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1.1.  INTRODUCTION

This chapter introduces some models of how information may be represented and
processed in a highly paralle) computer like the brain. Despite the staggering
amount of information avaitable about the physiology and anatomy of the brain,
very little is really known about the nature of the higher-level processing per-
formed by the nervous system. There is no established theory about the kinds of
neural activity that occur when we hear a sentence, perceive an object, or form a
plan, though data on many fascinating and significant bits and pieces is now
available. .

An obvious feature of the brain is its parallelism (see Section 1.5 for a review
of the neurophysiological evidence). This parallelism is a major reason for inves-
tigating computational models other than the conventional serial digital computer
in our attempts to understand how the brain processes information. The concept
of parallelism may need some explanation. A system which is parallel at one level
of description may well be serial at a higher level. At the level of individual
motor neurons, for example, the human motor system is highly parallel. The
simultaneous actions of many muscles are necessary for coordinated movement.
If, however, the pattern of activity of the whole set of motor neurons is used as a
unit of description, the system is strictly serial because only one pattemn can exist
at a time. Similarly, in a conventional digital computer many electrical events
occur in parallel when each machine instruction is executed, but the instructions,
considered as units, are executed sequentially. The transition between the paral-
lel and serial levels of description thus occurs at the level of the individual
machine instructions. _
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If many computational operations are performed at once, a system can obvi-
ously operate faster. However, one part does not know what the other parts are
currently doing because the parts operate simultaneously. This causes serious
problems of coordination and lateral information transfer from one part of a
parallel system to another. These problems have made it hard to program general
purpose computers that execute many instructions at once though numerous
special purpose systems have been developed for specific tasks.

We feel that problems of coordination and lateral information transfer are not
merely irritating; they are fundamental. They determine the kinds of operations
that are easy to implement at the level at which a machine is parallel. These may
be much richer than the rather restricted set of primitive operations of a conven-
tional digital computer. For example, the state of activity of a large set of
feature-detecting units can determine the state of activity of another large set of
units in a single step in a parallel machine.

The idea that a parallel machire may have a different and richer and much
more powerful set of primitive operations constrasts sharply with the idea that
parallelism should be added on top of existing programming techniques by pro-
viding message-passing facilities that allow communication between multiple
processors, each of which is a fully fledged conventional computer. The latter
approach is obviously a sensible way of extending existing computational tech-
niques, and it is currently under investigation within computer science, but it
takes for granted the primitive operations of a conventional digital computer,
which are probably an inapprepriate computational metaphor for the brain.

As an example of a task for which a conventional computer seems inappro-
priate, consider the problem of recalling an itern when given a partial description

of its properties or a description of its relationships to several other items (Nor-

man & Bebrow, 1979}, This appears to be a fairly basic human ability. If the
partial description is sufficient to identify an item uniquely, the item often just
‘‘comnes to mind,”’ with no awareness of any deliberate searching. It is relatively
easy to implement this kind of access to items in memory if all the partial
descriptions that might be used for access are known in advance. However,
human memory does not seem to require this. We can access items from partial
descriptions that have not been anticipated. This kind of memory, in which the
partial contents of an item can be used to retrieve the remaining contents, is
called content-addressable memory. It is a desirable thing to have, but it is very
hard to implement in a conventional digital computer (a von Neumann machine).
The reason for the difficulty is that the von Neumann machine accesses items in
memory by using their addresses (locations in memory), and it is hard to discover
the address of an item from an arbitrary subset of its contents. As we shall see, if
we abandon the idea that the basic method of retrieving items is via their ad-
dresses, we can use parallel computation in systems of interconnected simple
elements to achieve content-addressable memory.
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Von Neumann machines are based on the idea of a sequential central pro-
cessor operating on the contents of a passive memory in which data-structures
simply wait around to be inspected or manipulated. This conception of memory
is shared by most psychologists and is embodied in the spatial metaphors we use
for talking about the process of remembering. We think of memory as if it were a
filing cabinet or warehouse, and the act of recalling an item is referred to as
finding it in memory as if each item were in a specific place and could be found
only by going to that place. How else could it be?

The memory models presented in this volume assume a very different basic
architecture. Instead of a sequential central processor and a passive memory there
is a large set of interconnected, relatively simple processors, which interact with
one another in parallel via their own specific hardware connections. Changes in
the contents of memory are made by forming new connections or changing the
strengths of existing ones. This overcomes a major bottieneck in von Neumann
machines, which is that data-structures or programs in memory can only have
effects via the sequential central processor, so that it is impossible to mobilize a
large quantity of knowledge simultaneously.

A consequence of replacing passive memory by simultaneously interacting
units is that the addressing mechanism is replaced by specific hardware connec-
tions. The addressing mechanism allows the central processor of a von Neumann
machine to access any piece of data, provided the address is known. It thereby
allows complex data-structures to be stored in memory by simply making one
piece of a data-structure contain the address of the next piece. If one piece
contains several addresses, branching structures like trees can easily be stored.
Such structures appear to be essential for the implementation of complex repre-
sentations and computational procedures.

Feldman (Chapter 2, this volume) and Fabhlman (Chapter 5, this volume)
propose that addresses be replaced by specific hardwaie connections. Some of
the other models in this volume also replace addresses by hardware connections
but in a less direct manner. They do not replace a single address by a single
hardware connection because they do not use the individual processing units to
correspond to items in memory. Instead, items correspond to patterns of activity
distributed over many simple hardware units, and the ability of an address to link
one item to another is implemented by modifying the strengths of many different
hardware connections in such a way that the pattern of activity corresponding to
one item can cause the pattern corresponding to the other item (see Section 1.2.3
for details).

The idea that a pattern of activity could represent an item requires some
explanation. We use the term distributed representation to refer to this way of

- coding information. Although the concepts of distributed representation and

parailelism are quite different, distributed representation appears to be a particu-
larly appropriate method of coding for a highly paraliel machine.
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Suppose we wish to build a system that can recognize any one of a number of
items. One approach to this problem would be to have one internal unit that
would respond when and only when its particular item occurred. An alternative
approach would be to have each internal unit respond to many of the possibie
input items. Provided only one item is presented at a time, it will be represented
by the pattern of activity of the internal units even though no individual unit
uniquely specifies the input item. Thus a pattern of activity becomes the basic
representation of the item. There is no necessary loss of precision or ability to
discriminate; it is just that intenal operations are now performed in a different
way. Instead of a single unit causing particular effects on other internal repre-
sentations or on motor output the pattern of activity of many units causes those
effects. It is unnccessary to have a separate higher-level unit that detects the
pattemn of activity and causes the appropriate effects.

1.2. SYSTEMS OF SIMPLE UNITS WITH MODIFIABLE -
INTERCONNECTIONS

This section describes some models in which changes in the strengths of the
interconnections in a system of simple units are used to implement category
formation and associative memory. Before introducing these models, however,
we outline the ideas about ‘‘formal’’ neurons that were largely responsible for the
choice of the particular kind of simple unit used in these models.

1.2.1. The McCulloch-Pitts Neuron

Probably the best known, and arguably the most influential model of the nervous
system, even today, is that proposed in 1943 by Warren McCulloch and Walter
Pitts. They approximated the brain as a set of binary elements—abstract neurons
which were either on or off—that realized the statements of formal logic. To
quote the first sentence of the abstract of their paper (McCulloch & Pitts, 1943):

Because of the *‘all-or-none’’ character of nervous activity, neural events and the
relations between them can be treated by means of propositional logic. It is found
that the behavior of every net can be described in these terms . . . and that for any

logical expression satisfying certain conditions, one can find a net behaving in the
fashion it describes [p. 115].

One finds in their paper much of the machinery familiar to those who study
automata theory: binary elements, threshold logic, and quantized time where the
state of the system at the (# + 1)th moment reflects the states of the inputs to the
elements at the nth moment. The primary result of their paper was that nets of

such neurons were perfectly general in that they could realize any finite logical
expression.
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This model obviously has practical implications: put together such neurons
and you can make a powerful, general computing device. At about the time of the
1943 paper, exactly such a project was underway at the Moore School of En-
gineering of the University of Pennsylvania. This paper on brain modeling had an
influence on John von Neumann when he sketched the logical outline of the first
modern digital computer—the first machine with a program stored with the data.

In a famous technical report, von Neumann (1945) said:

Every digital computing device contains certain relay like elements with discrete
equilibria. Such an element has two or more distinct states in which it can exist
indefinitely. . . . The relay action manifests itself in the emission of stimuli by the
element whenever it has itself received a stimulus of the type indicated. .., It is
worth mentioning that the neurons of the higher animals are definitely elements in
the above sense. . .. Following W. Pitts and W. S. McCulloch . . . we ignore the
more complicated aspects of neuron functioning. .. [p. 360].

1.2.2. Perceptrons

The perceptron, originally developed by Rosenblatt, and related models such as
MADALINE and ADALINE developed by Widrow were intensively studied in
the early 1960s. These models have now become part of the lore of pattern
recognition, and good short introductions are available in many books on pattern,
recognition, as well as in the classic books, Learning Machines (Nilsson, 1963)
and Perceptrons (Minsky & Papert, 1969).

