
Proceedings of EMNLP 2011, Conference on Empirical Methods in Natural Language Processing, pages 82–90,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Unsupervised Mining of Lexical Variants from Noisy Text

Stephan Gouws∗, Dirk Hovy and Donald Metzler
stephan@ml.sun.ac.za, {dirkh, metzler}@isi.edu

USC Information Sciences Institute
Marina del Rey, CA

90292, USA

Abstract

The amount of data produced in user-
generated content continues to grow at a stag-
gering rate. However, the text found in these
media can deviate wildly from the standard
rules of orthography, syntax and even seman-
tics and present significant problems to down-
stream applications which make use of this
noisy data. In this paper we present a novel
unsupervised method for extracting domain-
specific lexical variants given a large volume
of text. We demonstrate the utility of this
method by applying it to normalize text mes-
sages found in the online social media service,
Twitter, into their most likely standard English
versions. Our method yields a 20% reduction
in word error rate over an existing state-of-the-
art approach.

1 Introduction

The amount of data produced in user-generated con-
tent, e.g. in online social media, and from machine-
generated sources such as optical character recog-
nition (OCR) and automatic speech recognition
(ASR), surpasses that found in more traditional me-
dia by orders of magnitude and continues to grow
at a staggering rate. However, the text found in
these media can deviate wildly from the standard
rules of orthography, syntax and even semantics and
present significant problems to downstream applica-
tions which make use of this ‘noisy’ data. In social

∗This work was done while the first author was a visiting
student at ISI from the MIH Media Lab at Stellenbosch Univer-
sity, South Africa.

media this noise might result from the need for so-
cial identity, simple spelling errors due to high in-
put cost associated with the device (e.g. typing on
a mobile phone), space constraints imposed by the
specific medium or even a user’s location (Gouws et
al., 2011). In machine-generated texts, noise might
result from imperfect inputs, imperfect conversion
algorithms, or various degrees of each.

Recently, several works have looked at the pro-
cess of normalizing these ‘noisy’ types of text into
more standard English, or in other words, to convert
the various forms of idiosyncratic spelling and writ-
ing errors found in these media into what would nor-
mally be considered standard English orthography.
Many of these works rely on supervised methods
which share the common burden of requiring train-
ing data in the form of noisy input and clean output
pairs. The problem with developing large amounts
of annotated training data is that it is costly and re-
quires annotators with sufficient expertise. However,
the volume of data that is available in these media
makes this a suitable domain for applying semi- and
even fully unsupervised methods.

One interesting observation is that these noisy
out-of-vocabulary (OOV) words are typically
formed through some semi-deterministic process
which doesn’t render them completely indiscernible
at a lexical level from the original words they are
meant to represent. We therefore refer to these OOV
tokens as lexical variants of the clean in-vocabulary
(IV) tokens they are derived from. For instance,
in social media ‘2morrow’ ‘2morow’ and ‘2mrw’
still share at least some lexical resemblance with
‘tomorrow’, due to the fact that it is mainly the

82



Figure 1: A plot of the OOV distribution found in Twit-
ter. Also indicated is the potential for using (OOV,most-
likely-IV) training pairs found on this curve for either
exception dictionary entries (the most frequent pairs),
or for learning lexical transformations (the long tail).
The threshold between the two (vertical bar) is domain-
specific.

result of a phonetic transliteration procedure. Also,
‘computer’ and ‘conpu7er’ share strong lexical
overlap, and might be the result of noise in the OCR
process.

As with many aspects of NLP, the distribution of
these OOV tokens resemble a power law distribution
(see Figure 1 for the OOV distribution in Twitter).
Thus, some words are commonly converted to some
OOV representation (e.g. domain-specific abbrevia-
tions in social media, or words which are commonly
incorrectly detected in OCR) and these account for
most of the errors, with the rest making up the long
tail. If one could somehow automatically extract a
list of all the domain-specific OOV tokens found in
a collection of texts, along with the most likely clean
word (or words) each represents, then this could play
a key role in for instance normalizing individual
messages. Very frequent (noisy, clean) pairs at the
head of the distribution could be used for extracting
common domain-specific abbreviations, and word-
pairs in the long tail may be used as input to learn-
ing algorithms for automatically learning the types
of transformations found in these media, as shown
in Figure 1.

