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Abstract

Interpolated Kneser-Ney is one of the best smoothing methods for n-gram language models. Previ-
ous explanations for its superiority have been based on intuitive and empirical justifications of specific
properties of the method. We propose a novel interpretationof interpolated Kneser-Ney as approxi-
mate inference in a hierarchical Bayesian model consistingof Pitman-Yor processes. As opposed to
past explanations, our interpretation can recover exactlythe formulation of interpolated Kneser-Ney, and
performs better than interpolated Kneser-Ney when a betterinference procedure is used.

1 Introduction

Probabilistic language models are used extensively in a variety of linguistic applications. Standard exam-
ples include speech recognition, handwriting recognition, machine translation and spelling correction. The
basic task is to model the probability distribution over sentences. Most researchers take the approach of
modelling the conditional distribution of words given their histories, and piecing these together to form the
joint distribution over the whole sentence,

P (word1, word2, . . . , wordt) =

t
∏

i=1

P (wordi |word1, . . . , wordi−1) . (1)

The class ofn-gram models form the bulk of such models. The basic assumption here is that the conditional
probability of a word given its history can be simplified to its probability given a reduced context consisting
of only the pastn− 1 words,

P (wordi |word1, . . . , wordi−1) = P (wordi |wordi−N+1, . . . , wordi−1) (2)

Even for modest values ofn the number of parameters involved inn-gram models is still tremendous.
For example typical applications usen = 3 and has aO(50000) word vocabulary, leading toO(500003)
parameters. As a result direct maximum-likelihood parameter fitting will severely overfit to our training
data, and smoothing techniques are indispensible for the proper training ofn-gram models. A large number
of smoothing techniques have been proposed in the literature; see Chen and Goodman (1998); Goodman
(2001); Rosenfeld (2000) for overviews, while more recent proposals include Charniak (2001); Bilmes and
Kirchhoff (2003); Bengio et al. (2003); Xu and Jelinek (2004) and Blitzer et al. (2005).

1



In an extensive and systematic survey of smoothing techniques forn-grams, Chen and Goodman (1998)
showed that interpolated Kneser-Ney and its variants were the most successful smoothing techniques at
the time. Although more recent techniques have exhibited better performance, interpolated Kneser-Ney is
still an important technique now as the better performanceshave only been achieved by combining more
elaborate models with it. Interpolated Kneser-Ney involves three concepts: it interpolates linearly between
higher and lower ordern-grams, it alters positive word counts by subtracting a constant amount (absolute
discounting), and it uses an unusual estimate of lower ordern-grams.

A number of explanations for why interpolated Kneser-Ney works so well has been given in the liter-
ature. Kneser and Ney (1995), Chen and Goodman (1998) and Goodman (2001) showed that the unusual
estimate of lower ordern-grams follows from interpolation, absolute discounting,and a constraint on word
marginal distributions. Goodman (2001) further showed that n-gram models which does not preserve these
word marginal distributions cannot be optimal. Empirical results in Chen and Goodman (1998) demon-
strated that interpolation works better than other ways of combining higher and lower ordern-grams and
that absolute discounting is a good approximation to the optimal discount. Finally, a different approach by
Goodman (2004) showed that back-off Kneser-Ney is similar to a maximum-entropy model with exponential
priors.

We will give a new interpretation of interpolated Kneser-Ney as an approximate inference method in a
Bayesian model. The model we propose is a straightforward hierarchical Bayesian model (Gelman et al.
1995), where each hidden variable represents the distribution over next words given a particular context.
These variables are related hierarchically such that the prior mean of a hidden variable corresponding to
a context is the word distribution given the context consisting of all but the earliest word (we will make
clear what we mean by this in the later parts of the paper). Thehidden variables are distributed according
to a well-studied nonparametric generalization of the Dirichlet distribution variously known as the two-
parameter Poisson-Dirichlet process or the Pitman-Yor process (Pitman and Yor 1997; Ishwaran and James
2001; Pitman 2002) (in this paper we shall refer to this as thePitman-Yor process for succinctness).

As we shall show in this paper, this hierarchical structure corresponds exactly to the technique of inter-
polating between higher and lower ordern-grams. Our interpretation has the advantage over past interpre-
tations in that we can recover the exact form of interpolatedKneser-Ney. In addition, in comparison with
the maximum-entropy view, where interpolated Kneser-Ney in fact does better than the model in which it is
supposed to approximate, we show in experiments that our model works better than interpolated Kneser-Ney
if we use more accurate inference procedures. As our model isfully Bayesian, we also reap other advantages
of Bayesian methods, e.g. we can easily use the model as part of a more elaborate model.

Bayesian techniques are not new in natural language processing and language modelling given the prob-
abilistic nature of most approaches. Maximum-entropy models have found many uses relating features of
inputs to distributions over outputs (Rosenfeld 1994; Berger et al. 1996; McCallum et al. 2000; Lafferty et al.
2001). Use of priors is widespread and a number of studies have been conducted comparing different types
of priors (Brand 1999; Chen and Rosenfeld 2000; Goodman 2004). Even hierarchical Bayesian models
have been applied to language modelling—MacKay and Peto (1994) have proposed one based on Dirichlet
distributions. Our model is a natural generalization of this model using Pitman-Yor processes rather than
Dirichlet distributions.

Bayesian models have not been more widely adopted in the language modelling community because
the models proposed so far have performed poorly in comparison to other smoothing techniques. The major
contributions of our work are in proposing a Bayesian model with excellent performance, and in establishing
the direct correspondence between interpolated Kneser-Ney, a well-established smoothing technique, and
the Bayesian approach. We expect this connection to be useful both in terms of giving a principled statistical
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footing to smoothing techniques and in suggesting even better performing Bayesian models.
Goldwater et al. (2006) observed that Pitman-Yor processesgenerate power-law distributions and argued

that since such distributions occur frequently in natural languages, they are more suited for natural languages
processing. Is it thus perhaps unsurprising that our model has performance superior to the hierarchical
Dirichlet language model of MacKay and Peto (1994). In fact,Goldwater et al. (2006) have independently
noted this relationship between a hierarchical Pitman-Yorprocess and interpolated Kneser-Ney, but have not
corroborated this with further investigations and experimental results.

