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Abstract

Interpolated Kneser-Ney is one of the best smoothing metifard:-gram language models. Previ-
ous explanations for its superiority have been based oitirgwand empirical justifications of specific
properties of the method. We propose a novel interpretaifanterpolated Kneser-Ney as approxi-
mate inference in a hierarchical Bayesian model consigifngitman-Yor processes. As opposed to
past explanations, our interpretation can recover ex#totijormulation of interpolated Kneser-Ney, and
performs better than interpolated Kneser-Ney when a bigffirence procedure is used.

1 Introduction

Probabilistic language models are used extensively iniatyanf linguistic applications. Standard exam-
ples include speech recognition, handwriting recognjtraachine translation and spelling correction. The
basic task is to model the probability distribution overtseces. Most researchers take the approach of
modelling the conditional distribution of words given thhistories, and piecing these together to form the
joint distribution over the whole sentence,

t
P(word;,wordy, ...,word,) = HP(wordZ- |word,, ...,word;,_1) . (1)
=1

The class ohi-gram models form the bulk of such models. The basic assompgre is that the conditional
probability of a word given its history can be simplified te irobability given a reduced context consisting
of only the past — 1 words,

P(word; |word,, ... ,word;_) = P(word; |word;_n41,...,word;_;) (2

Even for modest values of the number of parameters involvedsngram models is still tremendous.
For example typical applications use= 3 and has a(50000) word vocabulary, leading t®(50000?)
parameters. As a result direct maximum-likelihood paramgtting will severely overfit to our training
data, and smoothing techniques are indispensible for thgepitraining of.-gram models. A large number
of smoothing techniques have been proposed in the literaige Chen and Goodman (1998); Goodman
(2001); Rosenfeld (2000) for overviews, while more recenppsals include Charniak (2001); Bilmes and
Kirchhoff (2003); Bengio et al. (2003); Xu and Jelinek (2D@d Blitzer et al. (2005).



In an extensive and systematic survey of smoothing tecksifpprn-grams, Chen and Goodman (1998)
showed that interpolated Kneser-Ney and its variants weeemost successful smoothing techniques at
the time. Although more recent techniques have exhibitéttbperformance, interpolated Kneser-Ney is
still an important technique now as the better performameae® only been achieved by combining more
elaborate models with it. Interpolated Kneser-Ney invsltleee concepts: it interpolates linearly between
higher and lower orden-grams, it alters positive word counts by subtracting a trisamount (absolute
discounting), and it uses an unusual estimate of lower oreams.

A number of explanations for why interpolated Kneser-Neyksaso well has been given in the liter-
ature. Kneser and Ney (1995), Chen and Goodman (1998) andn@oo(2001) showed that the unusual
estimate of lower ordet-grams follows from interpolation, absolute discountiagd a constraint on word
marginal distributions. Goodman (2001) further showed thgram models which does not preserve these
word marginal distributions cannot be optimal. Empiricasults in Chen and Goodman (1998) demon-
strated that interpolation works better than other waysoofilsining higher and lower order-grams and
that absolute discounting is a good approximation to ther@dtdiscount. Finally, a different approach by
Goodman (2004) showed that back-off Kneser-Ney is similarmaximum-entropy model with exponential
priors.

We will give a new interpretation of interpolated KneseryNes an approximate inference method in a
Bayesian model. The model we propose is a straightforwaethithical Bayesian model (Gelman et al.
1995), where each hidden variable represents the distibolver next words given a particular context.
These variables are related hierarchically such that tlee prean of a hidden variable corresponding to
a context is the word distribution given the context comsisbf all but the earliest word (we will make
clear what we mean by this in the later parts of the paper). Hidgen variables are distributed according
to a well-studied nonparametric generalization of the dbigt distribution variously known as the two-
parameter Poisson-Dirichlet process or the Pitman-Yorg®s® (Pitman and Yor 1997; Ishwaran and James
2001; Pitman 2002) (in this paper we shall refer to this ag”t@an-Yor process for succinctness).

As we shall show in this paper, this hierarchical structumeasponds exactly to the technique of inter-
polating between higher and lower ordegrams. Our interpretation has the advantage over paspiste
tations in that we can recover the exact form of interpoldtedser-Ney. In addition, in comparison with
the maximum-entropy view, where interpolated Kneser-Mefact does better than the model in which it is
supposed to approximate, we show in experiments that ouehnamtks better than interpolated Kneser-Ney
if we use more accurate inference procedures. As our mofighiBayesian, we also reap other advantages
of Bayesian methods, e.g. we can easily use the model asfzanhore elaborate model.

Bayesian techniques are not new in natural language piogesmsd language modelling given the prob-
abilistic nature of most approaches. Maximum-entropy nwbave found many uses relating features of
inputs to distributions over outputs (Rosenfeld 1994; Begy al. 1996; McCallum et al. 2000; Lafferty et al.
2001). Use of priors is widespread and a number of studies bbegn conducted comparing different types
of priors (Brand 1999; Chen and Rosenfeld 2000; Goodman)20B4en hierarchical Bayesian models
have been applied to language modelling—MacKay and Pe@4{lfave proposed one based on Dirichlet
distributions. Our model is a natural generalization o tlodel using Pitman-Yor processes rather than
Dirichlet distributions.

Bayesian models have not been more widely adopted in theidgegmodelling community because
the models proposed so far have performed poorly in congratsother smoothing techniques. The major
contributions of our work are in proposing a Bayesian modti excellent performance, and in establishing
the direct correspondence between interpolated Knesgra\eell-established smoothing technique, and
the Bayesian approach. We expect this connection to belds®fuin terms of giving a principled statistical



footing to smoothing techniques and in suggesting everbpérforming Bayesian models.