For example, taking Twitter as our target domain,
examples for learning common exception pairs may
include ‘gf ’→‘girlfriend’. For learning types of lex-

ical transformations, one might learn from ‘think-
ing’→‘thinkin’ and ‘walking’→‘walkin’ that ‘ng’
could go to ‘n’ (known as ‘g-clipping’).

In this paper we present a novel unsupervised
method for extracting an approximation to such a
domain-specific list of (noisy, clean) pairs, given
only a large volume of representative text. We fur-
thermore demonstrate the utility of this method by
applying it to normalize text messages found in the
online social media service, Twitter, into their most
likely standard English versions.

The primary contributions of this paper are:

• We present an unsupervised method that mines
(noisy, clean) pairs and requires only large
amounts of domain-specific noisy data

• We demonstrate the utility of this method by in-
corporating it into a standard method for noisy
text normalization, which results in a signifi-
cant reduction in the word error rate compared
to the original method.

2 Training Pair Mining

Given a large corpus of noisy text, our challenge is to
automatically mine pairs of domain-specific lexical
variants that can be used as training data for a va-
riety of natural language processing tasks. The key
challenge is how to develop an effective approach
that is both domain-specific and robust to noisy cor-
pora. Our proposed approach requires nothing more
than a large “common English” corpus (e.g., a large
newswire corpus) and a large corpus of domain text
(e.g., a large corpus of Twitter data, a query log,
OCR output, etc.). Using these two sources of ev-
idence, the approach mines domain-specific lexical
variants in a fully unsupervised manner.

Before describing the details of our approach, we
first describe the characteristics that we would like
the mined lexical variants to have. First, the variants
should be semantically related to each other. Pairs
of words that are lexically similar, but semantically
unrelated are not of particular interest since such
pairs can be found using basic edit distance-based
approaches. Second, the variants should be domain-
specific. Variants that capture common English lexi-
cal variations (e.g., “running” and “run”) can be cap-
tured using standard normalization procedures, such

83



Figure 2: Flow chart illustrating our procedure for mining
pairs of lexical variants.

as stemming. Instead, we are interested in identify-
ing domain-specific variations (e.g., “u” and “you”
in the SMS and Twitter domains) that cannot eas-
ily be handled by existing approaches. Finally, the
variants should be lexically similar, by definition.
Hence, ideal variants will be domain-specific, lex-
ically similar, and semantically related.

To mine such variants we synthesize ideas from
natural language processing and large-scale text
mining to derive a novel mining procedure. Our pro-
cedure can be divided into three atomic steps. First
we identify semantically similar pairs, then we filter
out common English variants, and finally we rescore
the resulting list based on lexical similarity (see Fig-
ure 2). The remainder of this section describes the
complete details of each of these steps.

2.1 Identifying Semantically Similar Pairs

The first step of our mining procedure harvests se-
mantically similar pairs of terms from both the com-
mon English corpus and the domain corpus. There
are many different ways to measure semantic relat-
edness. In this work, we use distributional similar-
ity as our measure of semantic similarity. However,
since we are taking a fully unsupervised approach,
we do not know a priori which pairs of terms may
be related to each other. Hence, we must compute
the semantic similarity between all possible pairs of
terms within the lexicon. To solve this computa-
tionally challenging task, we use a large-scale all-
pairs distributional similarity approach similar to the
one originally proposed by Pasca and Dienes (Pasca
and Dienes, 2005). Our implementation, which
makes use of Hadoop’s MapReduce distributed pro-
gramming paradigm, can efficiently compute all-
pairs distributional similarity over very large corpora
(e.g., the Twitter pairs we use later were mined from
a corpus of half a billion Twitter messages).

Using a similar strategy as Pasca and Dienes, we
define term contexts as the bigrams that appear to
the left and to the right of a given word (Pasca and

Dienes, 2005). Following standard practice, the con-
textual vectors are weighted according to pointwise
mutual information and the similarity between the
vectors is computed using the cosine similarity met-
ric (Lin and Pantel, 2001; Bhagat and Ravichandran,
2008). It is important to note that there are many
other possible ways to compute distributional and
semantic similarity, and that just about any approach
can be used within our framework. The approach
used here was chosen because we had an existing
implementation. Indeed, other approaches may be
more apt for other data sets and tasks.