In the following section we will give a detailed descriptionof interpolated Kneser-Ney and modified
Kneser-Ney. We review the Pitman-Yor process as it pertainsto language modelling in Section 3. In Sec-
tion 4 we propose the hierarchical Pitman-Yor language model and relate it to interpolated Kneser-Ney.
Experimental results establishing the performance of the model in terms of cross-entropy is reported in Sec-
tion 5, and we conclude with some discussion in Section 6. Finally we delegate details of some additional
properties of the model and inference using Markov chain Monte Carlo sampling to the appendices.

2 Interpolated Kneser-Ney and its Variants

In this section we introduce notations and describe in detail the n-gram language modelling task, interpo-
lated Kneser-Ney and a modified version which performs better. Our sources of information are Chen and
Goodman (1998) and Goodman (2001) which are excellent reviews of state-of-the-art smoothing techniques
and language models.

We assume that we have a closed set of words in our vocabolaryW , which is of sizeV . For a word
w ∈ W and a context consisting of a sequence ofn − 1 words u ∈ W n−1 let cuw be the number of
occurrences ofw following u in our training corpus. The naive maximum likelihood probability for a word
w following u is

P ML
u

(w) =
cuw

cu·
(3)

wherecu· =
∑

w′ cuw′ . Instead, interpolated Kneser-Ney estimates the probability of word w following
contextu by discounting the true countcuw by a fixed amountd|u| depending on the length|uw| if cuw > 0
(otherwise the count remains 0). Further, it interpolates the estimated probability of wordw with lower
orderm-gram probabilities. This gives,

P IKN
u

(w) =
max(0, cuw − d|u|)

cu·
+

d|u|tu·

cu·
P IKN

π(u)(w) (4)

wheretu· = #{w′ | c
uw′ > 0} is the number of distinct wordsw′ following contextu in the training

corpus,π(u) is the context consisting of all words inu except the first andP IKN
π(u)(w) are the lower order

m-gram probabilities. The value oftu· is chosen simply to make the probability estimates sum to 1. Finally,
interpolated Kneser-Ney uses modified sets of counts for thelower orderm-gram probabilities. In particular,
for a contextu′ of lengthm < n− 1 and wordsw′ andw, let

tw′
u
′w =

{

1 if cw′
u
′w > 0;

0 if cw′
u
′w = 0;

cu′w = t·u′w =
∑

w′

tw′
u
′w (5)

wherew′
u
′ is the context formed by concatenatingw′ andu

′. The lower orderm-gram probabilities are
estimated as in (4) using the modified counts of (5). A different value of discountdm−1 is used for each
lengthm and these can either be estimated using formulas or by using cross-validation.
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Modified Kneser-Ney is an improvement upon interpolated Kneser-Ney where the amount of discount
is allowed more variability. In the empirical studies in Chen and Goodman (1998) and Church and Gale
(1991) it was found that the optimal amount of discount that should be used changes slowly as a function of
the countscuw. This was used as one of the reasons for absolute discountingin Chen and Goodman (1998).
In the same study it was also noticed that the optimal discounts for low values ofcuw differ substantially
from those with higher values. Modified Kneser-Ney uses different values of discounts for different counts,
one each forcuw = 1, 2, . . . , c(max) − 1 and another forcuw ≥ c(max). The same formulas for (4) and
(5) are used. Modified Kneser-Ney reduces to interpolated Kneser-Ney whenc(max) = 1, while Chen and
Goodman (1998) usesc(max) = 3 as a good compromise between diminishing improvements and increasing
implementational complexity.

The unusual counts in interpolated Kneser-Ney can be derived by preserving marginal word distribu-
tions. letP emp(u) be the empirical probability of word sequenceu among sequences of lengthn − 1. Let
w′ andw be words andu′ be a word sequence of lengthm = n − 2. Assuming the form of (4) and the
following marginal constraints,

∑

w′

P emp(w′
u
′)P IKN

w′
u
′(w) = P emp(u′w) (6)

we can derive that

P IKN
u
′ (w) =

cu′w

cu′·
(7)

wherec
u
′w is as given in (5). Finally, rather than using (7) we should discount these new counts and

interpolate with even lower orderm-gram probabilities, i.e. recursively apply (4) and (5).
Satisfying the marginal constraints (6) is reasonable since then-gram probabilities should be consistent

with the statistics of the word counts. In fact Goodman (2001) showed that if these constraints are not
satisfied then then-gram probability estimates cannot be optimal (the converse is not true; satisfying these
constraints does not imply optimality). Taking the marginal constraints view further, Goodman (2004)
showed that a back-off version of Kneser-Ney can be seen as anapproximation to a maximum-entropy model
with approximately satisfied marginal constraints and an exponential prior on the parameters of the model.
However this view of interpolated Kneser-Ney in terms of marginal constraints is limited in scope for a few
reasons. Firstly, the maximum-entropy model of which back-off Kneser-Ney is supposed to approximate
in fact performs worse than back-off Kneser-Ney which is in turn worse than interpolated Kneser-Ney.
Secondly, modified Kneser-Ney, which performs better than interpolated Kneser-Ney does not satisfy these
marginal constraints.

3 Pitman-Yor Processes

We go through the properties of the Pitman-Yor process relevant to language modelling in this section. For
more in depth discussion we refer to Pitman and Yor (1997); Ishwaran and James (2001); Pitman (2002),
while Jordan (2005) gives a high-level tutorial of this branch of statistics and probability theory from a
machine learning perspective.

