
Mean Actor Critic

Kavosh Asadi1∗ Cameron Allen1∗ Melrose Roderick1 Abdel-rahman Mohamed2†

George Konidaris1 Michael Littman1

Brown University1 Amazon2

Providence, RI Seattle, WA

Abstract

We propose a new algorithm, Mean Actor-Critic (MAC), for discrete-action
continuous-state reinforcement learning. MAC is a policy gradient algorithm that
uses the agent’s explicit representation of all action values to estimate the gradient
of the policy, rather than using only the actions that were actually executed. This
significantly reduces variance in the gradient updates and removes the need for a
variance reduction baseline. We show empirical results on two control domains
where MAC performs as well as or better than other policy gradient approaches,
and on five Atari games, where MAC is competitive with state-of-the-art policy
search algorithms.

1 Introduction

Reinforcement learning (RL) algorithms generally fall into one of two categories: value-function-
based methods and policy search methods. Value-function-based methods maintain an estimate of
the value of performing each action in each state, and choose the actions associated with the most
value in their current state (Sutton & Barto, 1998). By contrast, policy search algorithms maintain an
explicit policy, and agents draw actions directly from that policy to interact with their environment
(Sutton et al., 2000). A subset of policy search algorithms, policy gradient methods, represent the
policy using a differentiable parameterized function approximator (for example, a neural network)
and use stochastic gradient ascent to update its parameters to achieve more reward.

To facilitate gradient ascent, the agent interacts with its environment according to the current policy
and keeps track of the outcomes of its actions. From these (potentially noisy) sampled outcomes, the
agent estimates the gradient of the objective function. A critical question here is how to compute an
accurate gradient using these samples, which may be costly to acquire, while using as few sample
interactions as possible.

Actor-critic algorithms compute the policy gradient using a learned value function to estimate ex-
pected future reward (Sutton et al., 2000; Konda & Tsitsiklis, 2000). Since the expected reward is a
function of the environment’s dynamics, which the agent does not know, it is typically estimated by
executing the policy in the environment. Existing algorithms compute the policy gradient using the
value of states the agent visits, and critically, these methods take into account only the actions the
agent actually executes during environmental interaction.

We propose a new policy gradient algorithm, Mean Actor-Critic (or MAC), for the discrete-
action continuous-state case. MAC uses the agent’s policy distribution to average the value
function over all actions, rather than sampling the action-value for actions it actually executed.
This approach significantly reduces variance in the gradient updates and removes the need for

∗These authors contributed equally to this work. Please send correspondence to Kavosh Asadi
<kavosh@brown.edu> and Cameron Allen <csal@brown.edu>.

†This work was completed while at Microsoft Research.

ar
X

iv
:1

70
9.

00
50

3v
1

 [
st

at
.M

L
]

 1
 S

ep
 2

01
7

an additional variance reduction term, called a baseline, often used in policy gradient methods
(Williams, 1992; Sutton et al., 2000). We implement MAC using deep neural networks, and we
show empirical results on two control domains, where MAC performs as well as or better than other
policy gradient approaches, and on five Atari games, where MAC is competitive with state-of-the-art
policy gradient and evolutionary policy search methods.

We note that the core idea behind MAC has also been independently and concurrently explored by
Ciosek and Whiteson (2017).

2 Background

In RL, we train an agent to select actions in its environment so that it maximizes some notion of long-
term reward. We formalize the problem as a Markov decision process (MDP) (Puterman, 1990),
which we specify by the tuple 〈S , s0,A,R, T , γ〉, where S is a set of states, s0 ∈ S is a fixed initial
state, A is a set of discrete actions, the functions R : S ×A → R and T : S ×A× S →[0, 1]
respectively describe the reward and transition dynamics of the environment, and γ ∈ [0, 1) is a
discount factor representing the relative importance of immediate versus long-term rewards.

More concretely, we denote the expected reward for performing action a ∈ A in state s ∈ S as:

R(s, a) = E
[
rt+1

∣∣st = s, at = a
]

,

and we denote the probability that performing action a in state s results in state s′ ∈ S as:

T (s, a, s′) = Pr(st+1 = s′
∣∣st = s, at = a) .