This approach is applied to both the common En-
glish corpus and the domain corpus. This yields two
sets of semantically (distributionally) similar word
pairs that will ultimately be used to distill unsuper-
vised lexical variants.

2.2 Filtering Common English Variants
Given these two sets of semantically similar word
pairs, the next step in our procedure is designed to
identify the domain-specific pairs by filtering out the
common English variants. The procedure that we
follow is very simple, yet highly effective. Given
the semantically similar word pairs harvested from
the domain corpus, we eliminate all of the pairs that
are also found in the semantically similar common
English pairs.

Any type of “common English” corpus can be
used for this purpose, depending on the task. How-
ever, we found that a large corpus of newswire ar-
ticles tends to work well. Most of the semanti-
cally similar word pairs harvested from such a cor-
pus are common lexical variants and synonyms. By
eliminating these common variants from the har-
vested domain corpus pairs, we are left with only
the domain-specific semantically similar word pairs.

2.3 Lexical Similarity-Based Re-ordering
The first step of our mining procedure identified
semantically similar term pairs using distributional
similarity, while the second identified those that
were domain-specific by filtering out common En-
glish variants. The third, and final, step of our pro-
cedure re-orders the output of the second step to ac-
count for lexical similarity.

For each word pair (from the second step of our
procedure), we compute two scores: 1) a seman-

84



tic similarity score, and 2) a lexical similarity score.
The final score of the pair is then simply the prod-
uct of the two scores. In this work, we use the
cosine similarity score as our semantic similarity
score, since it is already computed during the first
step of our procedure.

In the social media domain, as in the mobile tex-
ting domain, compressed writing schemes typically
involve deleting characters or replacing one or more
characters with some other characters. For example,
users might delete vowels (‘tomorrow’→‘tmrrw’),
or replace ‘ph’ with its phonetic equivalent ‘f ’,
as in ‘phone’→‘fone’. We make use of a subse-
quence similarity function (Lodhi et al., 2002) which
can still capture the structural overlap (in the form
of string subsequences) between the remaining un-
changed letters in the noisy word and the original
clean word from which it was derived. In this work
we use a subsequence length of 2, but as with the
other steps in our procedure, this one is purpose-
fully defined in a general way. Any semantic sim-
ilarity score, lexical similarity score, and combina-
tion function can be used in practice.

The output of the entire procedure is a scored list
of word pairs that are semantically related, domain-
specific, and lexically similar, thereby exhibiting the
characteristics that we initially defined as important.
We treat these (scored) pairs as pseudo training data
that has been derived in a fully unsupervised manner.
We anticipate that these pairs will serve as powerful
training data for a variety of tasks, such as noisy text
normalization, which we will return to in Section 3.

2.4 Example and Error Analysis
As an illustrative example of this procedure in prac-
tice, Table 1 shows the actual output of our system
for each step of the mining procedure. To generate
this example, we used a corpus of 2GB of English
news articles as our “common English” corpus and
a corpus of approximately 500 million Twitter mes-
sages as our domain corpus. In this way, our goal
is to identify Twitter-specific lexical variants, which
we will use in the next section to normalize noisy
Twitter messages.

Column (A) of the table shows that our distribu-
tional similarity approach is capable of identifying
a variety of semantically similar terms in the Twit-
ter corpus. However, the list contains a large num-

Rank Precision

P@50 0.90
P@100 0.88

Table 2: Precision at 50 and 100 of the induced exception
dictionary.

ber of common English variants that are not spe-
cific to Twitter. Column (B) shows the outcome of
eliminating all of the pairs that were found in the
newswire corpus. Many of the common pairs have
been eliminated and the list now contains mostly
Twitter-specific variants. Finally, Column (C) shows
the result of re-ordering the domain-specific pairs to
account for lexical similarity.

