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Abstract
Policy gradient methods for reinforcement learning avoid some of the undesirable properties of

the value function approaches, such as policy degradation (Baxter and Bartlett, 2001). However,
the variance of the performance gradient estimates obtained from the simulation is sometimes ex-
cessive. In this paper, we consider variance reduction methods that were developed for Monte
Carlo estimates of integrals. We study two commonly used policy gradient techniques, the baseline
and actor-critic methods, from this perspective. Both can be interpreted as additive control variate
variance reduction methods. We consider the expected average reward performance measure, and
we focus on the GPOMDP algorithm for estimating performancegradients in partially observable
Markov decision processes controlled by stochastic reactive policies. We give bounds for the esti-
mation error of the gradient estimates for both baseline andactor-critic algorithms, in terms of the
sample size and mixing properties of the controlled system.For the baseline technique, we compute
the optimal baseline, and show that the popular approach of using the average reward to define the
baseline can be suboptimal. For actor-critic algorithms, we show that using the true value function
as the critic can be suboptimal. We also discuss algorithms for estimating the optimal baseline and
approximate value function.

Keywords: reinforcement learning, policy gradient, baseline, actor-critic, GPOMDP

1. Introduction

The task in reinforcement learning problems is to select a controller that will perform well in some
given environment. This environment is often modelled as a partially observable Markov decision
process (POMDP); see, for example, Kaelbling et al. (1998); Aberdeen (2002); Lovejoy (1991).
At any step in time this process sits in some state, and that state is updated when thePOMDP is
supplied with an action. An observation is generated from the current stateand given as information
to a controller. A reward is also generated, as an indication of how good that state is to be in.
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The controller can use the observations to determine which action to produce, thereby altering the
POMDP state. The expectation of the average reward over possible future sequences of states
given a particular controller (the expected average reward) can be used as a measure of how well
a controller performs. This performance measure can then be used to select a controller that will
perform well.

Given a parameterized space of controllers, one method to select a controller is by gradient
ascent (see, for example, Glynn, 1990; Glynn and L‘Ecuyer, 1995;Reiman and Weiss, 1989; Ru-
binstein, 1991; Williams, 1992). An initial controller is selected, then the gradient direction in the
controller space of the expected average reward is calculated. The gradient information can then be
used to find the locally optimal controller for the problem. The benefit of usinga gradient approach,
as opposed to directly comparing the expected average reward at different points, is that it can be
less susceptible to error in the presence of noise. The noise arises fromthe fact that we estimate,
rather than calculate, properties of the controlled POMDP.

Determining the gradient requires the calculation of an integral. We can produce an estimate
of this integral through Monte Carlo techniques. This changes the integration problem into one of
calculating a weighted average of samples. It turns out that these samples can be generated purely
by watching the controller act in the environment (see Section 3.3). However, this estimation tends
to have a high variance associated with it, which means a large number of stepsis needed to obtain
a good estimate.

GPOMDP (Baxter and Bartlett, 2001) is an algorithm for generating an estimateof the gradient
in this way. Compared with other approaches (such as the algorithms described in Glynn, 1990;
Rubinstein, 1991; Williams, 1992, for example), it is especially suitable for systems with large state
spaces, when the time between visits to a recurrent state is large but the mixing timeof the controlled
POMDP is short. However, it can suffer from the problem of high variance in its estimates. We seek
to alter GPOMDP so that the estimation variance is reduced, and thereby reduce the number of steps
required to train a controller.

One generic approach to reducing the variance of Monte Carlo estimates ofintegrals is to use
an additive control variate (see, for example, Hammersley and Handscomb, 1965; Fishman, 1996;
Evans and Swartz, 2000). Suppose we wish to estimate the integral of the function f :X → R, and
we happen to know the value of the integral of another function on the same spaceϕ : X → R. As
we have

Z

X
f(x) =

Z

X
(f(x)−ϕ(x))+

Z

X
ϕ(x) (1)

the integral of f(x)−ϕ(x) can be estimated instead. Obviously ifϕ(x) = f(x) then we have managed
to reduce our variance to zero. More generally,

Var( f −ϕ) = Var( f )−2Cov( f ,ϕ)+Var(ϕ).

If ϕ and f are strongly correlated, so that the covariance term on the right hand side is greater than
the variance ofϕ, then a variance improvement has been made over the original estimation problem.

In this paper, we consider two applications of the control variate approach to the problem of
gradient estimation in reinforcement learning. The first is the technique of adding a baseline, which
is often used as a way to affect estimation variance whilst adding no bias. Weshow that adding a
baseline can be viewed as a control variate method, and we find the optimal choice of baseline to
use. We show that the additional variance of a suboptimal baseline can be expressed as a certain
weighted squared distance between the baseline and the optimal one. A constant baseline, which
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does not depend on the state, has been commonly suggested (Sutton and Barto, 1998; Williams,
1992; Kimura et al., 1995, 1997; Kimura and Kobayashi, 1998b; Marbach and Tsitsiklis, 2001). The
expectation over all states of the discounted value of the state has been proposed, and widely used,
as a constant baseline, by replacing the reward at each step by the difference between the reward and
the average reward. We give bounds on the estimation variance that showthat, perhaps surprisingly,
this may not be the best choice. Our results are consistent with the experimental observations of
Dayan (1990).

The second application of the control variate approach is the use of a value function. The
discounted value function is usually not known, and needs to be estimated. Using some fixed, or
learnt, value function in place of this estimate can reduce the overall estimation variance. Such
actor-critic methodshave been investigated extensively (Barto et al., 1983; Kimura and Kobayashi,
1998a; Baird, 1999; Sutton et al., 2000; Konda and Tsitsiklis, 2000, 2003). Generally the idea
is to minimize some notion of distance between the value function and the true discounted value
function, using, for example, TD (Sutton, 1988) or Least-Squares TD (Bradtke and Barto, 1996).
In this paper we show that this may not be the best approach: selecting a value function to be equal
to the true discounted value function is not always the best choice. Even more surprisingly, we
give examples for which the use of a value function that is different fromthe true discounted value
function reduces the variance to zero, for no increase in bias. We consider a value function to be
forming part of a control variate, and find a corresponding bound on the expected squared error (that
is, including the estimation variance) of the gradient estimate produced in this way.

While the main contribution of this paper is in understanding a variety of ideas in gradient
estimation as variance reduction techniques, our results suggest a numberof algorithms that could
be used to augment the GPOMDP algorithm. We present new algorithms to learn the optimum
baseline, and to learn a value function that minimizes the bound on the expectedsquared error of
a gradient estimate, and we describe the results of preliminary experiments, which show that these
algorithms give performance improvements.

2. Overview of Paper

Section 3 gives some background information. The POMDP setting and controller are defined, and
the measure of performance and its gradient are described. Monte Carloestimation of integrals,
and how these integrals can be estimated, is covered, followed by a discussion of the GPOMDP
algorithm, and how it relates to the Monte Carlo estimations. Finally, we outline the control variates
that we use.

The samples used in the Monte Carlo estimations are taken from a single sequence of observa-
tions. Little can be said about the correlations between these samples. However, Section 4 shows
that we can bound the effect they have on the variance in terms of the variance of the iid case (that
is, when samples are generated iid according to the stationary distribution of the Markov chain).

Section 5 derives results for a baseline control variate in the iid setting, using results in Section 4
to interpret these as bounds in the more general case. In particular, we give an expression for the
minimum variance that may be obtained, and the baseline that achieves this minimum variance. The
section also compares the minimum variance against the common technique of using the expectation
over states of the discounted value function, and it looks at a restricted class of baselines that use
only observation information.
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Section 6 looks at the technique of replacing the estimate of the discounted value function with
some value function, in a control variate context. It shows that using the true discounted value
function may not be the best choice, and that additional gains may be made. It also gives bounds on
the expected squared error introduced by a value function.

Section 7 presents an algorithm to learn the optimal baseline. It also presentsan algorithm to
learn a value function by minimizing an estimate of the resulting expected squarederror. Section 8
describes the results of experiments investigating the performance of thesealgorithms.

3. Background

Here we formally define the learning setting, including the performance and itsgradient. We then
give an intuitive discussion of the GPOMDP algorithm, starting with its approximation to the true
gradient, and how it may be estimated by Monte Carlo techniques. Finally, we introduce the two
variance reduction techniques studied in this paper.

3.1 System Model

A partially observable Markov decision process (POMDP) can be modelledby a system consisting
of a state space,S , an action space,U, and an observation space,Y , all of which will be considered
finite here. State transitions are governed by a set of probability transition matricesP(u), where
u ∈ U, components of which will be denoted pi j (u), wherei, j ∈ S . There is also an observation
processν : S →PY , wherePY is the space of probability distributions overY , and a reward function
r : S → R. Together these define the POMDP(S ,U,Y ,P,ν, r).

A policy for this POMDP is a mappingµ : Y ∗ → PU , whereY ∗ denotes the space of all finite
sequences of observationsy1, . . . ,yt ∈ Y andPU is the space of probability distributions overU. If
only the set of reactive policiesµ : Y → PU is considered then the joint process of state, observation
and action, denoted{Xt ,Yt ,Ut}, is Markov. This paper considers reactive parameterized policies
µ(y,θ), whereθ ∈ R

K andy∈ Y . A reactive parameterized policy together with a POMDP defines
acontrolled POMDP(S ,U,Y ,P,ν, r,µ). See Figure 1.

ytut
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r(xt)

Pxt (ut) ν(xt)
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-µ(θ,yt)

Average Reward:η = limT→∞ E
[

1
T ∑T−1

t=0 r(Xt)
]

Figure 1: POMDP with reactive parameterized policy
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Given a controlled POMDP the subprocess of states,{Xt}, is also Markov. A parameterized
transition matrixP(θ), with entries pi j (θ), can be constructed, with

pi j (θ) = Ey∼ν(i)
[

Eu∼µ(y,θ) [pi j (u)]
]

= ∑
y∈Y ,u∈U

νy(i)µu(y,θ)pi j (u),

whereνy(i) denotes the probability of observationy given the statei, andµu(y,θ) denotes the proba-
bility of actionu given the parametersθ and an observationy. The Markov chain M(θ) = (S ,P(θ))
then describes the behavior of the process{Xt}.

We will also be interested in the special case where the state is fully observable.

Definition 1. A controlled Markov decision processis a controlled POMDP(S ,U,Y ,P,ν, r,µ)
with Y = S andνy(i) = δyi, where

δyi =

{

1 y = i
0 otherwise,

and is defined by the tuple(S ,U,P, r,µ) .

In this case the set of reactive policies contains the optimal policy, that is, for our performance
measure there is a reactive policy that will perform at least as well as anyhistory dependent policy.
Indeed, we need only consider mappings to point distributions over actions. Of course, this is not
necessarily true of the parameterized class of reactive policies. In the partially observable setting
the optimal policy may be history dependent; although a reactive policy may still perform well. For
a study of using reactive policies for POMDPs see Singh et al. (1994); Jaakkola et al. (1995); Baird
(1999). For a recent survey of POMDP techniques see Aberdeen (2002).

We operate under a number of assumptions for the controlled POMDP(S ,U,Y ,P,ν, r,µ). Note
that any arbitrary vectorv is considered to be a column vector, and that we writev′ to denote
its transpose, a row vector. Also, the operator∇ takes a function f(θ) to a vector of its partial
derivatives, that is

∇f(θ) =

(

∂f(θ)

∂θ1
, . . . ,

∂f(θ)

∂θK

)′
,

whereθk denotes thekth element ofθ.

Assumption 1. For all θ ∈ R
K the Markov chainM(θ) = (S ,P(θ)) is irreducible and aperiodic

(ergodic), and hence has a unique stationary distributionπ(θ) satisfying

π(θ)′P(θ) = π(θ)′

The termsirreducible and aperiodic are defined in Appendix A. Appendix A also contains
a discussion of Assumption 1 and how both the irreducibility and aperiodicity conditions may be
relaxed.

Assumption 2. There is aR < ∞ such that for all i∈ S , |r(i)| ≤ R.

Assumption 3. For all u ∈ U, y∈ Y andθ ∈ R
K the partial derivatives

∂µu(y,θ)

∂θk
, ∀k∈ {1, . . . ,K}
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exist and there is aB < ∞ such that the Euclidean norms
∥

∥

∥

∥

∇µu(y,θ)

µu(y,θ)

∥

∥

∥

∥

are uniformly bounded byB. We interpret0/0 to be 0 here, that is, we may have µu(y,θ) = 0

provided‖∇µu(y,θ)‖ = 0. The Euclidean norm of a vector v is given by
√

∑k v2
k.

Note that Assumption 3 implies that

∥

∥

∥

∥

∇pi j (θ)

pi j (θ)

∥

∥

∥

∥

≤ B,

where, as in Assumption 3, we interpret 0/0 to be 0, and so we may have pi j (θ) = 0 provided
‖∇pi j (θ)‖ = 0. This bound can be seen from

∥

∥∇pi j (θ)
∥

∥ =

∥

∥

∥

∥

∥

∇ ∑
y∈Y ,u∈U

νy(i)µu(y,θ)pi j (u)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∑
y∈Y ,u∈U

νy(i)∇µu(y,θ)pi j (u)

∥

∥

∥

∥

∥

≤ B ∑
y∈Y ,u∈U

νy(i)µu(y,θ)pi j (u)

= Bpi j (θ).

A useful measure of the system’s performance is the expected average reward,

η(θ)
def
= lim

T→∞
E

[

1
T

T−1

∑
t=0

r(Xt)

]

. (2)

From Equation (24) in Appendix A we see thatη(θ) = E[r(X)|X ∼ π(θ)], and hence is independent
of the starting state. In this paper we analyze certain training algorithms that aimto select a policy
such that this quantity is (locally) maximized.

It is also useful to consider the discounted value function,

Jβ(i,θ)
def
= lim

T→∞
E

[

T−1

∑
t=0

βtr(Xt)

∣

∣

∣

∣

∣

X0 = i

]

.

Throughout the rest of the paper the dependence uponθ is assumed, and dropped in the notation.

3.2 Gradient Calculation

It is shown in Baxter and Bartlett (2001) that we can calculate an approximation to the gradient of
the expected average reward by

∇βη = ∑
i, j∈S

πi∇pi j Jβ( j),
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and that the limit of∇βη asβ approaches 1 is the true gradient∇η. Note that∇βη is a parameterized
vector in R

K approximating the gradient ofη, and there need not exist any function f(θ) with
∇f(θ) = ∇βη.

The gradient approximation∇βη can be considered as the integration over the state transition
space,

∇βη =
Z

(i, j)∈S×S
πi∇pi j Jβ( j)C(di×d j), (3)

whereC is a counting measure, that is, for a countable spaceC , and a setA⊂ C , we haveC(A) =
card(A) whenA is finite, andC(A) = ∞ otherwise. Here card(A) is the cardinality of the setA. It is
unlikely that the true value function will be known. The value function can, however, be expressed
as the integral over a sample path of the chain, as Assumption 1 implies ergodicity.

∇βη =
Z

(i0,i1,...)∈S×S×...
πi0 (∇pi0i1) pi1i2 pi2i3 . . .

(

r(i1)+βr(i2)+β2r(i3)+ · · ·
)

C(di0×. . .).

To aid in analysis, the problem will be split into an integral and a sub integral problem.

∇βη =
Z

(i, j)∈S×S

Z

(x1,...)∈S×...
πi (∇pi j )δx1 j px1x2 . . .(r(x1)+ · · ·)C(dx1×. . .)C(di×d j)

=
Z

(i, j)∈S×S
πi (∇pi j )

Z

(x1,...)∈S×...
δx1 j px1x2 . . .(r(x1)+ · · ·)C(dx1×. . .)C(di×d j).

3.3 Monte Carlo Estimation

Integrals can be estimated through the use of Monte Carlo techniques by averaging over samples
taken from a particular distribution (see Hammersley and Handscomb, 1965;Fishman, 1996; Evans
and Swartz, 2000). Take a function f :X → R and a probability distributionρ over the spaceX . An
unbiased estimate of

R

x∈X f(x) can be generated from samples{x0,x1, . . . ,xm−1} taken fromρ by

1
m

m−1

∑
n=0

f(xn)

ρ(xn)
.

Consider a finite ergodic Markov chainM = (S ,P) with stationary distributionπ. Generate the
Markov process{Xt} from M starting from the stationary distribution. The integral of the function
f : S → R over the spaceS can be estimated by

1
T

T−1

∑
t=0

f(Xt)

πXt

.

This can be used to estimate the integral
Z

(i, j)∈S×S
πi∇pi j Jβ( j)C(di×d j).