In the context of policy search methods, the agent maintains an explicit policy π(a|s; θ) denoting
the probability of taking action a in state s under the policy π parameterized by θ. Note that for each
state, the policy outputs a probability distribution over the discrete set of actions: π : S → P(A).
At each timestep t, the agent takes an action at drawn from its policy π(·|st; θ), then the environment
provides a reward signal rt and transitions to the next state st+1.

The agent’s goal at every timestep is to maximize the sum of discounted future rewards, or simply
return, which we define as:

Gt =
∞

∑
k=1

γk−1rt+k .

In a slight abuse of notation, we will also denote the total return for a trajectory τ as G(τ), which is
equal to G0 for that same trajectory.

The agent’s policy induces a value function over the state space. The expression for return allows
us to define both a state value function, Vπ(s), and a state-action value function, Qπ(s, a). Here,
Vπ(s) represents the expected return starting from state s, and following the policy π thereafter,
and Qπ(s, a) represents the expected return starting from s, executing action a, and then following
the policy π thereafter:

Vπ(s) = E
π

[
Gt
∣∣st = s

]
= ∑

a∈A
[π(a|s; θ)Qπ(s, a)] ,

Qπ(s, a) = E
π

[
Gt
∣∣st = s, at = a

]
.

The agent’s goal is to find a policy that maximizes the return for every timestep, so we define an
objective function J that allows us to score an arbitrary policy parameter θ:

J(θ) = E
τ∼Pr(τ|θ)

[G(τ)] = ∑
τ

Pr(τ|θ)G(τ) ,

where τ denotes a trajectory. Note that the probability of a specific trajectory depends on policy
parameters as well as the dynamics of the environment. Our goal is to be able to compute the
gradient of J with respect to the policy parameters θ:

2

∇θ J(θ) = ∑
τ

∇θ Pr(τ|θ)G(τ)

= ∑
τ

Pr(τ|θ)∇θ Pr(τ|θ)
Pr(τ|θ) G(τ)

= ∑
τ

Pr(τ|θ)∇θ log Pr(τ|θ)G(τ)

= E
s∼dπ , a∼π

[∇θ log π(a|s; θ)G0]

= E
s∼dπ , a∼π

[∇θ log π(a|s; θ)Gt]

= E
s∼dπ , a∼π

[∇θ log π(a|s; θ)Qπ(s, a)|s0] (1)

where dπ(s) = ∑∞
t=0 γtPr(st = s|s0, π) is the discounted state distribution. In the second and

third lines we rewrite the summation using the log-derivative trick. In the fourth line, we convert the
summation to an expectation, and use the G0 notation in place of G(τ). Next, we make use of the
fact that E[G0] = E[Gt], given by Williams (1992). Intuitively this makes sense, since the policy
for a given state should depend only on the rewards achieved after that state. Finally, we invoke the
definition that Qπ(s, a) = E[Gt].

A nice property of expectation (1) is that, given access to Qπ , the expectation can be estimated
through implementing policy π in the environment. Alternatively, we can estimate Qπ using the
return Gt, which is an unbiased (and usually a high variance) sample of Qπ . This is essentially
the idea behind the REINFORCE algorithm (Williams, 1992), which uses the following gradient
estimator:

∇θ J(θ) ≈
T

∑
t=1

Gt∇θ log π(at|st; θ) (2)

Alternatively, we can estimate Qπ using some sort of function approximation: Q̂(s, a; ω) ≈
Qπ(s, a), which results in variants of actor-critic algorithms. Perhaps the simplest actor critic algo-
rithm approximates (1) as follows:

∇θ J(θ) ≈
T

∑
t=1

Q̂(st, at; w)∇θ log π(at|st; θ) (3)

Note that value function approximation can, in general, bias the gradient estimation (Baxter &
Bartlett, 2001).