In our specific case, the output of step 1 yielded
a list of roughly 3.3M potential word variants. Fil-
tering out common English variants reduced this to
about 314K pairs. In order to estimate the quality of
the list we computed the precision at 50 and at 100
for which the results are shown in Table 2. Further-
more, we find that up to position 500 the pairs are
still of reasonable quality. Thereafter, the number of
errors start to increase noticeably. In particular, we
find that the most common types of errors are

1. Number-related: e.g. ‘30’ and ‘30pm’ (due to
incorrect tokenization), or ‘5800’ and ‘5530’;

2. Lemma-related: e.g. ‘incorrect’ and ‘incor-
rectly’; and

3. Negations: e.g. ‘could’ and ‘couldnt’.

Performance can thus be improved by making
use of better tokenization, lemmatizing words, fil-
tering out common negations and filtering out pairs
of numbers.

Still, the resulting pairs satisfy all of our de-
sired qualities rather well, and hence we hypothesize
would serve as useful training data for a number of
different Twitter-related natural language processing
tasks. Indeed, we will now describe one such possi-
ble application and empirically validate the utility of
the automatically mined pairs.

85



(A) (B) (C)

i↔ you u↔ you ur↔ your
my↔ the seeking↔ seeks wit↔ with
u↔ you 2↔ to to↔ too
is↔ was lost↔ won goin↔ going
a↔ the q↔ que kno↔ know
i↔ we f*ck↔ hell about↔ bout

my↔ your feat↔ ft wat↔ what
and↔ but bday↔ birthday jus↔ just

seeking↔ seeks ff↔ followfriday talkin↔ talking
me↔ you yang↔ yg gettin↔ getting

2↔ to wit↔ with doin↔ doing
am↔ was a↔ my so↔ soo
are↔ were are↔ r you↔ your
lost↔ won amazing↔ awesome dnt↔ dont
he↔ she til↔ till bday↔ birthday
q↔ que fav↔ favorite nothin↔ nothing
it↔ that mostly↔ partly people↔ ppl

f*ck↔ hell northbound↔ southbound lil↔ little
can↔ could hung↔ toned sayin↔ saying

im↔ its love↔ miss so↔ sooo

Table 1: Column (A) shows the highest weighted distributionally similar terms harvested from a large Twitter corpus.
Column (B) shows which pairs from (A) remain after filtering out distributionally similar word pairs mined from a
large news corpus. Column (C) shows the effect of reordering the pairs from (B) using a string similarity kernel.

3 Deriving A Common Exception
Dictionary for Text Normalization as a
Use Case for Mining Lexical Variants

As discussed in Section 1, these training pairs may
aid methods which attempt to normalize noisy text
by translating from the ill-formed text into stan-
dard English. Since the OOV distribution in noisy
text mostly resemble a power law distribution (see
Figure 1), one may use the highest scoring train-
ing pairs to induce ‘exception dictionaries’ (lists of
(noisy word)→(most likely clean word)) of the most
common domain-specific abbreviations found in the
text.

We will demonstrate the utility of our derived
pairs in one specific use case, namely inducing a
domain-specific exception dictionary to augment a
vanilla normalization method. We leave the sec-
ond proposed use-case, namely using pairs in the
long tail for learning transformation rules, for future
work.

We evaluate the first use case in Section 4.

3.1 Baseline Normalization Method

We make use of a competitive heuristic text nor-
malization method over Twitter data as a baseline,
and compare its accuracy to an augmented method
which makes use of an automatically induced excep-
tion dictionary (using the method described in Sec-
tion 2) as a first step, before resorting to the same
baseline method as a ‘back-off’ for words not found
in the dictionary.

As we point out in Section 5, there are various
metaphors within which the noisy text normalization
problem has been approached. In general, however,
the problem of noisy text normalization may be ap-
proached by using a three step process (Gouws et al.,
2011):

1. In the out-of-vocabulary (OOV) detection
step, we detect unknown words which are can-
didates for normalization

2. In the candidate selection step, we find the
weighted lists of most likely candidates (from
a list of in-vocabulary (IV) words) for the OOV
words and group them into a confusion set. The

86



confusion sets are then appended to one another
to create a confusion- network or lattice

3. Finally, in the decoding step, we use a lan-
guage model to rescore the confusion network,
and then find the most likely posterior path
(Viterbi path) through this network.