The basic element in these devices is the threshold togic unit (TLU), which is
a particular type of McCulloch-Pitts neuron. The TLU has a number of inputs,
say n, each associated with a real-valued weight that plays a role analagous to the
“'synaptic strength”” of inputs to a neuron. The total input to the TLU is an
n-dimensional vector, a pattern of activity on its individual input lines. Bach
component of the input vector is multiplied by the weight associated with that
input Iine and all these products are summed. The unit gives an output of 1 if this
sum exceeds its threshold. Otherwise it gives an output of 0. More formally, the
output is the truth value of the expression

sfiwi> 6 (1-1)
i

whete £; is the activity on the ith input line and w is its weight, and @ is the
threshold.

A TLU divides the n-dimensional space of possible input vectors into two
regions, separated by a hyperplane, one region being associated with an out-
put of 1 and the other with an output of 0. The values of the weights determine
the orientation and position of the hyperplane.

The Perceptron Convergence Procedure. Threshold logic units were ad-
vanced as adaptive pattern recognition devices (Rosenblatt, 1961; Nilsson,
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1965). In the standard perceptron scheme each input line to the TLU is the output
of a feature detector that responds to the presence of some feature i an input
array. A ‘perceptron can be made to discriminate instances of a particular class of
pattern in the input array by associating appropriate weights with the feature
detectors, provided any set of appropriate weights exists.

The main reason for the interest in perceptrons during the 1960s was the
existence of an automatic procedure for finding a set of weights that would cause
the perceptron to respond if and only if a pattern of a particular type was present
in the input array. The procedure, known as the perceptron convergence proce-
dure, works by adjusting the existing set of weights whenever those weights
would cause the perceptron to give the wrong response to the current input array.
If the perceptron would respond with a 1 and the pattern is actually absent, then
all the weights of the active features are reduced equally, and the threshold is
raised by the same amount. If the perceptron would respond with 2 O when the
pattern is actually present, then all the weights of the active features are rajsed
and the threshold is reduced. Some freedom is allowed in the magnitude of the
alterations. One strategy is to make all alterations be of a small constant size.
Another method is to make the alterations on each trial just large enough to
ensure that the perceptron responds correctly to the current input pattern. If the
feature detectors have real-valued levels of activity rather than just being on or
off, the alterations in the weights must be proportional to the activity levels of the
corresponding feature detectors. Proofs that the perceptron convergence proce-
dure works, and precise statements of its conditions. can be found in Nilsson
(1965} and Minsky and Papert (1969).

The Limitations of Perceptrons. The perceptron convergence procedure
cannot be applied to devices in which there is more than one layer of modifiable
weights between the input array and the decision unit. The reason for this restric-
tion is that there is no good way of deciding which layer of weights ought to be
changed when a muitilayered device makes an error. It is clear that devices with
multiple layers of modifiable weights are more like the brain and are capable of
more sophisticated discriminations, but they lack the automatic learning proce-
dure which is the most important characteristic of the simple perceptron.

Certain limitations of the perceptron were apparent almost from the outset, It
is incapable of performing the basic logical operation of exclusive-or. There is no
way of setting the weights and the threshold of a perceptron with two inputs so
that it will respond positively in just those cases where exactly one input is
active. Despite this strong resiriction, many people thought that perceptrons were
a promising model of perception until Minsky and Papert (1969) produced a
rigorous analysis of the limitations of perceptrons as pattern recognition devices.

One psychologically unrealistic aspect of the perceptron convergence proce-
dure is that no learning occurs when the response is correct. Satisfactory
psychological learning models incorporate what might be called “‘positive’’
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Jearning; that is, learning when the organism is correct =m=m_:< appears to be
more important than learning when a mistake is made. mxﬁsm_ﬁw experimental
evidence supports this claim. Statistical learning theory behaves this way A.mmn the
collection of papers in Neimark & Estes, 1967). In the simpler versions .o_u
statistical learning theory, learning involves only having a correct response in-
crease the probability of making that response in the future.

The Future of Perceptrons. Human perception is an extremely no_d_inx
activity involving multiple interacting representations at many levels. A m_::.u_n
perceptron is clearly an inadequate model. A similar but more complex n_oq:nm
involving many layers of perceptrons and coilateral and recurrent oo__:..wo:c:m
may be capable of perception, but there is no known vno.nmaca for learning the
weights. A common conclusion has been that devices like w.mﬂomn:o—._m are not
worth studying. This is may be correct if perceptrons are considered 33»;_« as
learning devices, but there is an alternative approach that has received :E.n
attention unti} recently (Hinton, Ch. 6, this volume; Minsky, 5.3.. m.cmS. ﬁ:m
new approach is to consider how computation might be organized within .ma.nSnn
consisting of many interconnected perceptronlike units. H_._o nBﬁ:wEm is on
programming and on ways of representing knowledge and implementing proce-
dures rather than on finding a magic formula that will enable the machine to
organize itself. The problem of how the machine leams is left until we have a
clearer idea of what kind of organization needs to be learned.

1.2.3. Matrix Models of Associative Memory

By associative memory we mean the ability to get from one internal representa-
tion to another or from one part of a complex representation to the remainder.
Association has been known to be a prominent feature of human memory since
Aristotle. J. R. Anderson and Bower (1973) give a good historic review of the
subject in Chapter 3 of their seminal work, Human Associative Memory.

"~ Some associations seem to be relatively capricious and unstructured. Others
seem regular and predictable. William James (1890-1962) commented that: *‘It
will be observed that the object called up may bear any logical relation whatever
to the one which suggested it [p. 284].”"

We can easily associate random events, in fact, sophomores have been
learning random verbal associations since the dawn of experimental psychology.
Yet our awareness that black is the opposite of white or that Robert Kennedy was
John Kennedy’s brother are examples where two representations are connected
by a specific relationship. Selz (1927-1964), in criticizing n_mm.mmom_ as-
sociationism, pointed out that such specific associations are necessary if thought
is to be structured and directed rather than degenerating into a diffuse activation
of multiple items through nonspecific, pairwise associations. For example, a
system cannot retrieve the fact that the opposite of black is white on the basis of
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independent pairwise associations between black and white and between opposite
and white. Night is just as strongly associated with black and with opposite, so
simply combining pairwise effects would activate night just as strongly as white.
The specific association needs to be stored as an integrated unit that can be
aroused by the combined effects of black and opposite. The question of how
integrated units may be stored is treated in some of the subsequent chapters. Here
we simply show how pairwise associations could be stored in a parallel system
like the brain.

The physiological basis of memory is still something of a mystery. However,
there is considerable evidence suggesting that it depends on changes in connec-
tivity between units in a set of interconnected elements. Most neurophysiologists
accept that precisely specified changes in synaptic connectivity store memory
(see Sec. 1.5). There is clear evidence for this in invertebrates (Kandel, 1976).
The suggestion for precise modification that seems most commonly accepted
(without detailed physiological evidence, be it noted) is some variant of one
originally proposed by D. O. Hebb. Hebb’s (1949) suggestion was stated as
follows: ‘*When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells, such that A’s efficiency, as one of the cells firing
B, is increased [p. 62].”’

This suggestion predicts that cells will tend to become correlated in their
discharges, and a synapse acting like this is sometimes called a correlational
synapse. As formulated by Hebb, this model was not suitable for mathematical
development. However, in the past few years several groups have developed
similar types of parallel, distributed, assoctative memory which incorporate, in
various forms, a learning postulate somewhat like Hebb’s. Our feeling is that the
qualitative properties shown by existing systems of this kind may be typical of
more realistic and complex parallel, associative, distributed systems, so it is
worth developing one example of those models in a little detail, including some
simple numerical examples.

The models were specifically developed as brain models and as vmwnro_omwoa
models and have not been used within systems as complex as those studied in
artificial intelligence. However, attempts have been made to use the models to
generate testable predictions in psychology (Anderson, J. A., 1973).

More detailed explications of parts of these models are available in the origi-
nal sources and in other chapters in this volume. General references for this
section are Kohonen (1977), Willshaw, Buneman, and Longuet-Biggins (1969),
J. A. Anderson (1972, 1973, 1977), and Anderson, J. A., Silverstein, Ritz, and
Jones (1977). Holographic brain models, which in some respects are similar to
the models we describe are developed in Westlake (1970), Willshaw (1971),
Cavanagh (1972), and Pribram, Nuwer, and Baron (1974). Willshaw (Chapter 3,
this volume) discusses the relationship between holographic and matrix models.
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The basic notion in all these models is the idea of a state vector, that is, that
the currently active tepresentations within the system are coded as patterns of
activity simultaneously present on the set of elements that comprise the system.
Elements are generally considered to be neurons or very closely related to
neurons in these models, and activity is intended to correspond to firing fre-
quency or something very close to firing ?E:m:@ (e.g., deviation from spon-
taneous firing rate).

What we wish to store are associations cn?.mm: the state vectors that are the
basic entities of the system. But state vectors are not localized in a single place.
How can they be handled? Consider a quotation from Karl Lashley (1950)
discussed at greater length in Section 1.5. ‘‘From the numerical relations in-
volved, 1 believe that even the reservation of individual synapses for special
associative reactions is impossible. {pp. 478-479].”

Lashley argues that there are no privileged sites in the brain for the storage of
specific associations in isolation from each other. This idea seems superficially
unpromising because it scems that individual associations between pairs of com-
plicated state vectors would interfere with one another if every association used
the same set of synapses. To show that interference need not be a problem, we
sketch briefly a typical example of such a memory (see Anderson, J. A., 1970,
1972; Cooper, 1974). It is formally a simple linear associator. This maodel is very
similar to those of Willshaw (1971) and Kohonen (1977), which were arrived at
independently.