The finite ergodic Markov chainM = (S ,P), with stationary distributionπ, can be used to create
the extended Markov process{Xt ,Xt+1} and its associated chain. Its stationary distribution has the
probability mass functionρ(i, j) = πi pi j , allowing the estimation of the above integral by

1
T

T−1

∑
t=0

∇pXtXt+1

pXtXt+1

Jt+1, Jt =
∞

∑
s=t

βs−tr(Xs). (4)
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In addition to the Monte Carlo estimation, the value function has been replaced with an unbiased
estimate of the value function. In practice we would need to truncate this sum; a point discussed in
the next section. Note, however, that

E

[

1
T

T−1

∑
t=0

∇pXtXt+1

pXtXt+1

Jt+1

]

=
1
T

T−1

∑
t=0

E

[

∇pXtXt+1

pXtXt+1

E [Jt+1|Xt+1]

]

= E

[

1
T

T−1

∑
t=0

∇pXtXt+1

pXtXt+1

Jβ(Xt+1)

]

.

We will often be looking at estimates produced by larger Markov chains, such as that formed by
the process{Xt ,Yt ,Ut ,Xt+1}. The discussion above also holds for functions on such chains.

3.4 GPOMDP Algorithm

The GPOMDP algorithm uses a single sample path of the Markov process{Zt} = {Xt ,Yt ,Ut ,Xt+1}
to produce an estimate of∇βη. We denote an estimate produced by GPOMDP withT samples by
∆T .

∆T
def
=

1
T

T−1

∑
t=0

∇µUt
(Yt)

µUt (Yt)
Jt+1, Jt

def
=

T

∑
s=t

βs−tr(Xs). (5)

This differs from the estimate given in (4), but can be obtained similarly by considering the estima-
tion of ∇βη by samples from{Zt}, and noting that

∇pi j = ∑
y∈Y ,u∈U

νy(i)∇µu(y)pi j (u).

GPOMDP can be represented as the two dimensional calculation

∆T = 1
T

(

f(Z0) J1 + f(Z1) J2 + · · · + f(ZT−1) JT
)

def
= def
= ...

def
=

g(Z0) g(Z1) ...
g(ZT−1)

+βg(Z1) +βg(Z2)
+β2g(Z2)

...

... +βT−2g(ZT−1)
+βT−1g(ZT−1)

where f(Zt) = (∇µUt (Yt))/µUt (Yt) and g(Zt) = r(Xt+1).
One way to understand the behavior of GPOMDP is to assume that the chains being used to

calculate eachJt sample are independent. This is reasonable when the chain is rapidly mixing and
T is large compared with the mixing time, because then most pairsJt1 andJt2 are approximately

independent. ReplacingJt by these independent versions,J(ind)
t , the calculation becomes

∆(ind)
T

def
= 1

T

(

f(Z0) J(ind)
1 + f(Z1) J(ind)

2 + · · · + f(ZT−1) J(ind)
T

)

def
= def
= ...

def
=

g(Z00) g(Z10) ...
g
(

Z(T−1)0
)

+βg(Z01) +βg(Z11)
+β2g(Z02)

...

... +βT−2g
(

Z1(T−2)

)

+βT−1g
(

Z0(T−1)

)
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where the truncated process{Ztn} is an independent sample path generated from the Markov chain
of the associated POMDP starting from the stateZt = Zt0.

The truncation of the discounted sum of future rewards would cause a bias from ∇βη. By
consideringT to be large compared to 1/(1−β) then this bias becomes small for a large proportion

of the samples. Replacing eachJ(ind)
t by an untruncated version,J(est)

t , shows how GPOMDP can
be thought of as similar to the calculation

∆(est)
T

def
= 1

T

(

f(Z0) J(est)
1 + f(Z1) J(est)

2 + · · · + f(ZT−1) J(est)
T

)

def
= def
= ...

def
=

g(Z00) g(Z10) ...
g
(

Z(T−1)0
)

+βg(Z01) +βg(Z11) +βg
(

Z(T−1)1
)

+β2g(Z02) +β2g(Z12) +β2g
(

Z(T−1)2
)

...
...

...

The altered∆T sum can be written as

∆(est)
T =

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(est)
t+1 . (6)

3.5 Variance Reduction

Equation (1) shows how a control variate can be used to change an estimation problem. To be of
benefit the use of the control variate must lower estimation variance, and theintegral of the control
variate must have a known value. We look at two classes of control variatefor which the value of
the integral may be determined (or assumed).

The Monte Carlo estimates performed use correlated samples, making it difficult to analyze the
variance gain. Given that we wish to deal with quite unrestricted environments, little is known about
this sample correlation. We therefore consider the case of iid samples and show how this case gives
a bound on the case using correlated samples.

The first form of control variate considered is the baseline control variate. With this, the integral
shown in Equation (3) is altered by a control variate of the formπi∇pi j b(i).

Z

(i, j)∈S×S
πi∇pi j Jβ( j)C(di×d j) =

Z

(i, j)∈S×S
πi∇pi j

(

Jβ( j)−b(i)
)

C(di×d j)

+
Z

(i, j)∈S×S
πi∇pi j b(i)C(di×d j)

The integral of the control variate term is zero, since
Z

(i, j)∈S×S
πi∇pi j b(i)C(di×d j) = ∑

i∈S

πib(i)∇ ∑
j∈S

pi j

= ∑
i∈S

πib(i)∇(1)

= 0. (7)

Thus, we are free to select an arbitrary b(i) with consideration for the variance minimization alone.
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The second form of control variate considered is constructed from a value function, V( j), a
mappingS → R.

Z

(i, j)∈S×S
πi∇pi j Jβ( j)C(di×d j) =

Z

(i, j)∈S×S
πi∇pi j

(

Jβ( j)−
(

Jβ( j)−V( j)
))

C(di×d j)

+
Z

(i, j)∈S×S
πi∇pi j

(

Jβ( j)−V( j)
)

C(di×d j)

The integral of this control variate (the last term in the equation above) is theerror associated with
using a value function in place of the true discounted value function. The task is then to find a value
function such that the integral of the control variate is small, and yet it still provides good variance
minimization of the estimated integral.

Note that the integrals being estimated here are vector quantities. We considerthe trace of the
covariance matrix of these quantities, that is, the sum of the variance of the components of the
vector. Given the random vectorA = (A1,A2, . . . ,Ak)

′, we write

Var(A) =
k

∑
m=1

Var(Am) = E
[

(A−E [A])′ (A−E [A])
]

= E

[

(A−E [A])2
]

,

where, for a vectora, a2 denotesa′a.

4. Dependent Samples

In Sections 5 and 6 we study the variance of quantities that, like∆(est)
T (Equation (6)), are formed

from the sample average of a process generated by a controlled (PO)MDP. From Section 3 we know
this process is Markov, is ergodic, and has a stationary distribution, and so the sample average is
an estimate of the expectation of a sample drawn from the stationary distribution,π (note that, as
in Section 3.3, we can also look at samples formed from an extended space,and its associated
stationary distributions). In this section we investigate how the variance of thesample average
relates to the variance of a sample drawn fromπ. This allows us to derive results for the variance of
a sample drawn fromπ and relate them to the variance of the sample average. In the iid case, that
is, when the process generates a sequence of samplesX0, . . . ,XT−1 drawn independently from the
distributionπ, we have the relationship

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

=
1
T

Var(f(X)),

whereX is a random variable also distributed according toπ. More generally, however, correlation
between the samples makes finding an exact relationship difficult. Instead welook to find a bound
of the form

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ h

(

1
T

Var(f(X))

)

,

where h is some “well behaved” function.
We first define a notion of mixing time for a Markov chain. The mixing time is a measureof

the forgetfulness of a Markov chain. More specifically, it is a measure ofhow long it takes for the
distance between the distributions of two sequences, starting in distinct states, to become small. The
distance measure we use is the total variation distance.
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Definition 2. Thetotal variation distancebetween two distributions p,q on the finite setS is given
by

dTV(p,q)
def
=

1
2 ∑

i∈S

|pi −qi |.

Definition 3. Themixing timeof a finite ergodic Markov chain M= (S ,P) is defined as

τ def
= min

{

t > 0 : max
i, j

dTV
(

Pt
i ,P

t
j

)

≤ e−1
}

,

where Pti denotes the ith row of the t-step transition matrix Pt .

The results in this section are given for a Markov chain with mixing timeτ. In later sections we
will use τ as a measure of the mixing time of the resultant Markov chain of states of a controlled
(PO)MDP, but will look at sample averages over larger spaces. The following lemma, due to Bartlett
and Baxter (2002), shows that the mixing time does not grow too fast when looking at the Markov
chain on sequences of states.

Lemma 1. (Bartlett and Baxter, 2002, Lemma 4.3) If the Markov chain M= (S ,P) has mixing time
τ, then the Markov chain formed by the process{Xt ,Xt+1, . . . ,Xt+k} has mixing timẽτ, where

τ̃ ≤ τ ln(e(k+1)) .

Note 1. For a controlled POMDP, the Markov chain formed by the process
{Xt ,Xt+1, . . . ,Xt+k} has the same mixing time as the Markov chain formed by the process
{Xt ,Yt ,Ut ,Xt+1, . . . ,Yt+k−1,Ut+k−1,Xt+k}.

We now look at showing the relationship between the covariance between twosamples in a
sequence and the variance of an individual sample. We show that the gainof the covariance of two
samplesXt ,Xt+s over the variance of an individual sample decreases exponentially ins.

Theorem 2. Let M= (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribution.
Let f be some mappingf : S →R. The tuple(M, f) has associated positive constantsα andL (called
mixing constants(α,L)) such that, for all t≥ 0,

|Covπ(t; f)| ≤ LαtVar(f(X))

where X∼ π, and Covπ(t; f) is the auto-covariance of the process{f(Xs)}, i.e. Covπ(t; f) =
Eπ [(f(Xs)−Eπf(Xs))(f(Xs+t)−Eπf(Xs+t))], whereEπ[·] denotes the expectation over the chain
with initial distribution π. Furthermore, if M has mixing timeτ, we have:

1. for reversible M, and anyf , we may chooseL = 2e andα = exp(−1/τ); and

2. for any M (that is, any finite ergodic M), and anyf , we may chooseL =
√

2|S |e andα =
exp(−1/(2τ)).

The proof is shown in Appendix B, along with proofs for the rest of this section.
Using this result, the variance of the sample average can be bounded as follows.
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Theorem 3. Let M = (S ,P) be a finite ergodic Markov chain, with mixing timeτ, and letπ be its
stationary distribution. Letf be some mappingf : S → R. Let{Xt} be a sample path generated by
M, with initial distribution π, and let X∼ π. With (M, f) mixing constants(α,L) chosen such that
α ≤ exp(−1/(2τ)), there is anΩ∗ ≤ 6Lτ such that

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ Ω∗

T
Var(f(X)).

Provided acceptable mixing constants can be chosen, Theorem 3 gives the same rate as in the
case of independent random variables, that is, the variance decreases asO(1/T). The most that can
be done to improve the bound of Theorem 3 is to reduce the constantΩ∗. It was seen, in Theorem 2,
that good mixing constants can be chosen for functions on reversible Markov chains. We would like
to deal with more general chains also, and the mixing constants given in Theorem 2 for functions on
ergodic Markov chains lead toΩ∗ increasing with the size of the state space. However, for bounded
functions on ergodic Markov chains we have the following result:

Theorem 4. Let M= (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribution.
If M has mixing timeτ, then for any functionf : S → [−c,c] and any0 < ε < e−1, we have

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ ε+

(

1+25τ(1+c)ε+4τ ln
1
ε

)

1
T

Var(f(X)) ,

where{Xt} is a process generated by M with initial distribution X0 ∼ π, and X∼ π.

Here we have an additional errorε, which we may decrease at the cost of a lnε−1 penalty in the
constant multiplying the variance term.

Consider the following corollary of Theorem 4.

Corollary 5. Let M = (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribu-
tion. If M has mixing timeτ, then for any functionf : S → [−c,c], we have

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ 4τ ln

(

7(1+c)+
1
4τ

(

1
T

Var(f(X))

)−1
)

1
T

Var(f(X))

+(1+8τ)
1
T

Var(f(X))

where{Xt} is a process generated by M with initial distribution X0 ∼ π, and X∼ π.

Here, again, our bound approaches zero as Var(f(X))/T → 0, but at the slightly slower rate of

O

(

1
T

Var(f(X)) ln

(

e+

(

1
T

Var(f(X))

)−1
))

,

where we have ignored the dependence onτ andc. For a fixed variance the rate of decrease inT is
O(ln(T)/T), slightly worse than theO(1/T) rate for independent random variables.
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5. Baseline Control Variate

As stated previously, a baseline may be selected with regard given only to theestimation variance.
In this section we consider how the baseline affects the variance of our gradient estimates when the
samples are iid, and the discounted value function is known. We show that, when using Theorem 3
or Theorem 4 to bound covariance terms, this is reasonable, and in fact the error in analysis (that is,
from not analyzing the variance of∆T with baseline directly) associated with the choice of baseline
is negligible. This statement will be made more precise later.

Section 5.2 looks at the Markov chain of states generated by the controlled POMDP and is
concerned with producing a baseline bS : S → R to minimize the variance

σ2
S (bS ) = Varπ

(

∇pi j

pi j

(

Jβ( j)−bS (i)
)

)

, (8)

where, for somef : S × S → R
K , Varπ(f(i, j)) = Eπ (f(i, j)−Eπf(i, j))2 with Eπ [·] denoting the

expectation over the random variablesi, j with i ∼ π and j ∼ Pi . Equation (8) serves as a definition
of σ2

S (bS ). The section gives the minimal value of this variance, and the minimizing baseline. Addi-
tionally, the minimum variance and corresponding baseline is given for the case where the baseline
is a constant,b ∈ R. In both cases, we give expressions for the excess variance of a suboptimal
baseline, in terms of a weighted squared distance between the baseline and the optimal one. We can
thus show the difference between the variance for the optimal constant baseline and the variance
obtained whenb = EπJβ(i).

Section 5.3 considers a baseline bY : Y → R for the GPOMDP estimates. It shows how to
minimize the variance of the estimate

σ2
Y (bY ) = Varπ

(

∇µu(y)
µu(y)

(

Jβ( j)−bY (y)
)

)

, (9)

where, for somef : S ×Y ×U×S → R
K , Varπ(f(i,y,u, j)) = Eπ (f(i,y,u, j)−Eπf(i,y,u, j))2 with,

in this case,Eπ [·] denoting the expectation over the random variablesi,y,u, j with i ∼ π, y∼ ν(i),
u ∼ µ(y), and j ∼ Pi(u). Equation (9) serves as a definition ofσ2

Y (bY ). The case where the state
space is fully observed is shown as a consequence.

5.1 Matching Analysis and Algorithm

The analysis in following sections will look at Equation (8) and Equation (9).Here we will show
that the results of that analysis can be applied to the variance of a realizablealgorithm for generating
∇βη estimates. Specifically, we compare the variance quantity of Equation (9) to a slight variation
of the∆T estimate produced by GPOMDP, where the chain is run for an extraSsteps. We consider
the estimate

∆(+S)
T

def
=

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(+S)
t+1 , J(+S)

t
def
=

T+S

∑
s=t

βs−tr(Xs), (10)

and are interested in improving the variance by use of a baseline, that is, byusing the estimate

∆(+S)
T (bY )

def
=

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −bY (Yt)

)

.

1483



GREENSMITH, BARTLETT AND BAXTER

We delay the main result of the section, Theorem 7, to gain an insight into the ideas behind it. In
Section 3.4 we saw how GPOMDP can be thought of as similar to the estimate∆(est)

T , Equation (6).
Using a baseline gives us the new estimate

∆(est)
T (bY )

def
=

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(est)
t+1 −bY (Yt)

)

. (11)

The termJ(est)
t in Equation (11) is an unbiased estimate of the discounted value function. The

following lemma shows that, in analysis of the baseline, we can consider the discounted value
function to be known, not estimated.

Lemma 6. Let {Xt} be a random process over the spaceX . Define arbitrary functions on the
spaceX : f : X → R, J : X → R, anda : X → R. For all t let Jt be a random variable such that
E [Jt |Xt = i] = J(i). Then

Var

(

1
T

T−1

∑
t=0

f(Xt)(Jt −a(Xt))

)

−Var

(

1
T

T−1

∑
t=0

f(Xt)(J(Xt)−a(Xt))

)

= E

(

1
T

T−1

∑
t=0

f(Xt)(Jt −J(Xt))

)2

The proof of Lemma 6 is given in Appendix C, along with the proof of Theorem 7 below.
Direct application of Lemma 6 gives,

Var
(

∆(est)
T (bY )

)

= Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

Jβ(Xt+1)−bY (Yt)
)

)

+E

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(est)
t+1 −Jβ(Xt+1)

)

)2

.

Thus, we see that we can split the variance of this estimate into two components: the first is the
variance of this estimate withJ(est)

t replaced by the true discounted value function; and the second
is a component independent of our choice of baseline. We can now use Theorem 3 or Corollary 5
to bound the covariance terms, leaving us to analyze Equation (9).

We can obtain the same sort of result, using the same reasoning, for the estimate we are inter-
ested in studying in practice:∆(+S)

T (bY ) (see Equation (12) below).