The words at each node in the resulting posterior
Viterbi path represents the words of the hypothe-
sized original clean sentence.

In this work, we reimplement the method de-
scribed in Contractor (2010) as our baseline method.
We next describe the details of this method in the
context of the framework presented above. See
(Gouws et al., 2011) for more details.

OOV DETECTION is a crucial part of the nor-
malizaton process, since false-positives will result
in undesirable attempts to ‘correct’ IV words, hence
bringing down the method’s accuracy. We imple-
ment OOV detection as a simple lexicon-lookup pro-
cedure, with heuristics for handling specific out-of-
vocabulary-but-valid tokens such as hash tags and
@usernames.

CANDIDATE SELECTION involves comparing
an unknown OOV word to a list of words which
are deemed in-vocabulary, and producing a top-K
ranked list with candidate words and their estimated
probabilities of relevance as output. This process re-
quires a function with which to compute the simi-
larity or alternatively, distance, between two words.
More traditional string-similarity functions like the
simple Lehvenshtein string edit distance do not fare
too well in this domain.

We implement the IBM-similarity (Contractor et
al., 2010) which employs a slightly more advanced
similarity function. It finds the length of the longest
common subsequence (LCS) between two strings s1

and s2, normalized by the edit distance (ED) be-
tween the consonants in each string (referred to as
the ‘consonant skeleton’ (CS)), thus

sim(s1, s2) =
LCS(s1, s2)

ED(CS(s1), CS(s2))

Finally, the DECODING step takes an input word
lattice (lattice of concatenated, weighted confusion
sets), and produces a new lattice by incorporating

the probabilities from an n-gram language model
with the prior probabilities in the lattice to produce a
reranked posterior lattice. The most likely (Viterbi)
path through this lattice represents the decoded clean
output. We use SRI-LM (Stolcke, 2002) for this.

3.2 Augmenting the Baseline: Our Method

In order to demonstrate the utility of the mined lex-
ical variant pairs, we first construct a (noisy, clean)
lookup table from the mined pairs. We (arbitrarily)
use the 50 mined pairs with the highest overall com-
bined score (see Section 2.3) for the exception dic-
tionary. For each pair, we map the OOV term (noisy
and typically shorter) to the IV term (clean and usu-
ally longer). The exception lookup list is then used
to augment the baseline method (see Section 3.1) in
the following way: When the method encounters a
new word, it first checks to see if the word is in the
exception dictionary. If it is, we normalize to the
value in the dictionary. If it is not, we pass the ill-
formed word to the baseline method to proceed as
normal.

4 Evaluation

4.1 Dataset

We make use of the Twitter dataset discussed in
Han (2011). It consists of a random sampling of 549
English tweets, annotated by three independent an-
notators. All OOV words were pre-identified and the
annotators were requested to determine the standard
form (gold standard) for each ill-formed word.

4.2 Evaluation Metrics

In this study, we are interested in measuring the
quality of our mined training pairs by evaluating its
utility on an external task: Using the training pairs
to induce a (noisy→clean) exception dictionary to
augment the working of a standard noisy text nor-
malization system. Hence, our focus is entirely on
the accuracy of the candidate selection procedure as
defined in Section 3.1. We compute this accuracy
in terms of the word error rate (WER), defined as
the number of token substitutions, insertions or dele-
tions one has to make to turn the system output into
the gold standard, normalized by the total number of
tokens in the output. In order to remove the possi-
ble bias introduced by our very basic OOV-detection

87



Method WER % Change
Naive baseline 10.7% –
IBM-baseline 7.8% −27.1%
Our method 5.6% −47.7%

Table 3: Word error rate (WER, lower is better) results
of our method against a naive baseline and the much
stronger IBM-baseline (Contractor et al., 2010). We also
show the relative change in WER for our method and the
IBM-baseline compared to the naive baseline.

mechanism, we evaluate the output of all systems
only on the oracle pairs. Oracle pairs are defined as
the (input,system-output,gold) pairs where input and
gold do not match. In other words, we remove the
possible confounding impact of imperfect OOV de-
tection on the accuracy of the normalization process
by assuming a perfect OOV-detection step.