Goldwater et al. (2006) observed that Pitman-Yor procegsesrate power-law distributions and argued
that since such distributions occur frequently in natiaaguages, they are more suited for natural languages
processing. Is it thus perhaps unsurprising that our modelgerformance superior to the hierarchical
Dirichlet language model of MacKay and Peto (1994). In f&ui/dwater et al. (2006) have independently
noted this relationship between a hierarchical PitmanpYocess and interpolated Kneser-Ney, but have not
corroborated this with further investigations and expenial results.

In the following section we will give a detailed descriptiofi interpolated Kneser-Ney and modified
Kneser-Ney. We review the Pitman-Yor process as it pertainanguage modelling in Section 3. In Sec-
tion 4 we propose the hierarchical Pitman-Yor language tnadd relate it to interpolated Kneser-Ney.
Experimental results establishing the performance of thdahin terms of cross-entropy is reported in Sec-
tion 5, and we conclude with some discussion in Section Gallyinve delegate details of some additional
properties of the model and inference using Markov chain tél@arlo sampling to the appendices.

2 Interpolated Kneser-Ney and its Variants

In this section we introduce notations and describe in bitain-gram language modelling task, interpo-
lated Kneser-Ney and a modified version which performs be@er sources of information are Chen and
Goodman (1998) and Goodman (2001) which are excellentwswié state-of-the-art smoothing techniques
and language models.

We assume that we have a closed set of words in our vocab@lanyhich is of sizeV. For a word
w € W and a context consisting of a sequencenof 1 wordsu € W™~ ! let ¢, be the number of
occurrences oy following u in our training corpus. The naive maximum likelihood proitigbfor a word
w following u is

PML () = Saw (3)
Cu.
wherec,. = >, cuw. INStead, interpolated Kneser-Ney estimates the prdbabil word w following
contextu by discounting the true count,,, by a fixed amount,,, depending on the lengtimw| if cy,y > 0
(otherwise the count remains 0). Further, it interpolates @stimated probability of word with lower
orderm-gram probabilities. This gives,

max (0, cuw — djy|) N dju|tu-

PN () = PN () (4)

Cu- Cu-
wheret,. = #{w'|cuyw > 0} is the number of distinct words’ following contextu in the training
corpus,r(u) is the context consisting of all words imexcept the first and®N (w) are the lower order
m-gram probabilities. The value of. is chosen simply to make the probability estimates sum toriallly,
interpolated Kneser-Ney uses modified sets of counts fdother orderm-gram probabilities. In particular,
for a contextu’ of lengthm < n — 1 and wordsw’ andw, let

1 if cyprurw > 0
twaw = {0 if CZ/:/: — 0 Cu'w = tw'w = %{:tw’u’w (5)

wherew'u’ is the context formed by concatenating andu’. The lower ordermm-gram probabilities are
estimated as in (4) using the modified counts of (5). A difiénealue of discountl,,, 1 is used for each
lengthm and these can either be estimated using formulas or by usisg-galidation.
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Modified Kneser-Ney is an improvement upon interpolated $éméNey where the amount of discount
is allowed more variability. In the empirical studies in @hend Goodman (1998) and Church and Gale
(1991) it was found that the optimal amount of discount thaigd be used changes slowly as a function of
the counts:,,,. This was used as one of the reasons for absolute discount®@igen and Goodman (1998).
In the same study it was also noticed that the optimal distsofom low values ofc,,, differ substantially
from those with higher values. Modified Kneser-Ney usesdiffit values of discounts for different counts,
one each forey, = 1,2,...,c™™) — 1 and another fory, > ™). The same formulas for (4) and
(5) are used. Modified Kneser-Ney reduces to interpolateelsknNey wher{™®) = 1, while Chen and
Goodman (1998) use$™™) = 3 as a good compromise between diminishing improvementsrameasing
implementational complexity.

The unusual counts in interpolated Kneser-Ney can be dkhbyepreserving marginal word distribu-
tions. letP*™(u) be the empirical probability of word sequenaeamong sequences of length— 1. Let
w’ andw be words andr’ be a word sequence of length = n — 2. Assuming the form of (4) and the
following marginal constraints,

Z PEP(y'u’) PN, (w) = PE™(u'w) (6)
’Ll)/
we can derive that
PN () = v (7)
Cy’.

where ¢y, IS as given in (5). Finally, rather than using (7) we shoulscdunt these new counts and
interpolate with even lower orden-gram probabilities, i.e. recursively apply (4) and (5).

Satisfying the marginal constraints (6) is reasonableesihen-gram probabilities should be consistent
with the statistics of the word counts. In fact Goodman (30§Howed that if these constraints are not
satisfied then the-gram probability estimates cannot be optimal (the comrvesiot true; satisfying these
constraints does not imply optimality). Taking the margioanstraints view further, Goodman (2004)
showed that a back-off version of Kneser-Ney can be seenggmoximation to a maximum-entropy model
with approximately satisfied marginal constraints and gpoagntial prior on the parameters of the model.
However this view of interpolated Kneser-Ney in terms of gigal constraints is limited in scope for a few
reasons. Firstly, the maximum-entropy model of which baffk<neser-Ney is supposed to approximate
in fact performs worse than back-off Kneser-Ney which isumtworse than interpolated Kneser-Ney.
Secondly, modified Kneser-Ney, which performs better timerpolated Kneser-Ney does not satisfy these
marginal constraints.

3 Pitman-Yor Processes

We go through the properties of the Pitman-Yor process aeleto language modelling in this section. For
more in depth discussion we refer to Pitman and Yor (199hwésan and James (2001); Pitman (2002),
while Jordan (2005) gives a high-level tutorial of this hrlarof statistics and probability theory from a
machine learning perspective.