The Pitman-Yor processPY(d, θ,G0) is a distribution over distributions over a probability spaceX. It
has three parameters: a discount parameter0 ≤ d < 1, a strength parameterθ > −d and a base distribu-
tion G0 overX. The base distribution can be understood as a putative mean of draws fromPY(d, θ,G0),
while bothθ andd control the amount of variability around the base distribution G0. An explicit construc-
tion of drawsG1 ∼ PY(d, θ,G0) from a Pitman-Yor process is given by the stick-breaking construction
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(Sethuraman 1994; Ishwaran and James 2001). This construction shows thatG1 is a weighted sum of an
infinite sequence of point masses (with probability one). Let V1, V2, . . . andφ1, φ2, . . . be two sequence of
independent random variables with distributions,

Vk ∼ Beta(1− d, θ + kd) φk ∼ G0 for k = 1, 2, . . ., (8)

Then the following construction gives a draw fromPY(d, θ,G0):

G1 =

∞
∑

k=1

(1− V1) · · · (1− Vk−1)Vkδφk
(9)

whereδφ is a point mass located atφ. The stick-breaking construction is useful as it is mathematically
elegant and it gives us a direct visualization of Pitman-Yorprocesses.

A different perspective on the Pitman-Yor process is given by the Chinese restaurant process. This
describes the properties of the Pitman-Yor process in termsof distributions over draws fromG1, which is
itself a distribution overX. Though indirect, this perspective is more useful for our purpose of language
modelling, since draws fromG1 will correspond to words whose distributions we wish to model. Let
x1, x2, . . . be a sequence of identical and independent draws fromG1. The analogy is that of a sequence
of customers (xi’s) visiting a restaurant (corresponding toG1) with an unbounded number of tables. The
Chinese restaurant process assigns a distribution over theseating arrangement of the customers. The first
customer sits at the first available table, while each of the other customers sits at thekth occupied table with
probability proportional tock − d, whereck is the number of customers already sitting there, and she sits at
a new unoccupied table with probability proportional toθ + dt·, wheret· is the current number of occupied
tables. To generate draws forx1, x2, . . ., associate with each tablek an independent drawφk ∼ G0 from
the base distributionG0 and set the drawn value ofxi to beφk if customeri sat at tablek. Theφk draws
can be thought of as dishes, with customers sitting at each table eating the dish on the table. The resulting
conditional distribution of the next draw after a sequence of c· =

∑

k ck draws is thus:

xc·+1 |x1 . . . , xc· , seating arrangement∼
t·

∑

k=1

ck − d

θ + c·
δφk

+
θ + dt·
θ + c·

G0 (10)

The sequencex1, x2, . . . as generated by the Chinese restaurant process can be shown to be exchangeable.
That is, the distribution assigned by the Chinese restaurant process tox1, x2, . . . is invariant to permuting
the order of the sequence. De Finetti’s theorem on exchangeable sequences then shows that there must be
a distribution over distributionsG1 such thatx1, x2, . . . are conditionally independent and identical draws
from G1 (Pitman 2002). The Pitman-Yor process is one such distribution overG1.

Consider using the Pitman-Yor process as a prior for unigramword distributions. We use a uniform
distribution over our fixed vocabularyW of V words as the base distributionG0, that is, each word inW is
equiprobable underG0, while the draw from the Pitman-Yor processG1 is the desired unigram distribution
over words. We have a training corpus consisting ofcw occurrences of wordw ∈W , which corresponds to
knowing thatcw customers are eating dishw in the Chinese restaurant representation. Given this informa-
tion, we infer the seating arrangement of thec· =

∑

w cw customers in the restaurant. In particular, lettw
be the number of tables serving dishw in the seating arrangement (since the vocabularyW is finite there
is positive probability that multiple tables serve the samedish). The predictive probability of a new word
given the seating arrangement is given by (10), which evaluates to

P (xc·+1 = w | seating arrangement) =
cw − dtw

θ + c·
+

θ + dt·
θ + c·

G0(w) (11)
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by collecting terms in (10) corresponding to each dishw. The actual predictive probability is then (11)
averaged over the posterior probability over seating arrangements. We see that there are two opposing effects
on word countscw in the Pitman-Yor process. The second term adds to word counts, while the discount
term in the first fractiondtw subtracts from word counts. Whend = 0 the Pitman-Yor process reduces
to a Dirichlet distribution, and we only have the usual additive pseudo-counts of the Dirichlet distribution.
If d > 0, we have discounts, and the additive term can be understood as interpolation with the uniform
distribution. Further assuming thattw = 1, i.e. only one table serves dishw, we obtain absolute discounting.
In the appendix we show thattw ’s grow asO(c d

w ) instead.

4 Hierarchical Pitman-Yor Language Models

In the previous section we already see how we can obtain absolute discounting and interpolation using the
Pitman-Yor process. In this section we describe a language model based on a hierarchical extension of the
Pitman-Yor process, and show that we can recover interpolated Kneser-Ney as approximate inference in the
model. The hierarchical Pitman-Yor process is a generalization of the hierarchical Dirichlet process, and the
derivation described here is a straightforward generalization of those in Teh et al. (2006).

We are interested building a model of distributions over thecurrent word given various contexts. Given
a contextu consisting of a sequence of up ton − 1 words, letGu(w) be the distribution over the current
word w. Since we wish to inferGu(w) from our training corpus, the Bayesian nonparametric approach we
take here is to assume thatGu(w) is itself a random variable. We use a Pitman-Yor process as the prior for
Gu(w), in particular,

Gu(w) ∼ PY(d|u|, θ|u|, Gπ(u)(w)) (12)

whereπ(u) is the suffix ofu consisting of all but the first word. The strength and discount parameters
depend on the length of the context, just as in interpolated Kneser-Ney where the same discount parameter
is used for each length of context. The base distribution isGπ(u)(w), the distribution over the current
word given all but the earliest word in the context. That is, we believe that without observing any data the
earliest word is the least important in determining the distribution over the current word. Since we do not
know Gπ(u)(w) either, We recursively place a prior overGπ(u)(w) using (12), but now with parameters
θ|π(u)|, d|π(u)| and base distributionGπ(π(u))(w) and so on. Finally the prior forG∅(w), the distribution
over current word given the empty context∅ is given a prior of

G∅(w) ∼ PY(d0, θ0, G0) (13)

whereG0 is the global base distribution, which is assumed to be uniform over the vocabularyW of V words.
The structure of the prior is that of a suffix tree of depthn, where each node corresponds to a context

consisting of up ton − 1 words, and each child corresponds to adding a different wordto the beginning of
the context. As we shall see, this choice of the prior structure expresses our belief that words appearing later
in a context have more influence over the distribution over the current word.