4.3 Discussion of Results

The results of our experiments are displayed in Ta-
ble 3. It is important to note that the focus is not
on achieving the best WER compared to other sys-
tems (although we achieve very competitive scores),
but to evaluate the added utility of integrating an
exception dictionary which is based purely on the
mined (noisy, clean) pairs with an already competi-
tive baseline method.

The ‘naive baseline’ shows the results if we make
no changes to the input tokens for all oracle pairs.
Therefore it reflects the total level of errors that are
present in the corpus.

The IBM-method is seen to reduce the amount of
errors by a substantial 27.1%. However, the aug-
mented method results in a further 20.6% reduction
in errors, for a total reduction of 47.7% of all er-
rors in the dataset, compared to the IBM-baseline’s
27.1%.

Since we replace matches in the dictionary indis-
criminately, and since the dictionary comprise those
pairs that typically occur most frequently in the cor-
pus from which they were mined, it is important to
note that if these pairs are of poor quality, then their
sheer frequency will drive the overall system accu-
racy down. Therefore, the accuracy of these pairs
are strongly reflected in the WER performance of
the augmented method.

Noisy Clean % Oracle Pairs
u you 8.7
n and 1.4
ppl people 1
da the 1
w with 0.7
cuz because 0.5
y why 0.5
yu you 0.5
lil little 0.5
dat that 0.5
wat what 0.4
tha the 0.4
kno know 0.4
r are 0.4

Table 4: Error analysis for all (noisy, clean) normaliza-
tions missed by the vanilla IBM-baseline method, but in-
cluded in the top-50 pairs used for constructing the ex-
ception dictionary. We also show the percentage of all
oracle pairs that are corrected by including each pair in
an exception dictionary.

Table 4 shows the errors missed by the IBM-
baseline, but contained in the mined exception dic-
tionary. We also show each pair’s frequency of oc-
currence in the oracle pairs (hence its contribution
towards lowering WER).

5 Related work

To the best of our knowledge, we are the first to ad-
dress the problem of mining pairs of lexical variants
from noisy text in an unsupervised and purely sta-
tistical manner that does not require aligned noisy
and clean messages. To obtain aligned clean and
noisy text without annotated data implies the use
of some normalizing method first. Yvon (2010)
presents one such approach, where they generate ex-
ception dictionaries from their finite-state system’s
normalized output. However, their method is still
trained on annotated training pairs, and hence su-
pervised. A related direction is ‘transliteration min-
ing’ (Jiampojamarn et al., 2010) which aims to au-
tomatically obtain bilingual lists of names written in
different scripts. They also employ string-similarity
measures to find similar string pairs written in differ-
ent scripts. However, their input data is constrained

88



to Wikipedia articles written in different languages,
whereas we impose no constrains on our input data,
and merely require a large collection thereof.

Noisy text normalization, on the other hand, has
recently received a lot of focus. Most works con-
strue the problem in the metaphors of either ma-
chine translation (MT) (Bangalore et al., 2002;
Aw et al., 2006; Kaufmann and Kalita, 2010),
spelling correction (Choudhury et al., 2007; Cook
and Stevenson, 2009), or automated speech recog-
nition (ASR) (Kobus et al., 2008). For our evalua-
tion, we developed an implementation of Contrac-
tor (2010) which works on the same general ap-
proach as Han (2011).

6 Conclusions and Future Work

The ability to automatically extract lexical variants
from large noisy corpora has many practical appli-
cations, including noisy text normalization, query
spelling suggestion, fixing OCR errors, and so on.
This paper developed a novel methodology for au-
tomatically mining such pairs from a large domain-
specific corpus. The approach makes use of distri-
butional similarity for measuring semantic similar-
ity, a novel approach for filtering common English
pairs by comparing against pairs mined from a large
news corpus, and a substring similarity measure for
re-ordering the pairs according to their lexical simi-
larity.

To demonstrate the utility of the method, we used
automatically mined pairs to construct an unsuper-
vised exception dictionary, that was used in con-
junction with a string similarity measure, to form
a highly effective hybrid noisy text normalization
technique. By exploiting the properties of the power
law distribution, the exception dictionary can suc-
cessfully correct a large number of cases, while the
heuristic string similarity-based approach handled
many of the less common test cases from the tail of
the distribution. The hybrid approach showed sub-
stantial reductions in WER (around 20%) versus the
string similarity approach, hence validating our pro-
posed approach.