Suppose we have two sets of » neurons, « and 8, which are completely
convergent and divergent, that is, every neuron in o projects to every neuron in
B.'A neuron j in & is connected to newron i in B by way of a synapse with
strength a (i,j). Our first basic assumption, which we have partially justified
previously, is that we are primarily interested in the behavier of the set of
simultaneous individual neuron activities in a group of neurons. We stress pattern
of individual activities because our current knowledge of cortical physiology
suggests that cells are highly individualistic. For example, their activities at the
times of interest to us are typically not correlated with their neighbors, and cell
properties differ from cell to cell. We represent these large patterns as state
vectors with separate components. We also assume (for this particular model)
that these components can be positive or negative. This can occur because the
relevant physiological variable in some cases seems to be the deviation in firing
rate around a nonzero spontaneous activity level. In other parts of the brain, there
may be two separate systems for positive and negative transduction, as in the
mammalian visual system with paralle! sets of on-center and off-center cells.

Suppose a pattern of activity, f, occurs in «. Suppose another pattern of
activity, g, occurs in 8. Suppose that for some reason we wish to associate these
two arbitrary patterns. We assume a synaptic modification rule: To associate
pattern f in o with g in 8 we need to change the set of synaptic weights according
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to the product of presynaptic activity at a junction with the activity of the
postsynaptic cell. Note that this is information locally available at the junction.
Thus if £(;) is the activity of cell j ina, and g(i) of cell { in 3, then the change in
synaptic strength is given by a(i,j) = n £(j)g({). We see that this defines an n X
n mattix of changes AA of the form AA = n gf” where £7 is the transpose of f.
Suppose f is normalized, that is, f.f = 1, and also n = 1 so that AA = gf”.
Suppose that instead of one association we have m of them, (£, g,), (f2, E2), - - .,
(f.1, ), each having an incremental matrix AA; = g, f,”. Because there are
only the n? synapses in the system, the same synapses participate in storing all
the associations; that is, they are modified again and again. Suppose the overall
connectivity is given by

A=Y AA ‘ (1-2)
k

By the linearity that, we argue, holds at the synaptic junction, when a pattern
of activity, f,, occurs in e, it will cause a patiern of activity, g, in 8, which is
given by g = Af,. Suppose, for the sake of illustration, that patterns f, are
orthogonal. This means that for any pair of patterns £ £, = 0 for k + L. If one
of the f, appears at «r, the activity pattern of 8 is given by

g = }..x = >>?H_z. + M D>~Wk
t#k
= g + Y aff)
1k
= Bk (1-3)

Thus, for orthogonal ['s, the system stores random associations between vectors
perfectly. .

The capacity of a linear system containing » units and »n* connections is n
different associations if the input vectors are orthogonal. If they are nonortho-
gonal, interference effects become severe as the number of associations ap-
proaches n. Because the number of neurons in the human brain is of the order of
10! this need not be as serious a limitation as it may seem. A single region of the
cortex, Area 17, say, may have 50-100 million cells.

Clearly, the activity of a single snit or connection is of little importance to the
overall functioning of the system provided the vectors each involve the activity of
many different units. On the average, removal of a single unit or connection will
cause very slight degradation of many associations rather than complete destruc-
tion of a particular one. Wood (1978) has done a number of simulations demon-
strating this point,

There is an important property that this simple linear associator has in com-
mon with more complicated, nonlinear models that also use a matrix to transform
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a state vector. It and its variants are reconstructive. This means that the system
yields the entire output vector (or a close approximation to it) even if the input is
noisy or only partially present, or if there is noise in the memory matrix. This
reconstructive property can be used to make a content-addressable memory.
First, each of a number of vectors is associated with itself. Then when an
incomplete version of one of the stored vectors is used as the input, the output
will be a complete or nearly complete version of the vector. So, from any
sufficiently large part of the content, the system generates the whole content
without using anything like a separate address or entry in an index.

A spectacular example of reconstruction using a linear matrix model is given
by Kohonen (Chapter 4, this volume). He shows that the rest of a picture of a
face can be reconstructed when the system is presented with a part of the picture.
This is an impressive demonstration of the power of the mode! even if human
memory for faces works quite differently. The nonlinear models presented by
Willshaw, Hinton, and Anderson and Mozer (Chapters 3, 6, and 8, this volume)
show that under certain conditions the output vector can be reconstructed exactly
from an incomplete or degraded input.

A Numerical Example of the Linear Matrix Model., Table 1.1 shows three
input vectors that were chosen to be roughly orthogonal. A required output vector
for each of these input vectors was chosen; and the matrix of connection
strengths was determined by the three associations between an input and an

TABLE 1.1
The Input Vectors

Inpur Vectors”

Compeonent
Number f, [ A 1y
1 00 00 -.23
2 -.15 00 -.23
3 -.29 -.06 -.23
4 B8 -.09 14
5 -.29 -.30 .56
6 .15 .00 .56
7 .00 .89 .14
8 .00 .00 -.23
9 .00 -.30 -.23
10 .00 —.15 —-.23
2 Correlation between f, and f, = .03
Correlation between f, and f; = .06
Cormelation between f; and £, = —.02
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output vector. The matrix, A, is shown in Table 1.2. Formally, it is given by

A= % mb’ =af + g +gf’ (1-4)

k

Table 1.3 shows three required output vectors, g;, g, and g3, and also the
actual output vectors, h;, hy, h;, which are slightly different. The difference is
caused by the nonorthogonality of the input vectors, which leads to some inter-
ference between the different associations.

The effects of local damage or degraded input on this kind of system are
illustrated by Kohonen (1977) and Wood (1978) who performed an extensive
series of computer simulations of the effects of damage on systems of the type
presented here. Wood’s results show that, because of chance effects, some
elements turn out to be important for particular associations while others are not
particularly important to any one association. This corroborates the idea that the
individual units in such a system will exhibit varying degrees of specificity.

Table 1.4 shows the effects of degrading the input vector, f;, by seiting some
of its components equal to zero.

A Comparison of Linear and Nonlinear Matrix Models. In the linear models
the output of a unit is just a weighted sum of its inputs; whereas in the noniinear
models, the output is a more complex function of the weighted sum. The sum
may be compared with a threshold to yield a binary value, for example, or it may
be rounded up or down if it falls outside certain lower or upper limits. The linear
models are easy to analyze and are a senstbie and useful first step in the investiga-
tion of the whole class of matrix models. However, they have certain insuperable
drawbacks that prevent them from exhibiting some of the more interesting prop-
erties of the nonlinear models.

If the input and output vectors have the same number of components, it is
possible to recycle the output vector and add it to the vector of external inputs to

TABLE 1.2
The Matrix of Weights
055 055 055 -.033  -.132 —.i32  -.033 055 .055 {055
055 D77 0 098 —.163 —.088  —110 -—.033 035 055 055
055 098 145 -—288 -—-.027 -—.088 -—.0B6 055 072 .064
—.033 —-.163 —.288 810 156 —.051 —.059 ~.033 —-.00] —.020
—.132 —.088 -—.027 —.156 491 359 —.185 -.132 —.044 ~.088
-.132 -—-110 -—088 -—.05] 359 338 079 —-132 —-1132 -3
--.033 —-.033 —.086 -.059 185 .07e 811 -.033 -.297 —.165
055 .055 085 —-.033 -.132 -—.132 -—-.013 055 055 .055
055 055 072 —.001 —-044 —132 —.297 055 143 099

.053 035 064 —020 .08 —.132 - 165 055 099 077
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TABLE 1.3
The Required and Actual Output Vectors

Component

Number 4] h, 82 © by g h;
1 1.00 1.00 .00 .03 [U4] -.02
2 1.00 1.00 .00 .03 00 -.02
3 1.00 1.00 00 .03 00 -.02
4 1.00 1.03 1.00 1.03 00 .04
5 .00 .03 1.00 1.00 00 .06
6 00 .03 1.00 .00 .00 .06
7 .00 .00 1.00 1.06 1.00 1.06
8 .00 ~.02 00 06 1.00 1.00
9 00 -.02 0 06 1.00 1.00
10 .00 -.02 00 .06 1.00 1.00

form the next input vector to the system. So, given a constant external input
vector, the system can run for many iterations. In a nonlinear system it is possible
to perform complex computations on the external input vector by repeated itera-
tions using this kind of feedback (see Anderson and Mozer, and Hinton, this
volume). In a linear system, however, the result of many iterations through a
matrix is just the same as the result of one iteration through some other matrix, so
nothing is gained by the muitiple iterations.

Implicit Rules and the Matrix Models. In their behavior some matrix models
can be shown to act like ‘‘rule-governed’’ systems. There is, however, no
explicit representation or application of rules within the system. Matrix models

TABLE 1.4
The Required and Actual Responses with Degraded Input

Response
Reguired Actual Response to By with
Component Response Response to f3 with f3(7) = £:(8) =

Number 10 fy to f; fa3(6) = 0 f3(9 =0
1 .00 —.02 .06 -.02
2 .00 —.02 .06 -.02
3 .00 -.02 .06 -.02
4 .00 .04 13 —.15
3 .00 06 .06 -.13
6 .00 .06 .06 —-.13
7 1.00 1.06 .75 .74
8 1.00 1.00 .68 .87
9 1.00 1.00 .68 .87
10 1.00 1.00 .68 .87
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have two significantly different types of entity: the active, explicit state vectors,
which correspond te activations of the basic units, and the more passive implicit
weights in the matrix. It is relatively easy to observe the active, explicit part of
the system, but the bulk of the transformational structure is hidden in the implicit
part of the system, in the matrices, which are difficult to study because any one
weight lumps together many different associations and any one association is
distributed over many weights.