One way of reducing variance in both REINFORCE and actor-critic algorithms is to use an additive
control variate as a baseline (Williams, 1992; Sutton et al., 2000; Greensmith et al., 2004). A baseline
is a function that is fixed over actions, and subtracting it from either the sampled returns or the
estimated Q-values does not bias the gradient estimation. We refer to techniques that use such
a baseline as advantage variations of the basic algorithms, since they approximate the advantage
A(s, a) of choosing action a over some baseline representing “typical” performance for the policy
in state s. The update performed by advantage REINFORCE is:

θ ← θ + α
T

∑
t=1

(Gt − b)∇θ log π(at|st; θ) ,

where b is a scalar baseline measuring the performance of the policy, such as a running average of
the observed return over the past few episodes of interaction.

Advantage actor-critic uses an approximation of the expected value of each state st as its baseline:
V̂(st) = ∑a π(a|st; θ)Q̂(st, a; ω), which leads to the following update rule:

θ ← θ + α
T

∑
t=1

(
Q̂(st, at; ω)− V̂(st)

)
∇θ log π(at|st; θ) .

Another way of estimating the advantage function is to use the TD-error signal δ = rt + γV(s′)−
V(s). This approach is convenient, because it only requires estimating one set of parameters, namely

3

for V. However, because the TD-error is a sample of the advantage function A(s, a) = Qπ(s, a)−
Vπ(s), this approach has higher variance (due to the environmental dynamics) than methods that
explicitly compute Q(s, a)− V(s). Moreover, given Q and π, V can easily be computed as V =
∑a π(a|s)Q(s, a), so in practice, it is still only necessary to estimate one set of parameters (for Q).

3 Mean Actor-Critic

An overwhelming majority of recent actor-critic papers have computed the policy gradient using an
estimate similar to Equation (3) (Degris et al. (2012); Mnih et al. (2016); Wang et al. (2016)). This
estimate samples both states and actions from trajectories executed according to the current policy
in order to compute the gradient of the objective function with respect to the policy weights.

Instead of using only the sampled actions, Mean Actor-Critic (MAC) explicitly computes the
probability-weighted average over all Q-values, for each state sampled from the trajectories. This
eliminates the need to use the log-derivative trick to remove preference for actions that have a higher
probability under π. The result is an estimate of the gradient where the variance due to action sam-
pling is reduced to zero. This is exactly the difference between computing the sample mean (whose
variance is inversely proportional to the number of samples), and calculating the mean directly
(which is simply a scalar with no variance).

MAC is based on the observation that expectation (1), which we repeat here, can be simplified as
follows:

∇θ J(θ) = E
s∼dπ , a∼π

[∇θ log π(a|s; θ)Qπ(s, a)|s0]

= ∑
s∈S

dπ(s) ∑
a∈A

π(a|s; θ)∇θ log π(a|s; θ)Qπ(s, a)

= ∑
s∈S

dπ(s) ∑
a∈A
∇θπ(a|s; θ)Qπ(s, a)

= E
s∼dπ(s)

[
∑

a∈A
∇θπ(a|s; θ)Qπ(s, a)

]
(4)

We can estimate (4) by sampling states from a trajectory and using function approximation:

∇θ J(θ) ≈
T−1

∑
t=0

∑
a∈A
∇θπ(a|st; θ)Q̂(st, a; ω) .

In our implementation, the inner summation is computed by combining two neural networks that
represent the policy and state-action value function. The value function can be learned using a
variety of methods, such as temporal-difference learning or Monte Carlo sampling. After performing
a few updates to the value function, we update the parameters θ of the policy with the following
update rule:

θ ← θ + α
T−1

∑
t=0

∑
a∈A
∇θπ(a|st; θ)Q̂(st, a; ω) (5)

To improve stability, repeated updates to the value and policy networks are interleaved, as in Gener-
alized Policy Iteration (Sutton & Barto, 1998).

In traditional actor-critic approaches, which we refer to as sampled-action actor-critic, the only
actions involved in the computation of the policy gradient estimate are those that were actually exe-
cuted in the environment. In MAC, computing the policy gradient estimate will frequently involve
actions that were not actually executed in the environment. This results in a trade-off between bias
and variance. In domains where we can expect accurate Q-value predictions from our function ap-
proximator, despite not actually executing all of the relevant state-action pairs, MAC results in lower
variance gradient updates and increased sample-efficiency. In domains where this assumption is not
valid, MAC may perform worse than sampled-action actor-critic, though such domains also tend to
be pathological for function-approximation in general.

