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Abstract

Policy gradient methods for reinforcement learning avaiche of the undesirable properties of
the value function approaches, such as policy degradaBart¢r and Bartlett, 2001). However,
the variance of the performance gradient estimates olatdinen the simulation is sometimes ex-
cessive. In this paper, we consider variance reduction adstithat were developed for Monte
Carlo estimates of integrals. We study two commonly usetypgradient techniques, the baseline
and actor-critic methods, from this perspective. Both cainkerpreted as additive control variate
variance reduction methods. We consider the expectedgweesvard performance measure, and
we focus on the GPOMDP algorithm for estimating performagraglients in partially observable
Markov decision processes controlled by stochastic neapiblicies. We give bounds for the esti-
mation error of the gradient estimates for both baselinezatak-critic algorithms, in terms of the
sample size and mixing properties of the controlled systonthe baseline technique, we compute
the optimal baseline, and show that the popular approachinfjuhe average reward to define the
baseline can be suboptimal. For actor-critic algorithme sivow that using the true value function
as the critic can be suboptimal. We also discuss algoritlomedtimating the optimal baseline and
approximate value function.

Keywords: reinforcement learning, policy gradient, baseline, actitic, GPOMDP

1. Introduction

The task in reinforcement learning problems is to select a controller thatevithpn well in some
given environment. This environment is often modelled as a partially oldderiarkov decision
process (POMDP); see, for example, Kaelbling et al. (1998); Alserd2002); Lovejoy (1991).
At any step in time this process sits in some state, and that state is updated wiREDMIDE is

supplied with an action. An observation is generated from the currenistdigiven as information
to a controller. A reward is also generated, as an indication of how goaodstidiz is to be in.
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The controller can use the observations to determine which action to prdtieceby altering the
POMDP state. The expectation of the average reward over possible fsgquences of states
given a particular controller (the expected average reward) candskassa measure of how well
a controller performs. This performance measure can then be useddbasetantroller that will
perform well.

Given a parameterized space of controllers, one method to select alleorigdy gradient
ascent (see, for example, Glynn, 1990; Glynn and L'Ecuyer, 1B@inan and Weiss, 1989; Ru-
binstein, 1991; Williams, 1992). An initial controller is selected, then the gnadiigection in the
controller space of the expected average reward is calculated. Tdiergranformation can then be
used to find the locally optimal controller for the problem. The benefit of usigigadient approach,
as opposed to directly comparing the expected average reward atuiffaints, is that it can be
less susceptible to error in the presence of noise. The noise ariseshigdact that we estimate,
rather than calculate, properties of the controlled POMDP.

Determining the gradient requires the calculation of an integral. We camugecah estimate
of this integral through Monte Carlo techniques. This changes the integatiblem into one of
calculating a weighted average of samples. It turns out that these saraplbs generated purely
by watching the controller act in the environment (see Section 3.3). Howtbigestimation tends
to have a high variance associated with it, which means a large number ofsstegesied to obtain
a good estimate.

GPOMDP (Baxter and Bartlett, 2001) is an algorithm for generating an estohtdte gradient
in this way. Compared with other approaches (such as the algorithms @ekarislynn, 1990;
Rubinstein, 1991; Williams, 1992, for example), it is especially suitable fetesys with large state
spaces, when the time between visits to a recurrent state is large but the mixing tiraeontrolled
POMDRP is short. However, it can suffer from the problem of high vaxéan its estimates. We seek
to alter GPOMDP so that the estimation variance is reduced, and therelog théunumber of steps
required to train a controller.

One generic approach to reducing the variance of Monte Carlo estimaitgegrfals is to use
an additive control variate (see, for example, Hammersley and Handsd®@®b; Fishman, 1996;
Evans and Swartz, 2000). Suppose we wish to estimate the integral ofhtttofuf : X — R, and
we happen to know the value of the integral of another function on the saaceds: X — R. As
we have

J100= [ (100-000)+ [ 609 )

the integral of fx) — ¢ (x) can be estimated instead. Obviously (k) = f(x) then we have managed
to reduce our variance to zero. More generally,

Var(f —¢) = Var(f) —2Cov(f,¢) + Var(d).