It is possible to have complex systems of associations implicit in the matrix of
connection strengths. This may cause the system to act in a very rule-governed
manner even though there is no process of accessing and applying rules in the
sense of a computer program. Because of the interactions between different
associations in the implicit structure, adding a set of associations which *‘agree”’
in the way they modify a particular subset of the weights may well affect other
similar associations. This transfer of effects to associations that are not explicitly
represented may make it appear as if a new rule has been added even though there
is no explicit representation of the rule within the system. The status of the rules
used in conventional computer models of cognition is thus thrown into question.
They may well be descriptions of regularities in the behavior of the system that
do not correspond, in any simple way, to the representations that are explicit
within the system. We return to this issue in Section 1.4,

1.2.4. Minsky's K-Lines Model

Minsky (1980) outlines a theory of the way in which computation may be
organized in the human brain., His paper contains a great many speculative
suggestions, but the main thrust of his theorizing is that instead of a central pro-
cessor, which can access arbitrary memory locations by their addresses, the
brain may consist of a *‘society”” of fairly simple, local agents, each of which has
direct access to a limited number of other agents. Locally, agents may be or-
ganized into mutually inhibitory sets, and more globally there will be partial
mental states consisting of the currently dominant agents from each local group.
Minsky identifies the patterns of active agents with particular mental episodes,
and he argues that we need to be able to re-create previous patterns of activity
that have proved useful in situations like the current one. To achieve this he
proposes that we create a new agent that has connections to all the agents active
within a particular mental state. By activating this new agent the old state can be
recreated. Minsky elaborates this simple model in various ways to reduce the
number of hardware connections required between agents and to allow the re-
created state to differ from the old one in ways that make it more appropriate to
the situation at hand.

In many respects, Minsky 's model constitutes a break with the now-traditional
artificial intelligence approach. The agents communicate by emitting excitation
and inhibition rather than by passing symbeolic expressions, and there is no
mention of the problems associated with the creation of new and temporary
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object representations at run-time as opposed to just activating old ones. How-
ever, the model is an important advance because it takes the brain’s hardware
seriously. Minsky is particularly concerned with the hardware connections re-
a::.om between agents, a concern partly caused by the technological discovery
that, in large-scale integration, it is the connections that cost, not the logical
functions (Sutherland & Mead, 1977).

The central idea of the model, that partial mental states are re-created by
activating particular agents that designate them, is an interesting intermediate
position with respect to the issue of local versus distributed representations. It is
the distributed pattern of active agents that is effective in generating the external
and internal behavior appropriate to an episode or others like it, but a single local
agent can create this pattern of activity. Thus other representations can cause the
whole pattern by simply activating that agent. It seems that this combination of
local and distributed representations would be effective for representing particu-
lar objects or concepts as well as for particular episodes. The advantage of the
pattern of active agents as a representation is that new patterns can be created at
run-time much more easily than new single agents which require their own
specific hardware units and connections. ,

The real value of Minsky’s model, will only be known when the model is
specified in sufficient detail for it to be simulated, but the general approach of
trying to implement sophisticated computational processes in parallel neuron-like
hardware seems extremely promising.

1.3. SYSTEMS OF SIMPLE UNITS WITH FIXED
INTERCONNECTIONS

The models reviewed in this section involve systems of interconnected simple
units, but they deliberately avoid the issue of how interactions between the units
are learned. Instead, the local interactions are specified in advance by the pro-
grammer, and the purpose of the model is to demonstrate the computational
performance that can be achieved by a system that already has an appropriate set
of local interactions between the individual units.

1.3.1. Relaxation Models

Relaxation models typically involve a constraint-satisfaction paradigm in which
some input data must be given an interpretation that simultaneously satisfies a
large set of local constraints. This interpretation corresponds to a pattern of
activity over the units, and it is found by an iterative computation in which each
unit affects many others until the whole system settles down into a stable state.
Many of the models are based on a detailed analysis of the computational
structure of a specific task. The analysis provides a precise specification of the
constraints that must be obeyed by any satisfactory interpretation, and these
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constraints are then implemented in the local interactions between units. Con-
sequently, the models can only be fully appreciated in the context of the specific
tasks that they perform, .

Relaxation is best introduced by a classical example. A well-known problem
in physics is to calculate the three-dimensional shape of a scap film that is
bounded by a nonplanar wire hoop. The shape can be represented by associating
a height with each element of a two-dimensional array. The wire hoop fixes the
height of the elements at the edge of the soap film. The interior elements obey the
constraint that the height of cach element is the average of the heights of its
neighbors. One way of calculating the heights of the interior elements is to give
them arbitrary initial heights, and then to replace simultaneously every interior
height by the average of its neighbors. This procedure is called relaxation, and
after repeated iterations the heights will settle down to a stable state in which
e€ach is the average of its neighbors. This stable state will represent the shape of
the soap film.

At least four distinct variations of refaxation have so far been proposed. First,
Hom (1977) and Marr (1978) have pointed out that visual systems need to use
the intensity information in a raw image to recover the cbjective characteristics
of the surfaces that gave rise to the image. The intensity of each element in the
image is the result of many local parameters of the corresponding surface ele-
ments. The reflectance of the element, its orientation to the viewer and to the
light source, and the level of illumination all interact to determine the image
intensity. These interactions can be described by physical equations. In addition,
there are normally constraints between the parameters of neighboring surface
elements. For example, reflectance usually remains constant, and surface orien-
tation usually changes only slightly from one surface element to the next.

The relationships between local parameters are more complex than the simple
neighbor-averaging constraint for the heights of elements in a soap film, but the
same kind of relaxation technique can be applied to discover a consistent set of
real values for the local parameters of the surface elements causing the image.
The intensities in the image act as boundary conditions just like the heights of the
elements attached to the wire hoop. The other parameters are given initial values
which are successively adjusted to fit the constraints better and better until a
stable state is reached. Barrow and Tenmenbaum (1978) describe this type of
relaxation in more detail.

A somewhat different type of relaxation model was used by Marr and Poggio
(1976) to fuse pairs of random dot stereograms (Julesz, 1971). When each eye is
presented with one of two random dot patterns, which are identical except for
lateral displacement of some regions in one pattern, people see a number of
surfaces at different depths. To do this they must decide which dot in one pattern
to pair with which dot in the other. Because all dots are the same, there are many
potential mates for each one. Each pairing, however, will give a different angular
disparity and hence a different perceived depth for the dot. If the assumptions are
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made that each dot can only be paired with one other (based on the opacity of
surfaces) and that neighboring pairings should have similar disparities and thus
be at similar depths (based on the continuity of surfaces), it is possible to make
the many potential pairings disambiguate one another. .

Marr and Poggio showed that the computation of a good set of pairings can be
perforimed by a machine consisting of multiple units, each of which was a
threshold logic unit (see Section 1.2.2). Each unit represented a hypothesis about
a particular pairing, and hence it corresponded to a piece of surface at a particular
depth. Units corresponding to pieces of surface lying along a line of sight from an
eye inhibited one another (the opacity assumption), and units corresponding to
adjacent pieces of surface excited one another (the continuity assumption). A dot
in a pattem excited all units corresponding to pieces of surface along that line of
sight. At each moment a unit is either on or off, and the computation consists of
multiple iterations during which units may be turned on or off by the combined
effects of the external input and connected units. Whether or not this is a good
model of human stereo fusion, it works well for fusing random dot stereograms.
It differs from the previous relaxation model in that the values that are adjusted
by the relaxation process are binary and correspond to the truth values of hypoth-
eses rather than to continuous properties of surfaces.

A third type of relaxation was introduced by Rosenfeld, Hummel, and Zucker
(1976). It is hard to extract information about the contours of objects from an
intensity image because some edge segments are Jocally unclear. Because edges
are generally continuous it should be possible to use information from one part of
an image to clarify information from unclear neighboring parts. Rosenfeld et al,
(1976} suggested that each hypothesis about a Jocal edge should be given an
association plausibility between 0 and 1. Initially the plausibilitics are determined
by how well the particular edge hypothesis fits the local data, but then a relaxa-
tion phase is applied during which each hypothesis is affected by its neighbors.
The way in which the plausibility of one hypothesis affects the plausibility of
another depends on how compatible they are. Rosenfeld and his co-workers have
proposed a number of schemes for the interactions (Peleg, 1980), and they have
applied their techniques to a number of problems in vision (Rosenfeld, 1978). It
is hard to assess just how useful their relaxation technique is because the value of
the relaxation phase depends on the extent to which the modified plausibilities
are more useful to the higher levels of a vision system than the initial
plausibilities. This can only be judged when higher levels exist.

Finaily, Hinton (1976, 1977) has proposed a relaxation technique that also
associates a value between 0 and I with each local hypothesis. Unlike the method
of Rosenfeld et al. (1976), however, the hypotheses do not interact directly.
Instead, the logical relationships between hypotheses are expressed as numerical
constraints, which are implemented as negative feedback loops. Each loop mea-
sures the extent to which the constraint is violated by the current values of the
hypotheses, and it “‘tries’’ to reduce the violation by exerting pressure on the
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values of the relevant hypotheses. Each value moves according to the net resul-
tant of the pressures exerted on it by the violated constraints and by the local fit
of the hypothesis to the input data. This method has been used to find optimal
instantiations of a model in a picture. Unlike the method of Rosenfeld et al.
(1976}, it is possible to specify precisely what computation is achieved by the
relaxation process.