We can apply the Chinese restaurant representation to the hierarchical Pitman-Yor language model to
draw words from the prior. The basic observation is that to draw words fromGu(w) using the Chinese
restaurant representation the only operation we need of thebase distributionGπ(u)(w) is to draw words
from it. SinceGπ(u)(w) is itself distributed according to a Pitman-Yor process, wecan use another Chinese
restaurant to draw words from that. This is recursively applied until we need a draw from the global base
distributionG0, which is easy since it assigns equal probability to each word in the vocabulary. In summary
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we have a restaurant corresponding to eachGu(w), which has an unbounded number tables and has a
sequence of customers corresponding to words drawn fromGu(w). Each table is served a dish (corresponds
to a word drawn from the base distributionGπ(u)(w)), while each customer eats the dish served at the table
she sat at (the word drawn for her is the same as the word drawn for the table). The dish served at the table
is in turn generated by sending a customer to the parent restaurant in a recursive fashion. Notice that there
are two types of customers in each restaurant, the “independent” ones arriving by themselves, and those
sent by a child restaurant. Further, every table at every restaurant is associated with a customer in the parent
restaurant, and every dish served in the restaurants can be traced to a draw fromG0 in this way.

In the rest of the paper we index restaurants (contexts) byu, dishes (words in our vocabulary) byw, and
tables byk. Let cuwk be the number of customers in restaurantu sitting at tablek eating dishw (cuwk = 0 if
tablek does not serve dishw), and lettuw be the number of tables in restaurantu serving dishw. We denote
marginal counts by dots, for examplecu·k is the number of customers sitting around tablek in restaurantu,
cuw· is the number eating dishw in restaurantu (number of occurrences of wordw in contextu), andtu· is
the number of tables in restaurantu.

In language modelling, the training data consists knowing the number of occurrences of each wordw
after each contextu of lengthn−1 (we pad the beginning of each sentence withbegin-sentence symbols).
This corresponds to knowing the numbercuw· of customers eating dishw in restaurantu, for eachu with
lengthn− 1. These customers are the only “independent” ones in the restaurants, the others are all sent by
child restaurants. As a result only the values ofcuw· with |u| = n − 1 are fixed by the training data, other
values vary depending on the seating arrangement in each restaurant, and we have the following relationships
among thecuw·’s andtuw:

{

tuw = 0 if cuw· = 0;

1 ≤ tuw ≤ cuw· if cuw· > 0;
cuw· =

∑

u
′:π(u′)=u

tu′w (14)

Algorithm 1 gives details of how the Chinese restaurant representation can be used to generate words
given contexts in terms of a function which draws a new word bycalling itself recursively. Notice the self-
reinforcing property of the hierarchical Pitman-Yor language model: the more a wordw has been drawn in
contextu, the more likely will we draww again in contextu. In fact wordw will be reinforced for other
contexts that share a common suffix withu, with the probability of drawingw increasing as the length of
the common suffix increases. This is becausew will be more likely under the context of the common suffix
as well.

The Chinese restaurant representation can also be used for inference in the hierarchical Pitman-Yor
language model. Appendix A.4 gives the joint distribution over seating arrangements in the restaurants,

Table 1: Routine to draw a new word given contextu using the Chinese restaurant representation.

Function DrawWord(u):
• If j = 0, return wordw ∈W with probabilityG0(w) = 1/V .
• Else with probabilities proportional to:

max(0, cuwk − d|u|): sit customer at tablek (incrementcuwk);
return wordw.

θ|u| + d|u|tu·: let w ← DrawWord(π(u));
sit customer at an unoccupied tableknew serving dishw (incrementtuw, setcuwknew = 1);
returnw.
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while Appendix B gives an inference routine based upon Gibbssampling which returns samples from the
posterior distribution over seating arrangements. Appendix C gives an auxiliary sampling routine for the
strength and discount parameters. Given a sample from the posterior seating arrangement and parameters,
the predictive probability of the next draw fromGu(w) is given by recursively applying (11). For the global
base distribution the predictive probability is simply

P HPY
0 (w | seating arrangement) = G0(w) (15)

while for each contextu the predictive probability of the next word after contextu given the seating ar-
rangement is

P HPY
u

(w | seating arrangement) =
cuw· − d|u|tuw

θ|u| + cu··
+

θ|u| + d|u|tu·

θ|u| + cu··
P HPY

π(u)(w | seating arrangement) (16)

To form ourn-gram probability estimates, we simply average (16) over the posterior of the seating arrange-
ments and parameters.

From (16) the correspondence to interpolated Kneser-Ney isnow straightforward. Suppose that the
strength parameters are allθ|u| = 0. Consider an approximate inference scheme for the hierarchical Pitman-
Yor language model where we simply set

tuw =

{

0 if cuw· = 0;

1 if cuw· ≥ 1;
cuw· =

∑

u
′:π(u′)=u

tu′w (17)

(17) says that there is at most one table in each restaurant serving each dish. The predictive probabilities
given by (16) now directly reduces to the predictive probabilities given by interpolated Kneser-Ney (4). As
a result we can interpret interpolated Kneser-Ney as this particular approximate inference scheme in the
hierarchical Pitman-Yor language model.

Appendix A describes some additional properties of the hierarchical Pitman-Yor language model.

5 Experimental Results

We performed experiments on the hierarchical Pitman-Yor language model under two circumstances: tri-
grams on a 16 million word corpus derived from APNews1. and bigrams on a 1 million word corpus derived
from the Penn TreeBank portion of the WSJ dataset2 On the trigram APNews dataset, we compared our
model to interpolated and modified Kneser-Ney on cross-entropies and studied the growth of discounts as
functions of trigram counts. On the simpler bigram WSJ dataset, we studied the effect on cross-entropies of
varying the strength and discount parameters and related our results to the hierarchical Dirichlet language
model. We also showed that our proposed sampler converges very quickly.

