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This note shows how to integrate out the multinomial parameters for latent Dirichlet allocation (LDA)
and naive Bayes (NB) models. This allows us to perform Gibbs sampling without taking multinomial
parameter samples. Although the conjugacy of the Dirichlet priors makes sampling the multinomial
parameters relatively straightforward, sampling on a topic-by-topic basis provides two advantages.
First, it means that all samples are drawn from simple discrete distributions with easily calculated
parameters. Second, and more importantly, collapsing supports fully stochastic Gibbs sampling where
the model is updated after each word (in LDA) or document (in NB) is assigned a topic. Typically,
more stochastic sampling leads to quicker convergence to the stationary state of the Markov chain made
up of the Gibbs samples.

Both the LDA and NB models are topic models, where words are generated based on topic-specific
multinomials. The main difference is that LDA assumes each word in a document is drawn from a
mixture of topics, whereas NB assumes each word in a document is drawn from a single topic.

In a hierarchical model, the topic and word priors would themselves be estimated. Here, we assume
the priors are fixed hyperparameters in both the NB and LDA models.

1 LDA Model

1.1 LDA Sampling Model

M ∈ N+ is the number of documents. Nm ∈ N+ is the number of words in the m-th document. J is the
number of distinct words. K the number of topics. ym,n ∈ 1:J is the n-th word of the m-th document
and zm,n ∈ 1:K is the topic to which it is assigned. θm ∈ [0, 1]K is the topic distribution for document
m. ϕk ∈ [0, 1]J is the word distribution for topic k. α ∈ RK

+ is the vector of prior counts (plus 1) for
topics in documents and β ∈ RJ

+ is the vector of prior counts (plus 1) for words in a topic.

In sampling notation, we draw the word distribution for topic k by

ϕk ∼ Dir(β) for 1 ≤ k ≤ K (1)

For each document m, we draw its topic distribution,

θm ∼ Dir(α) for 1 ≤ m ≤M (2)

For each word n in document m, we first draw the topic zm,n from the distribution over topics for the
document m,

zm,n ∼ Disc(θm) for 1 ≤ m ≤M and 1 ≤ n ≤ Nm (3)

then draw the word ym,n itself from the word distribution for the word’s topic, zm,n,

ym,n ∼ Disc(ϕzm,n) for 1 ≤ m ≤M and 1 ≤ n ≤ Nm (4)
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1.2 LDA Joint Probability

Given the model, the joint probability for all of the parameters in the LDA model is

p(y, z, θ, ϕ|α, β) (5)

= p(ϕ|β) p(θ|α) p(z|θ) p(y|ϕ, z) (6)

=
K∏
k=1

p(ϕk|β)×
M∏
m=1

p(θm|α)×
M∏
m=1

Nm∏
n=1

p(zm,n|θm)×
M∏
m=1

Nm∏
n=1

p(ym,n|ϕzm,n) (7)

=
K∏
k=1

Dir(ϕk|β)×
M∏
m=1

Dir(θm|α)×
M∏
m=1

Nm∏
n=1

Disc(zm,n|θm)×
M∏
m=1

Nm∏
n=1

Disc(ym,n|ϕzm,n) (8)

ck,m,j is the number of times word j is assigned to topic k in document m. Summing out various indices,
ck,∗,j is the number of times word j is assigned to topic k in any document, ck,m,∗ the number of words
in document m assigned to topic k, and ck,∗,∗ the total number of words in all documents assigned to
topic k.

ck,m,j =
Nm∑
n=1

I(zm,n = k & ym,n = j) (9)

ck,∗,j =
M∑
m=1

ck,m,j ck,m,∗ =
J∑
j=1

ck,m,j ck,∗,∗ =
M∑
m=1

J∑
j=1

ck,m,j (10)

1.3 Integrating out Multinomials in LDA

The collapsed sampler needs to compute the probability of topic za,b being assigned to ya,b, the b-th
word of the a-th document, given z−(a,b), all the other topic assignments to all the other words.

p(za,b|z−(a,b), y, α, β) (11)

By the definition of conditional probability,

=
p(za,b, z−(a,b), y|α, β)

p(z−(a,b), y|α, β)
(12)

Remove the denominator, which does not depend on za,b,

∝ p(za,b, z−(a,b), y|α, β) (13)

Note that za,b, z−(a,b) is just z,

= p(y, z|α, β) (14)

Using the sum rule (or rule of total probability), integrate out the topic distributions for each document,
θ, and the word distributions for each topic, ϕ,

=

∫ ∫
p(y, z, θ, ϕ|α, β) dθ dϕ (15)
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Expand the integrand given the model defined in (6),

