Elementary [Introduction](#page-19-0) to Neural **Networks**

An Elementary Introduction to Neural Networks¹

Stefan Riezler

Computational Linguistics, Heidelberg University, Germany

¹Based on Kulkarni & Harman (2011). An Elementary Introduction to Statistical Learning Theory. Wiley

Perceptron as single neuron

Elementary [Introduction](#page-0-0) to Neural Networks

- The perceptron algorithm can be seen as **neural network consisting of a single neuron**.
- Its inputs are the features of an example $x = (x_1, \ldots, x_d)$. Each input is connected to the single neuron by weights $w = (w_1, \ldots, w_d)$. The output $a = \text{sign}(\langle x, w \rangle)$ is computed by the sign of the weighted combination of inputs, spanning a linear decision boundary.

Perceptron as single neuron

Elementary [Introduction](#page-0-0) to Neural Networks

- Another useful concept is that of a **threshold**.
- The single neuron in the network in Figure [2](#page-1-0) has a threshold of 0 since it produces the output $+1$ if $\langle x, w \rangle > 0.$
- This can be formalized by an extra input feature x_0 with constant value +1, yielding a threshold of $-w_0$:

 $\langle x, w \rangle + x_0 w_0 > 0$ iff $\langle x, w \rangle > -w_0$.

Perceptron as single neuron

Elementary [Introduction](#page-0-0) to Neural **Networks**

Example: A single-unit network formalizing the logical AND operation uses two inputs $x_1, x_2 \in \{0, 1\}$ with fixed weights $w_1 = w_2 = +1$ and a threshold $w_0 = -1.5$. Then

 $((+1)(-1.5)+x_1(+1)+x_2(+1)) > 0$ iff $x_1 = 1$ AND $x_2 = 1$.

• Using the output function a, we can rewrite the perceptron **update rule** as follows (where $y \in \{+1, -1\}$):

$$
w = w + \frac{1}{2} \eta^{(t)} (y - a)x
$$
 (1)

Elementary [Introduction](#page-0-0) to Neural Networks

- Since the decision boundary implemented by a perceptron is a hyperplane in \mathbb{R}^d , the perceptron can only classify correctly if the examples are **linearly separable**.
- A well-known example of a problem that is not linearly separable is the XOR problem. Suppose two input features x_1 and x_2 . Classes "true" and "false" fall into opposite quadrants of the decision space and cannot be separated linearly by a hyperplane.

 -1 XOR -1 = false -1 XOR $+1 = true$ $+1$ XOR -1 = true

$$
+1
$$
 XOR $+1 = false$

Elementary [Introduction](#page-0-0) to Neural **Networks**

Multilayer networks with just three layers and enough units in each layer can approximate any decision rule.

Elementary [Introduction](#page-0-0) to Neural Networks

- The representation capabilities of multilayer networks sketched above allow to model **non-linear decision boundaries** such as the XOR problems shown above.
- This is done by a multilayer network where each unit in the first layer computes a linear decision boundary.
- The outputs of this layer are passed as inputs to a second layer, where each unit performs a logical AND that implements an intersection of the half-spaces computed in the first layer.
- The outputs of the second layer are passed through a final unit that performs a logical OR operation that implements a union of convex sets computed in the second layer.

An **Elementary** [Introduction](#page-0-0) to Neural Networks

• In difference to a single unit network, outputs are not fed as inputs into following layers. This makes the $sign(\cdot)$ function less appropriate since it causes drastic changes in outputs and is discontinuous and not differentiable at 0.

• In multilayer networks we use a smooth function such as the **sigmoid function** that is continuously differentiable and varies between 0 and 1:

$$
\sigma(\mathsf{y}) = \frac{1}{1+e^{-\mathsf{y}}}
$$

8 / 20

Elementary [Introduction](#page-0-0) to Neural **Networks**

A useful fact is to know its derivative which is

$$
\sigma'(y) = \frac{d\sigma}{dy} = \sigma(y)(1 - \sigma(y)).
$$

• The output of of a unit is now given by

$$
a=\sigma(\langle x,w\rangle).
$$

O During training, target outputs are taken to be $y \in \{0, 1\}$. At test time, the decision for class 1 is made by checking if $a > 1/2$, and decide for class 0 otherwise.

Training a multilayer network: Backpropagation

Elementary [Introduction](#page-0-0) to Neural Networks

- **Training a multilayer network** requires a sequential implementation of gradient descent, called **backpropagation**.
- General form of weight adjustment *δ*w in update rule is given by negative (stochastic) (sub)gradient, that includes a learning rate *η*, an error term, and an input term:

general form: $\Delta w = -\eta *$ error term $*$ input term

Backpropagation

Elementary [Introduction](#page-0-0) to Neural Networks

single unit perceptron: $\Delta w_i = \eta(y_i - a_i)x_i$ (folding $\frac{1}{2}$ into η) unit in layer *l*: $\Delta w_{ii}(I) = -\eta \delta_i(I) a_i(I - 1)$ where $u_i(l)$ total input to unit *i* in layer *l*, (2) $a_i(l) =$ output of unit *i* in layer *l*, (3) $w_{ii}(l) =$ weight from unit *j* in layer $l - 1$ to unit *i* in layer *l*, (4) $\delta_i(l) = \sigma'(u_i(l))\sum$ k $\delta_k(l+1)w_{ki}(l+1)$ for $l = 1, \ldots, L-1$, (5) $\delta_i(L) = \sigma'(u_i(L))(y_i - a_i(L)).$ (6)

Backpropagation

Elementary [Introduction](#page-0-0) to Neural **Networks**

- The term "backpropagation" comes from the following intuition:
- After choosing initial weights, for each training example, start at the input layer, and compute the total input $u_i(l)$ for each unit in each layer by feeding forward the computation to the output layer.
- Then compute the final output $a_i(L)$, compute the error by comparing it with the the target output, and propagate the unit errors $\delta_i(I)$ for each layer backward to the second layer.
- Adjust weights $w_{ii}(I)$ by adding $\Delta w_{ii}(I)$.