The Pitman-Yor procesBY (d, 0, Gy) is a distribution over distributions over a probability spX. It
has three parameters: a discount parameterd < 1, a strength parametér> —d and a base distribu-
tion G, over X. The base distribution can be understood as a putative nfedmaws fromPY (d, 6, Gy),
while both# andd control the amount of variability around the base distiutz,. An explicit construc-
tion of drawsG; ~ PY(d,0,Gy) from a Pitman-Yor process is given by the stick-breakingstattion
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(Sethuraman 1994; Ishwaran and James 2001). This constrgttows that7; is a weighted sum of an
infinite sequence of point masses (with probability oneX We Vs, ... andgq, ¢o, . .. be two sequence of
independent random variables with distributions,

Vi ~ Beta(l — d, 0 + kd) dp ~ Gy fork =1,2,..., (8)

Then the following construction gives a draw frahy (d, 0, Gy):

e}

Gi=) (1=Vi)-- (1= Vi1)Vid, (9)
k=1

wheredy is a point mass located gt The stick-breaking construction is useful as it is mathiesaby
elegant and it gives us a direct visualization of Pitman{farcesses.

A different perspective on the Pitman-Yor process is givgrthe Chinese restaurant process. This
describes the properties of the Pitman-Yor process in tefndsstributions over draws front;, which is
itself a distribution oveiX. Though indirect, this perspective is more useful for ouppge of language
modelling, since draws fronds; will correspond to words whose distributions we wish to modeet
x1,T9,... be a sequence of identical and independent draws ffgmThe analogy is that of a sequence
of customers«;’s) visiting a restaurant (corresponding @) with an unbounded number of tables. The
Chinese restaurant process assigns a distribution ovesetiteng arrangement of the customers. The first
customer sits at the first available table, while each of therccustomers sits at thé" occupied table with
probability proportional ta; — d, wherecy, is the number of customers already sitting there, and sbatsit
a new unoccupied table with probability proportionabte- dt., wheret. is the current number of occupied
tables. To generate draws fof, zo, . . ., associate with each tabkean independent draw, ~ Gy from
the base distributiodsy and set the drawn value af to be ¢;, if customer; sat at tablek. The ¢, draws
can be thought of as dishes, with customers sitting at eddd ¢ating the dish on the table. The resulting
conditional distribution of the next draw after a sequerice e- ), ¢, draws is thus:

t.
Tei1|®1..., 2., Seating arrangement. ]; %%k + %GO (10)
The sequence;, zo, . .. as generated by the Chinese restaurant process can be shberexchangeable.
That is, the distribution assigned by the Chinese restagmacess tar, x5, . .. IS invariant to permuting
the order of the sequence. De Finetti's theorem on exchalgsaquences then shows that there must be
a distribution over distribution&r; such thatzy, -, ... are conditionally independent and identical draws
from G; (Pitman 2002). The Pitman-Yor process is one such distobwiverGs.

Consider using the Pitman-Yor process as a prior for unignamd distributions. We use a uniform
distribution over our fixed vocabulafy” of V words as the base distributi@r,, that is, each word ii is
equiprobable undety, while the draw from the Pitman-Yor proce&s is the desired unigram distribution
over words. We have a training corpus consisting,pbccurrences of word: € W, which corresponds to
knowing thate,, customers are eating dighin the Chinese restaurant representation. Given thisrirder
tion, we infer the seating arrangement of the= > ¢, customers in the restaurant. In particular,tlgt
be the number of tables serving dighin the seating arrangement (since the vocabul&rys finite there
is positive probability that multiple tables serve the saiigh). The predictive probability of a new word
given the seating arrangement is given by (10), which etedu

o — dty +9+dt.
0+ c 0+ c.

P(z.+1 = w|seating arrangement= € Go(w) (11)



by collecting terms in (10) corresponding to each dish The actual predictive probability is then (11)
averaged over the posterior probability over seating gerarents. We see that there are two opposing effects
on word counts,, in the Pitman-Yor process. The second term adds to word spuftile the discount
term in the first fractiondt,, subtracts from word counts. Wheh= 0 the Pitman-Yor process reduces
to a Dirichlet distribution, and we only have the usual addipseudo-counts of the Dirichlet distribution.

If d > 0, we have discounts, and the additive term can be understwauerpolation with the uniform
distribution. Further assuming thigt = 1, i.e. only one table serves digh we obtain absolute discounting.

In the appendix we show that’s grow asO(c,?) instead.

4 Hierarchical Pitman-Yor Language M odels

In the previous section we already see how we can obtain @tlesdiscounting and interpolation using the
Pitman-Yor process. In this section we describe a languamgehbased on a hierarchical extension of the
Pitman-Yor process, and show that we can recover integmbkiheser-Ney as approximate inference in the
model. The hierarchical Pitman-Yor process is a genetaizaf the hierarchical Dirichlet process, and the
derivation described here is a straightforward geneitazaf those in Teh et al. (2006).

We are interested building a model of distributions overdheent word given various contexts. Given
a contextu consisting of a sequence of up#to— 1 words, letG,(w) be the distribution over the current
word w. Since we wish to infe€, (w) from our training corpus, the Bayesian nonparametric sggrave
take here is to assume tha, (w) is itself a random variable. We use a Pitman-Yor processeapribr for
Gu(w), in particular,

Gu(w) ~ PY(djul, Oju|, Gru)(w)) (12)

wherer(u) is the suffix ofu consisting of all but the first word. The strength and dis¢quarameters
depend on the length of the context, just as in interpolatedsr-Ney where the same discount parameter
is used for each length of context. The base distributiot¥jg,)(w), the distribution over the current
word given all but the earliest word in the context. That ig, velieve that without observing any data the
earliest word is the least important in determining therittigtion over the current word. Since we do not
know G (w) either, We recursively place a prior over, ) (w) using (12), but now with parameters
07 (u)|> A= (w) @Nd base distributiotiz (- (,,)) (w) and so on. Finally the prior foty(w), the distribution
over current word given the empty contéis given a prior of

Gy(w) ~ PY(do, b, Go) (13)

whereGy is the global base distribution, which is assumed to be umifover the vocabulariy” of V words.

