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Abstract

We propose an approach for automatically rank-
ing structured documents applied to patent prior
art search. Our model, SVM Patent Ranking
(SVMPR) incorporates margin constraints that di-
rectly capture the specificities of patent citation
ranking. Our approach combines patent do-
main knowledge features with meta-score features
from several different general Information Re-
trieval methods. The training algorithm is an ex-
tension of the Pegasos algorithm with performance
guarantees, effectively handling hundreds of thou-
sands of patent-pair judgements in a high dimen-
sional feature space. Experiments on a homoge-
neous essential wireless patent dataset show that
SVMPR performs on average 30%-40% better than
many other state-of-the-art general-purpose Infor-
mation Retrieval methods in terms of the NDCG
measure at different cut-off positions.

1 Introduction
Patents protect intellectual property rights by granting the in-
vention’s owner (or his/her assignee) the right to exclude oth-
ers from making, using, selling, or importing the patented in-
vention for a certain number of years, usually twenty years, in
exchange for the public disclosure of the details of the inven-
tion. Like any property right, patents may be transacted (e.g.,
sold, licensed, mortgaged, assigned or transferred) and there-
fore they have economic value. For a patent to be granted,
the patent application must meet the legal requirements re-
lated to patentability. In particular, in order for an invention
to be patentable, it must benovel. Patent applications are
subject to official examination performed by a patent exam-
iner to judge its patentability, and in particular its novelty. In
most patent systemsprior art constitutes information that has
been made available to the public in any form before the filing
date that might be relevant to a patent’s claims of originality.
Previously patented inventions are to a great extent the most
important form of prior art, given that they have already been
through the patent application scrutiny.

The decision by an applicant to cite a prior patent is ar-
guably “tricky” [Lampe, 2007]: on one hand, citing a patent
can increase the chance of a patent being accepted by the

United States Patent and Trademark Office (USPTO), if it
shows a “spillover” from the previously granted patent; on
the other hand, citing a prior patent may invalidate the new
patent if it shows evidence of intellectual property infringe-
ment. As a result, some applicants choose to cite only re-
motely related patents, even if they are aware of other more
similar patents. It is thus part of the responsibility of the
USPTO examiner to add patent citations, beyond those pro-
vided by the applicant. This is important since more than
30% of all patent applications granted from 2001 to 2007 ac-
tually have zero applicant citations. However, this is also a
tedious procedure often resulting in human error, considering
the huge amount of patents to be possibly cited and the fact
that different examiners with different expertise backgrounds
are likely to cite different sets of patents for the same appli-
cation. Furthermore, while applicants tend to cite patents that
facilitate their invention, denoting to some extentspillovers
from a patent invention, examiners tend to cite patents that
block or limit the claims of later inventions, better reflecting
the patentscopeand therefore representing a better measure
of the private value of a patent.

We focus on the problem of automatically ranking patent
citations to previously granted patents: given a new patent
application, we are interested in identifying an ordered list
of previously granted patents that examiners and applicants
would consider useful to include as prior art patent citations.

In recent years several margin based methods for docu-
ment ranking have been proposed, e.g.,[Herbrichet al., 2000;
Nallapati, 2004; Caoet al., 2006; Joachims, 2002; Chapelleet
al., 2007; Yueet al., 2007]. For example, in the approach by
[Herbrichet al., 2000; Nallapati, 2004] the ranking problem
is transformed into a binary classification problem and solved
by SVM. [Cao et al., 2006] considers different loss func-
tions for misclassification of the input instances, applied to
the binary classification problem;[Joachims, 2002] uses click
through data from search engines to construct pair-wise train-
ing examples. In addition, many other methods learn to opti-
mize for a particular performance measure such as accuracy
[Morik et al., 1999], ROC area[Herschtal and Raskutti, 2004;
Carterette and Petkova, 2006], NDCG [Burgeset al., 2005;
2006; Chapelleet al., 2007] and MAP[Yueet al., 2007].