Theorem 7. Let D= (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Let M = (S ,P) be the resultant Markov chain of states, and letπ be its stationary distribution; M
has a mixing timeτ; {Zt} = {Xt ,Yt ,Ut ,Xt+1} is a process generated by D, starting X0 ∼ π. Suppose
thata(·) is a function uniformly bounded byM , andJ( j) is the random variable∑∞

s=0 βsr(Ws) where
the states Ws are generated by D starting in W0 = j. There are constants C1 ≤ 7+7B(R+M) and
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C2 = 20τB2R(R+M) such that for all T,S≥ 1 we have

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

≤ h

(

τ ln(e(S+1))

T
Varπ

(

∇µu(y)
µu(y)

(

Jβ( j)−a(i,y,u, j)
)

))

+h

(

τ ln(e(S+1))

T
Eπ

(

∇µu(y)
µu(y)

(

J( j)−Jβ( j)
)

)2
)

+
2C2

(1−β)2

[

ln
1
β

+ ln

(

C1

1−β
+

K(1−β)2

C2

)]

(T +S) ln(e(S+1))

T
βS,

whereh : R
+ → R

+ is continuous and increasing withh(0) = 0, and is given by

h(x) = 9x+4xln

(

C1

1−β
+

K
4

x−1
)

.

By selectingS= T in Theorem 7, and applying to∆(+S)
T (bY ) with absolutely bounded bY , we

obtain the desired result:

Var
(

∆(+T)
T (bY )

)

≤ h

(

τ ln(e(T +1))

T
σ2

Y (bY )

)

+N(D,T)+O
(

ln(T)βT) . (12)

Here N(D,T) is the noise term due to using an estimate in place of the discounted value function,
and does not depend on the choice of baseline. The remaining term is of theorder ln(T)βT ; it is
almost exponentially decreasing inT, and hence negligible. The functionh is due to the application
of Theorem 4, and consequently the discussion in Section 4 on the rate of decrease applies here,
that is, a log penalty is paid. In this case, forσ2

Y (bY ) fixed, the rate of decrease isO(ln2(T)/T).
Note that we may replace(∇µu(y))/µu(y) with (∇pi j )/pi j in Theorem 7. So if the(∇pi j )/pi j

can be calculated, then Theorem 7 also relates the analysis of Equation 8 witha realizable algorithm
for generating∇βη estimates; in this case an estimate produced by watching the Markov process of
states.

5.2 Markov Chains

Here we look at baselines for∇βη estimates for a parameterized Markov chain and associated
reward function (a Markov reward process). The Markov chain of states generated by a controlled
POMDP (together with the POMDPs reward function) is an example of such a process. However,
the baselines discussed in this section require knowledge of the state to use,and knowledge of
(∇pi j (θ))/pi j (θ) to estimate. More practical results for POMDPs are given in the next section.

Consider the following assumption.

Assumption 4. The parameterized Markov chain M(θ) = (S ,P(θ)) and associated reward function
r : S →R satisfy: M(θ) is irreducible and aperiodic, with stationary distributionπ; there is aR < ∞
such that for all i∈ S we have|r(i)| ≤ R; and for all i, j ∈ S , and allθ ∈ R

K , the partial derivatives
∇pi j (θ) exist, and there is aB < ∞ such that‖(∇pi j (θ))/pi j (θ)‖ ≤ B.
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For any controlled POMDP satisfying Assumptions 1, 2 and 3, Assumption 4 is satisfied for the
Markov chain formed by the subprocess{Xt} together with the reward function for the controlled
POMDP.

Now consider a control variate of the form

ϕS (i, j)
def
= πi∇pi j bS (i)

for estimation of the integral in Equation (3). We refer to the function bS : S → R as a baseline.
As shown in Section 3.5, the integral of the baseline control variateϕS (i, j) overS ×S can be

calculated analytically and is equal to zero. Thus an estimate of the integral
Z

(i, j)∈S×S

(

πi∇pi j Jβ( j)−ϕS (i, j)
)

C(di×d j)

forms an unbiased estimate of∇βη.
The following theorem gives the minimum variance, and the baseline to achievethe minimum

variance. We useσ2
S to denote the variance of the estimate without a baseline,

σ2
S = Varπ

(

∇pi j

pi j
Jβ( j)

)

,

and we recall, from Equation (8), thatσ2
S (bS ) denotes the variance with a baseline,

σ2
S (bS ) = Varπ

(

∇pi j

pi j

(

Jβ( j)−bS (i)
)

)

.

Theorem 8. Let M(θ) = (S ,P(θ)) and r : S → R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then

σ2
S (b∗S )

def
= inf

bS∈RS
σ2

S (bS ) = σ2
S −Ei∼π







(

E

[

(∇pi j /pi j )
2Jβ( j)

∣

∣

∣
i
])2

E

[

(∇pi j /pi j )
2
∣

∣

∣
i
]






,

whereE [ ·| i] is the expectation over the resultant state j conditioned on being in state i, that is,
j ∼ Pi , andR

S is the space of functions mappingS to R. This infimum is attained with the baseline

b∗S (i) =
E

[

(∇pi j /pi j )
2Jβ( j)

∣

∣

∣
i
]

E

[

(∇pi j /pi j )
2
∣

∣

∣
i
] .

The proof uses the following lemma.

Lemma 9. For anybS ,

σ2
S (bS ) = σ2

S +Eπ

[

b2
S (i)E

[

(

∇pi j

pi j

)2
∣

∣

∣

∣

∣

i

]

−2bS (i)E

[

(

∇pi j

pi j

)2

Jβ( j)

∣

∣

∣

∣

∣

i

]]

.
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Proof.

σ2
S (bS ) = Eπ

(

∇pi j

pi j

(

Jβ( j)−bS (i)
)

−Eπ

[

∇pi j

pi j

(

Jβ( j)−bS (i)
)

])2

= Eπ

((

∇pi j

pi j
Jβ( j)−Eπ

[

∇pi j

pi j
Jβ( j)

])

−
(

∇pi j

pi j
bS (i)−Eπ

[

∇pi j

pi j
bS (i)

]))2

= σ2
S +Eπ

[

(

∇pi j

pi j
bS (i)

)2

−2

(

∇pi j

pi j
bS (i)

)′(∇pi j

pi j
Jβ( j)

)

]

(13)

= σ2
S +Ei∼π

[

b2
S (i)E

[

(

∇pı̃˜

pı̃˜

)2
∣

∣

∣

∣

∣

ı̃ = i

]

− 2bS (i)E

[

(

∇pı̃˜

pı̃˜

)2

Jβ( )̃

∣

∣

∣

∣

∣

ı̃ = i

]]

,

where Equation (13) uses

Eπ

[

∇pi j

pi j
bS (i)

]

=
Z

(i, j)∈S×S
πi∇pi j bS (i)C(di×d j) = 0,

from (7).

Proof of Theorem 8.We use Lemma 9 and minimize for eachi ∈ S . Differentiating with respect to
each bS (i) gives

2bS (i)E

[

(

∇pi j

pi j

)2
∣

∣

∣

∣

∣

i

]

−2E

[

(

∇pi j

pi j

)2

Jβ( j)

∣

∣

∣

∣

∣

i

]

= 0

⇒ bS (i) =
E

[

(∇pi j /pi j )
2Jβ( j)

∣

∣

∣ i
]

E

[

(∇pi j /pi j )
2
∣

∣

∣ i
] ,

which implies the result.

The following theorem shows that the excess variance due to a suboptimal baseline function can
be expressed as a weighted squared distance to the optimal baseline.

Theorem 10. Let M(θ) = (S ,P(θ)) and r : S → R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then

σ2
S (bS )−σ2

S (b∗S ) = Eπ

[

(

∇pi j

pi j

)2
(

bS (i)−b∗S (i)
)2

]

.

Proof. For eachi ∈ S , defineSi andWi as

Si = E

[

(

∇pi j

pi j

)2
∣

∣

∣

∣

∣

i

]

,

Wi = E

[

(

∇pi j

pi j

)2

Jβ( j)

∣

∣

∣

∣

∣

i

]

.
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Lemma 9 and the definition of b∗S in Theorem 8 imply that

σ2
S (bS )−σ2

S (b∗S ) = Eπ

[

b2
S (i)Si −2bS (i)Wi +

W2
i

Si

]

= Eπ

(

bS (i)
√

Si −
Wi√

Si

)2

= Eπ

[

(

bS (i)−b∗S (i)
)2

Si

]

= Eπ

[

(

∇pi j

pi j

)2
(

bS (i)−b∗S (i)
)2

]

.

The following theorem gives the minimum variance, the baseline to achieve the minimum vari-
ance, and the additional variance away from this minimum, when restricted to a constant baseline,
b∈ R. We useσ2

S (b) to denote the variance with constant baselineb,

σ2
S (b) = Varπ

(

∇pi j

pi j

(

Jβ( j)−b
)

)

. (14)

The proof uses Lemma 9 in the same way as the proof of Theorem 8. The proof of the last statement
follows that of Theorem 10 by replacingSi with S= EπSi , andWi with W = EπWi .

Theorem 11. Let M(θ) = (S ,P(θ)) and r : S → R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then

σ2
S (b∗)

def
= inf

b∈R

σ2
S (b) = σ2

S −

(

Eπ

[

(∇pi j /pi j )
2Jβ( j)

])2

Eπ (∇pi j /pi j )
2 .

This infimum is attained with

b∗ =
Eπ

[

(∇pi j /pi j )
2Jβ( j)

]

Eπ (∇pi j /pi j )
2 .

The excess variance due to a suboptimal constant baseline b is given by,

σ2
S (b)−σ2

S (b∗) = Eπ

(

∇pi j

pi j

)2

(b−b∗)2 .

A baseline of the formb = EπJβ(i) is often promoted as a good choice. Theorem 11 gives us a
tool to measure how far this choice is from the optimum.

Corollary 12. Let M(θ) = (S ,P(θ)) and r : S → R be a Markov chain and reward function satisfy-
ing Assumption 4. Then

σ2
S (EJβ(i))−σ2

S (b∗) =

(

Eπ (∇pi j /pi j )
2
EπJβ( j)−Eπ

[

(∇pi j /pi j )
2Jβ( j)

])2

Eπ (∇pi j /pi j )
2 .
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Notice that the sub-optimality of the choiceb = EπJβ(i) depends on the independence of the
random variables(∇pi j /pi j )

2 and Jβ( j); if they are nearly independent,EπJβ(i) is a good choice.
Of course, when considering sample paths of Markov chains, Corollary12 only shows the

difference of the twoboundson the variance given by Theorem 7, but it gives an indication of the
true distance. In particular, as the ratio of the mixing time to the sample path length becomes small,
the difference between the variances in the dependent case approaches that of Corollary 12.

5.3 POMDPs

Consider a control variate over the extended spaceS ×Y ×U ×S of the form

ϕ(i,y,u, j) = πiνy(i)∇µu(y)pi j (u)b(i,y).

Again, its integral is zero.
Z

(i,y,u, j)∈S×Y ×U×S
ϕ(i,y,u, j)C(di×dy×du×d j)

= ∑
i∈S ,y∈Y

πiνy(i)b(i,y)∇

(

∑
u∈U, j∈S

µu(y)pi j (u)

)

= 0.

Thus an unbiased estimate of the integral
Z

(i,y,u, j)∈S×Y ×U×S

(

πiνy(i)∇µu(y)pi j (u)Jβ( j)−ϕ(i,y,u, j)
)

C(di×dy×du×d j)

is an unbiased estimate of∇βη. Here results analogous to those achieved forϕS (i, j) can be ob-
tained. However, we focus on the more interesting (and practical) case ofthe restricted control
variate

ϕY (i,y,u, j)
def
= πiνy(i)∇µu(y)pi j (u)bY (y).

Here, only information that can be observed by the controller (the observationsy) may be used to
minimize the variance. Recall, from Equation (9), we useσ2

Y (bY ) to denote the variance with such
a restricted baseline control variate,

σ2
Y (bY ) = Varπ

(

∇µu(y)
µu(y)

(

Jβ( j)−bY (y)
)

)

.

We useσ2
Y to denote the variance without a baseline, that is

σ2
Y = Varπ

(

∇µu(y)
µu(y)

Jβ( j)

)

.

We have the following theorem.

Theorem 13. Let D = (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2
and 3, with stationary distributionπ. Then

σ2
Y (b∗Y )

def
= inf

bY ∈RY
σ2

Y (bY ) = σ2
Y −Eπ







(

Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

∣

∣

∣y
])2

Eπ

[

(∇µu(y)/µu(y))
2
∣

∣

∣
y
]






,
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whereEπ [ ·|y] is the expectation (ofπ-distributed random variables, that is, random variables dis-
tributed as inEπ[·]) conditioned on observing y, and this infimum is attained with the baseline

b∗Y (y) =
Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

∣

∣

∣
y
]

Eπ

[

(∇µu(y)/µu(y))
2
∣

∣

∣
y
] .

Furthermore, when restricted to the class of constant baselines, b∈R, the minimal variance occurs
with

b∗ =
Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

]

Eπ(∇µu(y)/µu(y))
2 .

We have again usedb∗ to denote the optimal constant baseline. Note though that theb∗ here
differs from that given in Theorem 11. The proof uses the following lemma.

Lemma 14. For anybY ,

σ2
Y (bY ) = σ2

Y +Eπ

[

b2
Y (y)Eπ

[

(

∇µu(y)
µu(y)

)2
∣

∣

∣

∣

∣

y

]

−2bY (y)Eπ

[

(

∇µu(y)
µu(y)

)2

Jβ( j)

∣

∣

∣

∣

∣

y

]]

.

Proof. Following the same steps as in the proof of Lemma 9,

σ2
Y (bY ) = Eπ

(

∇µu(y)
µu(y)

(

Jβ( j)−bY (y)
)

−Eπ

[

∇µu(y)
µu(y)

(

Jβ( j)−bY (y)
)

])2

= σ2
Y +Eπ

[

(

∇µu(y)
µu(y)

bY (y)

)2

−2

(

∇µu(y)
µu(y)

bY (y)

)′(∇µu(y)
µu(y)

Jβ( j)

)

]

= σ2
Y +∑

y

[

b2
Y (y)

(

∑
i,u, j

πiνy(i)µu(y)pi j (u)

(

∇µu(y)
µu(y)

)2
)

−2bY (y)

(

∑
i,u, j

πiνy(i)µu(y)pi j (u)

(

∇µu(y)
µu(y)

)2

Jβ( j)

)]

.

Note that for functions a :Y → R and f :S ×Y ×U ×S → R

∑
y

a(y) ∑̃
ı,ũ,˜

πı̃νy(ı̃)µũ(y)pı̃˜(ũ)f(ı̃,y, ũ, )̃

= ∑
y

a(y)∑
i

πiνy(i) ∑
ı̃,ỹ,ũ,˜

δyỹπı̃νy(ı̃)µũ(y)pı̃˜(ũ)

∑i πiνy(i)
f(ı̃, ỹ, ũ, )̃

= ∑
i,y

πiνy(i)a(y) ∑
ı̃,ỹ,ũ,˜

Pr{ı̃, ỹ, ũ, |̃ỹ = y} f(ı̃, ỹ, ũ, )̃

= Eπ [a(y)Eπ [ f(i,y,u, j)|y]] ,

implying the result.
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Proof of Theorem 13.We apply Lemma 14 and minimize for each bY (y) independently, to obtain

bY (y) =
Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

∣

∣

∣y
]

Eπ

[

(∇µu(y)/µu(y))
2
∣

∣

∣y
] .

Substituting gives the optimal variance. A similar argument gives the optimal constant baseline.

Example 1. Consider the k-armed bandit problem (for example, see Sutton and Barto, 1998). Here
each action is taken independently and the resultant state depends only on the action performed;
that is µu(y) = µu andpi j (u) = p j(u). So, writing Rβ = EU0∼µ [∑∞

t=1 βtr(Xt)] , we have

∇βη = Eπ

[

∇µu(y)
µu(y)

Jβ( j)

]

= Eu∼µ

[

∇µu

µu

(

r( j)+Rβ
)

]

= Eu∼µ

[

∇µu

µu
r( j)

]

.

Note that this last line isβ independent, and it follows fromlimβ→1 ∇βη = ∇η that

∇η = ∇βη ∀β ∈ [0,1]. (15)

For k = 2 (2 actions{u1,u2}) we have µu1 +µu2 = 1 and∇µu1 =−∇µu2, and so the optimal constant
baseline is given by

b∗ =
Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

]

Eπ (∇µu(y)/µu(y))
2

=
Eu∼µ

[

(∇µu/µu)
2 r( j)

]

Eu∼µ(∇µu/µu)
2 +Rβ

=
µu1 (∇µu1/µu1)

2
E [ r|u1]+µu2 (∇µu2/µu2)

2
E [ r|u2]

µu1 (∇µu1/µu1)
2 +µu2 (∇µu2/µu2)

2 +Rβ

=
µu1µu2

µu1 +µu2

(

1
µu1

E [ r|u1]+
1

µu2

E [ r|u2]

)

+Rβ

= µu2E [ r|u1]+µu1E [ r|u2]+Rβ,

where we have usedE [ r|u] to denoteE j∼p(u)r( j). From (15) we know thatβ may be chosen arbi-
trarily. Choosingβ = 0 gives Rβ = 0 and we regain the result of Dayan (1990).