The structure of the prior is that of a suffix tree of depthwhere each node corresponds to a context
consisting of up tor — 1 words, and each child corresponds to adding a different witlde beginning of
the context. As we shall see, this choice of the prior stmectxpresses our belief that words appearing later
in a context have more influence over the distribution overdirrent word.

We can apply the Chinese restaurant representation to ¢narthical Pitman-Yor language model to
draw words from the prior. The basic observation is that @adwords fromG,(w) using the Chinese
restaurant representation the only operation we need dbdke distributionz(,,)(w) is to draw words
from it. SinceG () (w) is itself distributed according to a Pitman-Yor process,ca use another Chinese
restaurant to draw words from that. This is recursively egobuntil we need a draw from the global base
distributionGg, which is easy since it assigns equal probability to eactdvothe vocabulary. In summary



we have a restaurant corresponding to e&gl{w), which has an unbounded number tables and has a
sequence of customers corresponding to words drawnd¥gfw). Each table is served a dish (corresponds
to a word drawn from the base distributiciy. ,,) (w)), while each customer eats the dish served at the table
she sat at (the word drawn for her is the same as the word di@whe table). The dish served at the table
is in turn generated by sending a customer to the parenuresiain a recursive fashion. Notice that there
are two types of customers in each restaurant, the “indepghdnes arriving by themselves, and those
sent by a child restaurant. Further, every table at evetgueant is associated with a customer in the parent
restaurant, and every dish served in the restaurants caadegltto a draw frondr in this way.

In the rest of the paper we index restaurants (contexts), loyshes (words in our vocabulary) by, and
tables byk. Letc,,; be the number of customers in restauraisitting at tablek eating dishw (cyqr = 0 if
tablek does not serve dish), and lett,,,, be the number of tables in restaurargerving dishw. We denote
marginal counts by dots, for examplg . is the number of customers sitting around tabie restaurant,
cuw- 1S the number eating dish in restauranix (number of occurrences of wokd in contextu), andt,,. is
the number of tables in restaurant

In language modelling, the training data consists knowirggriumber of occurrences of each ward
after each contexi of lengthn — 1 (we pad the beginning of each sentence Wwilgin-sentence symbols).
This corresponds to knowing the numbsgg,. of customers eating dist in restaurania, for eachu with
lengthn — 1. These customers are the only “independent” ones in thewesits, the others are all sent by
child restaurants. As a result only the values:@f. with [u| = n — 1 are fixed by the training data, other
values vary depending on the seating arrangement in edelurast, and we have the following relationships
among thesy,,.’s andt,,:

tuw =0 if cuw. = 0;
.= tw 14

{1 <tuw £ caw- 1 caw. > 0; fue u’:w%l;):u o 4

Algorithm 1 gives details of how the Chinese restauranteasgntation can be used to generate words
given contexts in terms of a function which draws a new word@#ling itself recursively. Notice the self-
reinforcing property of the hierarchical Pitman-Yor laage model: the more a wokd has been drawn in
contextu, the more likely will we draww again in contexia. In fact wordw will be reinforced for other
contexts that share a common suffix withwith the probability of drawinge increasing as the length of
the common suffix increases. This is becauseill be more likely under the context of the common suffix
as well.

The Chinese restaurant representation can also be usedfdéogrice in the hierarchical Pitman-Yor
language model. Appendix A.4 gives the joint distributioreioseating arrangements in the restaurants,

Table 1: Routine to draw a new word given contaxiising the Chinese restaurant representation.

Function DrawWord(u):
e If j =0, return wordw € W with probability Go(w) = 1/V.
¢ Else with probabilities proportional to:
max (0, cuwk — djy|): Sit customer at tablg (incrementcy,,);
return worchw.
Oju| + djy|tu: l€tw — DrawWord(r(u));
sit customer at an unoccupied tabf&" serving dishw (incrementt ., S€tcygnew = 1);
returnw.




while Appendix B gives an inference routine based upon Ggaspling which returns samples from the
posterior distribution over seating arrangements. Appe@dgives an auxiliary sampling routine for the
strength and discount parameters. Given a sample from stenmr seating arrangement and parameters,
the predictive probability of the next draw frofi, (w) is given by recursively applying (11). For the global
base distribution the predictive probability is simply

PHPY(w | seating arrangement G (w) (15)

while for each contexti the predictive probability of the next word after contexgiven the seating ar-
rangement is

ww — djujtuw | Ou) + djujtu ppy -
P seating arrangement (16
0\u|+cu-- 0\u|+cu-- W(u)(w| g g h ( )

HPY : ¢
P." " (w | seating arrangement=
To form ourn-gram probability estimates, we simply average (16) overpibsterior of the seating arrange-
ments and parameters.
From (16) the correspondence to interpolated Kneser-Neywws straightforward. Suppose that the
strength parameters are @i}, = 0. Consider an approximate inference scheme for the hiecaldpitman-
Yor language model where we simply set

0 if cuw. =0;
t = .= tw 17
uw {1 if cuw. > 1 Cuw Z u'w ( )

u:w(uw)=u

(17) says that there is at most one table in each restauramg®ach dish. The predictive probabilities
given by (16) now directly reduces to the predictive probitiés given by interpolated Kneser-Ney (4). As
a result we can interpret interpolated Kneser-Ney as thiscpéar approximate inference scheme in the
hierarchical Pitman-Yor language model.

Appendix A describes some additional properties of theah@drical Pitman-Yor language model.