We compared the hierarchical Pitman-Yor language model against interpolated Kneser-Ney and mod-
ified Kneser-Ney withc(max) = 2 and3 on the trigram APNews dataset. We varied the training set size
between approximately 2 million and 14 million words by six equal increments. For all three versions of
interpolated Kneser-Ney, we first determined the discount parameters by conjugate gradient descent in the

1This is the same dataset as in Bengio et al. (2003). The training, validation and test sets consist of about 14 million, 1 million
and 1 million words respectively, while the vocabulary sizeis 17964.

2This is the same dataset as in Xu and Jelinek (2004) and Blitzer et al. (2005). We split the data into training, validation and test
sets by randomly assigning bigrams to each with probabilities .6, .2, .2 respectively. The vocabulary size is 10000.
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Figure 1: Left: Cross-entropy on test set (lower better). The training set size is varied on thex-axis while the
y-axis shows the cross-entropy (in natural logarithm). Eachline corresponds to a language model. Right:
Average discount as a function of trigram counts. For the hierarchical Pitman-Yor language model the
reported discount for a countc is d2 times the number of tables averaged over posterior samples of seating
arrangement and over all trigrams that occurredc times in the full training set. The last entry is averaged
over all trigrams that occurred at least 50 times.

cross-entropy on the validation set (Chen and Goodman 1998). At the optimal values, we folded the valida-
tion set into the training set to obtain the final trigram probability estimates. For the hierarchical Pitman-Yor
language model we inferred the posterior distribution overseating arrangement and the strength and dis-
count parameters given both the training and validation set3. We used a sampling routine which alternates
between updating the seating arrangement (Appendix B) and the parameters (Appendix C). Since the pos-
terior is very well-behaved, we only used 125 iterations forburn-in, and 175 iterations to collect posterior
samples. On the full 15 million word training set (includes data from the validation set) this took less than 2
hours on 1.4Ghz Pentium III’s.

The cross-entropy results are given in Figure 1 (left). As expected the hierarchical Pitman-Yor language
model performs better than interpolated Kneser-Ney, supporting our claim that interpolated Kneser-Ney is
just an approximation inference scheme in the hierarchicalPitman-Yor language model. Interestingly, the
hierarchical Pitman-Yor language model performs slightlyworse than the modified versions of Kneser-Ney.
In Figure 1 (right) we showed the average discounts returnedby the hierarchical Pitman-Yor language model
as a function of the observed count of trigrams in the training set. We also showed the discounts returned
by the interpolated and modified Kneser-Ney models. We see that the average discounts returned by the
hierarchical Pitman-Yor language model grows slowly as a function of the trigram counts. Appendix A.3
shows that the average discount grows as a power-law with indexd3 and this is reflected well by the figure.
The growth of the average discounts also matches relativelyclosely with that of the optimal discounts in
Figure 25 of Chen and Goodman (1998),

In the second set of experiments we investigated the effect of the strength and discount parameters on the

3This is one of the advantages of a Bayesian procedure, we neednot use a separate validation set to determine parameters ofthe
model. Instead we can include the validation set in the training set and infer both the hidden variables and parameters ina single
phase of training.
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Figure 2: Left: Cross entropy on test data asθ1 is varied and with other parameters held at the optimal
settings found by interpolated Kneser-Ney. Right: Varyingd1 instead.

performance of the hierarchical Pitman-Yor language modelin case of bigrams on a 1 million word dataset.
We first found optimal settings for the four parametersθ0, θ1, d0 andd1 by optimizing the performance of
interpolated Kneser-Ney on a validation set4. Then for each parameter we varied it while keeping the others
fixed at its optimal. We found that the model is only sensitiveto d1 but is insensitive tod0, θ0 andθ1. Results
for θ1 andd1 are shown in Figure 2. The model is insensitive to the strength parameters because in most
cases these are very small compared with the count and discount terms in the predictive probabilities (16).
In fact, we had repeated both trigram and bigram experimentswith θm set to0 for eachm, and the results
were identical. The model is insensitive tod0 for two reasons: its effect on the predictive probabilities(16)
is small, and most values oft∅w = 1 or 2 so the discount term corresponding tod0 in (16) is cancelled
out by the additive term involving the uniform base distribution G0 over the vocabulary. Whend1 = 0
the hierarchical Pitman-Yor language model reduces down tothe hierarchical Dirichlet language model of
MacKay and Peto (1994), and as seen in Figure 2 (right) this performs badly.

6 Discussion

We have described using a hierarchical Pitman-Yor process as a language model and derived estimates
of n-gram probabilities based on this model that are generalizations of interpolated Kneser-Ney. Setting
some variables and parameters to specific values reduces theformula forn-gram probabilities to those in
interpolated Kneser-Ney, hence we may interpret interpolated Kneser-Ney as approximate inference in this
model. In experiments we have also shown that cross-entropies attained by the model are better than those
obtained by interpolated Kneser-Ney.

The hierarchical Dirichlet language model of MacKay and Peto (1994) was an inspiration for our work.
Though MacKay and Peto (1994) had the right intuition to lookat smoothing techniques as the outcome
of hierarchical Bayesian models, the use of the Dirichlet distribution as a prior was shown to lead to non-
competitive cross-entropy results. As a result the language modelling community seemed to have dismissed

4We can use average values of the parameters as returned by thehierarchical Pitman-Yor language model as well, the parameter
values are similar and does not affect our results.
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Bayesian methods as theoretically nice but impractical methods. Our model is a nontrivial but direct general-
ization of the hierarchical Dirichlet language model that gives state-of-the-art performance. We have shown
that with a suitable choice of priors (namely the Pitman-Yorprocess), Bayesian methods can be competi-
tive with the best smoothing techniques. In fact we have shown that one of the best smoothing techniques,
namely interpolated Kneser-Ney, is a great approximation to a Bayesian model.