In the special case of a controlled MDP we obtain the result that would be expected. This
follows immediately from Theorem 13.

Corollary 15. Let D= (S ,U,P, r,µ) be a controlled MDP satisfying Assumptions 1, 2 and 3, with
stationary distributionπ. Then

inf
bY ∈RS

σ2
Y (bY ) = σ2

Y −Ei∼π







(

E

[

(∇µu(i)/µu(i))
2Jβ( j)

∣

∣

∣ i
])2

E

[

(∇µu(i)/µu(i))
2
∣

∣

∣
i
]






,
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and this infimum is attained with the baseline

bY (i) =
E

[

(∇µu(i)/µu(i))
2Jβ( j)

∣

∣

∣
i
]

E

[

(∇µu(i)/µu(i))
2
∣

∣

∣
i
] .

The following theorem shows that, just as in the Markov chain case, the variance of an estimate
with an arbitrary baseline can be expressed as the sum of the variance withthe optimal baseline and
a certain squared weighted distance between the baseline function and the optimal baseline function.

Theorem 16. Let (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2 and 3,
with stationary distributionπ. Then

σ2
Y (bY )−σ2

Y (b∗Y ) = Eπ

[

(

∇µu(y)
µu(y)

)2
(

bY (y)−b∗Y (y)
)2
]

.

Furthermore if the estimate using b∗, the optimalconstantbaseline defined in Theorem 13,
has varianceσ2

Y (b∗), we have that the varianceσ2
Y (b) of the gradient estimate with an arbitrary

constant baseline is

σ2
Y (b)−σ2

Y (b∗) = Eπ

(

∇µu(y)
µu(y)

)2

(b−b∗)2 .

Proof. For eachy∈ Y , defineSy andWy as

Sy = E

[

(

∇µu(y)
µu(y)

)2
∣

∣

∣

∣

∣

y

]

,

Wy = E

[

(

∇µu(y)
µu(y)

)2

Jβ( j)

∣

∣

∣

∣

∣

y

]

.

Follow the steps in Theorem 10, replacingSi with Sy, andWi with Wy. The constant baseline case
follows similarly by consideringS= EπSy andW = EπWy.

In Section 7.1 we will see how Theorem 16 can be used to construct a practical algorithm for
finding a good baseline. In most cases it is not possible to calculate the optimalbaseline, b∗Y , a
priori. However, for a parameterized class of baseline functions, a gradient descent approach could
be used to find a good baseline. Section 7.1 explores this idea.

As before, Theorem 16 also gives us a tool to measure how far the baseline b = EπJβ(i) is from
the optimum.

Corollary 17. Let D = (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2
and 3, with stationary distributionπ. Then

σ2
Y (EπJβ(i))− inf

b∈R

σ2
Y (b) =

(

Eπ (∇µu(y)/µu(y))
2
EπJβ( j)−Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

])2

Eπ (∇µu(y)/µu(y))
2 .

As in the case of a Markov reward process, the sub-optimality of the choiceb = EπJβ(i) de-
pends on the independence of the random variables(∇µu(y)/µu(y))2 and Jβ( j); if they are nearly
independent,EπJβ(i) is a good choice.
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6. Value Functions: Actor-Critic Methods

Consider the estimate produced by GPOMDP (see Equation (5)) in the MDP setting, where the state
is observed. In this section we look at replacingJt , the biased and noisy estimate of the discounted
value function, in∆T with an arbitrary value function, that is, a function V :S → R. For a MDP,
this gives the following estimate of∇βη:

∆V
T

def
=

1
T

T−1

∑
t=0

∇µUt
(Xt)

µUt (Xt)
V(Xt+1). (16)

Imagine that the discounted value function, Jβ, is known. By replacingJt with Jβ(Xt) in Equa-
tion (5), that is, by choosing V= Jβ, the bias and noise due toJt is removed. This seems a good
choice, but we may be able to do better. Indeed we will see that in some casesthe selection of
a value function differing from the discounted value function can removeall estimation variance,
whilst introducing no bias.

6.1 Control Variate for a Value Function

Consider a control variate of the form

ϕβ(i,u, j)
def
= πi∇µu(i)pi j (u)Aβ( j)

where

Aβ( j)
def
= lim

T→∞
E

[

T

∑
k=1

βk−1d(Xt+k,Xt+1+k)

∣

∣

∣

∣

∣

Xt+1 = j

]

and
d(i, j)

def
= r(i)+βV( j)−V(i).

We make the following assumption.

Assumption 5. For all j ∈ S , |V( j)| ≤ M < ∞.

Under this assumption, the estimation of the integral
Z

(i,u, j)∈S×U×S

(

πi∇µu(i)pi j (u)Jβ( j)−ϕβ(i,u, j)
)

C(di×du×d j) (17)

has an expected bias from∇βη of
Z

(i,u, j)∈S×U×S
ϕβ(i,u, j)C(di×du×d j) = ∑

i∈S ,u∈U, j∈S

πi∇µu(i)pi j (u)
(

Jβ( j)−V( j)
)

.

This can be easily seen by noting that under Assumption 5, and asβ ∈ [0,1),

Aβ( j) = lim
T→∞

E

[

T

∑
k=1

βk−1(r(Xt+k)+βV(Xt+1+k)−V(Xt+k))

∣

∣

∣

∣

∣

Xt+1 = j

]

= Jβ( j)−V( j)+ lim
T→∞

E
[

βTV(Xt+1+T)
∣

∣Xt+1 = j
]

= Jβ( j)−V( j).

1493



GREENSMITH, BARTLETT AND BAXTER

We see then that∆V
T gives an estimate of the integral in Equation (17). The following theorem

gives a bound on the expected value of the squared Euclidean distance between this estimate and
∇βη. Notice that the bound includes both bias and variance terms.

Theorem 18. Let D= (S ,U,P, r,µ) be a controlled MDP satisfying Assumptions 1, 2 and 3, with
stationary distributionπ. Let{Xt ,Ut} be a process generated by D, starting X0 ∼ π. Then

E

(

∆V
T −∇βη

)2
= Var

(

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

,

and hence there is anΩ∗ such that

E

(

∆V
T −∇βη

)2
≤ Ω∗

T
Varπ

(

∇µu(i)
µu(i)

V( j)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

.

Proof.

E

(

∆V
T −∇βη

)2

= E

(

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)−Eπ

[

∇µu(i)
µu(i)

(

V( j)+Aβ( j)
)

]

)2

= E

(

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)−Eπ

[

∇µu(i)
µu(i)

V( j)

]

)2

−2

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])′(

E

[

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)−Eπ

[

∇µu(i)
µu(i)

V( j)

]

])

+

(

E

[

∇µu(i)
µu(i)

Aβ( j)

])2

(18)

= Var

(

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

≤ Ω∗

T
Varπ

(

∇µu(i)
µu(i)

V( j)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

. (19)

Note that

Eπ

[

∇µu(i)
µu(i)

V( j)

]

= E

[

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)

]

,

which means that the second term of Equation (18) is zero, and the first term becomes the variance
of the estimate. Equation (19), and hence Theorem 18, follow from Theorem 3.

Corollary 19. Let D= (S ,U,P, r,µ) be a controlled MDP satisfying Assumptions 1, 2 and 3. Let
M = (S ,P) be the resultant chain of states, and letπ be its stationary distribution; M has mixing
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timeτ. Let{Xt ,Ut} be a process generated by D, starting X0 ∼ π. Then for any0 < ε < e−1 there is
a Cε ≤ 1+50τ(1+M)+8τ lnε−1 such that

E

(

∆V
T −∇βη

)2
≤ Kε+

Cε

T
Varπ

(

∇µu(i)
µu(i)

V( j)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

.

Proof. Apply Theorem 4 to the first part of Theorem 18, for each of theK dimensions, noting that
the mixing time of the process{Xt ,Ut ,Xt+1} is at mostτ ln(2e) ≤ 2τ (Lemma 1).

6.2 Zero Variance, Zero Bias Example

Write v = V −Jβ. The bias due to using V in place of Jβ is given by

Gv,

whereG is aK×|S | matrix with its j th column given by∑i∈S ,u∈U πi∇µu(i)pi j (u). If v is in the right
null space ofG then this bias is zero. An example of such av is a constant vector;v = (c,c, . . . ,c)′.
This can be used to construct a trivial example of how∆V

T (Equation (16)) can produce an unbiased,
zero variance estimate. The observation that we need only consider valuefunctions that span the
range space ofG to produce a “good” gradient estimate, in the sense that convergence results may
be obtained, was made by Konda and Tsitsiklis (2003, 2000); Sutton et al. (2000). Here we wish
to consider a richer class of value functions for the purpose of activelyreducing the variance of
gradient estimates.

Consider a controlled MDPD = (S ,U,P, r,µ) satisfying Assumptions 1, 2 and 3, and with
r(i) = (1−β)c, for some constantc, and alli ∈ S . This gives a value function of Jβ(i) = c, for all
i ∈ S , and consequently

∇βη = ∑
i,u

πi∇µu(i)c = c∑
i

πi∇∑
u

µu(i) = 0.

With v = (−c,−c, . . . ,−c)′, and selecting the fixed value function V= Jβ +v, we have

∇µu(i)
µu(i)

V( j) = 0, ∀i,u, j.

So∆V
T will produce a zero bias, zero variance estimate of∇βη. Note also that if the MDP is such

that there exists ani,u pair such that Pr{Xt = i,Ut = u} > 0 and∇µu(i) 6= 0 then selecting V= Jβ
gives an estimate that, whilst still unbiased, has non-zero variance. The event

{

∇µu(i)
µu(i)

V( j) 6= 0

}

has a non-zero probability of occurrence.
A less trivial example is given in Appendix D.
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7. Algorithms

In Section 5 and Section 6 we have seen bounds on squared error of gradient estimates when using
various additive control variates. For the baseline control variates we have also seen the choice of
baseline which minimizes this bound. Though it may not be possible to select the best baseline or
value function a priori, data could be used to help us choose. For a parameterized baseline, or value
function, we could improve the error bounds via gradient decent. In this section we explore this
idea.

7.1 Minimizing Weighted Squared Distance to the Optimal Baseline

Given a controlled POMDP and a parameterized class of baseline functions
{

bY (·,ω) : Y → R
∣

∣ω ∈ R
L} ,

we wish to choose a baseline function to minimize the variance of our gradient estimates. Theo-
rem 16 expresses this variance as the sum of the optimal variance and a squared distance between
the baseline function and the optimal one. It follows that we can minimize the variance of our gra-
dient estimates by minimizing the distance between our baseline and the optimum baseline. The
next theorem shows that we can use a sample path of the controlled POMDP toestimate the gradi-
ent (with respect to the parameters of the baseline function) of this distance. We need to make the
following assumptions about the parameterized baseline functions.

Assumption 6. There are boundsM ,G < ∞ such that for all y∈ Y , and all ω ∈ R
L, the baseline

function is bounded,
∣

∣bY (y,ω)
∣

∣≤M , and the gradient of the baseline is bounded,
∥

∥∇bY (y,ω)
∥

∥≤G.

We dropω in the notation, and, to avoid confusion, we write g2(y,u) to denote[(∇µu(y))/µu(y)]2,
where the gradient is with respect to the parameters of the policy,θ.

Theorem 20. Let D = (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2
and 3. LetbY : Y ×R

L → R be a parameterized baseline function satisfying Assumption 6. If
{Xt ,Yt ,Ut} is a sample path of the controlled POMDP (for any X0), then with probability1

1
2

∇σ2
Y (bY ) = lim

T→∞

1
T

T

∑
t=1

(

bY (Yt−1)−βbY (Yt)− r(Xt)
)

t−1

∑
s=0

βt−s−1∇bY (Ys)g
2(Ys,Us) .

Proof. From Theorem 16,

1
2

∇σ2
Y (bY ) = Eπ

[

g2(y,u)∇bY (y)
(

bY (y)−b∗Y (y)
)]

,

but

Eπ

[

g2(y,u)∇bY (y)b∗Y (y)
]

= ∑
i,y,u

πiνy(i)µu(y)g
2(y,u)∇bY (y)

× ∑ı̃,ũ,˜πı̃νy(ı̃)µũ(y)pı̃˜(ũ)g2(y, ũ)Jβ( )̃

∑ı̃,ũ πı̃νy(ı̃)µũ(y)g2(y, ũ)

= ∑
y

∇bY (y) ∑
i,u, j

πiνy(i)µu(y)pi j (u)g2(y,u)Jβ( j)

= Eπ
[

∇bY (y)g2(y,u)Jβ( j)
]

.
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Also, as bY (Yt) is uniformly bounded, we can write

bY (Yt) =
∞

∑
s=t+1

βs−t−1(bY (Ys−1)−βbY (Ys)).

The boundedness of r, and the dominated convergence theorem, likewisegives Jβ(Xt+1)= E[∑∞
s=t+1 βs−t−1r(Xs)|Xt+1].

Now we have

1
2

∇σ2
Y (bY ) = Eπ

[

g2(Yt ,Ut)∇bY (Yt)
∞

∑
s=t+1

βs−t−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

]

. (20)

The rest of the proof is as the proof of Baxter and Bartlett (2001, Theorem 4): we use an ergodicity
result to express the expectation as an average, then show that we can truncate the tail of theβ
decaying sum.

AssumeX0 ∼ π. Write X̃t to denote the tuple(Xt ,Yt ,Ut), write P̃ to denote the correspond-
ing transition matrix, and writẽπ to denote the corresponding stationary distribution (soπ̃i,y,u =
πiνy(i)µu(y)). Now consider running the Markov chain on the process{X̃t} backwards. We have

Pr
{

X̃−1|X̃0, X̃1, . . .
}

=
Pr
{

X̃−1, X̃0, X̃1, . . .
}

Pr
{

X̃0, X̃1, . . .
} =

Pr
{

X̃−1
}

P̃X̃−1X̃0

π̃X̃0

=
π̃X̃−1

P̃X̃−1X̃0

π̃X̃0

,

asπ̃ is the unique distribution such thatπ̃′P̃ = π̃′. This gives the distribution for̃X−1, and repeating
this argument gives the distribution forX̃−2, X̃−3, . . . . Denote this doubly infinite process by{X̃t}∞

−∞.
We wish to look at the behavior of time averages of the function

f
(

{

X̃t
}∞
−∞

)

def
= g2(Y0,U0)∇bY (Y0)

∞

∑
s=1

βs−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

.

Specifically, we would like to show that

lim
T→∞

1
T

T−1

∑
m=0

f
(

S
m
(

{

X̃t
}∞
−∞

))

= E

[

f
(

{

X̃t
}∞
−∞

)]

, w.p.1 (21)

whereSm denotesm applications of the shift operatorS, and whereS({X̃t}∞
−∞) = {Wt}∞

−∞ with
Wt = X̃t+1 for all t. Doob (1994,L2 Ergodic theorem, pg. 119) tells us, provided thatS is one-to-one
and measure preserving, and that f is square integrable, the left hand side of Equation (21) is almost
surely constant, and furthermore, provided that the only invariant sets of S are sets of measure zero
and their complements, this constant is equal to the right hand side of Equation (21). Expanding f
andS in Equation (21) then gives, with probability one,

1
2

∇σ2
Y (bY ) = lim

T→∞

1
T

T−1

∑
t=0

g2(Yt ,Ut)∇bY (Yt)
∞

∑
s=t+1

βs−t−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

. (22)

It remains to be shown that the conditions of theL2 Ergodic theorem hold.

1. S is one-to-one.By considering howS behaves at each index, we see that it is a bijection.
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2. S is measure preserving.That is, for a set of sequencesA, AandS(A) have the same measure.
This follows from the Markov property, and from the fact that the transition operator at timet,
as well as the marginal distribution onXt , is identical for all timest. Specifically, we have the
following. LetA− ⊂A be the smallest set such that Pr{{Wt}∞

−∞ ∈A}= Pr{{Wt}∞
−∞ ∈A−∩A},

and writeAs = {Ws : {Wt}∞
−∞ ∈ A−} andAs2

s1
= {{Wt}s2

s1
: {Wt}∞

−∞ ∈ A−}, where{Wt}s2
s1

is the
process starting att = s1 and ending att = s2. For anyswe have

Pr
{

S

(

{

X̃t
}∞
−∞

)

∈ A
}

=
Z

x∈As

Pr
{

X̃s+1 = x
}

Pr
{

{

X̃t
}∞

s+2 ∈ A∞
s+1

∣

∣

∣
X̃s+1 = x

}

×Pr
{

{

X̃t
}s
−∞ ∈ As−1

−∞

∣

∣

∣
X̃s+1 = x

}

C(dx)

=
Z

x∈As

Pr
{

X̃s = x
}

Pr
{

{

X̃t
}∞

s+1 ∈ A∞
s+1

∣

∣

∣
X̃s = x

}

×Pr
{

{

X̃t
}s−1
−∞ ∈ As−1

−∞

∣

∣

∣ X̃s = x
}

C(dx)

= Pr
{

{

X̃t
}∞
−∞ ∈ A

}

.

