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Abstract

Causal inferences about sparsely observed objects are often
supported by causal schemata, or systems of abstract causal
knowledge. We present a hierarchical Bayesian framework
that learns simple causal schemata given only raw data as in-
put. Given a set of objects and observations of causal events in-
volving some of these objects, our framework simultaneously
discovers the causal type of each object, the causal powers
of these types, the characteristic features of these types, and
the characteristic interactions between these types. Previous
behavioral studies confirm that humans are able to discover
causal schemata, and we show that our framework accounts
for data collected by Lien and Cheng and Shanks and Darby.
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Bayesian models; categorization

Introduction

People often make accurate causal inferences based on very
sparse data. Imagine, for instance, that you are travelling in
the tropics, and on your very first morning you take an anti-
malarial pill and wash it down with guava juice. Soon af-
terward you develop a headache and wonder what might have
caused it. Suppose that you have very little direct information
about the two potential causes—you have never before tasted
guava juice or taken anti-malarial pills. Even so, you will
probably correctly attribute your headache to the pill rather
than the juice.

Accurate inferences from sparse data often rely on the top-
down influence of abstract knowledge. Even if you have
never come across anti-malarial pills or guava juice, you
probably know about the causal powers of pills in general
and juices in general—in particular, you know that pills tend
to cause headaches but that juices do not. Abstract causal be-
liefs of this sort are sometimes called causal schemata [6] or
intuitive theories.

Two fundamental questions can be asked about causal
schemata: how do these schemata support top-down in-
ferences given relatively sparse data, and how are these
schemata acquired? This paper develops a hierarchical
Bayesian framework that provides a unified approach to both
questions. Griffiths [4] has previously shown that hierarchi-
cal Bayesian models help to explain how top-down inferences
can be guided by causal schemata. Here we focus on the ac-
quisition question, and show that hierarchical Bayesian mod-
els help to explain how causal schemata can be acquired by
bottom-up learning.

Top-down and bottom-up approaches to causal learning are
sometimes seen as competitors. The top-down approach [6,
14] emphasizes inferences that are based on knowledge about

causal powers, and the bottom-up approach emphasizes sta-
tistical inferences that are based on patterns of covariation.
As Cheng [2] and others have argued, these perspectives are
best regarded as complementary: top-down knowledge about
causal power plays a role in many inferences, and bottom-up
statistical learning can help to explain how this knowledge
is acquired. The apparent conflict between these perspec-
tives may have developed in part because there is no well-
established framework that accommodates them both. Kelley,
for example, argued for both top-down [6] and bottom-up ap-
proaches [7] to causal reasoning, but did not develop a single
theoretical framework that properly unified his two proposals.
We will argue that a hierarchical Bayesian approach provides
this missing theoretical framework, and will develop a model
that shows how schemata support causal reasoning and how
schemata can be acquired by statistical learning.

Part of our task is to formalize the notion of a causal
schema. Suppose that we are interested in a set of objects—
for example, a set of pills. This paper works with schemata
that assign each object to a causal type, and specify the causal
powers and features of each type. Our pills, for instance, may
represent four causal types—pills of type A cause headaches,
pills of type B relieve headaches, and pills of types C and D
neither cause nor relieve headaches. A causal schema may
also specify how causal types interact. For instance, a C-pill
and a D-pill may cause a headache when taken together, even
though neither pill causes a headache on its own.

The first section of this paper considers the well-studied
problem (Fig. 1a) of learning a causal model that captures
the relationship between a single object (e.g. a pill) and an
effect (e.g. a headache). Causal models for several objects
can be learned independently, but this approach ignores any
information that might be shared across objects: for instance,
two blood-pressure medications are likely to have similar side
effects, enabling us to predict that a new blood-pressure med-
ication will cause headaches if several others already have.
The second section introduces causal schemata that group
the objects into types, and specify the likely causal powers
of the objects belonging to each type (Fig. 1b). We show
how these schemata can be acquired in settings where learn-
ers must learn a schema at the same time as they are learning
causal models for many different objects.