If ¢ and f are strongly correlated, so that the covariance term on the right hamdsideater than
the variance o, then a variance improvement has been made over the original estimatidenprob
In this paper, we consider two applications of the control variate apprmathe problem of
gradient estimation in reinforcement learning. The first is the techniquadifig a baseline, which
is often used as a way to affect estimation variance whilst adding no biashdMethat adding a
baseline can be viewed as a control variate method, and we find the optioied ¢ baseline to
use. We show that the additional variance of a suboptimal baseline caipiesged as a certain
weighted squared distance between the baseline and the optimal one. tAntdraseline, which
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does not depend on the state, has been commonly suggested (Sutton tand 88; Williams,
1992; Kimura et al., 1995, 1997; Kimura and Kobayashi, 1998b; Mérbad Tsitsiklis, 2001). The
expectation over all states of the discounted value of the state has bgesgdoand widely used,
as a constant baseline, by replacing the reward at each step by therdifdoetween the reward and
the average reward. We give bounds on the estimation variance thattiipwerhaps surprisingly,
this may not be the best choice. Our results are consistent with the exptirmbservations of
Dayan (1990).

The second application of the control variate approach is the use of a ftalation. The
discounted value function is usually not known, and needs to be estimasaag §bme fixed, or
learnt, value function in place of this estimate can reduce the overall estimatiamee. Such
actor-critic method$ave been investigated extensively (Barto et al., 1983; Kimura and lkishay
1998a; Baird, 1999; Sutton et al., 2000; Konda and Tsitsiklis, 20003)20Generally the idea
is to minimize some notion of distance between the value function and the true mtisdotalue
function, using, for example, TD (Sutton, 1988) or Least-SquaresBrRdike and Barto, 1996).
In this paper we show that this may not be the best approach: selectihgeawaction to be equal
to the true discounted value function is not always the best choice. Eves sagrisingly, we
give examples for which the use of a value function that is different fitwertrue discounted value
function reduces the variance to zero, for no increase in bias. Wedeorssvalue function to be
forming part of a control variate, and find a corresponding bound@expected squared error (that
is, including the estimation variance) of the gradient estimate produced in tiis wa

While the main contribution of this paper is in understanding a variety of ideasaitient
estimation as variance reduction techniques, our results suggest a mfralgorithms that could
be used to augment the GPOMDP algorithm. We present new algorithms to leaopttmum
baseline, and to learn a value function that minimizes the bound on the exgeci@ed error of
a gradient estimate, and we describe the results of preliminary experimdnth, show that these
algorithms give performance improvements.

2. Overview of Paper

Section 3 gives some background information. The POMDP setting andbtentare defined, and
the measure of performance and its gradient are described. MontedS#rtwtion of integrals,
and how these integrals can be estimated, is covered, followed by a discofshe GPOMDP

algorithm, and how it relates to the Monte Carlo estimations. Finally, we outline titeotwariates

that we use.

The samples used in the Monte Carlo estimations are taken from a single cegéebserva-
tions. Little can be said about the correlations between these samples. ¢fp@egtion 4 shows
that we can bound the effect they have on the variance in terms of thecead the iid case (that
is, when samples are generated iid according to the stationary distributiom Mttkov chain).

Section 5 derives results for a baseline control variate in the iid setting tesnlts in Section 4
to interpret these as bounds in the more general case. In particulaiyavangexpression for the
minimum variance that may be obtained, and the baseline that achieves this minamance. The
section also compares the minimum variance against the common techniquegdhesmpectation
over states of the discounted value function, and it looks at a restrictesl @ldaselines that use
only observation information.
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Section 6 looks at the technique of replacing the estimate of the discountedfuatttion with
some value function, in a control variate context. It shows that using tieediscounted value
function may not be the best choice, and that additional gains may be mat gives bounds on
the expected squared error introduced by a value function.

Section 7 presents an algorithm to learn the optimal baseline. It also presealigorithm to
learn a value function by minimizing an estimate of the resulting expected sgermoedSection 8
describes the results of experiments investigating the performance ofllgesthms.

3. Background

Here we formally define the learning setting, including the performance agdaitsent. We then
give an intuitive discussion of the GPOMDP algorithm, starting with its approximatighe true
gradient, and how it may be estimated by Monte Carlo techniques. Finally, veelite the two
variance reduction technigues studied in this paper.

3.1 System Model

A partially observable Markov decision process (POMDP) can be modejledsystem consisting
of a state spaces,, an action spacetl, and an observation spacg, all of which will be considered
finite here. State transitions are governed by a set of probability transititnices (u), where
u e U, components of which will be denotegj fu), wherei, j € S. There is also an observation
process : S — Py, Where®,y is the space of probability distributions ov¥r and a reward function
r: S — R. Together these define the POMRP, U, 9", P,v,r).