Derivation of backpropagation for single unit

Elementary [Introduction](#page-0-0) to Neural **Networks**

Let the error at the mth example be

$$
E_m = \frac{1}{2}(y - a)^2 = \frac{1}{2}(y - \sigma(u))^2.
$$
 (7)

The weight adjustment is defined by the negative (sub)gradient

$$
\Delta w_i = -\eta \frac{\partial E_m}{\partial w_i}.
$$
 (8)

Using the chain rule, we can compute the variation in E_m by adjusting w_i directly through the input $u = \langle x, w \rangle$ as

$$
\frac{\partial E_m}{\partial w_i} = \frac{\partial E_m}{\partial u} \frac{\partial u}{\partial w_i} \tag{9}
$$

Derivation of backpropagation for single unit

Elementary [Introduction](#page-0-0) to Neural **Networks**

The derivatives are *∂*u $\frac{\partial}{\partial w_i} = x_i$ *,* (10) and *∂*E^m $\frac{\partial E_m}{\partial u}$ = −(y − σ(u)) $\frac{\partial \sigma(u)}{\partial u}$ = −(y − a) σ' (11) Thus the final expression for Δw_i is $\Delta w_i = \eta(y - a)\sigma'(u)x_i$ *.* (12)

Elementary [Introduction](#page-0-0) to Neural Networks

The input $u_i(l)$ to unit *i* in layer *l* depends on the output of the units in the previous layer $a_i(l-1)$ to which it is connected with weight w_{ii} :

$$
u_i(l) = \sum_j w_{ij}(l) a_j(l-1).
$$
 (13)

The output of this unit is $u_i(l)$ passed through the sigmoid:

$$
a_i(l) = \sigma(u_i(l)). \qquad (14)
$$

Again, the weight adjustment is defined by the negative (sub)gradient

$$
\Delta w_{ij} = -\eta \frac{\partial E_m}{\partial w_{ij}}.
$$
\n(15)

Elementary [Introduction](#page-0-0) to Neural **Networks**

The error gradient depends on $w_{ii}(l)$ through $u_i(l)$, thus using the chain rule, we get

$$
\frac{\partial E_m}{\partial w_{ij}(I)} = \frac{\partial E_m}{\partial u_i(I)} \frac{\partial u_i(I)}{\partial w_{ij}(I)}.
$$
(16)

For the second term, we get immediately

$$
\frac{\partial u_i(l)}{\partial w_{ij}(l)} = a_j(l-1). \tag{17}
$$

Let the first part be denoted by

$$
\delta_i(l) = -\frac{\partial E_m}{\partial u_i(l)}.\tag{18}
$$

Elementary [Introduction](#page-0-0) to Neural Networks

Backpropagation involves a recursive definition of the unit errors $\delta_i(l)$ at each layer using equations [\(5\)](#page-10-0) and [\(6\)](#page-10-1). At the output layer L , we can apply equation (11) to the single unit L , yielding

$$
\delta_i(L) = -\frac{\partial E_m}{\partial u_i(L)} = (y - a(L))\sigma'(u_i(L)). \tag{19}
$$

Elementary [Introduction](#page-0-0) to Neural **Networks**

For $1 < L$, we note that E_m depends on $u_i(I)$ only through the output $a_i(l)$, thus using the chain rule, we get

$$
\delta_i(l) = -\frac{\partial E_m}{\partial a_i(l)} \frac{\partial a_i(l)}{\partial u_i(l)}.
$$
\n(20)

Since $a_i(l) = \sigma(u_i(l))$, we can compute the second term as

$$
\frac{\partial a_i(l)}{\partial u_i(l)} = \sigma'(u_i(l)). \tag{21}
$$

Elementary [Introduction](#page-0-0) to Neural Networks

To compute the first term, we note the E_m depends on $a_i(l)$ only through the effect the output has as to the inputs to all the units in layer $l + 1$. Hence,

$$
-\frac{\partial E_m}{\partial a_i(l)} = -\sum_k \frac{\partial E_m}{\partial u_k(l+1)} \frac{\partial u_k(l+1)}{\partial a_i(l)}.
$$
 (22)

Using equation [\(13\)](#page-14-0), we get the derivative of the second term

$$
\frac{\partial u_k(l+1)}{\partial a_i(l)} = \frac{\partial \sum_j w_{kj}(l+1)a_j(l)}{\partial a_i(l)} = w_{kj}(l+1). \tag{23}
$$

Using the definition in [\(18\)](#page-15-0), we get for the first term

$$
-\frac{\partial E_m}{\partial u_k(l+1)} = \delta_k(l+1). \tag{24}
$$

19 / 20

Elementary [Introduction](#page-0-0) to Neural **Networks**

Combining the last two equations, we get

$$
-\frac{\partial E_m}{\partial a_i(l)} = \sum_k \delta_k(l+1) w_{kj}(l+1). \tag{25}
$$

Substituting this into equation [\(20\)](#page-17-0), we get

$$
\delta_i(l) = \sigma'(u_i(l)) \sum_k \delta_k(l+1) w_{kj}(l+1). \tag{26}
$$

Substituting this equation and [\(17\)](#page-15-1) into [\(15\)](#page-14-1) gives us the update rule

$$
\Delta w_{ij}(l)=-\eta\delta_i(l)a_j(l-1).
$$