Note that the patent prior art search problem differs from
the traditional learning to rank task in at least two important
ways. Firstly, in learning to rank we measure the relevance



of query-document pairs, where a query is usually a short
sentence-like structure. In patent ranking, we are interested
in patent-patent relevance, where a patent is a full document
much longer in length than a normal query. We will also see
in the experiment section that treating a document as a long
query often results in inferior performance. Secondly, in the
case of patent prior art search, we have two entities, namely
the examiner and applicant, who decide what patents to cite
for a new application. As we mentioned above, the differ-
ences in their citation behaviors are not only a matter of level
of relevance, but also of strategy.

To address the various issues concerning patent prior art
search, we propose a large-margin based method, SVM
Patent Ranking (SVMPR), with constraint set directly captur-
ing the different importance between citations made by exam-
iners and citations made by applicants. Our approach com-
bines patent-based knowledge features with meta-score fea-
tures, based on several different ad-hoc Information Retrieval
methods. Our experiments on a real USPTO dataset show
that SVMPR performs on average 30%-40% better than other
state-of-the-art ad-hoc Information Retrieval methods on a
wireless technology patent dataset, in terms of the NDCG
measure. To the best of our knowledge, this is the first time
a machine learning approach is used for automatically gener-
ating patent prior art citations, which is traditionally handled
by human experts.

2 Numerical Properties of Patent Citations

From January 1, 2001 to the end of 2007, the USPTO has
granted 1,263,232 patents. The number of granted patents
(per year) is displayed in the left plot of Figure 1. We observe
a steady and slow increase in the number of patents granted
per year from 2001 (∼180,300 patents) to 2003 (∼187,132
patents), and then a steep decrease until the all-time low of
∼157,866 in 2005. Interestingly there is a sharp increase in
the number of patents in 2006, achieving the highest number
to date with∼196,593 patents.

There are obvious differences between examiner and ap-
plicant citations. (See e.g.,[Alcacer and Gittelman, 2006;
Sampat, 2004].) The average number of patent citations
added by the examiner and applicant is presented in the mid-
dle plot of Figure 1. The average number of patent citations
added by the examiner is relatively stable, ranging from 5.49
to 6.79 , while the average number of applicant citations in-
creases significantly from 8.69 in 2001 to 15.11 in 2007. In
addition, the distribution of patent citations by the applicant is
extremely uneven:∼372,372 (29.5%) patents have no appli-
cant citations, and∼19,388 (1.5%) patents have more than
100 applicant citations, while the number of patents with
more than 100 examiner citations is only 40. The rightmost
plot of Figure 1 compares the number of patents with no more
than 20 citations made by the examiner, versus that made by
the applicant. As clearly displayed, a large portion of the
patents have 0 applicant citation, and the mode number of
examiner citation is 3, with∼134,323 patents.

3 SVMPR for Patent Ranking
3.1 Some Notations
We denote the set of patents whose citations are of interest by
µ; and the set of patents that patents inµ cite, byν.

In addition,∀pi ∈ µ and∀pj ∈ ν, we define the citation
matrix C with entriesCij to be

Cij =





2 if patentpi cites patentpj by examiner
1 if patentpi cites patentpj by applicant
0 otherwise

The numerical values seem to be arbitrary here but the reason
for such choices will be clear in the next section. Moreover,
we denoteΦ(pi, pj) as the feature map vector constructed
from patentspi andpj . Details ofΦ are presented in section
3.3.