4

Figure 1: Screenshots of the classic control domains: Cart Pole (left) and Lunar Lander (right)

In some ways, MAC is similar to Expected Sarsa (Van Seijen et al., 2009). Expected Sarsa considers
all next-actions at+1, then computes the expected TD-error, E[δ] = rt + γ E[Q(st+1, at+1)] −
Q(st, at), and uses the resulting error signal to update the Q function. By contrast, MAC considers
all current-actions at, and uses the corresponding Q(st, at) values to update the policy directly.

It is natural to consider whether MAC could be improved by subtracting an action-independent
baseline, as in sampled-action actor-critic and REINFORCE:

∇θ J(θ) = E
s∼dπ(s)

[
∑

a∈A
∇θπ(a|s; θ)

(
Qπ(s, a)−Vπ(s)

)]
However, if we simplify the expectation as follows,

∇θ J(θ) = E
s∼dπ(s)

[
∑

a∈A
∇θπ(a|s; θ)Qπ(s, a)−Vπ(s)∇θ ∑

a∈A
π(a|s; θ)

]
we see that both Vπ(s) and the gradient operator can be moved outside of the summation, leaving
just the sum of the action probabilities, which is always 1, and hence the gradient of the baseline
term is always zero. This is true regardless of the choice of baseline, since the baseline cannot be a
function of the actions or else it will bias the expectation. Thus, we see that subtracting a baseline is
unnecessary in MAC, since it has no effect on the policy gradient estimate.

4 Experiments

This section presents an empirical evaluation of MAC across three different problem domains. We
first evaluate the performance of MAC versus popular policy gradient benchmarks on two classic
control problems. We then evaluate MAC on a subset of Atari 2600 games and investigate its
performance compared to state-of-the-art policy search methods.

4.1 Classic Control Experiments

In order to determine whether MAC’s lower variance policy gradient estimate translates to faster
learning, we chose two classic control problems, namely Cart Pole and Lunar Lander, and compared
MAC’s performance against four standard sampled-action policy gradient algorithms. We used the
open-source implementations of Cart Pole and Lunar Lander provided by OpenAI Gym (Brock-
man et al., 2016), in which both domains have continuous state spaces and discrete action spaces.
Screenshots of the two domains are provided in Figure 1.

For each problem domain, we implemented MAC using two independent neural networks, repre-
senting the policy and Q function. We then performed a hyperparameter search to determine the
best network architectures, optimization method, and learning rates. Specifically, the hyperparam-
eter search considered: 0, 1, 2, or 3 hidden layers; 50, 75, 100, or 300 neurons per layer; ReLU,
Leaky ReLU (with leak factor 0.3), or tanh activation; SGD, RMSProp, Adam, or Adadelta as the
optimization method; and a learning rate chosen from 0.0001, 0.00025, 0.0005, 0.001, 0.005, 0.01,
or 0.05. To find the best setting, we ran 10 independent trials for each combination of hyperparam-
eters and chose the setting with the best asymptotic performance over the 10 trials. We terminated
each episode after 200 and 1000 timesteps (in Cart Pole and Lunar Lander, respectively), regardless
of the state of the agent.

We compared MAC against four standard benchmarks: REINFORCE, advantage REINFORCE,
actor-critic, and advantage actor-critic. We implemented the REINFORCE benchmarks using just a

5

Figure 2: Performance comparison for CartPole (left) and Lunar Lander (right) of MAC vs.
sampled-action policy gradient algorithms. Results are averaged over 100 independent trials.

Algorithm Cart Pole Lunar Lander
REINFORCE 109.5± 13.3 101.1± 10.5
Advantage REINFORCE 121.8± 11.2 114.7± 8.1
Actor-Critic 138.7± 13.2 124.6± 5.1
Advantage Actor-Critic 157.4± 6.4 162.8± 14.9
MAC 178.3± 7.6 163.5± 12.8

Table 1: Performance summary of MAC vs. sampled-action policy gradient algorithms. Scores
denote the mean performance of each algorithm over all trials and episodes.

single neural network to represent the policy, and we implemented the actor-critic benchmarks using
two networks to represent both the policy and Q function. For each benchmark algorithm, we then
performed the same hyperparameter search that we had used for MAC.