A policy for this POMDP is a mapping: 9 — P, where?™ denotes the space of all finite
sequences of observations. ..., yt € 9 and?y, is the space of probability distributions over. If
only the set of reactive policigs: 9" — P, is considered then the joint process of state, observation
and action, denoteflX;,Y;,U;}, is Markov. This paper considers reactive parameterized policies
u(y,0), whered ¢ RX andy € 9. A reactive parameterized policy together with a POMDP defines
acontrolled POMDP(S, U, ,P,v,r, ). See Figure 1.

f

Px (W) Xt\‘ V(X)

environment

U(&Yt)
controller
Average Rewardn = limr_.E [£ 57t r(X)]

Figure 1: POMDP with reactive parameterized policy
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Given a controlled POMDP the subprocess of staf&s}, is also Markov. A parameterized
transition matrixP(8), with entries g (6), can be constructed, with

Pii (8) = Eyovi) [Euwpye) P (W] = Y wy()a(y, O)pij (u),
yey,ued

wherevy (i) denotes the probability of observatipgiven the state andp,(y, 8) denotes the proba-
bility of action u given the parametefand an observatiop The Markov chain M8) = ($5,P(8))
then describes the behavior of the procgsg.

We will also be interested in the special case where the state is fully obkervab

Definition 1. A controlled Markov decision process a controlled POMDP(S, U, ,P,v,r, 1)
with 9" = § andvy(i) = dyi, where

] 1 y=i
Oi = { 0 otherwise
and is defined by the tuple, U, P,r, ).

In this case the set of reactive policies contains the optimal policy, thatrieufgperformance
measure there is a reactive policy that will perform at least as well akiatory dependent policy.
Indeed, we need only consider mappings to point distributions over act@insourse, this is not
necessarily true of the parameterized class of reactive policies. In ttiallpaobservable setting
the optimal policy may be history dependent; although a reactive policy mayestidnn well. For
a study of using reactive policies for POMDPs see Singh et al. (1984dkkdla et al. (1995); Baird
(1999). For a recent survey of POMDP techniques see Aberd@6R2).2

We operate under a number of assumptions for the controlled POMDP®, 9", P,v,r, ). Note
that any arbitrary vectov is considered to be a column vector, and that we writeo denote
its transpose, a row vector. Also, the operdibtakes a function () to a vector of its partial

derivatives, that is /
B of(0) of(0)
0f(e) = <_691 e )

wheref, denotes th&" element o®.

Assumption 1. For all 8 € RX the Markov chainVi (8) = ($,P(8)) is irreducible and aperiodic
(ergodic), and hence has a unique stationary distributigf) satisfying

m(8)'P(8) = T(6)’

The termsirreducible and aperiodic are defined in Appendix A. Appendix A also contains
a discussion of Assumption 1 and how both the irreducibility and aperiodiciigittons may be
relaxed.

Assumption 2. There is aR < o such that for all i€ S, |r(i)| <R.

Assumption 3. For allu € U, yc 9 and®8 € RK the partial derivatives

oM (Y, 0)
00, ’

vke{1,...,K}
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exist and there is 8 < o such that the Euclidean norms

28]
Hu(Y, 8)

are uniformly bounded b3. We interpret0/0 to be O here, that is, we may have,(y,0) =0
provided||Opy (Y, 0)|| = 0. The Euclidean norm of a vector v is given ngvﬁ.

Note that Assumption 3 implies that
H Opi; (6)
pij ()

where, as in Assumption 3, we interpret00to be 0, and so we may havg (®) = 0 provided
|0p;; (6)[| = 0. This bound can be seen from

<=

1Op;®)]| = (O Y vy()m(y.8)pi(w

yey,ueu

Vy (i) Oy (Y, 6) pij (u)

yey ueu

B> wy(m(y.8)mij(u)
yey,ueu

= Bp;j(0).

IN

A useful measure of the system’s performance is the expected avereagely

171
T thr(Xt)] . (2)

From Equation (24) in Appendix A we see tig®9) = E[r(X)|X ~ 11(0)], and hence is independent
of the starting state. In this paper we analyze certain training algorithms thab siehect a policy
such that this quantity is (locally) maximized.

It is also useful to consider the discounted value function,

o)

Throughout the rest of the paper the dependence @geassumed, and dropped in the notation.

n(oe) % im E

T—oo

Jp(i,0 I|m E

3.2 Gradient Calculation

It is shown in Baxter and Bartlett (2001) that we can calculate an apprtigimi@® the gradient of
the expected average reward by

Ogn = % m0pijJ()),
,JES
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and that the limit ofIgn asf approaches 1 is the true gradiént. Note that'lgn is a parameterized
vector inRX approximating the gradient of, and there need not exist any functiof®f with
The gradient approximationign can be considered as the integration over the state transition
space,
on= [ mOpd()e(dixd)), ®)
(i,j)esxs

wherec is a counting measure, that is, for a countable sgacnd a seA C C, we have€(A) =
card A) whenA s finite, and®(A) = « otherwise. Here caf@) is the cardinality of the seA. Itis
unlikely that the true value function will be known. The value function canyéver, be expressed
as the integral over a sample path of the chain, as Assumption 1 implies ergodicity

= e Tho (DPiiy) PisizPiis - - (1 (i) + Br(i2) + B?r(iz) +---) €(diox....).