We also have thatS−1 (the inverse ofS) is measure preserving; by the change of variables
{Wt}∞

−∞ = S({X̃t}∞
−∞).

3. f is square integrable.The measure on{X̃t}∞
−∞ is finite, and|f | is bounded.

4. If set A is such thatS−1(A) = A (whereS−1(A) = {{Wt}∞
−∞ : S({Wt}∞

−∞) ∈ A}), then either
A has measure zero, or A has measure one.Consider a setA of positive measure such that
S−1(A) = A, and writeĀ for its complement. AsS is a bijection, we also have thatS−1(Ā) =
Ā. Assumption 1 implies thatAt = S̃ (at least, this is true for the state component, and,
without loss of generality, we may assume it is true for the extended space).If we assume
thatA0∩ Ā0 = /0, and henceAt ∩ Āt = /0 for all t, then the measure of̄A must be zero. We will
show thatA0∩ Ā0 = /0.

UnlessĀ has measure zero, for eachx∈A0∩Ā0 we must have that Pr{{Wt}−1
−∞ ∈ Ā−1

−∞|W0 = x}
and Pr{{Wt}∞

1 ∈ A∞
1 |W0 = x} are both positive, by the Markov property. Hence ifA0∩ Ā0 is

non-empty there must be a set of positive measure, which we denoteB, that follows sequences
in Ā− until time t = 0, and then follows sequences inA−. Without loss of generality, let us
assume thatB⊂ A−. We will also assume that ifb∈ B thenS−1(b) ∈ B, as the existence ofB
implies the existence of̂B = B∪{S−1(b)} with the same properties. We will show that such
aB does not exist, and thereforeA0∩ Ā0 = /0.

Let As∗
−∞ = {{Wt}∞

−∞ : {Wt}s
−∞ ∈ As

−∞}, the set of sequences that followA− until time s,
and then follow any sequence. We have thatB0∗

−∞ ⊂ Ā0∗
−∞. Construct the setB∗ ⊂ B by

B∗ = limt→∞ S−t(B) (note,S−t(B) is a non-increasing sequence of sets, and hence its limit
exists). We have thatS−t(B) ⊂ S−t(B)t∗

−∞ = S−t(B0∗
−∞) ⊂ S−t(Ā0∗

−∞) = Āt∗
−∞, and soB∗ =

liminf t→∞ S−t(B) ⊂ limsupt→∞ Āt∗
−∞ = Ā−, where the last equality follows from̄At∗

−∞ being
non-increasing. Furthermore, by the dominated convergence theorem we have Pr{{Ws}∞

−∞ ∈
B∗} = limt→∞ Pr{{Ws}∞

−∞ ∈ S−t(B)}= Pr{{Ws}∞
−∞ ∈ B} > 0. This means that the setB∗ has

positive measure and is a subset of bothA andĀ, which is impossible, and so such aB does
not exist.
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The statement given by Equation (21) is for a sample such thatX0 ∼ π, but can be generalized to
an arbitrary distribution using the convergence of{Xt} to stationarity. Indeed, for the finite chains
we consider, all states have positiveπ-measure, and hence Equation (22) holds forX0 ∼ π only if it
holds for allX0 ∈ S .

If we truncate the inner sum atT, the norm of the error is
∥

∥

∥

∥

∥

lim
T→∞

1
T

T−1

∑
t=0

g2(Yt ,Ut)∇bY (Yt)
∞

∑
s=T+1

βs−t−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

lim
T→∞

1
T

T−1

∑
t=0

g2(Yt ,Ut)∇bY (Yt)βT

(

bY (YT)−
∞

∑
s=T+1

βs−t−1r(Xs)

)∥

∥

∥

∥

∥

≤ lim
T→∞

1
T

T−1

∑
t=0

B2GβT
(

M +
R

1−β

)

= 0,

where we have used Assumptions 2, 3, and 6. This gives

1
2

∇σ2
Y (bY ) = lim

T→∞

1
T

T−1

∑
t=0

g2(Yt ,Ut)∇bY (Yt)
T

∑
s=t+1

βs−t−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

,

and changing the order of summation gives the result.

Theorem 20 suggests the use of Algorithm 1 to compute the gradient ofσ2
Y (bY ) with respect to

the parameters of the baseline function bY . The theorem implies that, as the number of samplesT
gets large, the estimate produced by this algorithm approaches the true gradient.

Algorithm 1 Compute estimate of gradient of distance to optimal baseline
given

• A controlled POMDP(S ,U,Y ,P,ν, r,µ).

• The sequence of states, observations and controls generated by the controlled POMDP,
{i0,y0,u0, i1,y1, . . . , iT−1,yT−1,uT−1, iT ,yT}.

• A parameterized baseline function bY : Y ×R
L → R.

write g2(y,u) to denote[(∇µu(y))/µu(y)]2.
setz0 = 0 (z0 ∈ R

L), ∆0 = 0 (∆0 ∈ R
L)

for all {it ,yt ,ut , it+1,yt+1} do
zt+1 = βzt +∇bY (yt ,ω)g2(yt ,ut)
∆t+1 = ∆t +

1
t+1

((

bY (yt ,ω)−βbY (yt+1,ω)− r(xt+1)
)

zt+1−∆t
)

end for

In Bartlett and Baxter (2002) a variant of the GPOMDP algorithm is shown togive an estimate
that, in finite time and with high probability, is close to∇βη. A similar analysis could be performed
for the estimate produced by Algorithm 1, in particular, we could replace∇t = (∇µUt (Yt))/µUt (Ut)
and Rt = r(Xt) in Bartlett and Baxter (2002) with̃∇t = g2(Yt ,Ut)∇bY (Yt) and R̃t = bY (Yt−1)−
βbY (Yt)− r(Xt). Notice that∇t andRt occur in precisely the same way in GPOMDP to produce an
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estimate of

E

[

∇t

∞

∑
s=t+1

βs−t−1Rs

]

as∇̃t andR̃t occur in Algorithm 1 to produce an estimate of

E

[

∇̃t

∞

∑
s=t+1

βs−t−1R̃s

]

.

Algorithm 2 gives an online version of Algorithm 1. The advantage of suchan algorithm is that
the baseline may be updated whilst the estimate of the performance gradient is being calculated.
Such a strategy for updates would, however, affect the convergence of performance gradient esti-
mates (for constant baselines this may be avoided, see Section 8.2). The question of the convergence
of Algorithm 2, and the convergence of performance gradient estimates inthe presence of online
baseline updates, is not addressed in this paper; though simulations in Sections 8.2 and 8.3 show
that performing such online baseline updates can give improvements.

Algorithm 2 Online version of Algorithm 1
given

• A controlled POMDP(S ,U,Y ,P,ν, r,µ).

• The sequence of states, observations and controls generated by the controlled POMDP,
{i0,y0,u0, i1,y1, . . . , iT−1,yT−1,uT−1, iT ,yT}.

• A parameterized baseline function bY : Y ×R
L → R.

• A sequence of step sizes,γt

write g2(y,u) to denote[(∇µu(y))/µu(y)]2.
setz0 = 0 (z0 ∈ R

L)
for all {it ,yt ,ut , it+1,yt+1} do

zt+1 = βzt +∇bY (yt ,ωt)g2(yt ,ut)
ωt+1 = ωt − γt

(

bY (yt ,ωt)−βbY (yt+1,ωt)− r(xt+1)
)

zt+1

end for

7.2 Minimizing Bound on Squared Error when using a Value Function

Given a controlled MDP and a parameterized class of value functions,
{

V(·,ω) : S → R|ω ∈ R
L} ,

we wish to choose a value function to minimize the expected squared error of our gradient estimates.
Theorem 18 gives a bound on this error,

ET =
Ω∗

T
Varπ

(

∇µu(i)
µu(i)

V( j,ω)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j,ω)

])2

.

We dropω in the notation, and write g(i,u) to denote(∇µu(i))/µu(i), where the gradient is with
respect to the policy parameters,θ. We can compute the gradient of this bound:

∇
1
2

ET = ∇
1
2

(

Ω∗

T
Varπ(g(i,u)V( j))+

(

Eπ
[

g(i,u)Aβ( j)
])2
)
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=
1
2

(

Ω∗

T
∇Eπ

[

(g(i,u)V( j))2
]

− Ω∗

T
∇(Eπ [g(i,u)V( j)])2 +∇

(

Eπ
[

g(i,u)Aβ( j)
])2
)

=

(

Ω∗

T
Eπ
[

(g(i,u)V( j))′
(

g(i,u)(∇V( j))′
)]

− Ω∗

T
(Eπ [g(i,u)V( j)])′

(

Eπ
[

g(i,u)(∇V( j))′
])

−
(

Eπ
[

g(i,u)Aβ( j)
])′ (

Eπ
[

g(i,u)(∇V( j))′
])

)

. (23)

This gradient can be estimated from a single sample path of the controlled MDP,{Xs,Us}. We need
the following assumption on the value function.

Assumption 7. There are boundsM ,G < ∞ such that for all i∈ S , and all ω ∈ R
L, the value

function is bounded,|V(i,ω)| ≤M , and the gradient of the value function is bounded,‖∇V(i,ω)‖≤
G.

Algorithm 3 gives an estimate of (23) from a sample path of the controlled MDP;constructing
this estimate from the following four estimations:

∆AS =
1
S

S−1

∑
s=0

(g(Xs,Us)V(Xs+1))
′ (g(Xs,Us)(∇V(Xs+1))

′) ∈ R
1×L;

∆BS =
1
S

S−1

∑
s=0

g(Xs,Us)V(Xs+1) ∈ R
K ;

∆CS =
1
S

S−1

∑
s=0

(r(Xs+1)+βV(Xs+2)−V(Xs+1))zs+1 ∈ R
K ;

∆DS =
1
S

S−1

∑
s=0

g(Xs,Us)(∇V(Xs+1))
′ ∈ R

K×L,

wherez0 = 0 andzs+1 = βzs+g(Xs,Us). The estimate of the gradient then becomes

∆S =

(

Ω∗

T
∆AS−

Ω∗

T
∆B′

S∆DS−∆C′
S∆DS

)′
.

Notice that∆AS,∆BS, and∆DS are simply sample averages (produced by the Markov chain)
estimating the relevant expectations in Equation (23). We see from Theorem3 and Corollary 5 that
the variance of these estimates areO(ln(S)/S), giving swift convergence. By noting the similarity
between the expectation in Equation (20) and the expectation estimated by∆CS, we see that the
ergodicity and truncation arguments of Theorem 20, and the convergence discussion following, also
hold for the∆CS estimate.

An online implementation is complicated by the multiplication of expectations. The online
algorithm (Algorithm 4) uses a decaying window of time (normalized for the rateof decay) in the
calculation of the expectations.
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Algorithm 3 Compute estimate of gradient of squared error wrt value function parameter
given

• A controlled POMDP(S ,U,Y ,P,ν, r,µ).

• The sequence of states, observations and controls generated by the controlled POMDP,
{i0,u0, i1, . . . , iS,uS, iS+1}.

• A parameterized value function V :S ×R
L → R.

write g(i,u) to denote(∇µu(i))/µu(i).
set z0 = 0 (z0 ∈ R

K), ∆A0 = 0 (∆A0 ∈ R
L), ∆B0 = 0 (∆B0 ∈ R

K), ∆C0 = 0 (∆C0 ∈ R
K) and

∆D0 = 0 (∆D0 ∈ R
K×L)

for all {is,us, is+1, is+2} do
zs+1 = βzs+g(is,us)
∆As+1 = ∆As+ 1

s+1

(

(g(is,us)V(is+1))
′ (g(is,us)(∇V(is+1))

′)−∆As
)

∆Bs+1 = ∆Bs+ 1
s+1 (g(is,us)V(is+1)−∆Bs)

∆Cs+1 = ∆Cs+ 1
s+1 ((r(is+1)+βV(is+2)−V(is+1))zs+1−∆Cs)

∆Ds+1 = ∆Ds+ 1
s+1

(

g(is,us)(∇V(is+1))
′−∆Ds

)

end for
∆S =

(Ω∗
T ∆AS− Ω∗

T ∆B′
S∆DS−∆C′

S∆DS
)′

Algorithm 4 Online version of Algorithm 3
given

• A controlled POMDP(S ,U,Y ,P,ν, r,µ).

• The sequence of states, observations and controls generated by the controlled POMDP,
{i0,u0, i1, . . . , iS,uS, iS+1}.

• α ∈ R, 0< α < 1

• A sequence of step sizes,γs

• A parameterized value function V :S ×R
L → R.

write g(i,u) to denote(∇µu(i))/µu(i).
set z0 = 0 (z0 ∈ R

K), ∆A0 = 0 (∆A0 ∈ R
L), ∆B0 = 0 (∆B0 ∈ R

K), ∆C0 = 0 (∆C0 ∈ R
K) and

∆D0 = 0 (∆D0 ∈ R
K×L)

for all {is,us, is+1, is+2} do
zs+1 = βzs+g(is,us)
∆As+1 = α∆As+(g(is,us)V(is+1))

′ (g(is,us)(∇V(is+1))
′)

∆Bs+1 = α∆Bs+g(is,us)V(is+1)
∆Cs+1 = α∆Cs+(r(is+1)+βV(is+2)−V(is+1))zs+1

∆Ds+1 = α∆Ds+g(is,us)(∇V(is+1))
′

ωs+1 = ωs− γs

(

(

1−α
1−αs+1

)

Ω∗
T ∆AS−

(

1−α
1−αs+1

)2 Ω∗
T ∆B′

S∆DS−
(

1−α
1−αs+1

)2
∆C′

S∆DS

)′

end for
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7.3 Minimizing the Bias Error when using a Value Function

As the number of stepsT gets large, the errorET of the gradient estimate becomes proportional to
the square of the bias error,

E∞ =
(

Eπ
[

g(i,u)Aβ( j)
])2

.

The gradient of this quantity, with respect to the parameters of the value function, can be computed
using Algorithm 3, withΩ∗/T = 0. In this case, only∆Cs and∆Ds need to be computed.

7.4 Minimizing Bound on Sample Error when using a Value Function

A more restrictive approach is to minimize the error seen at each sample,

R= Eπ
(

g(i,u)Aβ( j)
)2

.

This approach directly drives V towards Jβ and as such does not aim for additional beneficial cor-
relation. It produces an algorithm that is very similar to TD Sutton (1988), but has the benefit that
the relative magnitude of the gradient with respect to the policy parameters is taken into account. In
this way, more attention is devoted to accuracy in regions of the state space withlarge gradients.

For a parameterized class of value functions,
{

V(·,ω) : S → R|ω ∈ R
L
}

, we can determine the
gradient of this quantity.

∇
1
2

R = ∇
1
2

Eπ
(

g(i,u)Aβ( j)
)2

= −Eπ

[

(

g(i,u)(∇V( j))′
)′ (

g(i,u)Aβ( j)
)

]

= −Eπ

[

(g(i,u))2 ∇V( j)Aβ( j)
]

.

If the value function satisfies Assumption 7, the gradient may be estimated by a single sample path
from a controlled MDP. The ergodicity and truncation argument is the same asthat in the proof of
Theorem 20.

∆RT =
1
T

T

∑
t=1

(r(Xt)+βV(Xt+1)−V(Xt))zt ,

wherez0 = 0, andzt+1 = βzt +(g(Xt ,Ut))
2 ∇V(Xt+1).

8. Simulation Examples

This section describes some experiments performed in simulated environments.First, the estimates
suggested by Sections 5 and 6 are tested in a simple, simulated setting. This simple setting is then
used to test the algorithms of Section 7. Finally, a larger, target-tracking setting is used to test a
number of gradient estimates at various stages of the learning process.

8.1 Three State MDP, using Discounted Value Function

This section describes experiments comparing choices of control variate for a simple three state
MDP. The system is the described in detail in Baxter et al. (2001). The gradient∇η was compared
to the gradient estimates produced with a variety of schemes: GPOMDP withoutany control variate;
a constant baseline set toEπJβ(i); the optimum constant baseline, described in Theorem 11; the
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optimum baseline function, described in Corollary 15; and a value function that was trained using
Algorithm 3 withΩ∗/T set to 0.001. This value function had a distinct parameter for each state, all
initially set to zero.