In order to keep the variance as low as possible for the advantage actor-critic benchmark, we explic-
itly computed the advantage function A(s, a) = Q(s, a)−V(s), where V(s) = ∑a π(a|s)Q(s, a),
rather than sampling it using the TD-error (see Section 2).

Once we had determined the best hyperparameter settings for MAC and each of the benchmark
algorithms, we then ran each algorithm for 100 independent trials. Figure 2 shows learning curves
for the different algorithms, and Table 1 summarizes the results using the mean performance over
trials and episodes. On Cart Pole, MAC learns substantially faster than all of the benchmarks, and on
Lunar Lander, it performs competitively with the best benchmark algorithm, advantage actor-critic.

4.2 Atari Experiments

To test whether MAC can scale to larger problem domains, we evaluated it on several Atari 2600
games using the Arcade Learning Environment (ALE) (Bellemare et al., 2013) and compared MAC’s
performance against that of state-of-the-art policy search methods, namely, Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015), Evolutionary Strategies (ES) (Salimans et al., 2017),
and Asyncronous Advantage Actor Critic (A3C) (Mnih et al., 2016). Due to the computational load
inherent in training deep networks to play Atari games, we limited our experiments to a subset of five
Atari games: Beamrider, Breakout, Pong, Seaquest and Space Invaders. These games were chosen
as they are the five most common Atari games for tuning hyperparameters (Mnih et al., 2015, 2016).

The value network architecture was exactly the same as DeepMind’s Deep Q-Network (DQN) (Mnih
et al., 2015), and the policy network contained an additional fully-connected layer of 512 neurons
with ReLU activation, followed by a linear layer and a softmax output layer. The policy and value
networks used shared weights for the first four “feature” layers.

6

Table 2: Atari performance of MAC vs. policy search methods (random start condition). MAC vs.
Best calculated as 100× (MAC − Random)/(Best − Random).

Game Random TRPO
(single)

TRPO
(vine)

ES
(1-hour) MAC MAC vs.

Best

Beam Rider 363.9 1425.2 859.5 744.0 761.3 37.5%
Breakout 1.7 10.8 34.2 9.5 160.1* 487.38%
Pong -20.7 20.9 20.9 21.0 20.2 98.1%
Seaquest 68.4 1908.6 788.4 1390.0 9445.3 509.6%
Space Invaders 148.0 568.4 450.2 678.5 2229.0 392.3%

Average Performance vs. Best: 304.95%

We trained the value network and feature layers using RMSProp and a learning rate of 0.0005,
keeping all other hyperparameters the same as DQN, and using the same experience replay buffer
and target network. In place of choosing actions using DQN’s ε-greedy strategy with respect to
the Q-values for a given state s, we instead sampled an action from the policy network’s output
distribution for state s. To compute the value targets needed for Q-learning, we multiplied the policy
distribution at the next state s′ by the corresponding Q-values from the target network.

After every episode, we froze the value network and feature layers, and trained the policy network
using RMSProp and a learning rate of 0.0005, following the update rule given by (5). Each policy
update sampled 25 independent batches, each of 32 experience tuples (s, a, r, s′), drawn uniformly
from only the most recent 10,000 experiences in the replay buffer.

For each game, we trained for 50 million frames, pausing every 250,000 frames to run 125,000 eval-
uation episodes. We compared the mean score from each evaluation and kept the best-performing
network, effectively implementing early stopping. We then evaluated the best-performing network
under two types of starting conditions, random starts and human starts, in order to compare with the
results from previous methods. Under random starts, the game is initialized with randomly between
0 and 30 no-ops ALE actions (Mnih et al., 2015), and we evaluated the network for 30 episodes
(stopping after a maximum time of five minutes per episode). Under human starts, the game is ini-
tialized with a random game state sampled from 3 minutes of human expert play (Mnih et al., 2016),
and we evaluated the network for 100 episodes (stopping after a maximum time of 30 minutes per
episode, including the human expert initialization). The agent’s performance is evaluated only the
agent’s total score after the human start (not including the human’s points). Note that we used a dif-
ferent human expert than that of A3C, as the game initializations from these runs were not publicly
available.