5 Experimental Results

We performed experiments on the hierarchical Pitman-Yoglage model under two circumstances: tri-
grams on a 16 million word corpus derived from APNéwand bigrams on a 1 million word corpus derived
from the Penn TreeBank portion of the WSJ datasn the trigram APNews dataset, we compared our
model to interpolated and modified Kneser-Ney on crosspigs and studied the growth of discounts as
functions of trigram counts. On the simpler bigram WSJ d#tase studied the effect on cross-entropies of
varying the strength and discount parameters and relatetesults to the hierarchical Dirichlet language
model. We also showed that our proposed sampler converggswekly.

We compared the hierarchical Pitman-Yor language modehspeterpolated Kneser-Ney and mod-
ified Kneser-Ney with:(M®) — 2 and3 on the trigram APNews dataset. We varied the training set siz
between approximately 2 million and 14 million words by sgual increments. For all three versions of
interpolated Kneser-Ney, we first determined the discoanaimeters by conjugate gradient descent in the

1This is the same dataset as in Bengio et al. (2003). Thengimalidation and test sets consist of about 14 million, lioni
and 1 million words respectively, while the vocabulary siz&7964.

2This is the same dataset as in Xu and Jelinek (2004) and Béitz#. (2005). We split the data into training, validatiordadest
sets by randomly assigning bigrams to each with probadsli®, .2, .2 respectively. The vocabulary size is 10000.
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Comparison of different models Growth of discounts with counts
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Figure 1: Left: Cross-entropy on test set (lower better)e fhining set size is varied on theaxis while the
y-axis shows the cross-entropy (in natural logarithm). Hawhcorresponds to a language model. Right:
Average discount as a function of trigram counts. For theahehical Pitman-Yor language model the
reported discount for a countis d, times the number of tables averaged over posterior sampiEsatng
arrangement and over all trigrams that occurediines in the full training set. The last entry is averaged
over all trigrams that occurred at least 50 times.

cross-entropy on the validation set (Chen and Goodman 12@8)e optimal values, we folded the valida-
tion set into the training set to obtain the final trigram @blity estimates. For the hierarchical Pitman-Yor
language model we inferred the posterior distribution meating arrangement and the strength and dis-
count parameters given both the training and validatioh 3&% used a sampling routine which alternates
between updating the seating arrangement (Appendix B)t@gdrameters (Appendix C). Since the pos-
terior is very well-behaved, we only used 125 iterationstiem-in, and 175 iterations to collect posterior
samples. On the full 15 million word training set (includegalfrom the validation set) this took less than 2
hours on 1.4Ghz Pentium III's.

The cross-entropy results are given in Figure 1 (left). Aseexed the hierarchical Pitman-Yor language
model performs better than interpolated Kneser-Ney, sdipygoour claim that interpolated Kneser-Ney is
just an approximation inference scheme in the hierarctit@@han-Yor language model. Interestingly, the
hierarchical Pitman-Yor language model performs slighttyrse than the modified versions of Kneser-Ney.
In Figure 1 (right) we showed the average discounts retubgete hierarchical Pitman-Yor language model
as a function of the observed count of trigrams in the trgirgat. We also showed the discounts returned
by the interpolated and modified Kneser-Ney models. We saetlle average discounts returned by the
hierarchical Pitman-Yor language model grows slowly asrection of the trigram counts. Appendix A.3
shows that the average discount grows as a power-law withidigdand this is reflected well by the figure.
The growth of the average discounts also matches relatalekely with that of the optimal discounts in
Figure 25 of Chen and Goodman (1998),

In the second set of experiments we investigated the effécestrength and discount parameters on the

3This is one of the advantages of a Bayesian procedure, wenmeese a separate validation set to determine paramettrs of
model. Instead we can include the validation set in the ingiset and infer both the hidden variables and parameteasingle
phase of training.
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Figure 2: Left: Cross entropy on test datadasis varied and with other parameters held at the optimal
settings found by interpolated Kneser-Ney. Right: Varyihgnstead.

performance of the hierarchical Pitman-Yor language modehse of bigrams on a 1 million word dataset.
We first found optimal settings for the four parametéys,, dy andd; by optimizing the performance of
interpolated Kneser-Ney on a validation“sékhen for each parameter we varied it while keeping the sther
fixed at its optimal. We found that the model is only sensitivé, but is insensitive ta, §; andf;. Results
for #; andd; are shown in Figure 2. The model is insensitive to the stiepgrameters because in most
cases these are very small compared with the count and dist@ms in the predictive probabilities (16).
In fact, we had repeated both trigram and bigram experimaitksé,,, set to0 for eachm, and the results
were identical. The model is insensitivedg for two reasons: its effect on the predictive probabilitj6)

is small, and most values @f,, = 1 or 2 so the discount term correspondingdgin (16) is cancelled
out by the additive term involving the uniform base disttibn G over the vocabulary. Whed, = 0
the hierarchical Pitman-Yor language model reduces dowhednierarchical Dirichlet language model of
MacKay and Peto (1994), and as seen in Figure 2 (right) thfeimas badly.

6 Discussion

We have described using a hierarchical Pitman-Yor process language model and derived estimates
of n-gram probabilities based on this model that are genetalira of interpolated Kneser-Ney. Setting
some variables and parameters to specific values reducésrihela for n-gram probabilities to those in
interpolated Kneser-Ney, hence we may interpret intetpdli&neser-Ney as approximate inference in this
model. In experiments we have also shown that cross-ees@itained by the model are better than those
obtained by interpolated Kneser-Ney.