By tracking the characteristic features of causal types,
learners can often make strong predictions about a novel ob-
ject before it is observed to participate in any causal interac-
tions. For instance, predictions about a pill with a given color,
size, shape and imprint can be based on the effects produced
by previous pills which shared these features. The third sec-
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Figure 1: (a) A generative framework for discovering the
causal powers of a single object. (b) A generative framework
for learning a schema that guides inferences about multiple
objects. The schema organizes the objects into causal types,
and specifies the causal powers of each type. (c) A generative
framework for learning a schema that includes information
about the characteristic features of each type. Concrete ex-
amples of each framework are shown in Figs. 2b, 2c, and 3.

tion extends the notion of a causal schema by including infor-
mation about the characteristic features of each causal type
(Fig. 1c). Although we begin with cases where at most one
object is present at any time, the final section considers cases
where multiple objects may be present. We extend the notion
of a schema one more time by allowing interactions between
different types (for instance, pills of type C may interfere with
pills of type D), and we show how these characteristic inter-
actions can be learned.

Learning a single causal model

Suppose that we are interested in the relationship between a
single object o and an effect e, and that we have observed a
collection of event data V . Each observation in V represents
a trial where the object o was either present or absent and
the effect e either was or was not observed. For instance, if
object o is a pill and effect e is a headache, each trial might
indicate whether or not a patient took a pill on a given day,
and whether or not she subsequently experienced a headache.
To simplify our notation, o will refer both to the pill and to
the event of the patient swallowing the pill.

We assume that the outcome of each trial is generated from
a causal model M that captures the causal relationship be-
tween o and e (Figs. 1a and 2b). Having observed the event
data V , our beliefs about the causal model can be summarized
by the posterior distribution

P (M |V ) ∝ P (V |M)P (M). (1)

We build on the approach of Griffiths and Tenenbaum [5] and
parameterize the causal model M using four causal variables
(Fig. 2a and 2b). Let a indicate whether there is an arrow
joining o and e, and let g indicate the polarity of this causal
relationship (g = 1 if o is a generative cause and g = 0 if o
is a preventive cause). Suppose that s is the strength of the
relationship between o and e.1 To capture the possibility that

1To simplify the later development of our model, we assume that
g and s are defined even if a = 0 and there is no causal relationship
between o and e. When a = 0, g and s can be interpreted as the
polarity and strength that the causal relationship between o and e
might have had if this relationship actually existed.

e will be present even though o is absent, we assume that a
generative background cause of strength b is always present
We specify the distribution P (e|o) by assuming that genera-
tive and preventive causes combine according to a network of
noisy-OR and noisy-AND-NOT gates.

Now that we have parameterized model M in terms of the
triple (a, g, s) and the background strength b, we can rewrite
Equation 1 as

p(a, g, s, b|V ) ∝ P (V |a, g, s, b)P (a)P (g)p(s)p(b). (2)

To complete our framework we must place prior distributions
on the four causal variables. We use uniform priors on the two
binary variables (a and g), and assume that the two continu-
ous variables (s and b) represent the logistic transformations
of Gaussian variables drawn from conjugate priors.2 We set
the hyperparameters of these conjugate priors to encourage b
to be small and s to be large.

Learning multiple causal models

Suppose now that we are interested in a set of objects {oi}
and a single effect e. We begin with the case where at most
one object is present at any time: for example, suppose that
our patient takes many different pills, but at most one per day.
Instead of learning a single causal model our goal is to learn
a set {Mi} of causal models, one for each pill (Figs. 1b and
2c). There is now a triple (ai, gi, si) describing the causal
model for each pill oi, and we collect these variables into
three vectors, a, g and s. Let Ψ be the tuple (a, g, s, b) which
includes all the parameters of the causal models. As for the
single object case, we assume that a generative background
cause of strength b is always present.