When evaluating our network on Breakout, we noticed an issue with the training scheme that resulted
in strange behavior. We used the standard training scheme for Atari (Mnih et al., 2015), which
consists of evaluation periods of a fixed number of timesteps (not a fixed number of games) at
regular intervals. A consequence is that it is possible to get lucky in the first game of the evaluation
period and achieve a high score, but subsequently be unable to finish a second game (e.g. failing
to release the ball). If this happens, the training process will record the average completed game
score (i.e. the high score), even if it is much higher than the agent’s true average performance. This
occurred when training MAC, and we could not evaluate the resulting network, because it could not
finish enough games. We wanted to know whether the behavior was due to MAC getting stuck or
MAC simply not learning anything, so we added a small amount of noise to the policy (ε = 0.005),
only during evaluation, in order to avoid getting stuck. Results in Tables 2 and 3 that were obtained
using this noisy policy are denoted with an asterisk.

For the random-start condition, we compared MAC against TRPO (both single and vine) (Schulman
et al., 2015), as well as ES (Salimans et al., 2017). We found that MAC performed significantly
better on three out of five games, and competitively on a fourth (See Table 2). On average, MAC
was three times better than the best performing benchmark algorithm.

For the human-start condition, we compared MAC against the state-of-the-art A3C algorithm (Mnih
et al., 2016). In this experiment, MAC was better on two out of five experiments and worse on three
(see Table 3). MAC significantly outperformed A3C on Seaquest, leading to an average performance
across all five games of about three and a half times that of A3C.

7

Table 3: Atari performance of MAC vs. A3C (human start condition)

Game Random A3C FF
(1-day) MAC MAC vs.

A3C

Beam Rider 363.9 13235.9 469.8 0.8%
Breakout 1.7 551.6 107.4* 19.2%
Pong -20.7 11.4 15.6 113.1%
Seaquest 68.4 551.6 7878.0 1616.2%
Space Invaders 148.0 2214.7 1254.9 53.6%

Average Performance vs. A3C: 360.6%

Note that the performance on Beam Rider was low relative to the other games. This was due to
the algorithm falling into a local optimum where it always chose to go left while shooting. Such
a strategy is locally optimal, and measurably better than random play, but it prevented our agent
from finding a better policy. This behavior is typical of policy gradient algorithms, and we note that
MAC’s performance is still competitive with TRPO (vine) and ES. A3C is able to overcome this
problem by exploring different parts of the search space in parallel, an approach not always feasible
in practice.

5 Discussion

At its core, MAC offers a new way of computing the policy gradient which can substantially reduce
variance and increase learning speed. There are a number of orthogonal improvements to policy
gradient methods, such as using natural gradients (Kakade, 2002; Peters & Schaal, 2008), off-policy
learning (Wang et al., 2016; Gu et al., 2016; Asadi & Williams, 2016), second-order methods (Furm-
ston et al., 2016), and asynchronous exploration (Mnih et al., 2016). We have not investigated how
MAC performs with these extensions; however, just as these improvements were added to basic
actor-critic methods, they could be added to MAC as well, and we expect they would improve its
performance in a similar way.

A typical use-case for actor-critic algorithms is for problem domains with continuous actions, which
are awkward for value-function-based methods (Sutton & Barto, 1998). One approach to dealing
with continuous actions is to use a deterministic policy (Silver et al., 2014; Lillicrap et al., 2015)
and to perform off-policy policy gradient updates. However, in settings where on-policy learning is
necessary, using a deterministic policy leads to a sub-optimal behavior (Sutton & Barto, 1998), and
hence a stochastic policy is typically used instead. MAC uses a stochastic policy, but it was designed
for discrete-action domains. Extending MAC to continuous actions would require changing MAC’s
sum over actions to an integral, an operation that is more complex. Such a modification will be the
subject of future work.