The relaxation techniques are one way of organizing interactions in a paraliel
machine so that it settles on a good, consistent interpretation of some input
data. The drawbacks of relaxation are that it often requires a large number of
iterations to achieve equilibrium, and there may be no guarantee that it will find
the best solution.

A Comparison of Relaxation and Nonlinear Matrix Models. There are many
similarities between the formal mechanisms used in relaxation models and those
used in the nonlinear matrix models. We have already mentioned the major
difference, which is that the relaxation models use weights fixed by the pro-
grammer, whereas in the matrix models the weights are determined by the
system’s experience. Apart from this, however, the main difference seems to
reside not in the mechanisms but in the tasks to which they are applied and the
interpretation given to the individual units.

Relaxation techniques have typically been applied to low-level vision where it
is clear that a great deal of local computation is performed in parallel. The
activity levels of individual units are then used to represent the existence of
particular local entities or the values of local properties of the surfaces or edges in
the visual field. The matrix models, on the other hand, have been applied to
problems like recognition and memory, where there is no obvious corre-
spondence between individual units and local properties of the world. Marr and
Poggio’s (1976) model of stereo fusion, for example, illustrates the close similar-
ity between superficially different parallel models. They use threshold logic units
just like perceptrons, and the whole system is equivalent to a nonlinear matrix
model but with a sparse matrix.

1.3.2. Spreading Activation Models

Collins and Quillian (1972) and Collins and Loftus (1975) argue that the results
of certain psychological experiments can be explained in terms of activation
spreading along the links of a semantic network in which the nodes represent
concepts and the links represent relations between them. They consider tasks like
discovering how two concepts are related. The basic idea is that if two different
concepts are activated, and activation spreads along the links, then nodes on the
path between the two concepts will receive activation from both of them. These
nodes will thus have particularly high activation levels.

r
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Other experiments discussed by Collins and Loftus involve semantic priming
effects in which activation of one concept tends to speed up reaction times for
judgments involving related concepts. In their model similar concepts will have
more short pathways between their nodes than dissimilar ones because there will
be many other concepts to which both are linked. Thus when a concept is
activated, more activation will spread to similar than to dissimilar concepts, and
this will explain the priming effect.

The Coilins and Quillian model has serious computational deficits. I is hard
to use spreading activation effectively for the types of inferential processing for
which semantic nets are typically used. There have, however, been two interest-
ing and rather different developments from the Collins and Quillian approach.
Fahlman (Chapter 5, this volume) has made it more computationally sophisti-
cated by substantially modifying the idea of spreading activation. He uses dis-
crete markers instead of updifferentiated numerical activation, and this allows
him to generate combinations of markers at nodes instead of just activity levels,
Fahlman shows that a great deal of computaticnal power and control can be
achieved by having a central controller that broadcasts marker-passing instruc-
tions to a whole network of nodes, which all obey the instructions in paraliel.

In a quite different development McClelland and Rumelhart (1980) have kept
the idea of real-valued activation levels, but they have applied it to perception
rather than to inference and judgment, and they have been much clearer about the
precise rules for propagating activation.: Also they have shown how an appro-
priate scheme for propagating activation can remove the need for a central
controller in the particular task domain they have studied. Whether the use-of
activation for control can be extended to the higher-level tasks that Fahlman
tackles remains to be seen.

1.3.3. The Rumelhart and McClelland Model of Word
Recognition

When a string of letters is presented very briefly, it is easier to recognize the
letters if they form a word than if they form a nonsense string (Reicher, 1969).
Letter strings which form pronounceable nonwords are intermediate in difficuity.
McClelland and Rumelhart (1980) and Rumelhart and McClelland (1980) pro-
pose a model in which many simple, neuron-like units interact to produce these
effects. For simplicity they restrict themselves to a three-layered system, and
they omit feedback from the middle layer to the bottom one.

The bottom layer contains units that detect local features in specific positions
within the word. A unit in this layer might, for example, be activated if there is a
vertical stroke that could be the right-hand vertical of an H, M, or N in the
second-letter position within the word. It is assumed that the feature units occur
after some constancy mechanism so that changes in the retinal size, elongation,
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position, and orientation of the whole word do not affect the set of feature units
that it activates.

In the middle layer a unit represents a specific letter in specific position within
the word. Each letter/position unit receives excitatory input from all the feature
detectors that fit it and also inhibitory input from feature detectors in the same
position that do not fit it.

Units in the top layer represent specific words. Each word unit receives
excitatory inputs from all the letter/position units that fit it and inhibitory inputs
from the rest. Word units also provide excitatory and inhibitory feedback to the
letter/position units. In addition to these interactions between layers there are
inhibitory interactions between all pairs of word units and between those pairs of
letter/position units that correspond to the same position within the word.

The activity level of a unit is a continuous variable constrained to lie between
two limits, and the precise rules for the excitatory and inhibitory interactions and
for the thresholds are fairly complex. They are chosen so that when the feature
units are activated as they would be by a perceptually presented word, the system
settles down into a stable state in which the appropriate word and letter/position
units are highly active, and the other units are not.

The impressive achievement of the model is that the precise rules for the
interactions can be chosen so that the model is in good agreement with the
experimental data for a wide range of experiments. It can, for example, predict
the way in which the probability of correctly reporting a particular letter depends
on the precise time at which the other letters in the string are presented relative to
the letter to be reported.

One intriguing aspect of the model is the way it accounts for the superior
recognition of letters in pronounceable noawords as compared with unpro-
nounceable strings. Units corresponding to pronounceable digrams or trigrams
appear to be unnecessary. Letters in a pronounceable string are helped by acti-
vity at the word level because there tends to be a whole gang of words which
almost fit the string. The combined effects of this gang provide top-down support
for each letter, even though every letter is inhibited by the few members of the
gang that do not fit it. Although the words within the gang inhibit each other,
each pair is in fairly good agreement about the letters, and this agreement causes
the system to settle into a stable state in which many word units are slightly
active. Thus, pronounceable nonwords are represented by distributed patterns of
activity at the word level.

The Rumelhart and McClelland model is rare and promising because it ex-
plains experimental data with a computer model that can actually perform the
task (given an assumed constancy mechanism). This contrasts with the majority
of models in mathematical psychology which merely describe the relationships

between various aspects of human performance without providing a mechanism

for doing the task.

B
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1.4. PARALLEL HARDWARE AND THE SYMBOL
FROCESSING PARADIGM

Until recently, most researchers in cognitive psychology and almost all re-
searchers in artificial intelligence have deliberately avoided any serious attempt
to specify how their models might be implemented in the brain. There were a
number of different reasons for this avoidance. The existing neural network
theories were computationally iomw|5n.< were incapable of the complex com-
putational tasks that humans routinely perform when they perceive or talk or
solve problems. By contrast, computer programs were much more successful at
these tasks (e.g., Newell & Simon, 1963; Roberts, 1965; Winograd, 1972).

The major effort in writing programs like these went into software considera-
tions about the representations and processes needed to perform a task. These
considerations were largely independent of the particular digital computer on
which the software was implemented, mainly because the available digital com-
puters were all extremely similar relative to the range of possible computational
machines. Given the implicit assumptions about the computational primitives,
the study of the computational properties of complex software was seen, cor-
rectly, as a science in its own right, and this distinction between software and
hardware was identified with the distinction between the mind and the brain.

Computer programs then transcended their role as a mere tool for implement-
ing theories, and they became metaphors for the mind. Intelligent processes
could be implemented in a von Neumann machine, which operated by manipulat-
ing abstract symbols according to rules. The &;:_vo_m themselves did not require
any intermnal structure to give them meaning. Their meaning was determined by
the rules for manipulating them, and these.in turn were just more symbols. This
solved the problem of how thought processes could exist in material objects, and
it led to the view, now dominant within cognitive science, that people are
symbol-processing machines (Newell, 1980; Pylyshyn, 1980). Conventional di-
gital computers running high-level programming languages are, naturally
enough, very good at this kind of processing (much better than people). Hence
there is little incentive to investigate radically different kinds of computer archi-
tecture,

The symbol-processing approach is supported not just by the fact that com-
puter programs exhibit intelligent behavior, but also by the fact that symbol-
processing models provide a remarkably good account of certain human mental
processes such as the errors that children make in simple arithmetic (Brown &
Burton, 1978) or the verbal protocols that people produce while solving crypt-
arithmetic puzzles (Newell & Simon, 1972). ‘Any critique of the symbol-
processing approach needs to explain why these medels work so well.

The models in this volume that use distributed patterns of activity as repre-
sentations differ from the normal symbol-processing paradigm in an important




30  ANDERSON and HINTON

way. The internal structure of a symbol is normally thought to be irrelevant to the
way it interacts with other symbols. All that is normally necessary is that the
symbol have an identity, such as a unique character string, so that it can be
compared with others and seen to be either the same or different. The meaning of
a symbeol is determined by the rules or programs that contain it not by its internal
structure,

It is important to realize that this is not the only possible way of organizing a
symbol-processing system. It is quite possible for the symbois themselves to
have internal structure and for the interactions between symbols to be causally
determined by this internal structure rather than governed by stored explicit rules
as in the normal symbol-processing paradigm. A symbol, for example, could be
a pattern of activity in a large group of hardware units. Provided this pattern is
reproducible and regularly causes other such patterns, it is possible to .EE@E@E
symbol processing by the interactions of these patterns.