=

∫ ∫
p(ϕ|β) p(θ|α) p(z|θ) p(y|ϕ, z) dθ dϕ (16)

Then separate the integrals by pulling out the terms dependent on the variable being integrated,

=

∫
p(z|θ) p(θ|α) dθ ×

∫
p(y|ϕ, z) p(ϕ|β) dϕ (17)

And then expand out the terms again according to the independence assumptions in (7),

=

∫ M∏
m=1

p(zm|θm) p(θm|α) dθ ×
∫ K∏

k=1

p(ϕk|β)
M∏
m=1

Nm∏
n=1

p(ym,n|ϕzm,n) dϕ (18)

Distribute the multivariate integrals through the products over the dimensions, noting that other terms
are constant,

=
M∏
m=1

∫
p(zm|θm) p(θm|α) dθm ×

K∏
k=1

∫
p(ϕk|β)

M∏
m=1

Nm∏
n=1

p(ym,n|ϕzm,n) dϕk (19)

Expand out the Dirichlet priors and the discrete distributions according to their usual definitions,

=
M∏
m=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
m,k

Nm∏
n=1

θm,zm,n dθm (20)

×
K∏
k=1

∫
Γ(
∑J

j=1 βj)∑J
j=1 Γ(βj)

J∏
j=1

ϕ
βj−1
k,j

M∏
m=1

Nm∏
n=1

ϕzm,n,ym,n dϕk

Because xaxb = xa+b, we replace the innermost products over words in a document Nm by exponeniating
to the sum of the counts,

=
M∏
m=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
m,k

K∏
k=1

θ
ck,m,∗
m,k dθm (21)

×
K∏
k=1

∫
Γ(
∑J

j=1 βj)∑J
j=1 Γ(βj)

J∏
j=1

ϕ
βj−1
k,j

J∏
j=1

ϕ
ck,∗,j

k,j dϕk

For the same reason, merge the two products,

=
M∏
m=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θ
αk+ck,m,∗−1

m,k dθm ×
K∏
k=1

∫
Γ(
∑J

j=1 βj)∑J
j=1 Γ(βj)

J∏
j=1

ϕ
βj+ck,∗,j−1

k,j dϕk (22)

Next, multiply by a constant equal to one (consisting of two inverse fractions), and distribute the
integral over the original constant Γ-function fraction for the priors,

=
M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(ck,m,∗ + αk)

Γ(
∑K

k=1 ck,m,∗ + αk)

∫
Γ(
∑K

k=1 ck,m,∗ + αk)∏K
k=1 Γ(ck,m,∗ + αk)

K∏
k=1

θ
αk+ck,m,∗−1

m,k dθm (23)

×
K∏
k=1

Γ(
∑J

j=1 βj)∑J
j=1 Γ(βj)

∏J
j=1 Γ(ck,∗,j + βj)

Γ(
∑J

j=1 ck,∗,j + βj)

∫
Γ(
∑J

j=1 ck,∗,j + βj)∏J
j=1 Γ(ck,∗,j + βj)

ϕ
βj+ck,∗,j−1

k,j dϕk
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Note that both integrals are over the entire support of Dirichlet densities, so they both evaluate to 1,
and hence drop out of the products,

=
M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(ck,m,∗ + αk)

Γ(
∑K

k=1 ck,m,∗ + αk)
×

K∏
k=1

Γ(
∑J

j=1 βj)∑J
j=1 Γ(βj)

∏J
j=1 Γ(ck,∗,j + βj)

Γ(
∑J

j=1 ck,∗,j + βj)
(24)

Drop out the remaining Γ functions which only depend on the (constant) hyperparameters α and β,

∝
M∏
m=1

∏K
k=1 Γ(ck,m,∗ + αk)

Γ(
∑K

k=1 ck,m,∗ + αk)
×

K∏
k=1

∏J
j=1 Γ(ck,∗,j + βj)

Γ(
∑J

j=1 ck,∗,j + βj)
(25)

Next, split apart the products to pull out the terms dependent on the current sample position (a, b),

=
∏
m6=a

∏K
k=1 Γ(ck,m,∗ + αk)

Γ(
∑K

k=1 ck,m,∗ + αk)
×
∏K

k=1 Γ(ck,a,∗ + αk)

Γ(
∑K

k=1 ck,a,∗ + αk)
(26)

×
K∏
k=1

∏
j 6=ya,b

Γ(ck,∗,j + βj)× Γ(ck,∗,ya,b
+ βya,b

)

Γ(
∑J

j=1 ck,∗,j + βj)

Then drop terms that don’t depend on (a, b),

∝
∏K

k=1 Γ(ck,a,∗ + αk)