For future work we are interested in exploiting the
(noisy, clean) pairs contained in the long tail as input
to learning algorithms for acquiring domain-specific
lexical transformations.

Acknowledgments

Stephan Gouws would like to thank MIH Holdings
Ltd. for financial support during the course of this
work.

References

A.T. Aw, M. Zhang, J. Xiao, and J. Su. 2006. A phrase-
based statistical model for SMS text normalization. In
Proceedings of the COLING/ACL on Main conference
poster sessions, pages 33–40. Association for Compu-
tational Linguistics.

S. Bangalore, V. Murdock, and G. Riccardi. 2002.
Bootstrapping bilingual data using consensus transla-
tion for a multilingual instant messaging system. In
Proceedings of the 19th International Conference on
Computational Linguistics Volume 1, pages 1–7. As-
sociation for Computational Linguistics.

Rahul Bhagat and Deepak Ravichandran. 2008. Large
scale acquisition of paraphrases for learning surface
patterns. In Proceedings of ACL-08: HLT, pages 674–
682, Columbus, Ohio, June. Association for Computa-
tional Linguistics.

M. Choudhury, R. Saraf, V. Jain, A. Mukherjee, S. Sarkar,
and A. Basu. 2007. Investigation and modeling of the
structure of texting language. International Journal on
Document Analysis and Recognition, 10(3):157–174.

D. Contractor, T.A. Faruquie, and L.V. Subramaniam.
2010. Unsupervised cleansing of noisy text. In
Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, pages 189–196.
Association for Computational Linguistics.

P. Cook and S. Stevenson. 2009. An unsupervised model
for text message normalization. In Proceedings of the
Workshop on Computational Approaches to Linguis-
tic Creativity, pages 71–78. Association for Computa-
tional Linguistics.

S. Gouws, D. Metzler, C. Cai, and E. Hovy. 2011. Con-
textual Bearing on Linguistic Variation in Social Me-
dia. In Proceedings of the ACL-11 Workshop on Lan-
guage in Social Media. Association for Computational
Linguistics.

Bo Han and Timothy Baldwin. 2011. Lexical Normal-
isation of Short Text Messages: Makn Sens a #twit-
ter. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Compu-
tational Linguistics.

S. Jiampojamarn, K. Dwyer, S. Bergsma, A. Bhargava,
Q. Dou, M.Y. Kim, and G. Kondrak. 2010. Translit-
eration generation and mining with limited training

89



resources. In Proceedings of the 2010 Named Enti-
ties Workshop, pages 39–47. Association for Compu-
tational Linguistics.

M. Kaufmann and J. Kalita. 2010. Syntactic Normaliza-
tion of Twitter Messages. In International Conference
on Natural Language Processing, Kharagpur, India.

C. Kobus, F. Yvon, and G. Damnati. 2008. Normal-
izing SMS: are two metaphors better than one? In
Proceedings of the 22nd International Conference on
Computational Linguistics-Volume 1, pages 441–448.
Association for Computational Linguistics.

Dekang Lin and Patrick Pantel. 2001. Discovery of in-
ference rules for question-answering. Nat. Lang. Eng.,
7:343–360, December.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,
and C. Watkins. 2002. Text classification using string
kernels. The Journal of Machine Learning Research,
2:419–444.

Marius Pasca and Pter Dienes. 2005. Aligning needles
in a haystack: Paraphrase acquisition across the web.
In Robert Dale, Kam-Fai Wong, Jian Su, and Oi Yee
Kwong, editors, Natural Language Processing IJC-
NLP 2005, volume 3651 of Lecture Notes in Computer
Science, pages 119–130. Springer Berlin / Heidelberg.

A. Stolcke. 2002. SRILM-an extensible language mod-
eling toolkit. In Proceedings of the International Con-
ference on Spoken Language Processing, volume 2,
pages 901–904. Citeseer.

F. Yvon. 2010. Rewriting the orthography of sms mes-
sages. Journal of Natural Language Engineering,
16(02):133–159.

90


