
An
Elementary
Introduction

to Neural
Networks

Riezler

An Elementary Introduction to Neural
Networks1

Stefan Riezler

Computational Linguistics, Heidelberg University, Germany

1Based on Kulkarni & Harman (2011). An Elementary Introduction to
Statistical Learning Theory. Wiley

1 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Perceptron as single neuron

The perceptron algorithm can be seen as neural network
consisting of a single neuron.
Its inputs are the features of an example x = (x1, . . . , xd ).
Each input is connected to the single neuron by weights
w = (w1, . . . ,wd ). The output a = sign(〈x ,w〉) is
computed by the sign of the weighted combination of
inputs, spanning a linear decision boundary.

2 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Perceptron as single neuron

Another useful concept is that of a threshold.
The single neuron in the network in Figure 2 has a
threshold of 0 since it produces the output +1 if
〈x ,w〉 ≥ 0.
This can be formalized by an extra input feature x0 with
constant value +1, yielding a threshold of −w0:

〈x ,w〉+ x0w0 ≥ 0 iff 〈x ,w〉 ≥ −w0.

3 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Perceptron as single neuron

Example: A single-unit network formalizing the logical
AND operation uses two inputs x1, x2 ∈ {0, 1} with fixed
weights w1 = w2 = +1 and a threshold w0 = −1.5. Then

((+1)(−1.5)+x1(+1)+x2(+1)) ≥ 0 iff x1 = 1 AND x2 = 1.

Using the output function a, we can rewrite the
perceptron update rule as follows (where y ∈ {+1,−1}):

w = w +
1
2η

(t)(y − a)x (1)

4 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Multilayer neural networks

Since the decision boundary implemented by a perceptron
is a hyperplane in Rd , the perceptron can only classify
correctly if the examples are linearly separable.
A well-known example of a problem that is not linearly
separable is the XOR problem. Suppose two input features
x1 and x2. Classes “true” and “false” fall into opposite
quadrants of the decision space and cannot be separated
linearly by a hyperplane.

Figure: Decision space of the XOR problem
5 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Multilayer neural networks

Multilayer networks with just three layers and enough
units in each layer can approximate any decision rule.

6 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Multilayer neural networks

The representation capabilities of multilayer networks
sketched above allow to model non-linear decision
boundaries such as the XOR problems shown above.
This is done by a multilayer network where each unit in
the first layer computes a linear decision boundary.
The outputs of this layer are passed as inputs to a second
layer, where each unit performs a logical AND that
implements an intersection of the half-spaces computed in
the first layer.
The outputs of the second layer are passed through a final
unit that performs a logical OR operation that implements
a union of convex sets computed in the second layer.

7 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Multilayer neural networks

In difference to a single unit network, outputs are not fed
as inputs into following layers. This makes the sign(·)
function less appropriate since it causes drastic changes in
outputs and is discontinuous and not differentiable at 0.

In multilayer networks we use a smooth function such as
the sigmoid function that is continuously differentiable
and varies between 0 and 1:

σ(y) =
1

1 + e−y
8 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Multilayer neural networks

A useful fact is to know its derivative which is

σ′(y) =
dσ
dy = σ(y)(1− σ(y)).

The output of of a unit is now given by

a = σ(〈x ,w〉).

During training, target outputs are taken to be y ∈ {0, 1}.
At test time, the decision for class 1 is made by checking if
a ≥ 1/2, and decide for class 0 otherwise.

9 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Training a multilayer network: Backpropagation

Training a multilayer network requires a sequential
implementation of gradient descent, called
backpropagation.
General form of weight adjustment δw in update rule is
given by negative (stochastic) (sub)gradient, that includes
a learning rate η, an error term, and an input term:
general form: ∆w = −η ∗ error term ∗ input term

10 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Backpropagation

single unit perceptron: ∆wi = η(yi − ai )xi (folding 1
2 into η)

unit in layer l : ∆wij(l) = −ηδi (l)aj(l − 1) where

ui (l) total input to unit i in layer l , (2)

ai (l) = output of unit i in layer l , (3)

wij(l) = weight from unit j in layer l − 1 to unit i in layer l ,
(4)

δi (l) = σ′(ui (l))
∑

k
δk(l +1)wki (l +1) for l = 1, . . . , L−1, (5)

δi (L) = σ′(ui (L))(yi − ai (L)). (6)

11 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Backpropagation

The term “backpropagation” comes from the following
intuition:
After choosing initial weights, for each training example,
start at the input layer, and compute the total input ui (l)
for each unit in each layer by feeding forward the
computation to the output layer.
Then compute the final output ai (L), compute the error
by comparing it with the the target output, and propagate
the unit errors δi (l) for each layer backward to the second
layer.
Adjust weights wij(l) by adding ∆wij(l).