Because of its simplicity, a number of quantities can be computed explicitly, including the true
gradient∇η, the discounted value function Jβ, the expectation of the discounted value function,
the optimal baseline, and the optimal constant baseline. All experiments used the precomputed
discounted value function in their∇βη estimations rather than the discounted sum of future rewards,
an estimate of the discounted value function. For each experiment, the data was collected over 500
independent runs, withβ = 0.95.

Figures 2 and 3 plot the mean and standard deviation (respectively) of therelative norm differ-
ence of the gradient estimate from∇η, as a function of the number of time steps. The relative norm
difference of a gradient estimate∆ from the true gradient∇η is given by

‖∆−∇η‖
‖∇η‖ .

It is clear from the figures that the use of these control variates gives significant variance reduc-
tions over GPOMDP. It is also clear that the optimum baseline gives better performance than the use
of the expectation of the discounted value function as a baseline. For this MDP, the performance
difference between the optimum baseline and the optimum constant baseline is small; the optimum
baseline of this system, b∗Y = (6.35254,6.35254,6.26938)′, is close to a constant function. The
optimum constant baseline isb∗ = 6.33837.

Since the value ofΩ∗/T was fixed when optimizing the value function, the asymptotic error of
its associated gradient estimate is non-zero, as Figure 2 shows. However, the expected error remains
smaller than that of GPOMDP for all but very large values ofT, and the standard deviation is always
smaller.

8.2 Online Training

Instead of precomputing the optimum baseline, and pretraining the value function, they could be
learned online, whilst estimating∇βη. Figures 4 and 5 show experiments on the same three state
MDP as in Section 8.1, but here the baseline and value function were learned online, using Al-
gorithm 2 and Algorithm 4 respectively. GPOMDP and baseline plots were over 500 independent
runs, the value function plots were over 1000 independent runs. Aβ value of 0.95 was used, and
the online training step sizeγt was set to 1/ln(1+ t). For the value function,Ω∗/T was set to 0.01
andα was set to 0.99. The baseline and the value function had a parameter for each state andwere
initially set to zero.

It is clear from the figures that the online baseline algorithm gives a significant improvement
from the GPOMDP algorithm. Looking at the error using the online value function algorithm we
see a performance increase over GPOMDP untilT becomes large.

Note that the baseline, when trained online, is non-stationary, and the gradient estimate becomes

∆ =
1
T

T−1

∑
t=0

∇µUt
(Yt)

µUt (Yt)

(

T

∑
s=t+1

βs−t−1r(Xs)−bt(Yt)

)

.
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Figure 2: The mean of the relative norm difference from∇η: using no control variate (GPOMDP-
Jβ); using the expected discounted value function as a baseline (BL-EJβ); using the opti-
mum baseline (BL-b∗Y (y)); using the optimal constant baseline (BL-b∗); and using a pre-
trained value function (VF-pretrained). In all cases the explicitly calculated discounted
value function was used in place of the estimatesJt (except, of course, for the pretrained
value function case, where the value function is used in place of the estimatesJt .)
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Figure 3: The standard deviation of the relative norm difference from∇η (see Figure 2 for an
explanation of the key).
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This non-stationarity could mean an additional bias in the estimate, though we cansee by the graphs
that, at least in this case, this additional bias is small. The estimate that we actually use is

∆ =
1
T

T

∑
t=1

zt (r(Xt)− (bt−1(Yt−1)−βbt−1(Yt))) ,

wherezt , the eligibility trace, is given byz0 = 0 andzt+1 = βzt + (∇µUt
(Yt))/µUt (Yt). One might

argue that this additionally correlates our baseline with any errors due to thetruncation of the sum
of discounted future rewards. This should make little difference, exceptfor smallT; we have seen
that, for the modified estimate∆(+S)

T (bY ), any influence this error has is exponentially decreasing.
Note that for any constant baseline we need not worry about non-stationarity, as we have

T

∑
t=1

zt (bT −βbT) =

(

T

∑
t=1

zt

)

(1−β)bT ,

so by additionally keeping track ofΣT = ∑T
t=1zt we have the estimate, at timeT,

1
T

T

∑
t=1

zt (r(Xt)− (bT −βbT)) =
1
T

T

∑
t=1

ztr(Xt)−
1
T

ΣT(1−β)bT ,

an unbiased estimate of∇βη; again, treating the error due to the truncation of the discounted sum
of future rewards as negligible.

8.3 Locating a Target

These experiments deal with the task of a puck, moving in a plane, learning to locate a target. The
puck had unit mass, 0.05 unit radius, and was controlled by applying a 5 unit force in either the
positive or negativex direction and either the positive or negativey direction. The puck moved
within a 5×5 unit area with elastic walls and a coefficient of friction of 0.0005; gravity being set
to 9.8. The simulator worked at a granularity of 1/100 of a second with controller updates at every
1/20 of a second. The distance between the puck and the target location wasgiven as a reward at
each update time. Every 30 seconds this target and the puck was set to a random location, and the
puck’sx andy velocities set randomly in the range[−10,10].

The puck policy was determined by a neural network with seven inputs, no hidden layer, and
four outputs; the outputs computing a tanh squashing function. The inputs to thecontroller were:
thex andy location of the puck, scaled to be in[−1,1]; thex andy location of the puck relative to
the target, scaled by the dimension sizes; the velocity of the puck, scaled such that a speed of 10
units per second was mapped to a value of 1; and a constant input of 1 to supply an offset. The
outputs of the neural network gave a weighting,ξi ∈ (0,1), to each of the(x,y) thrust combinations:
(−5,−5); (−5,5); (5,−5); and(5,5). So, collating the seven inputs in the vectorv, we have

ξi = sqsh

(

7

∑
k=1

θi,kvk

)

, i ∈ {1,2,3,4},

whereθ is a vector of 28 elements, one element,θi,k, for eachi,k pair, and the squashing function
is sqsh(x) = (1+ tanh(x))/2. The probability of theith thrust combination is then given by

µi(v,θ) =
ξi

∑ j ξ j
,
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Figure 4: The mean of the relative norm difference from∇η: using no control variate (GPOMDP);
using a baseline trained online (BL-online); and using a value function trained online
(VF-online).
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Figure 5: The standard deviation of the relative norm difference from∇η (see Figure 4 for an
explanation of the key).
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where actions have been labelled with the associated thrust combination.
The puck was first trained using conjugate gradient ascent, with GPOMDP(with T = 108) used

to estimate the gradient. The parameters of the policy were recorded at 28 points along the training
curve: at the initial parameter setting (θ = 0); and at each change in line search direction. Results
for 4 of the 28 points are shown in Figure 6. The results show the mean, over 100 independent trials,
of the relative norm difference between gradient estimates when using a range of different baselines,
all learned online (γt = 1/ ln(1+ t)) and initially set to zero, and an estimate of∇βη. The second
order baseline was a second order polynomial of the inputs, that is, againcollating the inputs in the
vectorv,

b(v,ω) = ω0,0 +
7

∑
k=1

ωk,0vk +
7

∑
k=1

7

∑
l=k

ωk,l vkvl ,

whereω is a vector of 32 elements, with one element,ωk,l , for each second order termvkvl , one
additional element,ωk,0, for each first order termvk, and one additional element,ω0,0, for the
constant term. The estimate of∇βη was produced by averaging the unbiased∇βη estimates at
T = 223; an average over 400 samples.

Figure 6 shows that each baseline method performed better than GPOMDP, with the second
order baseline performing the best of these. The estimated average reward and the estimated optimal
constant baseline performed almost equally, and both performed better than the online constant
baseline in this case. That the two estimation methods performed almost equally would suggest
that, in this case, the random variables(∇µu(y)/µu(y))

2 and Jβ( j) are close to independent. It might
be that for most policies, or at least policies at theθ values we tested,‖EπJβ(i)‖�‖Jβ(i)−EπJβ(i)‖,
since this implies

Eπ

[

(

∇µu(y)
µu(y)

)2

Jβ( j)

]

= Eπ

(

∇µu(y)
µu(y)

)2

EπJβ(i)+Eπ

[

(

∇µu(y)
µu(y)

)2
(

Jβ( j)−EπJβ(i)
)

]

≈ Eπ

(

∇µu(y)
µu(y)

)2

EπJβ(i).

9. Conclusions

We have shown that the use of control variate techniques can reduce estimation variance when
estimating performance gradients. The first technique was to add a baseline. Here we analyzed
the variance quantities of (8) and (9), the estimation variance when using a baseline under the
assumption that the discounted value function is known and samples may be drawn independently.
We have given the optimal baseline, the baseline that minimizes this variance, and have expressed
the additional variance resulting from using an arbitrary baseline as a weighted squared distance
from this optimum. Similar results have also been shown for a constant baseline. Here it was also
shown how much additional variance results from using the expected discounted value function, a
popular choice of baseline, in place of the optimal constant baseline. We have also shown that the
estimation variance from∆(+S)

T (bY ), a realizable estimate of∇βη formed from a single sample path
of the associated POMDP, is bounded by the stationary variance plus a termindependent of the
choice of baseline, and another term of negligible magnitude.

A second control variate technique used to reduce estimation variance wasto replace estimates
of the discounted value function with some appropriate value function V. We have shown that, even
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Figure 6: Each plot shows the mean, over 100 independent runs, of therelative norm difference
from ∇βη: using no baseline (��); using a constant baseline, trained online (+ ); using
a second order polynomial of the inputs as a baseline, trained online (�

�
); usingEπJβ(i)

as a baseline, estimated online (��); and using the optimal constant baseline, estimated
online ( | ). The reference∇βη is estimated by averaging the unbiased estimates at
T = 223. The four plots show four of the 28 parameter values at the end points of each
line search in the conjugate gradient ascent algorithm, when training on the target location
example using GPOMDP (withT = 108) to produce gradient estimates. The remaining
24 parameter values give similar plots.
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if the discounted value function is known, selecting V to be equal to the discounted value function
is not necessarily the best choice. We have shown examples where this is the case; where additional
reduction in estimation variance can be achieved by selecting V to be a functionother than the
discounted value function, with no addition of estimation bias. We have also given a bound on the
expected squared error of the estimate∆V

T , an estimate of∇βη that uses V in place of discounted
value function estimates and is formed from a single sample path of the associated MDP.

The gradient estimates∆(+S)
T (bY ) and∆V

T use a baseline bY and a value function V, respectively,
in their calculations. In experiments on a toy problem we investigated the improvements obtained
when using the optimal choice of baseline in∆(+S)

T (bY ), and also when using the value function
minimizing the bound on expected squared error of estimates in∆V

T . Significant improvement was
shown.

In general the optimal choices for the baseline and the value function may not be known. We
have explored the idea of using gradient descent on the error boundsderived in this paper to learn a
good choice for a baseline, or for a value function. We have given realizable algorithms to obtain the
appropriate gradient estimates, along with their online versions. In experiments on the toy problem,
and in a target location problem, we have seen some improvements given by these algorithms.

In experiments we have looked at using the online versions of the algorithms inSection 7; updat-
ing the baseline (or value function) whilst estimating the gradient of the performance. Consequently
some additional bias in the performance gradient estimate is likely to have occurred. The results of
the experiments, however, would suggest that this bias is small. Further work of interest is the study
of the convergence of these online algorithms, and also the convergenceof the performance whilst
using these online algorithms.
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Appendix A. Discussion of Assumption 1

The details in this section can be found in texts covering Markov chains; see, for example, Puterman
(1994); Grimmett and Stirzaker (1992); Seneta (1981). We include them to: define the terms used
in Assumption 1; show how Assumption 1 may be relaxed; and give an intuition ofour use of
Assumption 1.

The states of a Markov chainM = (S ,P) can be divided into equivalence classes under the
communicating relation↔. We definei ↔ i, and writei ↔ j if there are integersm,n > 0 such
that p(m)

i j > 0 andp(n)
ji > 0, wherep(t)

i j is the i j th entry of thet-step transition matrixPt . We call a
classS̃ ⊂ S recurrent if its states are recurrent, otherwise we call it transient. A stateis recurrent if
Pr{Xt = i for somet > 0|X0 = i} = 1, otherwise it is transient. Notice that this means that once the
chain enters a recurrent class it never leaves, but rather visits all states of that class infinitely often.
If the chain is finite then it will eventually leave every transient class and settlein some recurrent
class.
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We say a Markov chainM = (S ,P) is irreducible if the spaceS forms a single class under↔;
necessarily a recurrent class for finite Markov chains. We can relax the irreducibility condition, and
instead allow anyS that contains a single recurrent classSR plus a set (possibly containing more
than one class) of transient statesST such that Pr{Xt ∈ SR for somet > 0|X0 = j} = 1 for all j ∈ ST

(guaranteed for finite chains).
The period,d, of a statei ∈ S of a Markov chainM = (S ,P) is the greatest common divisor of

the set of times{t > 0 : p(t)
ii > 0}. It is uniform across the states of a class. A state, and consequently

a class, is aperiodic ifd = 1. We can relax the aperiodicity condition and allow arbitrary periods.
ConsiderSR to be constructedSR = S0∪S1∪ ·· ·∪Sd−1, whered is the period ofSR and the setsSk

are chosen such that Pr{Xt+1 ∈ Sk+1(mod d)|Xt ∈ Sk} = 1.

Our interest is in the existence and uniqueness of the stationary distributionπ. The existence of
π stems from the Markov chain reaching, and never leaving, a recurrentclass, combined with the
forgetfulness of the Markov property. The uniqueness ofπ stems from us allowing only a single
recurrent class. So given a finite Markov chainM = (S ,P) with the constructionS = ST ∪SR, and
SR = S0∪S1∪ ·· ·∪Sd−1, as above, we have, writingN[0,T)(i) to denote the number of times statei
is visited before timeT,

lim
T→∞

T−1N[0,T)(i) = πi , a.s. (24)

Equation (24) is helpful in two ways. Firstly, our choice of performance measure, (2), is the
expected average of r(Xt), where{Xt} is produced by the chain. We see from (24) that this value
is independent of the initial state, and we could equivalently use the expected value of r(X), with
X ∼ π. Secondly, we are interested in calculating expectations over the stationarydistribution (such
as∇βη), and we see from (24) that this expectation can be calculated by observing a single sample
path generated by the Markov chain, almost surely. In Section 4 it is seen that we can even do well
with a finite length sample path; it is here we use the assumption of irreducibility andaperiodicity.

The analytical results of Section 5 and Section 6 use Theorem 3, Theorem 4and Corollary 5 of
Section 4 to bound the variance terms of the form

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

, (25)

whereXt is generated by a Markov chainM = (S ,P) starting in the stationary distributionX0 ∼ π,
with variance terms of the form

Var(f(X)), (26)

whereX ∼ π. The proofs of these results use the property

lim
T→∞

Pr{XT = i} = πi , (27)

which holds whenSR is aperiodic, and is stronger than Equation (24). In particular, Equation (27)
holds with the addition of the set of transient statesST ; indeed the variance quantities of Equa-
tion (25) and (26) are not affected by such an addition, as the setST hasπ-measure zero. Also,
when SR is periodic, writingX(k)

t for the d-step subprocess with elements inSk andπ(k) for the
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stationary distribution corresponding to this irreducible aperiodic chain, wehave

Var

(

1
dT

dT−1

∑
t=0

f(Xt)

)

= E





(

1
dT

dT−1

∑
t=0

f(Xt)−E

[

1
dT

dT−1

∑
t=0

f(Xt)

∣

∣

∣

∣

∣

X0 ∼ π

])2
∣

∣

∣

∣

∣

∣

X0 ∼ π





=
1
d2

d−1

∑
k1=0

d−1

∑
k2=0

E

[(

1
T

T−1

∑
t=0

f
(

X(k1)
t

)

−E

[

1
T

T−1

∑
t=0

f
(

X(k1)
t

)

∣

∣

∣

∣

∣

X0 ∼ π

])

×
(

1
T

T−1

∑
t=0

f
(

X(k2)
t

)

−E

[

1
T

T−1

∑
t=0

f
(

X(k2)
t

)

∣

∣

∣

∣

∣

X0 ∼ π

])∣

∣

∣

∣

∣

X0 ∼ π

]

≤ 2
d

d−1

∑
k=0

E





(

1
T

T−1

∑
t=0

f
(

X(k)
t

)

−E

[

1
T

T−1

∑
t=0

f
(

X(k)
t

)

∣

∣

∣

∣

∣

X0 ∼ π

])2
∣

∣

∣

∣

∣

∣

X0 ∼ π





=
2
d

d−1

∑
k=0

E





(

1
T

T−1

∑
t=0

f
(

X(k)
t

)

−E

[

1
T

T−1

∑
t=0

f
(

X(k)
t

)

∣

∣

∣

∣

∣

X(k)
0 ∼ π(k)

])2
∣

∣

∣

∣

∣

∣

X(k)
0 ∼ π(k)





=
2
d

d−1

∑
k=0

Var

(

1
T

T−1

∑
t=0

f
(

X(k)
t

)

)

(that the distribution ofX(k)
0 is π(k) whenX0 ∼ π is due to the setsSk having equalπ-measure.) It is

now straightforward to give analogous results to those of Section 5 and 6 when the Markov chain
consists of a single, possibly periodic, recurrent class plus a set of transient states.