The hierarchical Dirichlet language model of MacKay anH&894) was an inspiration for our work.
Though MacKay and Peto (1994) had the right intuition to lablsmoothing techniques as the outcome
of hierarchical Bayesian models, the use of the Dirichlstrifiution as a prior was shown to lead to non-
competitive cross-entropy results. As a result the langumagdelling community seemed to have dismissed

*We can use average values of the parameters as returnedtigridmehical Pitman-Yor language model as well, the patame
values are similar and does not affect our results.
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Bayesian methods as theoretically nice but impracticahods. Our model is a nontrivial but direct general-
ization of the hierarchical Dirichlet language model thiatg state-of-the-art performance. We have shown
that with a suitable choice of priors (hamely the Pitman-jarcess), Bayesian methods can be competi-
tive with the best smoothing techniques. In fact we have shibwat one of the best smoothing techniques,
namely interpolated Kneser-Ney, is a great approximatce Bayesian model.

The hierarchical Pitman-Yor process is a natural genextidia of the recently proposed hierarchical
Dirichlet process (Teh et al. 2006). The hierarchical Dilet process was proposed to solve a clustering
problem instead and it is interesting to note that such atgeneralization leads us to a well-established
solution for a different problem, namely interpolated Kerekley. This indicates the naturalness of this class
of models. Both the hierarchical Dirichlet process and tieganchical Pitman-Yor process are examples
of Bayesian nonparametric processes. These have recentived much attention in the statistics and
machine learning communities because they can relax prglyigtrong assumptions on the parametric
forms of Bayesian models yet retain computational effigieand because of the elegant way in which they
handle the issues of model selection and structure leamigaphical models.

The hierarchical Pitman-Yor language model is only the §itsp towards comprehensive Bayesian solu-
tions to many tasks in natural language processing. Weienwisat a variety of more sophisticated models
which make use of the hierarchical Pitman-Yor process camuiieto solve many problems. Foremost in
our agenda are extensions of the current model that achetter lcross-entropy for language modelling,
and verifying experimentally that this translates intouset word error rates for speech recognition.
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A Some Additional Properties

A.1 Out-of-Vocabulary Words

Following the conventional approach in language modeliechad limited our vocabulary to the words that
appeared in our training and test corpora. When we do nothalased vocabulary, it is possible to extend
the hierarchical Pitman-Yor language model to handle presly unseen words. In fact, the only change
required is to make the global base distributt@nbe a distribution over all possible (seen or unseen) words.
The rest of the model, the predictive probabilities and tiference algorithms do not need to be altered.
An example of such & would be a hidden Markov model which emits finite sequencésttefrs (words).
Such a model for words have been used in, e.g. Vinciarelli. ¢€2@04).

A.2 Marginal Constraints

Chen and Goodman (1998) derived the lower-orgdegram estimates of interpolated Knerser-Ney by sat-
isfying the marginal word distribution constraints (6). \Blow that the hierarchical Pitman-Yor language
model givesm-gram estimates that also satisfy these constraints wieestténgth parameteés, = 0 for
all m < n. In fact, the constraints are satisfied for every seatingngement in the restaurants.

Letw’ andw be words andi’ be a word sequence of length— 2. The marginal constraints are

Pe™P(u'w) = Z PEMP(y'u’) PHPY (w) (18)

where P¢™P(u) = ZC“(’:‘U_' in our count notation. Plugging in the predictive probaia$ (16) into (18) and
simplifying, :

Cu'w-- = Z(Cw’u’w - dmtw’u’w) + dmtw’u“P:(ZY/u/)(w)

/UJ,

= Cu'w. — Amtaw + dmt.u/.PEPY(w)
0= —tuw + tu P (w)
t.u -
PIT/PY(’LU) _ buw Cu'w (19)

tow. Cu’-.
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wherec.y. = cure.. Since both count the number of occurrences of the word seguémn in the training
corpus, and we have used (14). As in interpolated KneseyiNeyactual lower ordet:-gram probabilities
used discounts the word countg,,. in (19) and interpolates with even lower ordergram probabilities
recursively.

A.3 Power-Law Discounting

Goldwater et al. (2006) noted that the numbers of customttirsgsaround tables in a Pitman-Yor process
with parameterg#, d) follows a power-law distribution with index + d. This is proposed as a general
mechanism for linguistic models to produce power-law thistions commonly seen in natural languages.
The Pitman-Yor process also produces another power-laaviomir that is useful in our situation: when
d > 0 the expected number of tables in a Pitman-Yor process saal@$c?) wherec is the number of
customers. This implies that the a priori amount of discewsied in the hierarchical Pitman-Yor language
model follows a power-law growth. This contrasts with abseldiscounting which assumes a fixed amount
of discount, but still grows slowly compared withand is consistent with the findings in Chen and Goodman
(1998) and Church and Gale (1991) that the amount of discghould increase slowly.

Here we will directly derive the)(c?) growth of the number of tables. Lefc) be the expected number
of tables occupied in a restaurant witltcustomers. Clearly(1) = 1. Givent(c), the expected number of
tables withc 4+ 1 customers is the expected number occupied by thecfagstomers plus the probability of
the last customer sitting at a new table. From (10) this gives

First we lower bound the growth ofc). dropping the last term in (20),

t(c+1)2<1+Qic>t(c):ﬁ<1+9ii> (21)

1=1

Taking logarithms, and the limit of large

. d ‘. d
> ~ - -~
log(t(c+1)) > ; log (1 + 0T Z) ; - + constant = dlog c + constant (22)
sincelog(1 + z) ~ x for smallz, and ;% ~ ¢ for largei. Exponentiating back, we getc) > O(c?). In
particulart(c) > constant for largec so the last term of (20) is negligible to begin with and we dode
thatt(c) = O(c?).

A.4 Joint Distribution over Seating Arrangements

In this appendix we give the joint distribution over seatargangement in the Chinese restaurant represen-
tation of the hierarchical Pitman-Yor language model exhji This helps to clarify what we mean when
we consider distributions over seating arrangement, aldevuseful in deriving the sampling schemes.