The hierarchical Pitman-Yor process is a natural generalization of the recently proposed hierarchical
Dirichlet process (Teh et al. 2006). The hierarchical Dirichlet process was proposed to solve a clustering
problem instead and it is interesting to note that such a direct generalization leads us to a well-established
solution for a different problem, namely interpolated Kneser-Ney. This indicates the naturalness of this class
of models. Both the hierarchical Dirichlet process and the hierarchical Pitman-Yor process are examples
of Bayesian nonparametric processes. These have recently received much attention in the statistics and
machine learning communities because they can relax previously strong assumptions on the parametric
forms of Bayesian models yet retain computational efficiency, and because of the elegant way in which they
handle the issues of model selection and structure learningin graphical models.

The hierarchical Pitman-Yor language model is only the firststep towards comprehensive Bayesian solu-
tions to many tasks in natural language processing. We envision that a variety of more sophisticated models
which make use of the hierarchical Pitman-Yor process can bebuilt to solve many problems. Foremost in
our agenda are extensions of the current model that achieve better cross-entropy for language modelling,
and verifying experimentally that this translates into reduced word error rates for speech recognition.
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A Some Additional Properties

A.1 Out-of-Vocabulary Words

Following the conventional approach in language modellingwe had limited our vocabulary to the words that
appeared in our training and test corpora. When we do not havea closed vocabulary, it is possible to extend
the hierarchical Pitman-Yor language model to handle previously unseen words. In fact, the only change
required is to make the global base distributionG0 be a distribution over all possible (seen or unseen) words.
The rest of the model, the predictive probabilities and the inference algorithms do not need to be altered.
An example of such aG0 would be a hidden Markov model which emits finite sequences ofletters (words).
Such a model for words have been used in, e.g. Vinciarelli et al. (2004).

A.2 Marginal Constraints

Chen and Goodman (1998) derived the lower-orderm-gram estimates of interpolated Knerser-Ney by sat-
isfying the marginal word distribution constraints (6). Weshow that the hierarchical Pitman-Yor language
model givesm-gram estimates that also satisfy these constraints when the strength parametersθm = 0 for
all m < n. In fact, the constraints are satisfied for every seating arrangement in the restaurants.

Let w′ andw be words andu′ be a word sequence of lengthn− 2. The marginal constraints are

P emp(u′w) =
∑

w′

P emp(w′
u
′)P HPY

w′
u
′ (w) (18)

whereP emp(u) = cu··
P

u
cu··

in our count notation. Plugging in the predictive probabilities (16) into (18) and
simplifying,

cu′w·· =
∑

w′

(cw′
u
′w· − dmtw′

u
′w) + dmtw′

u
′·P

HPY
π(w′

u
′)(w)

= c·u′w· − dmt·u′w + dmt·u′·P
HPY
u
′ (w)

0 = −t·u′w + t·u′·P
HPY
u
′ (w)

P HPY
u
′ (w) =

t·u′w

t·u′·
=

cu′w·

cu′··
(19)
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wherec·u′w· = c
u
′w·· since both count the number of occurrences of the word sequenceu

′w in the training
corpus, and we have used (14). As in interpolated Kneser-Ney, the actual lower orderm-gram probabilities
used discounts the word countscu′w· in (19) and interpolates with even lower orderm-gram probabilities
recursively.

A.3 Power-Law Discounting

Goldwater et al. (2006) noted that the numbers of customers sitting around tables in a Pitman-Yor process
with parameters(θ, d) follows a power-law distribution with index1 + d. This is proposed as a general
mechanism for linguistic models to produce power-law distributions commonly seen in natural languages.
The Pitman-Yor process also produces another power-law behaviour that is useful in our situation: when
d > 0 the expected number of tables in a Pitman-Yor process scalesasO(cd) wherec is the number of
customers. This implies that the a priori amount of discounts used in the hierarchical Pitman-Yor language
model follows a power-law growth. This contrasts with absolute discounting which assumes a fixed amount
of discount, but still grows slowly compared withc, and is consistent with the findings in Chen and Goodman
(1998) and Church and Gale (1991) that the amount of discountshould increase slowly.

Here we will directly derive theO(cd) growth of the number of tables. Lett(c) be the expected number
of tables occupied in a restaurant withc customers. Clearlyt(1) = 1. Givent(c), the expected number of
tables withc + 1 customers is the expected number occupied by the firstc customers plus the probability of
the last customer sitting at a new table. From (10) this gives:

t(c + 1) = t(c) +
θ + dt(c)

θ + c
=

(

1 +
d

θ + c

)

t(c) +
θ

θ + c
(20)

First we lower bound the growth oft(c). dropping the last term in (20),

t(c + 1) ≥

(

1 +
d

θ + c

)

t(c) =

c
∏

i=1

(

1 +
d

θ + i

)

(21)

Taking logarithms, and the limit of largec,

log(t(c + 1)) ≥
c

∑

i=1

log

(

1 +
d

θ + i

)

≈
c

∑

i=1

d

i
+ constant ≈ d log c + constant (22)

sincelog(1 + x) ≈ x for smallx, and d
θ+i
≈ d

i
for largei. Exponentiating back, we gett(c) ≥ O(cd). In

particulart(c) ≫ constant for largec so the last term of (20) is negligible to begin with and we conclude
thatt(c) = O(cd).

A.4 Joint Distribution over Seating Arrangements

In this appendix we give the joint distribution over seatingarrangement in the Chinese restaurant represen-
tation of the hierarchical Pitman-Yor language model explicitly. This helps to clarify what we mean when
we consider distributions over seating arrangement, and will be useful in deriving the sampling schemes.

The seating arrangement in each restaurant consists of the number of customers, the partitioning of cus-
tomers into those sitting around each table, and the dish served at each table. From this we can derive other
information, for example the number of occupied tables in each restaurant and the number of customers eat-
ing each dish. Recall that restaurants indexed byu correspond to contexts, dishes indexed byw correspond
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to words from the vocabulary,cuwk is the number of customers in restaurantu eating dishw at tablek while
tuw is the number of tables serving dishw. We use dots to denote marginal counts.