Instead of learning each causal model separately, we intro-
duce the notion of a schema. A schema specifies a grouping
of the objects into causal types, and indicates the causal pow-
ers of each of these types. The schema in Fig. 2c indicates
that there are two causal types: objects of type t1 tend to pre-
vent the effect, and objects of type t2 tend to cause the effect.
Formally, let zi indicate the type of oi, and let ā, ḡ, and s̄ be
schema-level analogues of a, g, and s: ā(t) is the probability
that any given object of type t will be causally related to the
effect, and ḡ(t) and s̄(t) are the expected polarity and causal
strength for objects of type t. Even though ā and ḡ are vec-
tors of probabilities, Fig. 2c simplifies by showing each ā(t)
and ḡ(t) as a binary variable.

To generate a causal model for each object, we assume
that each arrow variable ai is generated by tossing a coin
with weight ā(zi), that each polarity gi is generated by toss-
ing a coin with weight ḡ(zi), and that each strength si is
drawn from the logistic transform of a Gaussian distribu-
tion with mean s̄(zi) and variance σ̄(zi). Let Ψ̄ be the tuple

2For instance, logit(s) is drawn from a Gaussian with mean µ
and variance σ2. σ2 is drawn from an inverse gamma distribution
with shape parameter a and scale parameter b, and µ is drawn from
a Gaussian with mean m and variance vσ2. We set v = 10, a = 2
and b = 0.3 for all continuous variables. For strength variables, we
set m = 1, and for the background variable we set m = −1.
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Figure 2: (a) Causal graphical models which capture two possible relationships between an object o and an effect e. a indicates
whether there is a causal relationship between o and e, g indicates whether this relationship is generative or preventive, and
s indicates the strength of this relationship. A generative background cause of strength b is always present. A third possible
model (a = 1, g = 0) is not shown. (b) Learning a causal model M from event data V (see Fig. 1a). The event data specify the
number of times the effect was (e+) and was not (e−) observed when o was absent and when o was present. The model shown
has a = 1, g = 1, s = 0.9 and b = 0.2, and is an instance of the second model in (a). (c) Learning a schema and a set of causal
models (see Fig. 1b). z specifies a set of causal types, where objects belonging to the same type have similar causal powers,
and ā, ḡ, and s̄ specify the causal powers of each type. Note that the schema supports inferences about an object (o7) that is
very sparsely observed.

(ā, ḡ, s̄, σ̄). To complete the model, we specify prior distri-
butions on z and Ψ̄. We use a prior P (z) that assigns some
probability mass to all possible partitions but favors partitions
that use a small number of types.3

Having defined a generative model, we can use it to learn
the type assignments z, the schema parameters Ψ̄ and the pa-
rameters Ψ of the causal models that are most probable given
the event data V we have observed:

p(z, Ψ̄,Ψ|V ) ∝ P (V |Ψ)P (Ψ|Ψ̄,z)p(Ψ̄|z)P (z). (3)

Fig. 2c shows how a schema and a set of causal models (top
two rows) can be simultaneously learned from the event data
V in the bottom row. All of the variables in the figure have
been set to values with high posterior probability according to
Equation 3: for instance, the partition z shown is the z with
maximum posterior probability. Note that learning a schema
supports confident inferences about object o7, which is very
sparsely observed (see the underlined entries in Fig. 2c). On
its own, a single trial might not be very informative about the
causal powers of a novel object, but experience with previous
objects allows our model to predict that o7 will produce the
effect as regularly as the other members of type t2.

To compute the predictions of our model we implemented
a Markov chain Monte Carlo scheme that samples from the
posterior distribution in Equation 3. Our implementation,
however, is not intended as a process model, and our pri-
mary contribution is the computational theory summarized by
Equation 3.

3We use a Chinese Restaurant Process prior on P (z), and set
the concentration parameter to 1. The entries in ā and ḡ are inde-
pendently drawn from a Beta(0.1, 0.1) distribution, and the means
and variances in s̄ and σ̄ are drawn from the conjugate prior already
described.