The justification in studying the variance quantity (25) is that, after leaving the set of statesST ,
the distribution over states will approachπ exponentially quickly. Whilst this does not hold for
periodic chains, it does hold that the distribution over states restricted to the set of times{Tk +dt :
t ∈ {0,1,2. . .}}, whereTk is the first timeXt hits the setSk, will approachπ(k) exponentially quickly.

Appendix B. Proofs for Section 4

In this section we give the proofs for Theorem 2, Theorem 3, Theorem4, and Corollary 5 of Sec-
tion 4. Before giving the proof of Theorem 2 we first look at some properties of Markov chains. In
particular, we look at the covariance decay matrix of a finite ergodic Markov chain.

Definition 4. Let M = (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribu-
tion. We denote thecovariance decay matrixof this chain by D(t), and define it by

D(t)
def
= Π

1
2
(

Pt −eπ′)Π− 1
2

where, givenS = {1,2, . . . ,n}, Π 1
2 = diag(

√
π1,

√
π2, . . . ,

√
πn), andΠ− 1

2 =
[

Π1/2
]−1

.

We will see that the gain of the auto-covariance over the variance can be bound by the spectral
norm of the covariance decay matrix. First we will give a bound on the spectral norm of the co-
variance decay matrix for general finite ergodic Markov chains. Then we will give a much tighter
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bound for reversible finite ergodic Markov chains. The spectral normof a matrix is given by the
following definition.

Definition 5. Thespectral normof a matrix A is denoted‖A‖λ. It is the matrix norm induced by the
Euclidean norm,

‖A‖λ
def
= max

‖x‖=1
‖Ax‖ .

An equivalent definition is

‖A‖λ = max
‖x‖=1

‖Ax‖ = max
‖x‖=1

√
x′A′Ax=

√

λmax(A′A),

whereλmax(A) denotes the largest eigenvalue of the matrix A. As A′A is symmetric and positive
semi-definite, all of its eigenvalues are real and positive.

Note 2. We have that, for any matrix A

‖Ax‖ ≤ ‖A‖λ ‖x‖ .

This can be seen from: for‖x‖ 6= 0

‖Ax‖ =

∥

∥

∥

∥

A

(

x
‖x‖

)∥

∥

∥

∥

‖x‖ .

Recall the following two definitions.

Definition 6. Thetotal variation distancebetween two distributions p,q on the finite setS is given
by

dTV(p,q)
def
=

1
2 ∑

i∈S

|pi −qi | = ∑
i∈S :pi>qi

(pi −qi).

Definition 7. Themixing timeof a finite ergodic Markov chain M= (S ,P) is defined as

τ def
= min

{

t > 0 : max
i, j

dTV
(

Pt
i ,P

t
j

)

≤ e−1
}

,

where Pti denotes the ith row of the t-step transition matrix Pt .

Note 3. Denoting dt
def
= maxi, j dTV

(

Pt
i ,P

t
j

)

, for s, t ≥ 1 we have that dt+s ≤ dtds, and hence

dt ≤ exp(−bt/τc) .

Note 4. We have that

max
i∈S

dTV
(

Pt
i ,π
)

≤ dt .
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The sub-multiplicative property in Note 3 can be seen from

dTV

(

Pt+s
i ,Pt+s

j

)

= ∑
l∈S :p(t+s)

il >p(t+s)
jl

(

p(t+s)
il − p(t+s)

jl

)

= ∑
l∈S :p(t+s)

il >p(t+s)
jl

∑
k∈S

(

p(t)
ik − p(t)

jk

)

p(s)
kl

= ∑
k∈S :p(t)

ik >p(t)
jk

(

p(t)
ik − p(t)

jk

)

∑
l∈S :p(t+s)

il >p(t+s)
jl

p(s)
kl

− ∑
k∈S :p(t)

jk >p(t)
ik

(

p(t)
jk − p(t)

ik

)

∑
l∈S :p(t+s)

il >p(t+s)
jl

p(s)
kl

≤ dTV
(

Pt
i ,P

t
j

)

max
k1,k2∈S

∑
l∈S :p(t+s)

il >p(t+s)
jl

(

p(s)
k1l − p(s)

k2l

)

≤ dTV
(

Pt
i ,P

t
j

)

ds, (28)

wherep(t)
i j denotes thei j th component ofPt , and we have used that∑l p(t)

il p(s)
lk = p(t+s)

ik . As dt ≤ 1,
this also impliesdt is non-increasing (fort ≥ 1). The inequality in Note 3 then follows from applying
the sub-multiplicative property toτbt/τc ≤ t, giving

dt ≤
{

dbt/τc
τ t ≥ τ,

1 t < τ.

Note 4 can be seen from

∑
k∈S

∣

∣

∣
p(t)

ik −πk

∣

∣

∣
= ∑

k∈S

∣

∣

∣

∣

∣

∑
j∈S

π j

(

p(t)
ik − p(t)

jk

)

∣

∣

∣

∣

∣

≤ ∑
j∈S

π j ∑
k∈S

∣

∣

∣
p(t)

ik − p(t)
jk

∣

∣

∣
.

We will also consider the following, asymmetric, notion of distance.

Definition 8. Theχ2 distancebetween the distribution p and the distribution q on the finite setS ,
with qi > 0 for all i ∈ S , is given by

dχ2(p,q)
def
=

(

∑
i∈S

(pi −qi)
2

qi

)1/2

.

Lemma 21. Let M= (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribution.
There exists a mixing timeτ, which is a property of M, such that

‖D(t)‖λ ≤
√

Ei∼π
(

dχ2(Pt
i ,π)

)2 ≤
√

2|S |max
i∈S

dTV(Pt
i ,π) ≤

√

2|S |exp(−bt/τc).

Thus we have‖D(t)‖λ ≤
√

2|S |exp(−bt/τc).
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Proof. Note thatD(t)′D(t) is symmetric and positive semi-definite and hence its eigenvalues are
real and positive. Label them, in non-increasing order,λ1,λ2, . . . . This combined with the relation-
ship∑i λi = tr

(

D(t)′D(t)
)

, where tr(A) denotes the trace of the matrixA, gives

0≤ λ1 ≤ tr
(

D(t)′D(t)
)

.

Furthermore,

tr
(

D(t)′D(t)
)

= ∑
i∈S

∑
k∈S

πi

πk

(

p(t)
ik −πk

)2
= Ei∼π

(

dχ2

(

Pt
i ,π
))2

= ∑
i∈S

∑
k∈S

πi p
(t)
ik

πk

(

p(t)
ik −πk

)

−∑
i∈S

∑
k∈S

πi

(

p(t)
ik −πk

)

≤ ∑
k∈S

max
ı̃∈S

∣

∣

∣
p(t)

ı̃k −πk

∣

∣

∣

(

1
πk

∑
i∈S

πi p
(t)
ik

)

≤ |S |max
i∈S

∑
k∈S

∣

∣

∣
p(t)

ik −πk

∣

∣

∣

= 2|S |max
i∈S

dTV
(

Pt
i ,π
)

≤ 2|S |exp(−bt/τc) .

The last inequality follows from Note 3 and Note 4.

Recall that a reversible Markov chain has a transition probability matrix and stationary distribu-
tion satisfying the detailed balance equations

πi pi j = π j p ji ,

for all i, j.

Lemma 22. Let M = (S ,P) be a finite ergodic reversible Markov chain, and letπ be its stationary
distribution. Order the eigenvalues of P such that1 = λ1 > |λ2| ≥ |λ3| ≥ . . .. Then

‖D(t)‖λ = |λ2|t .

Furthermore, if M has mixing timeτ, we have that|λ2|t ≤ 2exp(−bt/τc) .

Proof. As P is reversible,

√

πi

π j
p(t)

i j =

√

πi

π j

(

π j

πi

)

p(t)
ji =

√

π j

πi
p(t)

ji , (29)

and henceD(t)′ = D(t). Given a polynomial f(·) and the symmetric matrixA, Ax = λx implies
f(A)x = f(λ)x. Thus,

‖D(t)‖λ =
√

λmax
(

D(t)′D(t)
)

=

√

λmax

(

D(t)2
)

= max
i

|λi(D(t))| ,
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whereλ1(D(t)),λ2(D(t)), . . . are the eigenvalues ofD(t). The matrixD(t) is similar to(Pt −eπ′)
via the matrixΠ 1

2 , and hence has the same eigenvalues. Letx1,x2,x3, . . . be the left eigenvectors of
P, labelled with the indices of their associated eigenvalues. Then

x′i
(

Pt −eπ′)= x′i
(

Pt − lim
n→∞

Pn
)

= λt
ix
′
i − lim

n→∞
λn

i x′i =

{

0 i = 1,
λt

ix
′
i i 6= 1.

Thereforeλt
2 is the greatest magnitude eigenvalue ofD(t). Furthermore, ifx 6= 0 is a right eigen-

vector ofD(t) with eigenvalueλ, we have

∑
j∈S

√

πi

π j

(

p(t)
i j −π j

)

x j =
1√
πi

∑
j∈S

(

p(t)
ji −πi

)√π jx j = λxi , from (29),

and so

|λ|∑
i∈S

√
πi |xi | = ∑

i∈S

∣

∣

∣

∣

∣

∑
j∈S

(

p(t)
ji −πi

)√π jx j

∣

∣

∣

∣

∣

≤ ∑
i∈S

∑
j∈S

∣

∣

∣
p(t)

ji −πi

∣

∣

∣

√π j |x j |

≤
(

max
i∈S

∑
k∈S

∣

∣

∣
p(t)

ik −πk

∣

∣

∣

)

∑
j∈S

√π j |x j |

= 2max
i∈S

dTV
(

Pt
i ,π
)

∑
j∈S

√π j |x j |.

So from Note 3 and Note 4 we have that|λ| ≤ 2exp(−bt/τc).

Lemma 23. Let M= (S,P) be a finite ergodic Markov chain, and letπ be its stationary distribution.
Let{Xt} be the process generated by M starting X0 ∼ π. For any two functionsf ,g : S → R

|E [(f(Xs)−Eπf(i))(g(Xs+t)−Eπg(i))]| ≤ ‖D(t)‖λ

√

Eπ (f(i)−Eπf(i))2
Eπ (g(i)−Eπg(i))2.

Proof. Denoting fto be the column vector of f(x)−Eπf(i) over the statesx∈ S , then
∣

∣

∣
E

[

fXs
g

Xs+t

]∣

∣

∣
=

∣

∣

∣
f ′ΠPtg

∣

∣

∣

=
∣

∣

∣f ′Π
(

Pt −eπ′)g
∣

∣

∣

=
∣

∣

∣
f ′Π

1
2 D(t)Π

1
2 g
∣

∣

∣

≤
∥

∥

∥
f ′Π

1
2

∥

∥

∥

2

∥

∥

∥
D(t)Π

1
2 g
∥

∥

∥

2
(Schwartz)

≤ ‖D(t)‖λ

∥

∥

∥f ′Π
1
2

∥

∥

∥

2

∥

∥

∥Π
1
2 g
∥

∥

∥

2
(Note 2)

= ‖D(t)‖λ

√

Eπ (f i)
2
Eπ

(

g
i

)2
.
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Lemma 23 shows how covariance terms can be bounded by the variance under the stationary
distribution attenuated by the spectral norm of the covariance decay matrix.Combining this with
Lemma 23 (or Lemma 22 for reversible chains) gives us Theorem 2.

Proof of Theorem 2.By the application of Lemma 21 and Lemma 23,

|Covπ(t; f)| ≤ ‖D(t)‖λ Varπ(f) (Lemma 23)

≤
√

2|S |exp(−bt/τc)Varπ(f) (Lemma 21)

≤
√

2|S |e
√

exp(−t/τ)Varπ(f).

This shows that Theorem 2 holds with someL ≤
√

2|S |e and 0≤ α ≤ exp(−1/(2τ)). If the chain
is reversible, then similarly, using Lemma 22, the bound of Theorem 2 holds withL = 2e and
α = exp(−1/τ).

We can use the result of Theorem 2 to prove Theorem 3. Recall that Theorem 3 shows how the
variance of an average of dependent samples can be bounded byO(1/T) times the variance of a
sample distributed according to the stationary distribution.

Proof of Theorem 3.

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

=
1

T2E

(

T−1

∑
t=0

(f(Xt)−Ef(Xt))

)2

=
1

T2

T−1

∑
t1=0

T−1

∑
t2=0

E [(f(Xt1)−Ef(Xt1))(f(Xt2)−Ef(Xt2))]

=
1

T2

T−1

∑
t1=0

T−1

∑
t2=0

Covπ(|t2− t1| ; f)

=
1

T2

T−1

∑
t=−(T−1)

(T −|t|)Covπ(|t| ; f).

Then, using Theorem 2,

1
T2

T−1

∑
t=−(T−1)

(T −|t|)Covπ(|t| ; f) ≤ 1
T2

T−1

∑
t=−(T−1)

(T −|t|)Lα|t|Var(f(X))

=
L
T2

(

T (1+α)

1−α
− 2α

(

1−αT
)

(1−α)2

)

Var(f(X))

≤ 1
T

(

L (1+α)

1−α

)

Var(f(X)),

where the equality follows from

T−1

∑
t=−(T−1)

(T −|t|)α|t| = T +2T
T−1

∑
t=1

αt −2
T−1

∑
t=1

tαt
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= T +
2Tα

(

1−αT−1
)

1−α
−2

T−1

∑
s=1

T−1

∑
t=s

αt

=

(

T +
2Tα
1−α

)

− 2TαT

1−α
−2

T−1

∑
s=1

T−1

∑
t=s

αt

=
T (1+α)

1−α
− 2TαT

1−α
−2

T−1

∑
s=1

αs1−αT−s

1−α

=
T (1+α)

1−α
− 2TαT

1−α
− 2α

(

1−αT−1
)

(1−α)2 +
2(T −1)αT

1−α

=
T (1+α)

1−α
− 2α

(

1−αT−1
)

+2αT (1−α)

(1−α)2

=
T (1+α)

1−α
− 2α

(

1−αT
)

(1−α)2 .

We may set theΩ∗ in Theorem 3 toΩ∗ = L (1+α)/(1−α). Furthermore, recalling thatα ≤
exp(−1/(2τ)), we have

Ω∗ = L
1+α
1−α

≤ 2L
1

1−exp(−1/(2τ))
≤ 6Lτ,

where the last inequality uses[1−exp(−1/(2τ))]−1 ≤ 8
3τ. Note that forx = 1/(2τ) we have 0≤

x≤ 1/2, and that for such anx

exp(−x) ≤ 1−x+
x2

2

⇔ 1−exp(−x) ≥ x
(

1− x
2

)

⇔ 1
1−exp(−x)

≤ 1
x
· 2
2−x

⇒ 1
1−exp(−x)

≤ 4
3x

.

(30)

Theorem 4 gives a result similar to Theorem 3, but without relying on Theorem 2, and hence
without relying on the size of the state space. For the proof we find it useful to define the following.

Definition 9. The triangular discrimination(Topsøe, 2000) between two distributions p,q on the
finite setS is given by

d4(p,q)
def
= ∑

i∈S

(pi −qi)
2

pi +qi
.

Note 5. We have thatd4(p,q) ≤ 2dTV(p,q).

Note 5 can be seen from∑
i∈S

(pi −qi)
2

pi +qi
= ∑

i∈S

|pi −qi |
pi +qi

|pi −qi | ≤ ∑
i∈S

|pi −qi |.
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Proof of Theorem 4.Write gi = f(i)−Ef(X), and writeV = ∑i∈S πig2
i , the variance of f(X). We

have that|gi | ≤ 2c for all i ∈ S . Now, we have for anys≥ 0 andt ≥ 0,

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t))

= ∑
i, j∈S

πigi

(

p(t)
i j −π j

)

g j

= ∑
i, j∈S

√
πi

p(t)
i j −π j

√

p(t)
i j +π j

√
πi gi

√

p(t)
i j +π j g j

≤





∑
i∈S

πi ∑
j∈S

(

p(t)
i j −π j

)2

p(t)
i j +π j







1/2
(

∑
i∈S

πig
2
i ∑

j∈S

(

p(t)
i j +π j

)

g2
j

)1/2

(Schwartz)

=

(

∑
i∈S

πid4
(

Pt
i ,π
)

)1/2(

2V2 + ∑
i∈S

πig
2
i ∑

j∈S

(

p(t)
i j −π j

)

g2
j

)1/2

≤ (2dt)
1/2

(

2V2 +(2c)2 ∑
i∈S

πig
2
i ∑

j∈S

∣

∣

∣p
(t)
i j −π j

∣

∣

∣

)1/2

(Note 5)

≤ 2d1/2
t

(

V2 +2c2Vdt
)1/2

. (31)

Consider the case whereV = Var(f(X)) > ε. If dt ≤ ε, from Equation (31), we have

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t)) ≤ 2
√

2(1+c)d1/2
t V. (32)

This holds for alls, t such thatdt ≤ ε, which is implied by

exp(−t/τ+1) ≤ ε
⇔ −t/τ ≤ lnε−1

⇔ t ≥ τ
(

1+ ln
1
ε

)

⇐ t ≥ 2τ ln
1
ε
,

asε ≤ e−1. For alls, t we have

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t)) ≤V, (33)

which is a Cauchy-Schwartz inequality:

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t))

= ∑
i, j∈S

πigi p
(t)
i j g j

= ∑
i, j∈S

√

πi p
(t)
i j gi

√

πi p
(t)
i j g j

≤
(

∑
i∈S

πig
2
i ∑

j∈S

p(t)
i j

)1/2(

∑
j∈S

(

∑
i∈S

πi p
(t)
i j

)

g2
j

)1/2
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=

(

∑
i∈S

πig
2
i

)1/2(

∑
j∈S

π jg
2
j

)1/2

= V.

