$\ddot{\mathbf{U}}$ bungsblatt 6 – Lösungen

Formale Semantik WiSe 2011/2012

1 DRS-Konstruktionsregeln

Konstruktionsregel für indefinite NPs mit Adj

- Bedingungen
 - α ist reduzible Bedingung in DRS K
 - α enthält einen Teilbaum [
s $[_{NP}~\beta]~[_{VP}~\gamma]$] oder [$_{VP}~[_{V}\gamma]~[_{NP}~\beta]$]
 - $-\ \beta$ ist von der Form $\epsilon\ \omega\ \delta,$ wobei
 - * ϵ eine Form des unbest. Artikels
 - * ω ein Adjektiv
- Operationen
 - -füge einen neuen DR x zu U_K hinzu
 - ersetze β in α durch x
 - füge $\delta(\mathbf{x})$ und $\omega(\mathbf{x})$ zu C_K hinzu

2 DRS-Konstruktion

a)

Jeder Bauer, der nicht schläft, hat einen großen Hof.

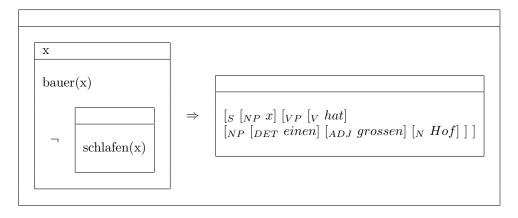
```
[s \\ [NP \\ [DET Jeder] \\ [N \\ [N Bauer] \\ [RC \\ [RPRP der] [s [NP] [VP [NEG nicht] [v schläft]]] \\ ] \\ ] \\ [VP [Vhat] [NP [DET einen] [ADJ grossen] [N Hof]]]
```

Konstruktionsregel für universelle NPs

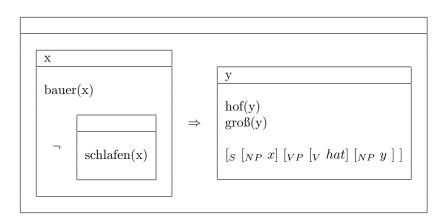
```
 \begin{bmatrix} [N(x) \ [N\ Bauer]\ ] \\ [RC\ [RPRP\ der]\ [s\ [NP\ ] \\ [VP\ [NEG\ nicht]\ [v\ schl\"{a}ft]\ ]\ ]\ ]\ ] \end{bmatrix} \ \Rightarrow \ \begin{bmatrix} [s\ [NP\ x]\ [VP\ [v\ hat] \\ [NP\ [DET\ einen]\ [ADJ\ grossen]\ [N\ Hof]\ ]\ ] \end{bmatrix}
```

Konstruktionsregel für indefinite NPs

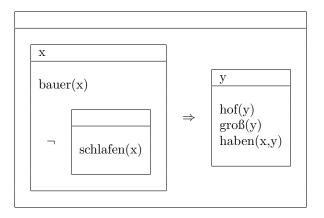
$\begin{matrix} \downarrow \\ \text{Konstruktions$ $regel für Negation} \\ \downarrow \end{matrix}$



↓
Konstruktionsregel für indefinite NP mit Adjektiv



 $\begin{matrix} \downarrow \\ \text{Konstruktionsregel für VPs} \\ \downarrow \end{matrix}$



$$K = [| K_1 \Rightarrow K_2]$$

$$K_1 = [x | bauer(x), \neg K_3]$$

$$K_2 = [y | hof(y), gross(y), haben(x, y)]$$

$$K_3 = [| schlafen(x)]$$

b)

Wahrheitsbedingungen:

- Es gibt eine Einbettung f
 mit $U_K = \{\}$, $U_K \subseteq Dom(f)$
- und $f \models_M K$.
- $f \models_M K_1 \Rightarrow K_2$ gdw.
 - für alle $g\supseteq_{U_{K_1}}f$ mit $g\models_M C_{K_1}$ gilt:
 - es gibt $h \supseteq_{U_{K_2}} g$ mit $h \models_M K_2$
 - Anmerkung:
 - * $g\supseteq_{U_{K_1}}f$ bedeutet: die Domäne von f, erweitert um $U_{K_1}=\{x\}$, d.h.: $Dom(g)=\{x\}$
 - * $h\supseteq_{U_{K_2}}g$ bedeutet: $Dom(h)=\{x,z\}$
- $g \models_M C_{K_1}$ gdw.
 - $-g(x) \in V_M(bauer)$ und
 - $-g \models_M \neg K_3 \text{ gdw}.$
 - * es gibt kein $i \supseteq_{U_{K_3}} g$, sodass $i \models_M K_3$.

- $i \models_M K_3$ gdw. $i(x) \in V_M(schlafen)$
- $h \models_M C_{K_2}$ gdw.
 - $-h(y) \in V_M(hof)$
 - $-h(y) \in V_M(gross)$
 - $< H(x), h(y) > \in V_M(haben)$

Vereinfachung möglich:

f und i können wegfallen, da leere Erweiterungen \Rightarrow K ist wahr in M gdw.

- für alle g mit
 - $Dom(g) = \{x\},\$
 - $-g(x) \in V_M(bauer),$
 - $-g(x) \notin V_M(schlafen)$
- gibt es ein h mit
 - $Dom(h) = \{x, y\},\$
 - $-h(y) \in V_M(hof)$
 - $-h(y) \in V_M(gross)$
 - $< H(x), h(y) > \in V_M(haben)$

Modellstruktur

Viele Möglichkeiten, z.B.:

- $M = \langle U_M, V_M \rangle$
- $U_M = \{x, y\}$
- $V_M(bauer) = \{x\}, V_M(hof) = \{y\}, V_M(gross) = \{y\}$
- $V_M(schlafen)\{\}, V_M(haben) = \{\langle x, y \rangle\}$

Oder:

- $M = \langle U_M, V_M \rangle$
- $\bullet \ U_M = \{x\}$
- $V_M(bauer) = \{\}$

 $\mathbf{c})$

$$\begin{split} T([\mid K_1 \Rightarrow K_2]) &= T(K_1 \Rightarrow K_2) \\ &= \forall x ((bauer(x) \land \neg schlafen(x)) \rightarrow \exists y (hof(y) \land gross(y) \land haben(x,y))) \end{split}$$

3 Anapherninterpretation und Zugänglichkeit

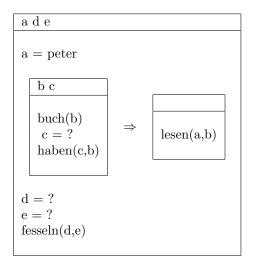
1)

x y u v

x = peter
y = maria
lieben(x,y)
u = ?
v = ?
mögen(u,v)

- $\bullet\,$ zugänglich für u,v: x,y
- harte ling. Constraints: wegen Genus ausgeschlossen:
 - x für u
 - y für v
- weiche ling. Constraints/Weltwissen: hier nicht von Bedeutung

2)



- zugänglich für c (er): b,a (d, e noch nicht verfügbar)
 - b: ausgeschlossen (Genus, Sortenverträglichkeit)
 - a: Constraints erfüllt
- zugänglich für d (es): a (ausgeschlossen durch Genus und Bindungsprinzipien)
- zugänglich für e (ihn): a (erfüllt alle Constraints)
- harte ling. Constraints:

3)

a b c d a = maria leiter(b) übersehen(a,b) c = ? beule(d) bekommen(c,d)

• zugänglich für c (sie): a,b

- $\bullet\,$ durch harte ling. Constraints ausgeschlossen: nichts
- weiche ling. Constraints:
 - Parallelismus: größere Wahrscheinlichkeit, dass hier Maria die Beule bekommt (vgl. "Die Leiter wurde von Maria übersehen. Sie bekam eine Beule.")
 - Weltwissen: beides möglich (?)