3.2 SVMPR Formulation
Our model is called SVM Patent Ranking (SVMPR). It is for-
mulated as the following large margin quadratic optimization
problem with the constraint set directly capturing the speci-
ficities of patent ranking:

OPTIMIZATION PROBLEM I

min
w,ξ≥0

λ

2
‖w‖2 +

1
|µ||ν|2

∑
pi∈µ

∑
pj∈ν

∑
pk∈ν

ξijk (1)

subject to:
∀pi ∈ µ,∀pj ∈ ν, ∀pk ∈ ν,

wT Φ(pi, pj)− wT Φ(pi, pk) ≥ ∆(pi, pj , pk)− ξijk

where

∆(pi, pj , pk) =
{

Cij − Cik, if Cij − Cik > 0
−∞, otherwise

Here∆(pi, pj , pk) is the loss function whenCij − Cik > 0
and the learnedw parameter scores less withΦ(pi, pj) than
Φ(pi, pk). The magnitude ofCij − Cik represents the sever-
ity of the loss: a mistake of ranking an uncited document
higher than a document cited by an examiner is more serious
than ranking the same uncited document higher than some
applicant cited document. IfCij − Cik ≤ 0, no loss will
be incurred, and we set∆(pi, pj , pk) to−∞ to invalidate the
constraint.

The objective function (1) is the usual minimization that
trades off between‖w‖2, the complexity of the model, and∑

ξijk , the upper bound of the total training loss defined by
∆. λ is the tradeoff constant.

The above formulation considers all tuples (i,j,k) to en-
sure that examiner cited patents are ranked higher than appli-
cant cited patents, which are again ranked higher than uncited
patents, by an absolute margin “1” using the linear discrimi-
nant scorewT Φ. The drawback is that it containsO(|µ||ν|2)
constraints, which poses a challenge for any reasonable train-
ing process. In fact, we do not need to include all tuples as
constraints, but rather only consider the extreme values of the
ranking scores of the three different citation groups (by exam-
iner, by applicant and not cited). Therefore, we can construct
the following alternative formulation:



2001 2002 2003 2004 2005 2006 2007*
1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

5

Year

N
um

be
r 

of
 U

S
P

T
O

 G
ra

nt
ed

 P
at

en
ts

2001 2002 2003 2004 2005 2006 2007
4

6

8

10

12

14

16

Year

A
ve

ra
ge

 N
um

be
r 

of
 C

ita
tio

n 
M

ad
e 

pe
r 

P
at

en
t

 

 
Examiner
Applicant

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Number of Citations

N
um

be
r 

of
 P

at
en

ts

 

 
Examiner
Applicant

Figure 1: USPTO Patent Data. Left panel: patents per year; Middle panel: yearly citations by examiner and applicant; Right
panel: frequency of examiner citations and applicant citations.

OPTIMIZATION PROBLEM II (SVMPR)

min
w,ξ≥0

λ

2
‖w‖2 +

1
2|µ|

∑
pi∈µ

(ξ1
i + ξ2

i ) (2)

subject to:∀pi ∈ µ

min
pj∈{p:p∈ν∧Cip=2}

wT Φ(pi, pj) −

max
pk∈{p:p∈ν∧Cip=1}

wT Φ(pi, pk) ≥ 1− ξ1
i

min
pj∈{p:p∈ν∧Cip=1}

wT Φ(pi, pj) −

max
pk∈{p:p∈ν∧Cip=0}

wT Φ(pi, pk) ≥ 1− ξ2
i

It is not difficult to see that the constraint set of Optimiza-
tion Problem 1 implies the constraint set of Optimization
Problem 2, and vice versa, since in the latter case we made
the changes that the constraints only need to be satisfied at
the extreme values. The advantage is obvious because this
leads to a convex quadratic optimization problem with only
O(|µ|) constraints. Our training algorithm will be based on
this formulation.