6 Conclusion

The basic formulation of policy gradient estimators presented here—where the gradient is estimated
by averaging the state-action value function across actions—leads to a new family of actor-critic
algorithms. This family has the advantage of not requiring an additional variance-reduction baseline,
substantially reducing the design effort required to apply them. It is also a natural fit with deep neural
network function approximators, resulting in a network architecture that is end-to-end differentiable.

Our results show that the MAC algorithm (the simplest member of the resulting family), when
combined with a neural network implementation, either outperforms, or is competitive with, state-
of-the-art policy search algorithms that make similar assumptions. In future work, we aim to develop
this family of algorithms further, first by including typical elaborations of the basic actor-critic
architecture like natural or second-order gradients, and second by adding parallel searches (such
as are conducted by A3C), which would help to avoid the local optima that are inherent in policy
search and which in some cases cause MAC to perform badly. Our results so far suggest that our
new approach is highly promising, and that extensions to it will provide even further improvement
in performance.

8

References
Asadi, Kavosh and Williams, Jason D. Sample-efficient deep reinforcement learning for dialog

control. arXiv preprint arXiv:1612.06000, 2016.

Baxter, Jonathan and Bartlett, Peter L. Infinite-horizon policy-gradient estimation. Journal of Arti-
ficial Intelligence Research, 15:319–350, 2001.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John, Tang, Jie,
and Zaremba, Wojciech. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.
org/abs/1606.01540.

Ciosek, Kamil and Whiteson, Shimon. Expected policy gradients. arXiv preprint arXiv:1706.05374,
2017.

Degris, Thomas, White, Martha, and Sutton, Richard S. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Furmston, Thomas, Lever, Guy, and Barber, David. Approximate newton methods for policy search
in markov decision processes. Journal of Machine Learning Research, 17(227):1–51, 2016.

Greensmith, Evan, Bartlett, Peter L, and Baxter, Jonathan. Variance reduction techniques for gradi-
ent estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–
1530, 2004.

Gu, Shixiang, Lillicrap, Timothy, Ghahramani, Zoubin, Turner, Richard E, and Levine, Sergey. Q-
prop: Sample-efficient policy gradient with an off-policy critic. arXiv preprint arXiv:1611.02247,
2016.

Kakade, Sham M. A natural policy gradient. In Advances in neural information processing systems,
pp. 1531–1538, 2002.

Konda, Vijay R and Tsitsiklis, John N. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa, Yuval,
Silver, David, and Wierstra, Daan. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,
Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lillicrap, Timothy P,
Harley, Tim, Silver, David, and Kavukcuoglu, Koray. Asynchronous methods for deep reinforce-
ment learning. In International Conference on Machine Learning, 2016.

Peters, Jan and Schaal, Stefan. Natural actor-critic. Neurocomputing, 71(7):1180–1190, 2008.

Puterman, Martin L. Markov decision processes. Handbooks in operations research and manage-
ment science, 2:331–434, 1990.

Salimans, Tim, Ho, Jonathan, Chen, Xi, and Sutskever, Ilya. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan, Michael, and Moritz, Philipp. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889–1897, 2015.

Silver, David, Lever, Guy, Heess, Nicolas, Degris, Thomas, Wierstra, Daan, and Riedmiller, Martin.
Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 387–395, 2014.

9

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540

Sutton, Richard S, McAllester, David A, Singh, Satinder P, and Mansour, Yishay. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural informa-
tion processing systems, pp. 1057–1063, 2000.

Sutton, R.S. and Barto, A.G. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

Van Seijen, Harm, Van Hasselt, Hado, Whiteson, Shimon, and Wiering, Marco. A theoretical and
empirical analysis of expected sarsa. In Adaptive Dynamic Programming and Reinforcement
Learning, 2009. ADPRL’09. IEEE Symposium on, pp. 177–184. IEEE, 2009.

Wang, Ziyu, Bapst, Victor, Heess, Nicolas, Mnih, Volodymyr, Munos, Remi, Kavukcuoglu, Ko-
ray, and de Freitas, Nando. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

10