So from Equation (32) and Equation (33) we have

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

=
1

T2

T−1

∑
t1=0

T−1

∑
t2=0

E(f(Xt1)−Ef(Xt1))(f(Xt2)−Ef(Xt2))

=
1

T2

T−1

∑
t=0

E(f(Xt)−Ef(Xt))
2 +

2
T2

T−2

∑
s=0

T−s−1

∑
t=1

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t))

=
1

T2

T−1

∑
t=0

E(f(X)−Ef(X))2 +
2

T2

T−1

∑
t=1

(T − t)E(f(X0)−Ef(X0))(f(Xt)−Ef(Xt))

=
1
T

V +
2

T2

b2τ ln(1/ε)c

∑
t=1

(T − t)E(f(X0)−Ef(X0))(f(Xt)−Ef(Xt))

+
2

T2

T−1

∑
t=b2τ ln(1/ε)c+1

(T − t)E(f(X0)−Ef(X0))(f(Xt)−Ef(Xt))

≤ 1
T

V +4τ ln
(

ε−1) 1
T

V +4
√

2(1+c)
∞

∑
t=b2τ ln(1/ε)c+1

d1/2
t

1
T

V

≤
(

1+4τ ln
1
ε

+25τ(1+c)ε
)

1
T

V, (34)

where the last line follows from

∞

∑
t=b2τ ln(1/ε)c+1

d1/2
t ≤

∞

∑
t=b2τ ln(1/ε)c+1

exp(−t/(2τ)+1/2)

=
√

e
∞

∑
t=b2τ ln(1/ε)c+1

exp(−t/(2τ))

≤
√

eexp

(

− ln
1
ε

) ∞

∑
t=0

(exp(−1/(2τ)))t

=
√

eε
1

1−exp(−1/(2τ))

≤ 8
√

e
3

τε,

where we have again used Equation (30). For the case where Var(f(X)) ≤ ε we have

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

=
1

T2

T−1

∑
t1=0

T−1

∑
t2=0

E(f(Xt1)−Ef(Xt1))(f(Xt2)−Ef(Xt2))
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≤ 1
T2

T−1

∑
t1=0

T−1

∑
t2=0

V

≤ ε. (35)

As the variance is bounded either by Equation (34) or by Equation (35), taking their sum gives the
result.

Lastly, we prove the corollary to Theorem 4, which shows the essential rate of decrease of the
bound.

Proof of Corollary 5. Selectingε such that, writingV = Var(f(X)),

1
ε

=
T

4τV
+

25
4

(1+c),

satisfies 0≤ ε ≤ e−1. Substituting this into the result of Theorem 4 gives

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ 4τV
T +25(1+c)τV

+

(

1+
100(1+c)τ2V

T +25(1+c)τV

+4τ ln

(

T
4τV

+
25
4

(1+c)

))

V
T

≤ 4τV
T

+

(

1+4τ+4τ ln

(

T
4τV

+
25
4

(1+c)

))

V
T

≤ (1+8τ)
V
T

+4τ ln

(

7(1+c)+
1
4τ

(

V
T

)−1
)

V
T

.

Appendix C. Proofs for Section 5.1

In this section we give the proofs for Lemma 6 and Theorem 7 in Section 5.1. Afew auxiliary
lemmas are also given.

Proof of Lemma 6.ConsiderF -measurable random variablesA,B, with F being someσ-algebra.
If B is alsoG -measurable for someG ⊂ F such thatE[A|G ] = B almost surely, then we have:

E [A−B] = 0; and E [B(A−B)] = 0

(Note thatE[B(A−B)|G ] = BE[A−B|G ] = 0, almost surely). This gives us

Var(A) = E

[

(A−E[A])2
]

= E

[

((B−E[B])+(A−B)−E[A−B])2
]

= E

[

((B−E[B])+(A−B))2
]

= E

[

(B−E[B])2 +2(B−E[B])(A−B)+(A−B)2
]

= E

[

(B−E[B])2
]

+2E [B(A−B)]−2E[B]E [A−B]+E
[

(A−B)2]

= Var(B)+E
[

(A−B)2] . (36)
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Now choosing F to be the smallest σ-algebra such that the random variable
(X0, . . . ,XT−1,J0, . . . ,JT−1) and our functions f,J,a, for all Xt , are measurable, andG such
that(X0, . . . ,XT−1), and the functions onXt , are measurable, we have that for

A =
1
T

T−1

∑
t=0

f(Xt)(Jt −a(Xt)) and B =
1
T

T−1

∑
t=0

f(Xt)(J(Xt)−a(Xt)) ,

A andB areF -measurable,B is G -measurable, andG ⊂ F . Furthermore, we have

E [A|G ] = E

[

1
T

T−1

∑
t=0

f(Xt)(Jt −a(Xt))

∣

∣

∣

∣

∣

X0, . . . ,XT−1

]

=
1
T

T−1

∑
t=0

E [ f(Xt)(Jt −a(Xt))|Xt ]

=
1
T

T−1

∑
t=0

f(Xt)(E [Jt |Xt ]−a(Xt))

=
1
T

T−1

∑
t=0

f(Xt)(J(Xt)−a(Xt))

= B.

The proof then follows from Equation 36.

The proof of Theorem 7 requires some additional tools. In addition to (10)we also consider a
variation of GPOMDP where a fixed length chain is used to estimate the discounted value function:

∆(S)
T

def
=

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(S)
t+1, J(S)

t
def
=

t+S−1

∑
s=t

βs−tr(Xs).

Lemma 24. Let D= (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Then

∥

∥

∥
∆(+S)

T −∆(S)
T

∥

∥

∥
≤ BR

1−β
βS,

and similarly,
∥

∥

∥
∆(∞)

T −∆(S)
T

∥

∥

∥
≤ BR

1−β
βS,

where∆(∞)
T denotes∆(S)

T in the limit as S→ ∞.

Proof.

∥

∥

∥
∆(+S)

T −∆(S)
T

∥

∥

∥
=

∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(+S)
t+1 − 1

T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(S)
t+1

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

c

∑
s=t+1+S

βs−t−1r(Xs)

∥

∥

∥

∥

∥

, c = T +S

1522



VARIANCE REDUCTION OFGRADIENT ESTIMATES IN RL

≤ BR
1
T

T−1

∑
t=0

c

∑
s=t+1+S

βs−t−1

= BR
1
T

T−1

∑
t=0

βS(1−βc−S−t−1)

1−β

≤ BR
1−β

βS.

Obtain the bound
∥

∥

∥
∆(∞)

T −∆(S)
T

∥

∥

∥
similarly by considering the limit asc→ ∞.

Lemma 25. Let D= (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Let {Zt} = {Xt ,Yt ,Ut ,Xt+1} be the process generated by D. For anya :S ×Y ×U ×S → R satis-
fying |a(·)| ≤ M , we have

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+
5B2R(R+M)

(1−β)2 βS

and similarly,

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(∞)
t+1−a(Zt)

)

)

+
5B2R(R+M)

(1−β)2 βS,

where J(∞)
t denotes J(S)

t in the limit as S→ ∞.

Proof.

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

= E

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

−E

[

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

])2

= E

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

−E

[

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

]

+
(

∆(+S)
T −∆(S)

T

)

−E

[

∆(+S)
T −∆(S)

T

])2

= Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+E

(

∆(+S)
T −∆(S)

T

)2
−
(

E

[

∆(+S)
T −∆(S)

T

])2

+2E

[(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

−E

[

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

])′

×
(

∆(+S)
T −∆(S)

T

)]
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≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+E

∥

∥

∥
∆(+S)

T −∆(S)
T

∥

∥

∥

2

+2E

[(∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

∥

∥

∥

∥

∥

+E

∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

∥

∥

∥

∥

∥

)

×
∥

∥

∥∆(+S)
T −∆(S)

T

∥

∥

∥

]

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+

(

BR
1−β

βS
)2

+4E

∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

∥

∥

∥

∥

∥

BR
1−β

βS (Lemma 24)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+

(

BR
1−β

βS
)2

+4

(

B(R+M(1−β))

1−β

)(

BR
1−β

βS
)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+
5B2R(R+M)

(1−β)2 βS.

Obtain the second result by replacingJ(+S)
t with J(S)

t , andJ(S)
t with J(∞)

t ; then∆(+S)
T −∆(S)

T becomes

∆(S)
T −∆(∞)

T .

Using these Lemmas, and Theorem 4, we can now prove Theorem 7.

Proof of Theorem 7.In this proof we will apply Theorem 4 to show that the variance of the sample
average isO(ln(T)/T) times the variance of a single sample, and we will apply Lemma 6 to show
that the additional variance due to estimating the value function need not be considered. We first
use Lemma 25 to convert each of the samples within the average to be functionson a fixed length
of the chain, that is, functions on states of the Markov process{Xt ,Yt ,Ut , . . . ,Ut+S−1,Xt+S}. We can
then use Theorem 4 for the sample average of functions on this process.Write

V = Varπ

(

∇µu(y)
µu(y)

(

Jβ( j)−a(i,y,u, j)
)

)

,

E = Eπ

[

(

∇µu(y)
µu(y)

(

J( j)−Jβ( j)
)

)2
]

,

and

C =
5B2R(R+M)

(1−β)2 βS,

note that

1+

∥

∥

∥

∥

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

∥

∥

∥

∥

∞
≤ 1

7
· C1

1−β
,
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where‖a‖∞ is the maximum of the magnitudes of the components of vectora, and denote the mixing
time of the process{Xt ,Yt ,Ut , . . . ,Ut+S−1,Xt+S} by τ̃. We have

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+C (Lemma 25)

≤ Kε+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)

1
T

Var

(

∇µU0(Y0)

µU0(Y0)

(

J(S)
1 −a(Z0)

)

)

+C (Theorem 4)

≤ Kε+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)

1
T

Var

(

∇µU0(Y0)

µU0(Y0)

(

J(∞)
1 −a(Z0)

)

)

+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)

C
T

+C (Lemma 25)

= Kε+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)(

V
T

+
E
T

+
C
T

)

+C (Lemma 6).

Here, Theorem 4 was applied to each of theK dimensions of the quantity the variance is taken
over (recall that we consider the variance of a vector quantity to be the sum of the variance of its
components). Now, similar to the proof of Corollary 5, we choose

1
ε

=
K
4τ̃

(

V
T

+
E
T

+
C
T

)−1

+
25
28

· C1

1−β
,

giving

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

≤ Kε+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)(

V
T

+
E
T

+
C
T

)

+C

≤ 4τ̃
(

V
T

+
E
T

+
C
T

)

+[1+4τ̃

+4τ̃ ln

(

25
28

· C1

1−β
+

K
4τ̃

(

V
T

+
E
T

+
C
T

)−1
)]

(

V
T

+
E
T

+
C
T

)

+C

≤ h

(

τ̃
T

V

)

+h

(

τ̃
T

E

)

+h

(

τ̃
T

C

)

+C

≤ h

(

τ ln(e(S+1))

T
V

)

+h

(

τ ln(e(S+1))

T
E

)

+h

(

τ ln(e(S+1))

T
C

)

+C,

where the last line follows from̃τ ≤ τ ln(e(S+ 1)) (Lemma 1), and from h being an increasing
function. Lastly, we have

h

(

τ ln(e(S+1))

T
C

)

+C
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≤
(

1
T

+8τ
lne(S+1)

T

+4τ
ln(e(S+1))

T
ln

(

C1

1−β
+

K(1−β)2

20τB2R(R+M) ln(e(S+1))

(

βS

T

)−1
)

+1

)

C

≤
(

1
T

+8τ
lne(S+1)

T
+4τ

ln(T) ln(e(S+1))

T

+4τ
Sln(e(S+1))

T
ln

1
β

+4τ
ln(e(S+1))

T
ln

(

C1

1−β
+

K(1−β)2

20τB2R(R+M)

)

+1

)

C

≤ 2C2

(1−β)2

[

ln
1
β

+ ln

(

C1

1−β
+

K(1−β)2

C2

)]

(T +S) ln(e(S+1))

T
βS.

The second step has used the increasing property of ln, along with ln(e(S+1)) ≥ 1 andβS/T ≤ 1.
This gives us, for anyA,B≥ 0,

ln

(

A+
B

ln(e(S+1))

(

βS

T

)−1
)

≤ ln

(

A+B

(

βS

T

)−1
)

≤ ln

(

(A+B)

(

βS

T

)−1
)

.

Appendix D. Value Function Example

Here we consider a somewhat less trivial example than that presented in Section 6.2—an example
of reducing variance through appropriate choice of value function. A toy MDP is shown in Figure 7.
Here actiona1 causes the MDP to have a tendency to stay in states1, and actiona2 causes the MDP
to have a tendency to move away froms1 and stay in states2 ands3.

P(a1)

s1

s2s3

0.
75

0.25

0.75

0.25

0.75

0.
25

P(a2)

s1

s2s3

0.
25

0.75

0.25

0.75

0.25

0.
75

Figure 7: Transition probabilities for a toy 3 state, 2 action Markov decision process

Now consider the resultant controlled MDP when the single parameter, state independent policy

µa1 =
eθ

eθ +e−θ µa2 = 1−µa1 =
e−θ

eθ +e−θ

along with any reward function satisfying Assumption 2 is used. Note that this controlled MDP
satisfies Assumptions 1, 2 and 3 for allθ. For the policy atθ = 0 we haveµa1 = µa2 = 0.5 and

∇µa1 = 0.5 ∇µa2 = −0.5.
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The transition matrix and stationary distribution of the resultant chain are:

P =





0.5 0.5 0
0 0.5 0.5

0.5 0 0.5



 π =





1/3
1/3
1/3



 .

In this case the 1×3 matrixG = (1/6,−1/6,0), and the right null space ofG is {α1v1 +α2v2 :
α1,α2 ∈ R}, where

v1 =
1√
2





1
1
0



 v2 =





0
0
1



 .

Any value function of the form V= Jβ +α1v1 +α2v2 will produce an unbiased estimate of∇βη. In
this case we have that, writingr i = r(si),

Jβ = (I −βP)−1 r =
2

(2−β)3−β3





(2−β)2 β(2−β) β2

β2 (2−β)2 β(2−β)
β(2−β) β2 (2−β)2









r1

r2

r3



 .

If we selectβ = 0.9 this becomes

J0.9 =
1

0.301





1.21 0.99 0.81
0.81 1.21 0.99
0.99 0.81 1.21









r1

r2

r3



=
1

0.301





1.21r1 +0.99r2 +0.81r3

0.81r1 +1.21r2 +0.99r3

0.99r1 +0.81r2 +1.21r3



 .

If we had r= (1/10,2/11,0)′ then we would again have J0.9[= (1,1,81/99)′] in the right null
space ofG, and we could again choose V= 0 to obtain a zero bias, zero variance estimate of∇βη.
Consider instead the reward function

r(i) =

{

4.515 i = s1

0 otherwise,

so that J0.9 = (18.15,12.15,14.85)′ and∇0.9η = 1. We now have

Varπ

(

∇µu(i)
µu(i)

J0.9( j)

)

= Eπ

(

∇µu(i)
µu(i)

J0.9( j)

)2

−
(

Eπ

[

∇µu(i)
µu(i)

J0.9( j)

])2

= Eπ (J0.9( j))2−1

= π′





18.152

12.152

14.852



−1

= 231.5225.

The second line is obtained from|∇µu(i)/µu(i)| = 1 and∇0.9η = 1. If we chooseα1 = −15.15
√

2
andα2 = −14.85 then, for the value function V= Jβ +α1v1 +α2v2, we have

Varπ

(

∇µu(i)
µu(i)

V( j)

)

= Eπ

(

∇µu(i)
µu(i)

V( j)

)2

−
(

Eπ

[

∇µu(i)
µu(i)

V( j)

])2

= π′





(18.15−15.15)2

(12.15−15.15)2

0



−1

= 5;
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a significant reduction in variance, with no additional bias.
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