The symbols in such a system are nonabstract in the following sense; The
internal structure of a symbol determines how it interacts with others, so similar
symbols tend to have similar interactions. The modifications in the strengths of
the hardware connections that are required to alter the causal effects of one
symbol will also tend to alter the effects of similar symbols.

Given this view of symbol processing, there are two rather different levels at
which a system composed of multiple simple units can be described. At the high
level, reproducible patterns of activity can be denoted by abstract symbols, and
regular interactions between them can be captured by explicit rules. This kind of
a description can be implemented rather directly on a conventional digital com-
puter. The impressive performance of programs like those of Brown and Burton
(1978) and Newell and Simon (1972) in modeling human behavior are, we think,
the result of achieving this level of correspondence between the processes occur-
ing in the brain and the abstract symbol manipulation occurring in the von
Neumann machine.

However, because this level omits the internal structure of the mu::_uo_w and
because it captures regularities in causal interactions as explicit rules, there are
aspects of cognition for which it is not a good model. For example, the develop-
ment of the internal structure of the symbols (the specific patterns of activity used
to implement them) may not be usefully describable at the same level. Because
this internal structure determines how learned effects transfer from one symbeol to
another, aspects of cognition like the role of similarity and analogy in learning
may be outside the appropriate range of the abstract symbol-processing
metaphor. We do not mean to imply that these processes cannot be simulated on
a von Neumann machine using abstract symbol processing. Indeed, many of the
models in this volume are simulated in just this way.

What we are asserting is that the symbol-processing metaphor may be an
inappropriate way of thinking about the computational processes that underlie
abilities like learning, perception, and motor skills. The rather direct corre-
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spondence between the coarse- -grained, high level description of our mental
processes and abstract symbol manipulation (Card, Moran, & Newell, 1980),
may not carry over to the fine-grained description of the highly paraliel repre-
sentations and processes that implement the individual symbols and steps in the
coarse-grained description. Just because well-learned and regular interactions
between patterns of activity can be captured as explicit rules governing the
manipulation of abstract symbols, it does not follow that the emergence of these
regularities can be fully captured by models in which explicit rules are added,
deleted, or reordered. It is a fallacy to think that the kind of model which works
well at one level must be applicable at all levels. Rational thought takes years to
develop, and it is quite conceivable that it emerges as the highest level of
organization of more basic processes that are quite different in character.

To summarize, we are not arguing against the idea that very complex informa-
tion processing undetlies people’s ability to perceive, to act, and to learn. Nor are
we arguing against computer simulation as a way of exploring such processing.
What we are arguing against is the use of abstract symbol manipulation as a
prototype for the fine-grained organization of this processing. There are alterna-
tive models that have a different computational flaver and that appear to be more
appropriate for machines like the brain, which are composed of multiple m_av_a
units that compute in parallel.

There are already examples within Artificial Intelligence where hardware
considerations have determined general organizational principles. In the early
days of computer vision, it was found that it was very difficult to derive a clean
line drawing of a scene composed of polyhedral blocks from the mass of gray-
level data produced by a camera. Shirai (1973) showed how higher-level knowl-
edge could be used to guide line finding so that the computer could restrict its
slowest and most accurate line-finding techniques to areas of the image likely to
contain lines. Shirai’s program was used to support the idea that really competent
vision systems require rich interactions between experts in different domains
(like line finding and shape representation) rather than being restricted to a
pass-oriented organization, in which each level of processing is uninfluenced by
subsequent levels.

The application of this idea to the early stages of visual information process-
ing was attacked by Marr (1976) who argued that the highly parallel hardware
known to exist in the brain could produce much richer representations of edges
and local surface elements than existing Artificial Intelligence programs without
invoking knowledge of particular objects. The dispute has not been fully settled,
but there seems no doubt that much of the plausibility of Marr’s theory stems
from the existence of a great deal of parallel hardware in the brain that is devoted
to early visual processing.

The availability of parallel hardware drastically n:mcmom arguments about the
relative efficiencies of different computational algorithms. The total mumber of
computational operations becomes less important than the question of whether
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the operations can be performed in parallel or whether there is a necessarily
sequential structure in which one operation cannot be performed until the results
of others are known.

1.5. PARALLELISM AND DISTRIBUTION IN THE
MAMMALIAN NERVOUS SYSTEM

This section outlines the anatomy and physiology of the mammalian neocortex.
More details can be obtained from books such as Shepherd (1979), Brazier and
Petsche (1978), and Kuffler and Nicholls (1976). Some striking themes are
apparent even at the superficial level that we can discuss the system. There is
clear evidence, for example, of parallelism and a degree of distribution.

Most of the visible bulk of the human brain is neocortex. Grossly, the cortex
is a two-dimensional folded sheet, consisting of the gray matter, a 3-6 mm layer
on the outside of the brain containing the cell bodies, and the white matter, a
tremendous number of incoming and outgoing fibers. The surface area of the
cortex is around 1 square meter, but the sheet is so folded and convoluted—
presumably for compact packing—that only about a third of the cortex is visible
from the outside; the rest is submerged in fissures.

There are two seemingly contradictory main themes that characterize cortical
organization: differentiation and homogeneity. Although there are clear dif-
ferences between different areas of the cortex, the basic cell types and the
fundamental organization of all parts of the neocortex are surprisingly similar.
The basic circuitry seems to be the same everywhere.

There are generally held to be two broad classes of neurons in the cerebral
cortex: pyramidal cells and stellate cells, with the stellate cells containing a
number of different subgroups. The two-dimensional sheet of gray matter of the
cortex is itself strongly layered. Neuroanatomists generally identify six layers.
The pyramidal cells send their axons to other parts of the cortex and to other
regions of the central nervous system. They thus form the “‘output™ cells of a
region of cortex though there is no clear flow of information from input to output
in the neocortex, a property that complicates analysis. The stellate cells are
generally smalier and send axons to a circumscribed local region of the cortex,
presumably being primarily short-range “‘intrinsic’’ cells.

Pyramidal cells can be very large, with a typical pyramid-shaped cell body
and with a large “‘apical’’ dendrite, which runs to the surface of the cortex,
through the layers, and perpendicular to the cortical surface (see Fig. 1.1). The
-cortex is a remarkably Cartesian system, with layers parallet to the surface and
with fibers and dendrites running perpendicular to the layers and cutting across
them. As has been pointed out on numerous occasions, this is in no sense a
random network but is exquisitely structured, both anatomically and, as we are
now discovering, physiologically.
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FIG. 1.1. Three pyramidal ceils in cerebral cortex, surrounded by recurrent
collaterals. The thin, fuzzy processes on the pyramidal cell dendrites are dendritic
spines. The outer surface of cortex is at the top; the apical dendrites run perpen-
dicular to the surface. Drawn from several sections of 60-day cat cortex stained by
a rapid Golgi variant. (Scheibel & Scheibel, 1970)..

The apical dendrites run to the surface of the cortex and then branch. Other
dendrites come off the base of the pyramid forming a number of *‘basal’ den-
drites. The extent of branching of these dendrites forms a cylinder which seems
to be an important information-processing module of the cortex. The apical
dendrite of large pyramidal cells whose cell body is in layer 5 may be several
millimeters in length. This cell may receive extensive synaptic input over its
entire length. Traditional estimates of numbers of synapses on cortical pyramids
run from about 7000 in the visual cortex to 50,000 in the motor cortex.

A notabte feature of pyramidal cells is the presence of small processes, a few
microns in length, called *‘spines.”’ At one time they were thought to be artifacts
of the neuroanatomical staining methods used to visualize the cells, but now they
ate known to be rea! and important. All synaptic contacts outside the ceil body
are made on spines.

It has not been possible to show synaptic modification in vertebrates in detail
or to have any idea of the quantitative form of the modification, if present, but
the data and theory suggest that spine modification is one likely candidate for the
detailed synaptic changes that almost certainly underlie learning in adults. The
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structure of the spine is ideally suited to the kind of correlational modification
scheme proposed by Hebb (1949), in which synaptic changes depend on the
comjunction of presynaptic and postsynaptic activity, The presynaptic element is
at one end of the spine. A dendrite much thicker than the spine forms a low-
resistance pathway to the cell body. Thus in close physical proximity, separated
by only a few microns, we have presynaptic and postsynaptic activity. Rall and
Rinzel (1973) have shown that the anatomy of the spines allows easy modifica-
tion of synaptic coupling: Slight changes in length or thickness can cause sub-
stantial changes in degree of coupling between presynaptic and postsynaptic
elements, and normal spines fall into the range where such sensitivity to
modification is predicted theoretically,

In immature organisms considerable evidence suggests that change in the
amount of dendritic branching is important as well, and dendrites and spines have
been shown to respond to environmental influences in both the cortex and the
cerebellum (Floeter & Greenough, 1979; Globus, Rosenzweig, Bennett, &
Diamond, 1973; Pysh & Weiss, 1979; Volkmar & Greenough, 1972).

The axons of pyramidal cells branch extensively and reenter the cortex upto3
mm away from the cell of origin. Szent4gothai (1978) has suggested that such
recurrent collateral connections are ‘‘quasi-random,”” synapsing with the first
suitable candidate to be in their way. Such collateral connections generally
contact other pyramidal cells and the contacts seem to be excitatory though this
has been difficult to show physiologically (see Fig. 1.2).