The seating arrangement in each restaurant consists ofithkar of customers, the partitioning of cus-
tomers into those sitting around each table, and the distedeat each table. From this we can derive other
information, for example the number of occupied tables oheastaurant and the number of customers eat-
ing each dish. Recall that restaurants indexed loprrespond to contexts, dishes indexedibgorrespond
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to words from the vocabulary,,,,» is the number of customers in restaurargating dishw at tablek while
tuw IS the number of tables serving digsh We use dots to denote marginal counts.

The probability for a particular seating arrangement caddsered by accounting for each event as each
customer visits her restaurant, sits at some table, antiedith assigned for the table. The probabilities of
events are given by the terms in (10). Collecting like terwes get

(O] i
P(seating arrangement= [ [ Go(w)® [ ——2% d‘“‘ H [T 11 = djy)teees— (23)

u [9|u\ (cu w k=1

where the numbe[n]l(f) is a generalized factorial:

[ = @) =1 (24)
(

o bT'(a/b+ c)
la],” =ala+b)-- (a+ (c—1)b) = TT(a/b)
The Gy term in (23) gives the probability of drawing each dish frafy, with ¢g,,. the number of times
dishw was drawn fromGy. The denominator in the fraction collects the denominatams in (10), while
the numerator collects terms corresponding to customtirsgsat new tables. Finally the last term collects
terms corresponding to customers sitting at already oecuaibles. Notice that the denominator contains a
0} term which may be problematic whép,| = 0. Since there is one such term each in the numerator and
denominator we can cancel them out and (23) is still wellraefi

forc>0 (25)

A.5 Joint Distribution over Numbers of Customers and Tables

Notice that as a function of the seating arrangement theigtiesl probabilities (16) of the hierarchical
Pitman-Yor language model depend only®y,. andt..,, the number of customers eating and the number
of tables serving each dishin each restaurant. Here we will derive a joint distribution ovet,,,. andt.,
only, summing out the specific seating arrangements of te@mers.

It is sufficient to restrict ourselves to only consider thatsg arrangements of those customers in a
particular restaurant eating a particular dish. Let there $uch customers angdtables, and let(c, ¢) be
the set of all seating arrangementscafustomers amongtables. Giveru € A(c,t) let ¢, be the number
of customers sitting around thd" table in the seating arrangementLet the discount parameter be simply
d. We show that

> H {er ™ = sy(e, ) (26)
a€A(c,t) k=1

wheres, are generalized Stirling numbers of typel, —d, 0) (Hsu and Shiue 1998), defined recursively
as:

sq(1,1) = 54(0,0) =1 27)
54(c,0) = 54(0,) =0 fore,t >0 (28)
sa(c,t) =0 fort > c (29)
sa(e,t) = sg(c—1,t —1) 4+ (¢ — 1 — dt)sq(c — 1,t) for0<t<c (30)
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Now summing over seating arrangements for a particulaaueshtu and a particular diskw in (23), and
using (26) for each paif,.,. andt.,,, this gives the following joint distribution ovet,,,.’s andty,,’s:

(tu

(0] diu
P((cuwr tuw * allw,w)) = [ Go(w) [ (C‘u‘ Hsdm (Caw-» tuw) (31)

a O

We will derive (26) by induction. The base cases in (27), @&) (29) are easy to verify; for example,
¢ customers cannot occupy> c tables sos,(c,t) = 0 whene > ¢. For the general case 6f< ¢ < ¢,
assume that (26) holds for all < ¢, ¢’ < ¢ with eitherc’ < cort’ < t. We split the sefd(c,t) into ¢t + 1
subsets depending on where the last customer sits:

e Let Ay(c,t) be the subset consisting of those seating arrangement® whiestast customer sits by
herself. Removing this customer leaves us with a seatirapgement of the other— 1 customers
aroundt — 1 tables. In fact it is easy to see that this operation of rempthe last customer is a
one-to-one correspondence between seating arrangemehyjéci t) andA(c — 1,¢ — 1). Further the
last customer does not contribute any term to (26).

e Fork/ =1,...,tlet Ax/(c,t) be the subset consisting of those seating arrangement® wieetast

customer sits at tablg’, and tablek’ has at least two customers. Removing this customer does not

make tablé:’ unoccupied and leaves us with a seating arrangement oftteeret 1 customers around
t tables, and similarly we get a one-to-one correspondenweeba A (c,t) andA(c—1,t). Further,
this last customer contributes a teegi — d to (26) for eactu € A(c — 1,t).

Expanding (26) into these+ 1 subsets, we get

> [[n-d

a€A(c,t) k=1
t t
Z H (cak 1) _|_ Z Z H [1—d (cak—1)
a€Ao(e,t) k=1 k=1 ac Ay (ct) k=1
t—1 0 t t—1 L
> n=di 3 3 (v —d) [[ 11— df
a€A(c—1,t—1) k=1 k'=1lacA(c—1 t) k=1
t t
= > Io-arte 3 Z cars —d) [T (1 =l
a€A(c—1,t—1) k=1 a€A(c—1,t) K’ k=1
=sq(c—1,t—1)+ (c — 1 —dt)sq(c — 1,t) (32)

Based on (31), it is possible to construct either samplinghods or approximate inference methods
to obtain posterior estimates foy,,.'s andty,,’s directly. We expect these to converge quickly and give
good estimates since it can be shown that (31) is log-conaa\gfunction jointly incy,,.’s andty,,’s. In
small preliminary experiments we have found loopy beligfgargation to converge within a few iterations.
However each iteration is computationally intensive ashegg, andt,, can potentially take on many
values, and it is expensive to compute the generalizedr§tinumberss,(c, t). As a result we chose to use
a sampling method based on (23), which converges very quicldur experiments as well.
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B Sampling for Seating Arrangements

We can obtain a Gibbs sampler for the hierarchical Pitmanidfaguage model directly using the Chinese
restaurant representation (i.e. using (23)). This is jngbdension of the Chinese restaurant franchise sam-
pler in Teh et al. (2006). The seating arrangement for eagthueant consists of: the number of customers,
the number of tables, the table at which each customer Bégs]ish served at each table and the dish each
customer eats. The Gibbs sampler only keeps track of whiadke tach customer sits at, while the other
pieces of information in the seating arrangement can benstacted from this. The sampler then iterates
over all customers present in each restaurant, resamgiag¢able at which each customer sits. This re-
sampling can be performed most easily using two routineRemoveCustomer routine that removes a
customer from the restaurant, and/sdCustomer routine which adds the customer back into the restau-
rant, sitting her at some random table using (10).