We note that if the distinction between examiner citations
and applicant citations is ignored, i.e,Cij=1 iff patent pi

cites pj , OPTIMIZATION PROBLEM I can be transformed
into the ordinal regression formulation in[Herbrich et al.,
2000] in a straightforward way. The ordinal regression for-
mulation would requireO(|µ|2|ν|2) constraints, treating each
Φ(pi, pj) as an individual example; orO(|µ||ν|2) constraints
if the examplesΦ(pi, pj) are first grouped bypi. In order
to differentiate examiner and applicant citations we applied
the SVM multi-rank ordinal regression in[Chu and Keerthi,
2005] to our transformed problem withO(|µ||ν|) examples.
Unfortunately the ordinal regression method could not han-
dle the scale of the problem, as it fails to complete the train-
ing process within 48 hours of runtime. In contrast, our ap-
proach, SVMPR, exploits the important distinction between
examiner and applicant citations, leading to the efficient for-
mulation and training process.

After the optimization phase, we use the linear discrimi-
nant functionwT Φ(p, q) to rank a new patentp against any
patentq to be considered for the prior art citation. Our tar-
get ranking forp is that all examiner-cited patents are ranked

higher than all applicant-cited patents, and all cited patents
are ranked higher than all patents not cited. We evaluate our
learned patent ranking with the target ranking by NDCG.

It is worthwhile to note that our approach is also related to
the margin based methods for label ranking[Shalev-Shwartz
and Singer, 2006], in which the goal is to learn an ordered
preference list of labels for each instance by learning local
weight vectors for each class label. In contrast, our approach
is to learn a global weight vector and differentiate class labels
(cited by examiner, or applicant, or not cited) by the linear
discriminant score, using the patent specific feature map vec-
tors.

3.3 Feature Map Construction
One major difference between assessing patent similarity and
query-document similarity, a traditional task in IR, is that
patents are full documents, which are usually significantly
longer than an average query. Of course we can treat one
patent as a long query, but this will not result in good perfor-
mance for our task as we will see in the experiment section.

A key step in our approach for the training and testing
procedure is the construction of a feature map for pairs of
patentspi andpj . Intuitively, Φ(pi, pj) represents informa-
tion we know about how similarpi andpj are. In our ap-
proach,Φ(pi, pj) is a column vector composed of two parts:
the domain knowledge patent pair features and the meta score
features.

Domain Knowledge Patent Pair Features
The domain knowledge features between patentspi andpj

come from the study of patent structure without any citation
information of eitherpi or pj . Here applicants and inven-
tors are used interchangeably. We have 12 binary features in
Φ(pi, pj) as follows:

1. Both patents are in the same US patent class;2. Both
patents have at least one common inventor (defined by same
surname and first name);3. Both patents are from the same
assignee company (e.g., Microsoft, HP etc.);4. Both patents
are proposed by independent applicants (i.e, no assignee com-
pany); 5-7. First inventors of the two patents come from
the same city, state or country;8. pi’s patent date is later
thanpj ’s patent date (sopi can possibly citepj); 9-12. Both
patents made 0 claims, 1-5 claims, 6-10 claims or more than
10 claims.



Meta Score Features
We also make use of ad-hoc IR methods to score the patent
pairs. The scores are then changed into feature vector repre-
sentation inΦ.

We used the Lemur information retrieval package1 to ob-
tain the scores on patent pairs by six ad-hoc IR methods: TF-
IDF, Okapai, Cosine Similarity and three variations of the
KL-Divergence ranking method. Additional descriptions of
these methods can be found in Section 4.3. Each method is
essentially a scoring functionψ(q, d) ∈ Q ×D 7→ R where
Q is a set of queries andD is a set of documents whose rele-
vance to the queries is ranked by the real-valued scores. We
use the patents’ titles and abstracts available from the USPTO
patent database to obtain the meta score features.

We can view each sentence of a patentpi ∈ µ as a query
whose relevance with respect to a patentpj ∈ ν is to be
evaluated. LetS be the set of all sentences from all patents
in µ. We associate a binary vectorts of length 50 with each
s ∈ S according toψ(s, pj), following the representation in
[Yueet al., 2007]:

∀i ∈ {1, . . . , 50}, tsi =
{

1, ψ(s, pj) ≥ Pt(2(i− 1))
0, otherwise

wherePt(x) is thexth percentile of{ψ(q, pj) : q ∈ S}. The
ts vector is a binary representation of how relevant sentence
s is with respect topj , compared to all other sentences inS.
We repeat this procedure for all six ad-hoc IR methods and
concatenate the results to obtain the vectorts of length 300.