The probability for a particular seating arrangement can bederived by accounting for each event as each
customer visits her restaurant, sits at some table, and eat the dish assigned for the table. The probabilities of
events are given by the terms in (10). Collecting like terms,we get

P (seating arrangement) =
∏

w

G0(w)c0w·
∏

u

[θ|u|]
(tu·)
d|u|

[θ|u|]
(cu··)
1

∏

w

tu·
∏

k=1

[1− d|u|]
(c

uwk−1)
1

(23)

where the number[a]
(c)
b is a generalized factorial:

[a]
(0)
b = [a]

(−1)
b = 1 (24)

[a]
(c)
b = a(a + b) · · · (a + (c− 1)b) =

bcΓ(a/b + c)

Γ(a/b)
for c > 0 (25)

The G0 term in (23) gives the probability of drawing each dish fromG0, with c0w· the number of times
dishw was drawn fromG0. The denominator in the fraction collects the denominator terms in (10), while
the numerator collects terms corresponding to customers sitting at new tables. Finally the last term collects
terms corresponding to customers sitting at already occupied tables. Notice that the denominator contains a
θ|u| term which may be problematic whenθ|u| = 0. Since there is one such term each in the numerator and
denominator we can cancel them out and (23) is still well-defined.

A.5 Joint Distribution over Numbers of Customers and Tables

Notice that as a function of the seating arrangement the predictive probabilities (16) of the hierarchical
Pitman-Yor language model depend only oncuw· andtuw, the number of customers eating and the number
of tables serving each dishw in each restaurantu. Here we will derive a joint distribution overcuw· andtuw

only, summing out the specific seating arrangements of the customers.
It is sufficient to restrict ourselves to only consider the seating arrangements of those customers in a

particular restaurant eating a particular dish. Let there be c such customers andt tables, and letA(c, t) be
the set of all seating arrangements ofc customers amongt tables. Givena ∈ A(c, t) let cak be the number
of customers sitting around thekth table in the seating arrangementa. Let the discount parameter be simply
d. We show that

∑

a∈A(c,t)

t
∏

k=1

[1− d]
(cak−1)
1 = sd(c, t) (26)

wheresd are generalized Stirling numbers of type(−1,−d, 0) (Hsu and Shiue 1998), defined recursively
as:

sd(1, 1) = sd(0, 0) = 1 (27)

sd(c, 0) = sd(0, t) = 0 for c, t > 0 (28)

sd(c, t) = 0 for t > c (29)

sd(c, t) = sd(c− 1, t− 1) + (c− 1− dt)sd(c− 1, t) for 0 < t ≤ c (30)
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Now summing over seating arrangements for a particular restaurantu and a particular dishw in (23), and
using (26) for each paircuw· andtuw, this gives the following joint distribution overcuw·’s andtuw’s:

P ((cuw·, tuw : all u, w)) =
∏

w

G0(w)c0w·
∏

u

[θ|u|]
(tu·)
d|u|

[θ|u|]
(cu··)
1

∏

w

sd|u|
(cuw·, tuw) (31)

We will derive (26) by induction. The base cases in (27), (28)and (29) are easy to verify; for example,
c customers cannot occupyt > c tables sosd(c, t) = 0 whenc > t. For the general case of0 < t ≤ c,
assume that (26) holds for allc′ ≤ c, t′ ≤ t with eitherc′ < c or t′ < t. We split the setA(c, t) into t + 1
subsets depending on where the last customer sits:

• Let A0(c, t) be the subset consisting of those seating arrangements where the last customer sits by
herself. Removing this customer leaves us with a seating arrangement of the otherc − 1 customers
aroundt − 1 tables. In fact it is easy to see that this operation of removing the last customer is a
one-to-one correspondence between seating arrangements in A0(c, t) andA(c− 1, t− 1). Further the
last customer does not contribute any term to (26).

• For k′ = 1, . . . , t let Ak′(c, t) be the subset consisting of those seating arrangements where the last
customer sits at tablek′, and tablek′ has at least two customers. Removing this customer does not
make tablek′ unoccupied and leaves us with a seating arrangement of the otherc−1 customers around
t tables, and similarly we get a one-to-one correspondence betweenAk′(c, t) andA(c−1, t). Further,
this last customer contributes a termcak′ − d to (26) for eacha ∈ A(c− 1, t).

Expanding (26) into theset + 1 subsets, we get

∑

a∈A(c,t)

t
∏

k=1

[1− d]
(cak−1)
1

=
∑

a∈A0(c,t)

t
∏

k=1

[1− d]
(cak−1)
1 +

t
∑

k′=1

∑

a∈Ak′ (c,t)

t
∏

k=1

[1− d]
(cak−1)
1

=
∑

a∈A(c−1,t−1)

t−1
∏

k=1

[1− d]
(cak−1)
1 +

t
∑

k′=1

∑

a∈A(c−1,t)

(cak′ − d)

t−1
∏

k=1

[1− d]
(cak−1)
1

=
∑

a∈A(c−1,t−1)

t
∏

k=1

[1− d]
(cak−1)
1 +

∑

a∈A(c−1,t)

t
∑

k′=1

(cak′ − d)

t
∏

k=1

[1− d]
(cak−1)
1

= sd(c− 1, t− 1) + (c− 1− dt)sd(c− 1, t) (32)

Based on (31), it is possible to construct either sampling methods or approximate inference methods
to obtain posterior estimates forcuw·’s and tuw’s directly. We expect these to converge quickly and give
good estimates since it can be shown that (31) is log-concaveas a function jointly incuw·’s andtuw’s. In
small preliminary experiments we have found loopy belief propagation to converge within a few iterations.
However each iteration is computationally intensive as each cuw· and tuw can potentially take on many
values, and it is expensive to compute the generalized Stirling numberssd(c, t). As a result we chose to use
a sampling method based on (23), which converges very quickly in our experiments as well.
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B Sampling for Seating Arrangements

We can obtain a Gibbs sampler for the hierarchical Pitman-Yor language model directly using the Chinese
restaurant representation (i.e. using (23)). This is just an extension of the Chinese restaurant franchise sam-
pler in Teh et al. (2006). The seating arrangement for each restaurant consists of: the number of customers,
the number of tables, the table at which each customer sits, the dish served at each table and the dish each
customer eats. The Gibbs sampler only keeps track of which table each customer sits at, while the other
pieces of information in the seating arrangement can be reconstructed from this. The sampler then iterates
over all customers present in each restaurant, resampling the table at which each customer sits. This re-
sampling can be performed most easily using two routines: aRemoveCustomer routine that removes a
customer from the restaurant, and anAddCustomer routine which adds the customer back into the restau-
rant, sitting her at some random table using (10).