At the level of the afferent connections of neurons, Szentdgothai (1978)
comments:

There cannot be much doubt today that afferent input to cortex . . . is geometrically
highly ordered. . . . The basic principle of order appears in many cases to be simply
some parallel lamination of fibers of common origin or some other feature that they
have in commen. In other cases the ordering principle is more complex and may be
the preservation of an almost complete isomorphism in the cortical representation
of the periphery {p.p. 77-78].

The picture emerging from such considerations is one of a very high degree of
specific wiring both in distant and in tocal connections of the cerebral cortex . . .
[pp- BI].

The one exception to this rule may be the collaterals which may exhibit a
degree of ‘randomization’ that would give room for fortuitous connections. We
can conclude that the cortex is a highly ordered structure with the possibility of
some salutory local chaos, :

A striking observation about cortical circuitry is that it is possible to speak
about ‘‘cortical circuitry.”’ The basic cell types and circuits seem, with relatively
minor variations, to be similar everywhere in the neocortex. Variations exist in
the thickness of the cortex, the number and arrangement of layer 4 steltate cells,
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FIG. 1.2. Collateral system of a pyramid cell {center) as it would appear in the
view from the surface {(semidiagramatic reconstruction). The large circle having a
diameter of 3 mm indicates the potential territory reached by the collaterals. The
pyramid cell below right on the perimeter would be a potential recipient of synap-
tic contacts from the central cell. The small circles {100~ diameter) correspond to
the apical dendrite bundles containing 20--30 apical dendrites of a pyramid cell
cluster. The round stippled area at right of central pyramid cell (=300 diameter)
indicates width of an ‘‘arborization-column’’ of corticocortical afferents. (Szen-
tigothai, 1978).

for example, or the occasional appearance of large and striking variants of a cell
type, such as the giant Betz cells (pyramidal cell variants} in the motor cortex.
However the basic plan, the arrangements in columns, in layers, and the same
typical connections seem to be everywhere (Shepherd, 1979).

On the basis of rather small differences in structure Brodmann distinguished
about 50 different cortical areas; other anatomists have made slightly different
distinctions. Such distinctions are not mere parcellation. They often describe
functional specialization. For example, Area 17 of the primate cortex is distin-

‘guished by a prominent fine white line called the ‘‘stria of Gennari,"” Area 17 is

also called **primary visual cortex "’ (sometimes striate cortex) because the lateral
geniculate body sends its most prominent projection to Area 17 in mammals. We

r
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should emphasize that these subareas of cortex and related subcortical areas are
connected together in complex ways, in series, in parallel, and with potential
loops. Figure 1.3 shows a partial picture of the earlier stages of visual system
connectivity. The details of the projections of the visual system are of considera-
ble interest because they illustrate an especially striking example of the precision
of connection of the cortex. )

Some levels of the visual system are intrinsically a two-dimensional parallel
system: A layer of receptors in the retina projects, after intensive local processing
involving important lateral effects, to a parallel array of retinal ganglion cells.
The axons of the million or so ganglion cells go up the optic nerve to the lateral
geniculate. The lateral geniculate is a six-layered structure in primates, with the .
projection from the ipsilateral eye (same side) occupying three layers, and the
projection from the contralateral (opposite side) eye occupying the other three.
The projection is not random but very precise, so that corresponding points in the
visual fields of the two eyes, though still separate, are brought into register above
each other in different layers, and a spatial map is maintained. A distorted (but
not tomn or dislocated) map of visual space is present in the geniculate. This
projection maintains local continuity and topography. The projection from
geniculate to cortex gives rise to a system that also has a precise map. The work
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FIG. 1.3. Major ipsilateral afferent connections of m:_.na.an.vcnm“, cortex in

macaque monkey, Macaca mulatta. This figure shows the complexity of pathways

involved in a portion of the visual system connecting to the highest *‘visual’*

cortical region, inferotemporal cortex, which seems to be involved in complex
- visual function. (Gross et al., 1974).
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FIG. 1.4. Reconstruction of the ocular dominance pattern over the entire ex-
posed part of the right primary visual cortex, from a series of sections stained by a
reduced silver method developed by Simon LeVay, (LeVay, Hubel, & Wiesel,
1975). The left hand margin is at the medial edge of occipital lobe, where cortex
folds downward; the area of cortex shown is roughly 2 cm in extent. {Hubel &
Wiesel, 1979).

of Hubel and Wiesel and collaborators has shown that the different eyes project
to what are essentially bands of eye dominance in cortical layer 4 which are
brought together in the other layers so that cells outside of layer 4 are typically
binocular. This is strikingly demonstrated in Fig. 1.4, which shows the alternat-
ing bands of eye dominance in cat visual cortex (Area 17).

As is well known, cells in Area 17 in the cat and monkey respond preferen-
tially to oriented line segments. All the cells in a single cortical column seem to
have the same orientation. The preferred direction of orientation shifts at a
constant rate across the surface of the cortex. Bands of constant orientation
intersect the bands of ocular dominance. Although there is precise mapping
in that, at the scale of millimeters, there is a good average spatial map on the
cortex, there is considerable noise and jitter in a small region, so a single cortical
column may contain cells that respond to slightly different parts of the visual
field (Albus, 1975). The diversity of single-cell response and the observation that
nearby cells in the neocortex may be quite unlike each other in details of be-
havior, though corresponding in general properties such as (in the visual system)
location in the visual field or orientation, seems well established (see Fig. 1.5). A




Diagram of the representation of the visual field in Area 17.A is a perimeter chart

FIG. 1.5

showing the extent of the visual field represented in Area 17. The chart is based on a world co-

ordinate scheme in which the azimuths are represented as solid lines and the elevations as dashed

lines. The location of the visual field in Area 17 is illustrated in the four sketches of cat brain shown

in B-E. (Tusa, Palmer, & Rosenquist, 1978).
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fine discussion of the visual cortex with truly striking pictures is easily available
(Hubel & Wiesel, 1979).

The precise topographic maps that are typical of visual inputs seem to be
ubiquitous. At present we have many maps representing the sensory receptors on
the body surface. For the motor cortex there is the famous ‘*motor homonculus,”
a drawing of which is a staple of introductory psychology books, and for the
auditory system there is a map in terms of frequency. These maps seem in
general to conform to the rule of precision on the average but jitter in detailed
local chatacteristics. Multiple and overlapping maps also seem common. At
present multiple visual maps have been located in cats, all apparently analyzing
the visual input in different ways (Zeki, 1978). An example has also been found
of a case in the circumstriate visual cortex where a map of visual space and a map
of auditory space are in register, so a cell might be excited by a visual or by an
auditory stimulus if it is in the appropriate spatial location (Morrell, 1972).

Another aspect of these maps that is theoretically important is their distor-
tions. The primate retina contains an area of relatively high optical quality that is
very rich in receptors, the fovea. This area is highly overrepresented in number
of receptors, retinal ganglion cells, and consequently nerve fibers associated with
it. This preeminence is maintained all the way to the primary visual cortex,
where over half of the cortical neurons are concerned with analyzing only the few
degrees of visual space represented by the fovea and the area around it, and the
remaining portion of the visual cortex is concerned with the remainder of visual
space. :

It seems to be a general rule that the more important a sensory system for the
animal’s behavior, the larger its relative cortical representation. A well-known
example is the human motor homonculus, which has disproportionately large
hands compared to the feet because hands are much more important in our
behavior than feet. The rhesus monkey ‘‘monkeyunculus’ has roughly equal-
sized hand and foot representations. This ‘‘mass effect’” is confirmed over and
over in cortical organization. A particularly striking example is the bat auditory
cortex. Often the distortions undergone by maps are apparently quite lawful; for
example, a roughly logarithmic transformation seems to be found in both the
visual system of the cat (Fischer, 1973) and in the tonotopic organization in the

auditory cortex. However, telling exceptions occur. The mustache bat is an echo
locator, and the maps of auditory space on its auditory neocortex seems to show
clearly the use of map distortions and constructions as important aspects of
information processing. The mustache bat emits cries with strong frequency
components at 61.0 and $1.5 kHz. There are “‘disproportionately large’’ portions
of this bat’s cortex devoted solely to these two frequencies and a relatively smali
representation of other frequencies, causing a great distortion of the tonotopic
map (Suga & Jen, 1976, as shown in Fig. 1.6).

The mustache bat uses a fairly complicated cail (see inset on Fig. 1.7C). The
call contains a previously mentioned constant frequency portion that allows a
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FIG. 1.6. (A) Dorsolateral view of the mustache bat cerebrum. The auditory
cortices are within the rectangle. (B) Disttibution of best frequencies in the rec-
tangle shown in (A). The area between the dotted lines is the primary auditory
cortex {Al). The areas dorsal or ventral to the Al are nonprimary auditory. cortices.
Orderly tonotopic representation is clear in the areas with sold contour lines, but it
is vague in the areas with dashed contour lines. In the areas where contour lines are
not drawn, the tonotopic representation, if present, is obscure. Some of the best
frequencies obtained in the obscure areas are shown by small-print nos. (C) Distd-
bution of the best frequencies along the anteroposterior axis in the shaded area in
(A). Since the minor differences among the best frequencies in areas 2 and 3
cannot clearly be shown in (C), the distribution of best frequencies in this area is
shown by the inset with a larger frequency scale and using open circles. P.p.r.:
Pteronotus parnellii rubiginosus (species name). (Suga & Jen, 1976).

return echo to be analysed for Doppler shift to obtain relative velocity informa-
tion. There is also a brief period at the end of the call where the emitted fre-
quency suddenly drops several kilohertz in a few msec. This portion of the call,
referred to as “‘chirp™ by radar engineers, allows range information to be com-
puted because the time at which a received signal was emitted can be computed
from its frequency. Chirping is also an optimal technique for several other
reasons having to do with the energy requirements of the emitted signal. How-
ever the computations required to obtain range information are not trivial, and in
radar it can be computed with a dispersive delay line. It is remarkable that Suga
and co-workers (Suga & O'Neill, 1979) have demonstrated that this bat has
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constructed, on the surface of its cortex, a map for target range, a derived
quantity not immediately present in the signal.