Let (s1, s2, . . . , smi) be themi sentences ofpi sorted in
non-increasing order according toψTF−IDF (s, pj). The
meta score feature vector betweenpi andpj is defined as

Ψ(pi, pj) =
mi∑

l=1

tsl

2(l−1)
(3)

In other words, Equation (3) is a weighted sum ofts from
each sentences, discounting sentences that are ranked as less
relevant exponentially byψTF−IDF . We also tried other al-
ternative weighting schemes, such as harmonic discounting,
but none of them performed empirically as well as the expo-
nential weight discount.

Hence, the feature mapΦ(pi, pj) for anypi ∈ µ andpj ∈ ν
is the concatenation of the 12 knowledge domain features and
Ψ(pi, pj), with a total of 312 features.

3.4 The Training Algorithm
The training algorithm of SVMPR that optimizes (2) with re-
spect tow is an extension of Pegasos[Shalev-Shwartzet al.,
2007]. Pegasos is an SVM training algorithm that alternates
between a gradient descent step and a projection step. It oper-
ates solely in the primal space, and has proven error bounds.
Our training algorithm is presented in Algorithm 1.

Among the four input parameters,µ andν have the same
meaning as in the previous sections;T is the total number of
iterations;λ is the constant in the SVMPR formulation. In
our experimentsT andλ are fixed at 200 and 0.1. In general

1Lemur Toolkit v4.5, copyright (c) 2008 University of Massa-
chusetts and Carnegie Mellon University

Algorithm 1 SVMPR Training Algorithm
1: Input: µ, ν, T, λ
2: w0=0
3: for t = 1, 2,. . ., T do
4: A=∅
5: for i = 1, 2, . . ., |µ| do
6: pe

min=argminpj∈ν∧Cij=2w
T
t−1Φ(pi, pj)

7: pa
max=argmaxpj∈ν∧Cij=1w

T
t−1Φ(pi, pj)

8: pa
min=argminpj∈ν∧Cij=1w

T
t−1Φ(pi, pj)

9: pn
max=argmaxpj∈ν∧Cij=0w

T
t−1Φ(pi, pj)

10: if wT
t−1(Φ(pi, p

e
min)− Φ(pi, p

a
max)) < 1 then

11: A=A ∪ (pe
min, pa

max)
12: end if
13: if wT

t−1(Φ(pi, p
a
min)− Φ(pi, p

n
max)) < 1 then

14: A=A ∪ (pa
min, pn

max)
15: end if
16: end for
17: wt=(1-1

t
)wt−1+ 1

λt|µ|
P

(pj ,pk)∈A(Φ(pi, pj)− Φ(pi, pk))

18: if ‖wt‖ > 1√
λ

then

19: wt= 1√
λ

wt
‖wt‖

20: end if
21: end for
22: Output:wt with the minimum validation error.

the performance is not sensitive to any reasonableλ setting.
Lines 6-9 calculate the extreme values of the discriminant
functionwT Φ(pi, pj) for patentspj grouped by their citation
relation withpi in orderO(|ν|). The setA is the set of vio-
lated constraints with respect toOPTIMIZATION PROBLEM
II, or equivalently the most violated constraints ofOPTI-
MIZATION PROBLEM I. Line 17 updatesw using the violated
constraints inA. This step is in orderO(|µ|) as|A| ≤ 2|µ|.
Lines 18-20 ensure the 2-norm ofw is not too big, which is
a condition used in[Shalev-Shwartzet al., 2007] to prove the
existence of an optimal solution. Line 22 outputs the finalw
parameter with the best validation set performance. The per-
formance measure is described in Section 4.2. In summary,
the runtime for each iteration isO(|µ||ν|), so the runtime for
SVMPR training isO(T |µ||ν|), given precalculated mapping
Φ.