Unfortunately in case of a language model which needs to be trained on very large corpora, the above

Table 2: Operations for sampling seating arrangement in thehierarchical Pitman-Yor language model.

Function WordProbability(u,w):
Returns the probabilityP HPY

u
(w) that the next word after contextu will be w (computes (16)).

• If u = 0 then returnG0(w).

• Else return
cuw·−d|u|tuw

θ|u|+cu··
+

θ|u|+d|u|tu·

θ|u|+cu··
DishProbability(π(u),w).

Function AddCustomer(u,w):
Adds a new customer eating dishw into restaurantu.
• If u = 0 then incrementc0w·.
• Else with probabilities proportional to:

max(0, cuwk − d|u|): sit customer atkth table in restaurantu (incrementcuwk).
(θ|u| + d|u|tu·)DishProbability(π(u),w): sit customer at a new tableknew serving dishw in restaurantu

(incrementtuw, setcuwknew = 1);
AddCustomer(π(u),w).

Function RemoveCustomer(u,w):
Removes a customer eating dishw from restaurantu.
• If u = 0 then decrementc0w·.
• Else with probabilities proportional to:

cuwk: remove a customer fromkth table in restaurantu (decrementcuwk).
• If as a result thekth table becomes unoccupied thenRemoveCustomer(π(u),w).

sampler requires far too much storage space since it needs torepresent each customer explicitly. We use
an alternative sampler which requires much less storage space since it does not represent the actual table
at which each customer sits, but only the number of customerssitting around each table in each restaurant
serving each dish.

The routines for sampling the seating arrangement are outlined in Algorithm 2. Notice that in language
modelling we always know the dish served to each customer (since we always know the identity of each
word in our corpus), and the only piece of information we needto infer is which table, among those serving
that dish, did the customer sat at. The key insight to our algorithm is that given the dish a customer eats,
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the actual identity of the table at which a customer sits has no effect on the likelihood of the data. Thus
during theAddCustomer routine, after we chose a table for the customer and increment the number of
customers sitting there, we may discards the identity of thetable that the customer sits at. Then during
the RemoveCustomer routine we reconstruct the identity of the table at which this customer sits at by
sampling before removing this customer by decrementing thenumber of customers sitting at the table.

C Sampling for Parameters

In this appendix we give a simple to implement routine for sampling the strength and discount parameters of
the hierarchical Pitman-Yor language model. The routine isbased on the joint distribution (23) over seating
arrangements. Cancelling out theθ|u| terms from the numerator and denominator, this gives, whichwe shall
repeat here:

P (seating arrangement) =
∏

w

G0(w)c0w·
∏

u

[θ|u| + d|u|]
(tu·−1)
d|u|

[θ|u| + 1](cu··−1)
1

∏

w

tu·
∏

k=1

[1− d|u|]
(c

uwk−1)
1

(33)

Since we can evaluate (33) efficiently for different values of the parameters and for different seating arrange-
ments, a variety of sampling routines can be used, e.g. Metropolis-Hastings or adaptive rejection Metropolis
sampling. Instead we used one based on auxiliary variables that is easy to implement using basic opera-
tions (the only complex operation required is to sample froma Gamma distribution). We do not believe this
sampling routine is better than others, and used it simply because of familiarity.

Our auxiliary variable sampling routine assumes that each discount parameter has prior distribution
dm ∼ Beta(am, bm) while each strength parameter has priorθm ∼ Gamma(αm, βm). Notice that we have
assumedθm ≥ 0 (rather thanθm > −dm). This does not affect our results since it turns out the model is
insensitive toθm’s anyway. Whencu·· = 0, 1 the denominator term in (33) is trivial. Whencu·· ≥ 2 the
denominator is

1

[θ|u| + 1](cu··−1)
1

=
Γ(θ|u| + 1)

Γ(θ|u| + cu··)
=

1

Γ(cu·· − 1)

∫ 1

0
x

θ|u|
u (1− xu)cu··−2 dx (34)

So we can introducexu as an auxiliary variable with conditional distribution,

xu ∼ Beta(θ|u| + 1, cu·· − 1) (35)

Whentu· ≥ 2 the numerator is

[θ|u| + d|u|]
(tu·−1)
d|u|

=
tu·−1
∏

i=1

(θ|u| + d|u|i) =
tu·−1
∏

i=1

∑

yui=0,1

θyui

|u|
(d|u|i)

1−yui (36)

so we can introduceyui as Bernoulli auxiliary variables with conditional distributions,

yui ∼ Bernoulli

(

θ|u|

θ|u| + d|u|i

)

(37)

whereBernoulli(p) is a binary variable taking value1 with probability p and0 with probability 1 − p.
Finally the rightmost term in (33), whencuwk ≥ 2, is

[1− d|u|]
(c

uwk−1)
1

=

c
uwk−1
∏

j=1

(j − d|u|) =

c
uwk−1
∏

j=1

∑

z
uwkj=0,1

(j − 1)zuwkj (1− d|u|)
1−z

uwkj (38)
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so we can introducezuwkj as Bernoulli auxiliary variables with conditional distributions,

zuwkj ∼ Bernoulli

(

j − 1

j − d|u|

)

(39)

Given sampled values of all the auxiliary variables, we can now sample the parameters according to their
conditional distributions,

dm ∼ Beta



am +
∑

u:|u|=m,tu·≥2

tu·−1
∑

i=1

(1− yui), bm +
∑

u,w,k:|u|=m,c
uwk≥2

c
uwk−1
∑

j=1

(1− zuwkj)



 (40)

θm ∼ Gamma



αm +
∑

u:|u|=m,tu·≥2

tu·−1
∑

i=1

yui, βm −
∑

u:|u|=m,tu·≥2

log xu



 (41)
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