12 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Derivation of backpropagation for single unit

Let the error at the mth example be

Em =
1
2(y − a)2 =

1
2(y − σ(u))2. (7)

The weight adjustment is defined by the negative (sub)gradient

∆wi = −η∂Em
∂wi

. (8)

Using the chain rule, we can compute the variation in Em by
adjusting wi directly through the input u = 〈x ,w〉 as

∂Em
∂wi

=
∂Em
∂u

∂u
∂wi

(9)

13 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Derivation of backpropagation for single unit

The derivatives are
∂u
∂wi

= xi , (10)

and
∂Em
∂u = −(y − σ(u))

∂σ(u)

∂u = −(y − a)σ′(u). (11)

Thus the final expression for ∆wi is

∆wi = η(y − a)σ′(u)xi . (12)

14 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Backpropagation for multilayer network

The input ui (l) to unit i in layer l depends on the output of the
units in the previous layer aj(l − 1) to which it is connected
with weight wij :

ui (l) =
∑

j
wij(l)aj(l − 1). (13)

The output of this unit is ui (l) passed through the sigmoid:

ai (l) = σ(ui (l)). (14)

Again, the weight adjustment is defined by the negative
(sub)gradient

∆wij = −η∂Em
∂wij

. (15)

15 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Backpropagation for multilayer network

The error gradient depends on wij(l) through ui (l), thus using
the chain rule, we get

∂Em
∂wij(l)

=
∂Em
∂ui (l)

∂ui (l)
∂wij(l)

. (16)

For the second term, we get immediately

∂ui (l)
∂wij(l)

= aj(l − 1). (17)

Let the first part be denoted by

δi (l) = − ∂Em
∂ui (l)

. (18)

16 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Backpropagation for multilayer network

Backpropagation involves a recursive definition of the unit
errors δi (l) at each layer using equations (5) and (6). At the
output layer L, we can apply equation (11) to the single unit L,
yielding

δi (L) = − ∂Em
∂ui (L)

= (y − a(L))σ′(ui (L)). (19)

17 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Backpropagation for multilayer network

For l < L, we note that Em depends on ui (l) only through the
output ai (l), thus using the chain rule, we get

δi (l) = − ∂Em
∂ai (l)

∂ai (l)
∂ui (l)

. (20)

Since ai (l) = σ(ui (l)), we can compute the second term as

∂ai (l)
∂ui (l)

= σ′(ui (l)). (21)

18 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Backpropagation for multilayer network

To compute the first term, we note the Em depends on ai (l)
only through the effect the output has as to the inputs to all
the units in layer l + 1. Hence,

− ∂Em
∂ai (l)

= −
∑

k

∂Em
∂uk(l + 1)

∂uk(l + 1)

∂ai (l)
. (22)

Using equation (13), we get the derivative of the second term

∂uk(l + 1)

∂ai (l)
=
∂

∑
j wkj(l + 1)aj(l)
∂ai (l)

= wkj(l + 1). (23)

Using the definition in (18), we get for the first term

− ∂Em
∂uk(l + 1)

= δk(l + 1). (24)

19 / 20



An
Elementary
Introduction

to Neural
Networks

Riezler

Backpropagation for multilayer network

Combining the last two equations, we get

− ∂Em
∂ai (l)

=
∑

k
δk(l + 1)wkj(l + 1). (25)

Substituting this into equation (20), we get

δi (l) = σ′(ui (l))
∑

k
δk(l + 1)wkj(l + 1). (26)

Substituting this equation and (17) into (15) gives us the
update rule

∆wij(l) = −ηδi (l)aj(l − 1).

20 / 20