Learning causal types given feature data

Imagine that you are allergic to nuts, and that one day you
discover a small white sphere in your breakfast cereal—a
macadamia nut, although you do not know it. To discover
the causal powers of this novel object you could collect some
causal data—you could eat it and wait to see what happens.
Probably, however, you will observe the features of the object
(its color, shape and texture) and decide to avoid it since it
is similar to other allergy-producing foods you have encoun-
tered.

Our formal framework naturally handles the idea that in-
stances of a given causal type tend to have similar features
(Figs. 1c and 3). Suppose that we have a matrix F which
captures many features of the pills in our study, including
their sizes, shapes, colors, and imprints. We assume that ob-
jects belonging to the same type have similar features. For
instance, the schema in Fig. 3 specifies that objects of type t1
tend to have feature f7 but not f8. Formally, let the schema
parameters Ψ̄ include a matrix F̄ , where f̄j(t) specifies the
expected value of feature fj within causal type t.4 Building
on previous models of categorization [1], we assume that the
value of fj for object oi is generated by tossing a coin with
bias f̄j(zi). Our goal is now to use the features F along with
the event data V to learn a schema and a set of causal models:

p(z, Ψ̄,Ψ|V, F ) ∝ P (V |Ψ)P (F |Ψ̄,z)p(Ψ|Ψ̄,z)p(Ψ̄|z)P (z).

There are many previous models for discovering categories
of objects with similar features [1], and feature-based catego-
rization is sometimes pitted against causal categorization [3].
Our framework works with the idea that real-world categories
are often distinguished both by their characteristic features

4The prior on F̄ assumes that all entries in this matrix are inde-
pendent draws from a Beta(0.5, 0.5) distribution.
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Figure 3: (a) Learning a schema and a set of causal models given event and feature data (see Fig. 1c). Objects belonging to the
same type have similar causal powers and similar features, and f̄i specifies the expected value of feature fi within each type.
The event and feature data shown are for the horizontal condition of the Lien and Cheng experiment. (b) A summary of the
feature matrix shown in (a). Feature f7 is shared by all and only the first eight objects, and f9 is shared only by the first four
objects. (c) Event data for two conditions. 10 trials were shown for each of the first 12 objects. In the horizontal condition, each
object with feature f7 produces the effect on 8 out of 10 trials. In the vertical condition, only objects with f1 regularly produce
the effect. (d) Predictions for the sorting task of Lien and Cheng [9]. The first two rows show the percentage of subjects who
grouped a novel object (o13, o14 or o15) with the f1-match (o1) rather than the f8-match (o10). Only subjects in the vertical
condition tend to sort according to f1. The model predictions represent the relative probability that each novel object belongs
to the same causal type as the f1-match.

and their characteristic causal interactions. More often than
not, one kind of information will support the categories in-
dicated by the other, but there will also be cases where the
causal data and the feature data conflict. In cases like this, our
model may discover the feature-based categories, the causal
categories, or some combination of both—the categories pre-
ferred will depend on the relative weights of the statistical
information present in the two kinds of data.

Behavioral data

Lien and Cheng [9] ran several experiments that explore how
perceptual features and causal observations can both inform
causal judgments. Our framework can handle all of their
tasks, but we focus here on a simplified version of their first
task. The effect of interest is whether a certain kind of plant
blooms, and the potential causes are 15 chemicals (objects o1

through o15). Fig. 3b shows that the features of these objects
(f1 through f14) support two systems of categorization. The
first is based on color: each object has a cool color (f7) or
a warm color (f8), and the warm-colored objects are either
yellow (f11), red (f12) or orange (f14). Similarly, each object
has an irregular shape (f1) or a regular shape (f2) and there
are three kinds of irregular shapes (f13, f3 and f4).

We show our model 10 trials for each of the first 12 ob-
jects, and Fig. 3c summarizes the results of these trials. In

the horizontal condition, each object with a cool color (f7)
causes blooming on 8 out of 10 occasions, and the remaining
objects lead to blooming less often. In the vertical condition,
objects with irregular shapes (f1) are the only ones that tend
to cause blooming. In both conditions, the model is shown
that blooming occurs on 2 out of 10 trials when no chemicals
are applied.