To aid in analysis, the problem will be split into an integral and a sub integoalem
O = / / T8 (0i)) By Pras - - (1 (x0) -+ ++-) €(dxa x....)€(dlixd )
(I,))esxS J(x1,...)€8%..

= ~/(i,j)€5><.5 T[| (Dplj ) /(Xl,...)ESX.,, 6le pX1X2 e (r(xl) + tc ) Qt(dX]_X .o )Q:(dl Xd j)

3.3 Monte Carlo Estimation

Integrals can be estimated through the use of Monte Carlo techniques tagiageover samples
taken from a particular distribution (see Hammersley and Handscomb, E&BBnan, 1996; Evans
and Swartz, 2000). Take a functionX:— R and a probability distributiop over the spac&’. An
unbiased estimate df_, f(x) can be generated from sampleg, Xy, ..., Xm-1} taken fromp by

1m‘1f (%)
m £y p(%)

Consider a finite ergodic Markov chawt = ($, P) with stationary distributiort. Generate the
Markov procesg X} from M starting from the stationary distribution. The integral of the function
f: S — R over the spacg can be estimated by

Tlf
%%“xt'

This can be used to estimate the integral
[ nOpdeixd)).
(i,esxs

The finite ergodic Markov chaivl = (5, P), with stationary distributiornt, can be used to create
the extended Markov proce$X;, X1} and its associated chain. Its stationary distribution has the
probability mass functiop(i, j) = 1 pjj, allowing the estimation of the above integral by

1 =t DpXtXHl

e et
T PxXs ——J1, N —;B r(Xs). 4)
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In addition to the Monte Carlo estimation, the value function has been replatedmunbiased
estimate of the value function. In practice we would need to truncate this sunintedpcussed in
the next section. Note, however, that

172 Opxex, 172 [Opxx
E|ly OPoxay | [ Py }
[T <o Pxxea +1 T % PX X1 1| +ﬂ
1 Opxex,
= E|I Y Py
Tt: PxXet1 JB( +)

We will often be looking at estimates produced by larger Markov chairch, as that formed by
the procesg$X;, Y;,Ut, Xi+1}. The discussion above also holds for functions on such chains.

3.4 GPOMDP Algorithm

The GPOMDP algorithm uses a single sample path of the Markov prézess- {X,Y;,Ut, X1}
to produce an estimate afgn. We denote an estimate produced by GPOMDP Witkamples by
Ar.

der 1 T Oy, (V) def - st
T= T 2 o () i1, g = S;B r(Xs)- 5)

This differs from the estimate given in (4), but can be obtained similarly bgidering the estima-
tion of Ogn by samples fron{Z; }, and noting that

Opij = % vy()Br(Y)pij (u).

yey uelU

GPOMDP can be represented as the two dimensional calculation

Ar=31(fZ)h + f(Z) X + e+ f(Zr) )
g I : g
9(2o) 9(Z1) : 9(Zr-1)
+Bg(Z1) +Bo(Z2) '
+PB%9(Z2) :

: +PBT%g(Z7-1)
+B"9(zr1)

where {Z;) = (Opy, (%)) /Hu, (%) and g Zt) = r(Xe4a).
One way to understand the behavior of GPOMDP is to assume that the cleaigsused to

calculate eacly; sample are independent. This is reasonable when the chain is rapidly mixing and
T is large compared with the mixing time, because then most gaiesnd J, are approximately

independent. Replacing by these independent versiodg?d), the calculation becomes

AYEL(f2o) 4+ f@) B ez J)
5 I : I
9(Zoo) 9(Z10) : 9(Zr-1)0)
+Bg(Zo1) +B9(Z11) '
+B%9(Zo2) :

: + BTiZQ(Zl(T—z))
+B"9(Zor-1))
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where the truncated proce§a,} is an independent sample path generated from the Markov chain
of the associated POMDP starting from the state- Z;o.