Γ(
∑K

k=1 ck,a,∗ + αk)
×

K∏
k=1

Γ(ck,∗,ya,b
+ βya,b

)

Γ(
∑J

j=1 ck,∗,j + βj)
(27)

Let c−(a,b) be defined the same way as c, only without the counts for position (a, b), then note that
for counts that don’t include position (a, b), that c−(a,b) = c, and for ones that do include a count, the
value is 1 plus the value given by c−(a,b),

∝
∏

k 6=za,b
Γ(c
−(a,b)
k,a,∗ + αk) × Γ(c

−(a,b)
za,b,a,∗ + αza,b

+ 1)

Γ(1 +
∑K

k=1 c
−(a,b)
k,a,∗ + αk)

(28)

×
∏
k 6=za,b

Γ(c
−(a,b)
k,∗,ya,b

+ βya,b
)

Γ(
∑J

j=1 ck,∗,j + βj)
×

Γ(c
−(a,b)
za,b,∗,ya,b + βya,b

+ 1)

Γ(1 +
∑J

j=1 c
−(a,b)
za,b,∗,j + βj)

Using the fact that Γ(x+ 1) = x× Γ(x), expand out the incremented terms depending on (a, b),

=

∏
k 6=za,b

Γ(c
−(a,b)
k,a,∗ + αk) × Γ(c

−(a,b)
za,b,a,∗ + αza,b

) × (c
−(a,b)
za,b,a,∗ + αza,b

)

Γ(1 +
∑K

k=1 c
−(a,b)
k,a,∗ + αk)

(29)

×
∏
k 6=za,b

Γ(c
−(a,b)
k,∗,ya,b

+ βya,b
)

Γ(
∑J

j=1 ck,∗,j + βj)
×

Γ(c
−(a,b)
za,b,∗,ya,b + βya,b

) × (c
−(a,b)
za,b,∗,ya,b + βya,b

+ 1)

Γ(
∑J

j=1 c
−(a,b)
za,b,∗,j + βj) × (

∑J
j=1 c

−(a,b)
za,b,∗,j + βj)

Then refold the leftover Γ terms back into the general products,

=

∏K
k=1 Γ(c

−(a,b)
k,a,∗ + αk) × (c

−(a,b)
za,b,a,∗ + αza,b

)

Γ(1 +
∑K

k=1 c
−(a,b)
k,a,∗ + αk)

(30)

×
K∏
k=1

Γ(c
−(a,b)
k,∗,ya,b

+ βya,b
)

Γ(
∑J

j=1 ck,∗,j + βj)
×
c
−(a,b)
za,b,∗,ya,b + βya,b

+ 1∑J
j=1 c

−(a,b)
za,b,∗,j + βj
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Which along with the topic denominator, may be dropped because they are constant,

∝
(c
−(a,b)
za,b,a,∗ + αza,b

)× (c
−(a,b)
za,b,∗,ya,b + βya,b

)∑J
j=1 c

−(a,b)
za,b,∗,j + βj

(31)

And finally we replace the denominator with its shorthand form, nothing that the βj term is counted
once per word,

∝
(c
−(a,b)
za,b,a,∗ + αza,b

)× (c
−(a,b)
za,b,∗,ya,b + βya,b

)

c
−(a,b)
za,b,∗,∗ + J × βj

(32)

The first multiplicand in the numerator, c
−(a,b)
za,b,a,∗ + αza,b

, is just the number of other words in document
a that have been assigned to topic za,b plus the topic prior. The second multiplicand in the numerator,

c
−(a,b)
za,b,∗,ya,b + βya,b

, is the number of times the current word ya,b has been assigned to topic za,b plus the
word prior. The denominator just normalizes the second term to a probability.

Because everyting is only taken up to proportionality, it only remains to normalize,

p(za,b|z−(a,b)y, α, β) =

(
(c
−(a,b)
za,b,a,∗+αza,b

)×(c
−(a,b)
za,b,∗,ya,b

+βya,b
)

c
−(a,b)
za,b,∗,∗+J×βj

)
(∑K

k=1

(c
−(a,b)
k,a,∗ +αk)×(c

−(a,b)
k,∗,ya,b

+βya,b
)

c
−(a,b)
k,∗,∗ +J×βj

) (33)

These values are all easily accumulated and updated during Gibbs sampling; just decrement to compute
c−(a,b) before a topic assignment and then increment after the topic assignment. The denominator is
computed by summation as defined.