The apparent importance, necessity, and universality of maintaining and even
constructing a two-dimensional quasi-continuous representation of important as-
pects of the environment is a significant clue to the kind of parallel processing
being performed by the cortex. We must emphasize, however, that maps con-
tinuous on the average and overall are rot continuous in very small areas. Slabs
of eye dominance intersected by orientation columns give rise to discontinuous
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FIG. 1.7. (A) The left cerebral hemisphere of the mustache bat, showing (a)
Doppler-shified CF (= constant frequency), (b} FM (= frequency modulation),
and (¢} CF/CF processing areas. (B) The FM processing area consists of three
major clusters of delay sensitive neurons: FM-FM,, FM,-FM3, and FM ,-FM ;
facilitation neurons. Each cluster shows odotopic representation (i.e., topographi-
cal representation of target range). Range information in the search, approach, and
terminal phases of echolocation is represented by activity at different loci in the
cerebral hemisphere. (C) The relation between BD (best delay) and distance along
the cortical surface. The data were obtained from six cerebral hemispheres and ate
indicated by six different symbols. The inset is a schematized sonagram of an
orientation sound and a Doppler-shifted echo in the approach phase of echoloca-
tion. (Suga & O’'Neill, 1979).
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local representations of a continuous physical stimulus, a point emphasized by
Hubel and Wiesel (1979).

Let us sum up the aspects of cortical neuroanatomy that are of importance to
us here because they seem to be generalizations that may lead to approximations
of theoretical interest:

1. The cortex is precise on the average in its connections both in terms of its
incoming afferent projections (maps) and in terms of its internal connections.
Topographic aspects of the external world may be maintained or reconstructed
with considerable accuracy.

2. The cortex displays a very strong mass effect so that areas important in an
animal’s behavior are exaggerated proportionately.

3. The cortex displays precision on the average but imprecision in small
areas, in that single neurons may deviate considerably from the average. A
certain random component (i.e., Szentigothai’s comments about the tecurrent
collaterals) may be present along with a more precise component. Neurons
display considerable individuality, though partaking of some average similarities
to neighbors.

4. The cortex is parallei in its organization from the initial afferent inputs, to
its layered structure, to its topographically organized maps. Within a given
region, such as Area 17, say, parallel organization is very striking. Serial connec-
tion of cortical regions, one region to the next, is present, but the individual
cortical areas are highly parallel in their organization.

The evidence for parallelism of large aspects of cortical function is over-
whelming. The evidence for distribution is atso strong but more controversial, It

is an experimentally testable area with extreme views on both sides present in the
literature.

Neuron Specificity. There are two extreme positions that one can take. One
can claim great specificity and importance for singie neurons. We can look at the
physiological data and observe that single neurons respond to only a small
number of stimuli; that is, they have considerable selectivity. We could then
conjecture that when a neuron is active it signals very precise information about
the sensory input. This point of view is held by Horace Barlow (1972), who
summed up his position is a series of dogmas, three of which are particularly
relevant here:

Dogma 2 states; ‘‘The sensory system is organized to achieve as complete a
“tepresentation of the sensory stimulus as possible with the minimum number of
active neurons [p. 371}1.” )

Dogma 4 states: *‘Perception corresponds to the activity of a small selection
from the very numerous high-level neurons, each of which corresponds 1o a
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pattern of external eveats of the order of complexity of the events symbolized by
a word [p. 371}.7

Dogma 3 states: *‘High impulse frequency in such neurons corresponds to
high certainty that the trigger feature is present [p. 371].7

Thus: Single neurons are very important, very specific and signal certainty with
increased activity.

The real virtue of this position is that it is easy to understand and makes good
intuitive sense. When a cell fires, something specific and important happens,
both because very few other cells are talking and because the cell is ‘‘meaning-
ful.’’ This position is held, deep in their hearts, by many practicing
neurophysiologists because it seems to give a clear interpretation of what they
observe with their microelectrodes.

Distribution. Karl Lashley, on the other hand, is identified with a strong
statement of distribution. Although most of his work was concerned with the
problem of memory, his ideas on distribution are quite general. To quote from
the summary of his famous 1950 paper, ‘'In Search of the Engram’":

It is not possible to demonstrate the isolated localization of a memory trace any-
where within the nervous system. Limited regions may be essential for learning or
retention of a particular activity, but within such regions the parts are functionally
equivalent. The engram is represented throughout the area. . ., Briefly, the char-
acteristics of the nervous petwork are such that when it is subject to any pattern
of excitation, it may develop a pattern of activity, reduplicated throughout an
entire functional area, by spread of excitations, much as the surface of a liquid
develops an interference pattern of spreading waves when it is disturbed at several
points. . ... Consideration of the numerical relations of sensory and other cells in
the brain makes it certain, 1 believe, that all of the celts of the brain must be in al-
most constant activity, either firing or actively inhibited. There is no great excess
of cells which can be reserved as the seat of special memories. The complexity of
the functions involved in reproductive memory implies that every instance of recall
requires the activity of literally millions of neurons. The same neurons which retain
the memory traces of one experience must also participate in countless other activi-
ties.

Recall involves the synergic action or some sort of resonance among a very
large number of neurons. . . . From the numerical relations involved, I believe that
even the reservation of individual synapses for special associative reactions is
impossible [pp. 477-480].

With this diversity of views, one can now look at the experimental literature
and decide how the observed neuronal specificities agree with these two posi-
tions. Clearly, there is specificity. Cells do not respond to all conceivable stimuli
or even a small subset of them but are quite specific in their responses. At the
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same time they are not, in our opinion, so specific as to be what Barlow’s
dogmas would lead one to expect. In fact, we conjecture if this were the case that
single unit neurophysiology would be hopeless once beyond the very lowest
levels of cortex becavse it would be almost impossible to ever find the precise
stimulus required to drive any given cell. What we seem to observe in actuality is
a spectrum of response types from quite specific and narrowly tuned to quite
general and broadly tured. As one well-known example, in inferotemporal cor-
tex, a higher level visual center, many cells are quite broadly tuned, responding
to orientation over many degrees of visual angle. Yet some cells (e.g., the
famous *‘monkey hand’’ cell) seem to be very specific. Yet even the ‘‘monkey

‘hand”’ cell can be driven by other stimuli such as some geometric shapes, while

reserving its highest frequency discharge for the shape corresponding to a
silhouette of a monkey hand (Gross, Bender, & Rocha-Miranda, 1974).

We suggest that truth lies somewhere in the middle of the two extreme views
and that there is a moderate amount of distribution in the cortex, so that any
single cell responds to many things but nowhere near alf things. It seems to us
both experimentally observed and sensible from the point of view of information
processing that there be a considerable range of specificities from quite specific
to quite broad.

Singer (1978), in an analysis of the visual cortex, comments that:

The data. .. suggests that the result of any higher level integrative operation is
presumably not encoded in the specific responses of a few but highly selective
cells. . .. This might indicate a cooperative principle of encoding whereby the
message about the presence of a particular combination of features is conveyed hy
the graded, mutually dependent responses of a large number of cells within a
functional matrix of cells [p. 377].

One of us has discussed this question of single-unit specificity elsewhere,
{Anderson, I. A., et al., 1977), and Singer’s remarks seem to us to capture the
mnEw_m:cmao:. :

1.6. SUMMARY

We have presented a necessarily limited selection from among the wide range of
meodels in which computation is performed in parallel by multiple, rather simple
units. We feel that such models are worth further study for several guite different
reasons.

First, the neocortex is clearly highly parallel in the arrangement of its basic
elements. A single cortical area contains many millions of neurons arranged and
connected with a high degree of parallelism. It seems entirely reasonable that
such proncunced structure should have implications for cognitive function.
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Second, there are a number of functional attributes of cognition, ranging from
memory access and concept formation to stereopsis and visual perception, that
seem to be very hard to explain with more traditional serial models. The existing
models using parallel systems of simple units have already had some success in
these areas and more can be expected as we gain further insight into the prop-
erties of this kind of computation. We feel that distributed representations are a
very promising idea and that a successful cognitive theory, when it comes, may
take the form of a calculus of state vectors where the psychological level of
description will correspond to the permutations and interactions of the state
Vectors.

Finally, there are purely technological reasons for studying parallel systems,
outside of their scientific interest, because they may be the best way to increase
the speed and power of computation in the future. Recent developments in Very
Large Scale Integration (VLSI) and in Computer Aided Design (CAD) make it
relatively easy to implement parallel models directly in the hardware, expecially
if the models use simple units and regular interconnection schemes.

Many of the systems we have discussed are still somewhat unfamiliar and
difficult to work with. Parallel models tend to have intrinsic characteristics of
their own, and the nonlinear ones are often very hard to analyze. Considerable
experience with them may be needed before our ideas about parallel computation
are adequate to atlow us to exploit the enormous potential of this class of systems
both as computational devices and as models of the mind.
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