Unfortunately in case of a language model which needs todbeeiri on very large corpora, the above

Table 2: Operations for sampling seating arrangement ihigrarchical Pitman-Yor language model.

Function WordProbability(u,w):
Returns the probability?’!P¥(w) that the next word after contextwill be w (computes (16)).

u

e If u = 0 then returnGy(w).

Cuw»_d‘u‘tuw e‘u‘-l-d‘u‘tu.
e Else return NE RE

DishProbability(r (u) w).

Function AddCustomer(u,w):
Adds a new customer eating dighinto restaurantu.
e If u = 0 then incrementy,,..
e Else with probabilities proportional to:
max (0, Cuwk — d‘u|): sit customer ak™" table in restaurant (incrementcy,,y).
(64| + djyjtu.)DishProbability(7(u),w): sit customer at a new tablé®" serving dishw in restaurant,
(incrementt y,,, S€tcywinew = 1);
AddCustomer(r(u),w).

Function RemoveCustomer(u,w):
Removes a customer eating dislirom restaurantu.
e If u = 0 then decrementy,,..
¢ Else with probabilities proportional to:
Cuwi: TEMove a customer fromd" table in restaurant (decrement.y,,y,)-
e If as a result thé™ table becomes unoccupied thRemoveCustomer(r(u),w).

sampler requires far too much storage space since it negéprissent each customer explicitly. We use
an alternative sampler which requires much less storageesgiace it does not represent the actual table
at which each customer sits, but only the number of custosittiisg around each table in each restaurant
serving each dish.

The routines for sampling the seating arrangement arenedtiin Algorithm 2. Notice that in language
modelling we always know the dish served to each customecdsive always know the identity of each
word in our corpus), and the only piece of information we nteeidfer is which table, among those serving
that dish, did the customer sat at. The key insight to ourrdhgu is that given the dish a customer eats,
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the actual identity of the table at which a customer sits lmgffect on the likelihood of the data. Thus
during theAddCustomer routine, after we chose a table for the customer and increthennumber of
customers sitting there, we may discards the identity oftdide that the customer sits at. Then during
the RemoveCustomer routine we reconstruct the identity of the table at whicls thiistomer sits at by
sampling before removing this customer by decrementingntimeber of customers sitting at the table.

C Sampling for Parameters

In this appendix we give a simple to implement routine for glng the strength and discount parameters of
the hierarchical Pitman-Yor language model. The routirteaised on the joint distribution (23) over seating
arrangements. Cancelling out thg, terms from the numerator and denominator, this gives, whielshall
repeat here:

Ol + djul) d‘u‘

P(seating arrangement= [ [ Go(w)™ [ " H H [1— dpy =D (33)
w u [HIu\ + 1 W w k=1
Since we can evaluate (33) efficiently for different valuethe parameters and for different seating arrange-
ments, a variety of sampling routines can be used, e.g. [@issHastings or adaptive rejection Metropolis
sampling. Instead we used one based on auxiliary variabdsg easy to implement using basic opera-
tions (the only complex operation required is to sample feo@amma distribution). We do not believe this
sampling routine is better than others, and used it simptabse of familiarity.

Our auxiliary variable sampling routine assumes that eastodnt parameter has prior distribution
d,, ~ Beta(anm,, by, ) while each strength parameter has pfigr~ Gamma(a,,, 3,,). Notice that we have
assumed,,, > 0 (rather thard,,, > —d,;). This does not affect our results since it turns out the rhizde
insensitive tod,,,'s anyway. Wherr,,.. = 0,1 the denominator term in (33) is trivial. Whegy.. > 2 the
denominator is

1 [0 +1) 1 /1 Oju| 2
= = (1 — Tu ““dx (34)
g+ 1 TO o) T Jy ™
So we can introduce,, as an auxiliary variable with conditional distribution,
Ty ~ Beta(Oy + 1,cu. — 1) (35)
Whent,. > 2 the numerator is
tu.—1 tu.—1
i=1 i=1 yyui=0,1
S0 we can introduceg,,; as Bernoulli auxiliary variables with conditional diswifions,
Opul
Yui ~ Bernoulli <7> (37)
Oa) + djuji

whereBernoulli(p) is a binary variable taking valuée with probability p and 0 with probability 1 — p.
Finally the rightmost term in (33), wheR,. > 2, is

Cuwk—1 Cuwk—1
[1 - d‘ul]gcuwk_l) — H j — d‘ul H Z Zuwkj (1 _ d|u‘)l_ZUij (38)
jzl : Zuwkj—o 1
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S0 we can introducey,,; as Bernoulli auxiliary variables with conditional distutions,

-1
Zuwkj ~ Bernoulli (JJ_ d > (39)
u

Given sampled values of all the auxiliary variables, we caw sample the parameters according to their
conditional distributions,

tu -1 Cuwk — 1
dm ~ Beta Gm + Z Z yuz m + Z Z Zuwkj (40)
w:jul=m,ty.>2 =1 uw,k:lul=m,cuur>2 J=1
tu.—1
0, ~ Gamma | «,, + Z Z Yuis Bm — Z log xy (42)
u:ul=m,ty.>2 =1 u:|ul=m,ty.>2
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