2 Naive Bayes Model

2.1 NB Sampling Model

M ∈ N+ is the number of documents. Nm ∈ N+ is the number of words in the m-th document. J
is the number of distinct words. K is the number of topics. ym,n ∈ 1:J is the n-th word of the mth
document. zm ∈ 1:K is the topic assigned to document m. θ ∈ [0, 1]K is the global topic distribution.
ϕk ∈ [0, 1]J is the word distribution for topic k. α ∈ RK

+ is the vector of prior counts (plus 1) for topics
and β ∈ RJ

+ is the vector of prior counts (plus 1) for words in a topic.

In sampling notation, draw the word distribution for topic k by

ϕk ∼ Dir(β) for 1 ≤ k ≤ K (34)

Draw the overall topic distribution by

θ ∼ Dir(α) (35)

For each document m, first draw its topic,

zm ∼ Disc(θ) for 1 ≤ m ≤M (36)

and then draw each word n from document m based on the document’s topic,

ym,n ∼ Disc(ϕzm) for 1 ≤ m ≤M and 1 ≤ n ≤ Nm (37)
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2.2 NB Joint Probability

p(y, z, θ, ϕ|α, β) (38)

= p(ϕ|β) p(θ|α) p(z|θ) p(y|z, ϕ) (39)

=
K∏
k=1

p(ϕk|β)× p(θ|α)×
M∏
m=1

p(zm|θ)×
M∏
m=1

Nm∏
n=1

p(ym,n|θzm) (40)

=
K∏
k=1

Dir(ϕk|β)× Dir(θ|α)×
M∏
m=1

Disc(zm|θ)×
M∏
m=1

Nm∏
n=1

Disc(ym,n|θzm) (41)

dk is the number of documents assigned to topic k, ek,j the number of times word j is assigned to topic
k across all documents, and fm,j the number of times word j appears in the m-th document.

dk =
M∑
m=1

I(zm = k) (42)

ek,j =
M∑
m=1

Nm∑
n=1

I(zm = k & ym,n = j) (43)

fm,j =
Nm∑
n=1

I(ym,n = j) (44)

Note that if we sum over all the words in a document, we get its length,

fm,∗ =
J∑
j=1

fm,j = Nm (45)

2.3 Integrating out Multinomials in NB

The collapsed sampler needs to compute the probabiilty of topic za being assigned to document a given
z−a, the assignment of topics to all documents other than a.

p(za|z−a, y, α, β) (46)

We begin by expanding according to the definition of conditional probability

=
p(za, z

−a, y|α, β)

p(z−a, y|α, β)
(47)

And then note that the denominator does not depend on za,

∝ p(za, z−a, y|α, β) (48)

Because za and z−a together make up all of z,

= p(z, y|α, β) (49)

Compute this value by integrating out the multinomial parameters θ and ϕ from the joint probability,

=

∫ ∫
p(z, y, θ, ϕ|α, β) dθ dϕ (50)
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Expand the joint probability by its definition (39),

=

∫ ∫
p(ϕ|β) p(θ|α) p(z|θ) p(y|z, ϕ) dθ dϕ (51)

Separate out the integrals based on bound variables, noting that others are constant,

=

∫
p(z|θ) p(θ|α) dθ ×

∫
p(y|z, ϕ) p(ϕ|β) dϕ (52)

Expand out the products implicit in the vector notation, following (40),

=

∫
p(θ|α)

M∏
m=1

p(zm|θ) dθ ×
∫ K∏

k=1

p(ϕk|β)
M∏
m=1

Nm∏
n=1

p(ym,n|ϕzm) dϕ (53)

Then distribute the integral over the word probabilities per topic k,

=

∫
p(θ|α)

M∏
m=1

p(zm|θ) dθ ×
K∏
k=1

∫
p(ϕk|β)

M∏
m=1

Nm∏
n=1

p(ym,n|ϕzm) dϕk (54)

And then expand each probability formula based on its density,

=

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
k

M∏
m=1

θzm dθ ×
K∏
k=1

∫
Γ(
∑J

j=1 βj)∏J
j=1 Γ(βj)

J∏
j=1

ϕ
βj−1
k,j

M∏
m=1

Nm∏
n=1

ϕzm,ym,n dϕk (55)

Because xaxb = xa+b, we may replace the product over documents m in the first term by total topic
counts dk, and similarly for the second term’s product over documents m and words n with word-topic
counts ek,j,

=

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
k

K∏
k=1

θdk
k dθ ×

K∏
k=1

∫
Γ(
∑J

j=1 βj)∏J
j=1 Γ(βj)

J∏
j=1

ϕ
βj−1
k,j

J∏
j=1

ϕ
ek,j

k,j dϕk (56)

Based on the same algebra, we push the counts together from the separate products over topics k in
the first term, and words j in the second term,