We test our model by requiring it to reason about three
objects (o13, o14 and o15) for which no trials were observed
(see the underlined entries in Fig. 3a). Object o13 has a novel
shape, o15 has a novel color, and o14 is a novel combination of
a known shape and known color. Each novel object was pre-
sented as part of a trio that also included o1 and o10, and we
computed whether the model preferred to group each novel
object with the shape match (o1) or the color match (o10).5

In the horizontal condition, the model prefers to sort each trio
according to color (f8), but in the vertical condition the model
sorts each trio according to shape (f1) (see Fig. 3d). Note
that the feature data and the causal data must be combined to
produce this result: a model that relied on the features alone
would predict no difference between the two conditions, and

5We implemented this sorting task by computing the posterior
distribution p(z|V, F ), and comparing the probability that the novel
object and its color match belong to the same causal type with the
probability that the novel object is grouped with the shape match.
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Figure 4: Learning about interactions between objects. The schema specifies the causal powers of each type and of each com-
bination of types (the combination t1+t2) is not shown. The collection of causal models includes a model for each combination
of objects. The event data are inspired by the experiment of Shanks and Darby [13]. The model groups the objects into two
types: objects belonging to type t1 cause the effect on their own but not when paired with each other, and objects belonging to
the type t2 cause the effect only when paired with each other.

a model that used only the causal data would be unable to
make useful predictions about the three novel objects. Since
we have modeled a simplified version of the Lien and Cheng
task, the quantitative predictions of our model are not directly
comparable to their results, but Fig. 3d shows that our model
captures the main qualitative patterns in their data.6

Discovering interactions between causal types

So far we have considered problems where at most one object
oi can be present at a time. Suppose now that multiple objects
can be present on any trial. For instance, consider the prob-
lem of discovering which drugs produce a certain allergy—
two drugs which are innocuous on their own may produce the
allergy when combined. Our goal is to discover a schema and
a set of causal models that allow us to predict whether any
given combination of drugs is likely to produce an allergic
reaction. Formally, we would like to learn a causal model M
for each possible combination of objects.

We assume that each combination of objects corresponds
to a conjunctive cause that may be generative or preventive,
and extend Ψ to include an arrow a, a polarity g and a strength
s for each combination of objects. We extend the schema in a
similar fashion, and include schema parameters ā, ḡ, s̄ and σ̄
for each combination of causal types. The causal model pa-
rameters for sets of objects are generated, as before, from the
schema parameters for the corresponding set of types. For
instance, Fig. 4 shows how the causal model for o13+o14 is
generated from the schema-level knowledge that pairs of ob-
jects drawn from type t2 tend, in combination, to generate the
effect with strength 0.9. As before, we assume that a genera-
tive background cause of strength b is always present.

There are several possible strategies for handling conjunc-
tive causes and our approach makes several simplifying as-

6Lien and Cheng report that a handful of subjects did not group
the novel objects with either the shape match or the color match.
These subjects were dropped before computing the percentages in
Fig. 3d.

sumptions. For instance, we assume that the causal power
of a conjunction of objects is independent of the causal pow-
ers that correspond to any subset of these objects. To accu-
rately capture human intuitions, it will be necessary to relax
our simplifying assumptions, and to combine our framework
with a sophisticated approach to conjunctive causality [11].
Here, however, we have aimed to provide the simplest possi-
ble example of how our framework can discover interactions
between causal types.

Behavioral data

Shanks and Darby [13] ran an experiment which suggests
that humans can acquire abstract knowledge about interac-
tions between causal types. These authors used a task where
the potential causes were foods, and the effect of interest was
an allergic reaction. The data observed by participants in their
second experiment are shown in Fig. 4.7 When supplied with
these data, our model discovers two causal types: foods of
type t1 (o1 through o8) produce the allergy on their own, but
foods of type t2 (o9 through o16) do not. The model also dis-
covers that two foods of type t2 will produce the allergy when
eaten together, but two foods of type t1 will not (Fig. 4).

