the sentiment underlying the original document
- Subjectivity extracts are much more compact than original reviews
 - about 60% of the source's words
- Tests with varying lengths and positions in the text
 - Extracts containing as few as 5 to 15 sentences are almost as informative as the full review

Outline

1 Introduction

2 Method

- Architecture
- Context and Subjectivity Detection
- Cut-based classification

3 Evaluation Framework

4 Experimental Results

- Basic Subjectivity extraction
- Incorporating context information

Incorporating context information

- Context-aware graph-based subjectivity detectors create more informative extracts
- But: extracts are longer
- Further tests: reduce the association scores for sentences in different paragraphs
→ Graph-cut formulation produces better results than standard classifiers

Summary

- Relation between subjectivity detection and polarity classification shows that the former can compress reviews and still retain polarity information
- Using contextual information via the minimum-cut framework leads to an improvement in polarity-classification accuracy

References |

Pang, Bo and Lillian Lee

A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts.

In *Proceedings of the 42nd ACL*. 271–278, 2004.