=

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk+dk−1
k dθ ×

K∏
k=1

∫
Γ(
∑J

j=1 βj)∏J
j=1 Γ(βj)

J∏
j=1

ϕ
βj+ek,j−1

k,j dϕk (57)

We then multiply by 1 expressed in a convenient form, and distribute through the integrals,

=
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(αk + dk)

Γ(
∑K

k=1 αk + dk)

∫
Γ(
∑K

k=1 αk + dk)∏K
k=1 Γ(αk + dk)

K∏
k=1

θαk+dk−1
k dθ (58)

×
K∏
k=1

Γ(
∑J

j=1 βj)∏J
j=1 Γ(βj)

∏J
j=1 Γ(βj + ek,j)

Γ(
∑J

j=1 βj + ek,j)

∫
Γ(
∑J

j=1 βj + ek,j)∏J
j=1 Γ(βj + ek,j)

J∏
j=1

ϕ
βj+ek,j−1

k,j dϕk

Because the remaining integrals are of Dirichlet densities over their complete support, they evaluate to
1, and drop out of products,

=
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(αk + dk)

Γ(
∑K

k=1 αk + dk)
×

K∏
k=1

Γ(
∑J

j=1 βj)∏J
j=1 Γ(βj)

∏J
j=1 Γ(βj + ek,j)

Γ(
∑J

j=1 βj + ek,j)
(59)
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We then eliminate constant terms that don’t depend on the current topic choice za,

∝
∏K

k=1 Γ(αk + dk)

Γ(
∑K

k=1 αk + dk)
×

K∏
k=1

∏J
j=1 Γ(βj + ek,j)

Γ(
∑J

j=1 βj + ek,j)
(60)

Pull apart the products based on whether the topic k is the assignment za to the current document,
noting that counts d and d−a are the same for documents not equal to a, and noting that e and e−a

have the same count for topics k other than za,

=

∏
k 6=za

Γ(αk + d−ak )

Γ(1 +
∑K

k=1 αk + d−ak )
× Γ(αza + d−aza

+ 1) (61)

×
∏
k 6=za

∏J
j=1 Γ(βj + e−ak,j)

Γ(
∑J

j=1 βj + e−ak,j)
×
∏J

j=1 Γ(βj + e−aza,j
+ fa,j)

Γ(
∑J

j=1 βj + e−aza,j
+ fa,j)

Then expand out the increment terms, based on the expansion Γ(x+ q) = Γ(x)×
∏q

i=1(x+ i); empty
products evaluate to 1, so that if q = 0, we retain Γ(x+ 0) = Γ(x),

=

∏
k 6=za

Γ(αk + d−ak )

Γ(1 +
∑K

k=1 αk + d−ak )
× Γ(αza + d−aza

)× (αza + d−aza
) (62)

×
∏
k 6=za

∏J
j=1 Γ(βj + e−ak,j)

Γ(
∑J

j=1 βj + e−ak,j)
×

∏J
j=1

(
Γ(βj + e−aza,j

)×
∏fa,j

i=1(βj + e−aza,j
+ i)

)
Γ(
∑J

j=1 βj + e−aza,j
) ×

∏fa,∗
i=1 (

∑J
j=1 βj + e−aza,j

+ i)

We then refold the residual Γ-function terms back into their general products,

=

∏K
k=1 Γ(αk + d−ak )

Γ(1 +
∑K

k=1 αk + d−ak )
× (αza + d−aza

) (63)

×
K∏
k=1

∏J
j=1 Γ(βj + e−ak,j)

Γ(
∑J

j=1 βj + e−ak,j)
×
∏J

j=1

∏fa,j

i=1(βj + e−aza,j
+ i)∏fa,∗

i=1 (
∑J

j=1 βj + e−aza,j
+ i)

And finally remove all the terms that don’t depend on za, leaving us with

∝ (αza + d−aza
)×

∏J
j=1

∏fa,j

i=1(βj + e−aza,j
+ i)∏Na

n=1(
∑J

j=1 βj + e−aza,j
+ n)

(64)

The first term is just the prior αza for topic za plus the number of documents assigned to topic za
not counting document a. The right-hand fraction has a natural interpretation in terms of Bayesian
updating. The numerator of the fraction may be read procedurally as assigning each word sequentially
to a topic, and always counting how many have been applied so far. That is, the third instance of a
word is going to be more likely than the first. The denominator, where we’ve replaced fa,∗, the count of
the number of words in document a, with the equivalent constant Na, simply provides the normalization
for each term, computed incrementally. Note that the model is truly multinomial in that the order of
words in a document doesn’t matter.
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