Theoretically, we can show that the number of itera-
tions needed for SVMPR to converge to a solution of
accuracy ε from an optimal solution isÕ(R2

λε ) where
R=maxpi∈µ,pj∈ν 2‖Φ(pi, pj)‖. This result follows from
Corollary 1 of[Shalev-Shwartzet al., 2007]. In practice, our
training algorithm always completes within five hours of run-
time in the experiments.

4 Empirical Results
4.1 Dataset
For our experiments we focused on Wireless patents granted
by the USPTO. We started with data from 2001 since this is
the first year USPTO released data differentiating examiner
and applicant citations. We used a list of Essential Wire-
less Patents (EWP), a set of patents that are considered es-
sential for the wireless telecommunication standard specifi-
cations being developed in 3GPP – Third Generation Partner-



ship Project – and declared in the associated ETSI (European
Telecommunications Standards Institute) database. We con-
sidered three versions of the dataset: the original patent files,
the patent files after applying a Porter stemmer[Porter, 1980],
and the patent files after applying a Porter stemmer and com-
mon stopwords removal. The Porter stemmer reduces dif-
ferent forms of the same word to its original “root form”, and
the stopword removal eliminates the influence of common but
non-informative words, such as “a” and “maybe”, in the rank-
ing algorithms.

In our experiment,µ is the set of essential wireless patents
(2001-2007) that made at least one citation to any other patent
in 2001-2007, andν is the set of patents from 2001-2007 that
has been cited by any patent inµ. This dataset currently con-
tains∼197,000 patent-pair citation judgements. This is sig-
nificantly larger in scale than the OHSUMED dataset widely
used as a benchmark dataset for information retrieval tasks,
which contains 16,140 query-document pairs with relevance
judgement[Hershet al., 1994]. Our goal is to learn a good
discriminant functionwT Φ(pi, pj) for pi ∈ µ andpj ∈ ν.
We randomly split the patents inµ into 70% training, 10%
validation and 20% test set in 10 independent trials to assess
the performance of SVMPR and other benchmark methods.

4.2 Performance Measure
Given a patent inµ, we rank all patents inν by the score
of wT Φ, and evaluate the performance using the Normal-
ized Discounted Cumulative Gain (NDCG)[Järvelin and
Kekäläinen, 2000].

NDCG is a widely used performance measure for multi-
level relevance ranking problems. NDCG incorporates not
only the position but also the relevance level of a document
in a ranked list. In our problem, there are three levels of
relevance between any two patentspi and pj , as defined
by Cij , with 2 the most relevant and 0 the least. In other
words, if pj is cited by an examiner inpi, it has a relevance
value of 2, and so on. Given an essential wireless patentpi,
and a list of patentsπ from ν, sorted by the relevance scor-
ing function, the NDCG score forpi at positionk (k ≤ |ν|) is:

NDCGpi@k = Npi

k∑

j=1

2Ciπj − 1
log(j + 1)

(4)

Npi is the normalization factor so that the perfect ranking
function, where patents with higher relevance values are al-
ways ranked higher, will have a NDCG of 1. The final NDCG
performance score is averaged over all essential patents in the
test set.

4.3 Benchmark Methods
In this section, we briefly describe the six ad-hoc IR methods
implemented by the Lemur IR package (with default parame-
ters) that we used as benchmarks, and how they are used to
rank the patent citations. Given a queryq and a documentd,
each of the six methods can be described as a functionψ(q, d)
whose value, a real number, is often regarded as the measure
of relevance. The six methods are presented in Table 1. De-
tails of the last three KL-Divergence methods with different
smoothing priors can be found in[Zhai and Lafferty, 2001].