Shanks and Darby were primarily interested in predictions
about cases which had never been observed in training—the
cases underlined in Fig. 4. Their participants can be divided
into two groups according to their scores when tested on the
training data. Learners in the high group (learners who scored
well on the test) tended to make the same predictions as our
model: for instance, they tended to predict that o7 and o8 pro-
duce the allergy when eaten in isolation, that o15 and o16 do
not, that the combination of o13 and o14 produces the allergy,
and that the combination of o5 and o6 does not. Learners in
the low group tended to make the opposite predictions: for
instance, they tended to predict that o7 and o8 do not pro-
duce the allergy when eaten in isolation. Since our compu-

7Different subjects saw different amounts of training data, but
we overlook this detail.



tational framework does not suffer from memory limitations
or lapses of attention, it is not surprising that it accounts only
for the predictions of learners who absorbed the information
provided during training.

Discussion

We described a hierarchical Bayesian framework (Fig. 1c) for
learning causal schemata. Our hierarchical framework sup-
ports several kinds of inferences. We focused on bottom-up
learning and showed that the model helps to explain how a
causal schema and a set of specific causal models can be si-
multaneously learned given event data and feature data. If
the causal schema is known in advance, then the framework
serves as a computational theory of top-down causal learning,
and explains how inferences about a set of causal models can
simultaneously draw on low-level event data and top-down
knowledge.

Our work exploits the fact that probabilistic approaches
are modular and can be composed to build integrated mod-
els of inductive reasoning. The model in Fig. 1c can be cre-
ated by combining three models: probabilistic causal mod-
els [12] specify how the event data are generated given a set
of causal models, the infinite relational model [8] specifies
how the causal models are generated, and Anderson’s ratio-
nal approach to categorization [1] specifies how the features
are generated. Since all three models work with probabili-
ties it is straightforward to combine them to create a single
integrated framework for causal reasoning.

We showed that our framework helps to explain some as-
pects of the data collected by Lien and Cheng [9] and Shanks
and Darby [13], and it also accounts for several other results
in the literature. Waldmann and Hagmayer [16] showed that a
known set of categories can influence future causal learning,
and our approach predicts a similar result if we fix the causal
types z then use our framework to discover a set of causal
models given event data. Our framework can also model ex-
periments carried out using the blicket detector [3] or causal
blocks world [15] paradigms. Many aspects of these exper-
iments have been previously modeled, but our framework
captures phenomena that are not addressed by most existing
models. For instance, our model suggests why two identi-
cal looking blocks might both be categorized as blickets even
though a handful of observations suggest that they have dif-
ferent effects on a blicket detector [3].

Several extensions of our approach may be worth explor-
ing. We restricted ourselves to problems where the distinc-
tion between a set of potential causes and a set of effects 8

is known in advance, but in some cases this distinction might
need to be learned [10]. A second limitation is that we fo-
cused on cases where feature data and contingency data rep-
resent the only input to our model. Human learners are some-
times directly supplied with abstract causal knowledge—for
example, a science student might be told that “pineapple juice

8This paper has focused on problems where there is a single ef-
fect, but our approach also handles problems with multiple effects.

is an acid, and acids turn litmus paper red.” Statements like
these correspond to fragments of a causal schema, and future
experiments should explore how schemata are learned when
parts of these schemata are directly supplied.

More often than not, competing accounts of a given phe-
nomenon both capture some element of the truth. Where
possible, cases like these should be handled by building uni-
fied accounts that subsume the two competing views. We
have developed a hierarchical Bayesian model that attempts
to unify top-down and bottom-up approaches to causal rea-
soning. Similar conflicts between top-down and bottom-up
approaches are found in other areas of cognitive science, and
the hierarchical Bayesian approach may be useful for resolv-
ing these conflicts wherever they occur.
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