Table 1: Ad-hoc IR Methods as Benchmark

Method ψ(q, d)
TFIDF Term freq(q,d)*Inv. doc freq(q)
Okapi The BM25 method in[Robertsonet al., 1996]
Cossim Cosine similarity in vector space
KL1 KL-Divergence with a Dirichlet prior
KL2 KL-Divergence with a Jelinek-Mercer prior
KL3 KL-Divergence with an absolute discount prior

For each of the six ranking methods, given a wireless es-
sential patentpi ∈ µ, we score it with all patents inν, by
treatingpi as the query andν as the pool of documents. The
methods are evaluated using NDCG with the ranked patent
lists. Since we used the patent date feature in SVMPR which
effectively indicates that certain citations are impossible, to
be fair for the benchmark methods, we set all returned scores
ψ(pi, pj) from the benchmark methods to -∞, if patentpi is
an earlier patent thanpj .

4.4 NDCG Results
We evaluate the NDCG at positions 3, 5, 10, 20, and 50. The
NDCG score is averaged using 10 independent trials. For
SVMPR, the maximum number of iterations is 200, and the
test performance is evaluated when the best validation perfor-
mance is achieved within the iteration limit. For the bench-
mark methods, the performance is reported on the same test
sets as SVMPR. The results are presented in Figure 2. First
of all, SVMPR outperforms the benchmark methods by a sig-
nificant margin for all five positions. Referring to Table 2 for
the numerical comparison with the best performance of any
benchmark method, SVMPR outperforms the best result of
the benchmark methods by 16% to 42%. Among all bench-
mark methods, the KL-Divergence with Dirichlet prior scored
the highest, with more than 60% of all tests. Comparing the
different document pre-processing procedures, we found that
applying the Porter stemmer alone actually hurts the perfor-
mance of SVMPR by a significant 10% to 17% in comparison
to using the original patent documents, while the influence on
the benchmark methods is marginal. The overall best perfor-
mance is achieved with SVMPR when applying the stemming
and stopword removal, as highlighted in Table 2. All the per-
formance differences between SVMPR and the best alterna-
tive benchmark are significant by a signed rank test at the 0.01
level.

4.5 Results on A Random Dataset
We repeated the experiments on a non-homogeneous random
dataset to understand better whether SVMPR learns and ben-
efits from the internal structure of the patent setµ, and justify
our decision to group homogeneous patents together during
training.

We randomly sampled the setµ, and among the patents
cited by patents inµ, we randomly selected the setν, while
keeping the same number of patent-pair citation judgments
as before. We then repeated the experiments described above
with the Porter stemmer and stopword removal applied. Now
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Figure 2: NDCG Scores of SVMPR and Benchmark Methods
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Figure 3: NDCG Scores on A Random Dataset

instead of a structured essential patent set,µ is an arbitrary set
with little internal similarities among its members. Because
the patents inµ are quite unrelated, the patents they cite in
ν are non-homogeneous too. In other words, this is an eas-
ier task than the previous one since we are learning to rank
patents inν that are more distinguishable than before.

The results are presented in Figure 3. We observed that
the new performance differences among SVMPR and other
benchmark methods are largely indistinguishable (best alter-
native method performance is within 5% of SVMPR). This
follows from our intuition that the random dataset lacks a ho-
mogeneous citation structure to be learned, and the reason-
able methods would perform comparably well, although the
learned ranking is less informative as it only differentiates ir-
relevant patents.

5 Conclusion
In this paper we focused on the problem of patent prior art
search which is traditionally a tedious task requiring signif-
icant expert involvement. Our proposed approach based on
large margin optimization incorporates constraints that di-
rectly capture patent ranking specificities and ranks patent ci-
tations to previously granted patents by a linear discriminant
functionwT Φ, wherew is the learned parameter andΦ is the
feature map vector consisting of patent domain knowledge
features and meta score features. Experiments on a wireless
technology patent set show that SVMPR consistently outper-

forms other state-of-the-art general IR methods, based on the
NDCG performance measure.
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