The truncation of the discounted sum of future rewards would causesafroia Clgn. By
consideringr to be large compared to/ (1 — B) then this bias becomes small for a large proportion
of the samples. Replacing eauﬂLi1 by an untruncated versmdt es) , shows how GPOMDP can
be thought of as similar to the calculation

APV EL(Cf(Zg) I 4 f(z) I 4+ f(Zra) I
g g : I
9(Zoo) 9(Z10) : 9(Zr-10)
+Bg(Zoa) +B9(Z11) +Bg(Zr-1)1)

+PB%9(Z02) + B?9(Z12) +PB?9(Zir-12)

The altered\t sum can be written as

Alest _ ET_l Upy, (Yt)J(esi)
T T A pU[ (Yt) t+1

(6)

3.5 Variance Reduction

Equation (1) shows how a control variate can be used to change an estipatidem. To be of
benefit the use of the control variate must lower estimation variance, amutéleal of the control
variate must have a known value. We look at two classes of control véoiatehich the value of
the integral may be determined (or assumed).

The Monte Carlo estimates performed use correlated samples, making ititlifianalyze the
variance gain. Given that we wish to deal with quite unrestricted envirotsyldtie is known about
this sample correlation. We therefore consider the case of iid samples@mdhetv this case gives
a bound on the case using correlated samples.

The first form of control variate considered is the baseline contradtearWith this, the integral
shown in Equation (3) is altered by a control variate of the forfmp;jb(i).

/(i’j)esxjmﬂpij‘]ﬁ(j)ﬁ(dixdj) = /(LDESX mOpij (Js(j) — b(i)) €(dixd})
+/ mOp;jb(i)e(dixdj)
JESXS

The integral of the control variate term is zero, since

/(i,nesxgmmp”b() (dixdj) = 3 mb(HO 3 pij

ies JES
= S mb()O)
ies
= 0. 7)

Thus, we are free to select an arbitrary)lwith consideration for the variance minimization alone.
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The second form of control variate considered is constructed fromdwe \function, \(j), a
mappings — R.

/(i:j)ejxsTEDping(j)ﬂdixdj) = /M)Ewmmpn (J()) = (1) —V()))) €(dixd])

+ [ mOpy (J() - V() €(dixd])
(i,hesxs

The integral of this control variate (the last term in the equation above) isrtbeassociated with
using a value function in place of the true discounted value function. Theést#fgen to find a value
function such that the integral of the control variate is small, and yet it stilliges good variance
minimization of the estimated integral.

Note that the integrals being estimated here are vector quantities. We cahsidierce of the
covariance matrix of these quantities, that is, the sum of the variance obthpoments of the
vector. Given the random vect8r= (A1, Ay, ..., As)’, we write

Var(A z Var(An) =E [(A—E[A)) (A—E[A)] =E [(A—E[A})2}7
where, for a vectoa, a? denotes?a.

4. Dependent Samples

In Sections 5 and 6 we study the variance of quantities thatﬂlﬁffé (Equation (6)), are formed
from the sample average of a process generated by a controlled (FORvIn Section 3 we know

this process is Markov, is ergodic, and has a stationary distribution, atiftessample average is

an estimate of the expectation of a sample drawn from the stationary distribat{oote that, as

in Section 3.3, we can also look at samples formed from an extended spatés associated
stationary distributions). In this section we investigate how the variance cfahmle average
relates to the variance of a sample drawn franThis allows us to derive results for the variance of

a sample drawn fromt and relate them to the variance of the sample average. In the iid case, that
is, when the process generates a sequence of saXples, Xr_1 drawn independently from the
distributionTt, we have the relationship

<1 TZ)lf ) = —Var(f(X)),

whereX is a random variable also distributed accordingttd/ore generally, however, correlation
between the samples makes finding an exact relationship difficult. Instebmbke find a bound

of the form s
(1 ij ) ( Var(f(X))),

where h is some “well behaved” function.

We first define a notion of mixing time for a Markov chain. The mixing time is a measiure
the forgetfulness of a Markov chain. More specifically, it is a measutewflong it takes for the
distance between the distributions of two sequences, starting in distinct stdiesome small. The
distance measure we use is the total variation distance.
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Definition 2. Thetotal variation distancbetween two distributions, g on the finite sef is given
by

drv(p,q) = ZZ!D. Gil-
(ISKy

Definition 3. Themixing time of a finite ergodic Markov chain M- (S, P) is defined as

T d_efmln{ > 0 maxdry (P}, Pj) < el} ,
i

where P denotes thée'l row of the t-step transition matrix'P

The results in this section are given for a Markov chain with mixing timia later sections we
will use T as a measure of the mixing time of the resultant Markov chain of states of albedtr
(PO)MDP, but will look at sample averages over larger spaces. Te/fog lemma, due to Bartlett
and Baxter (2002), shows that the mixing time does not grow too fast wiokintpat the Markov
chain on sequences of states.

Lemma 1. (Bartlett and Baxter, 2002, Lemma 4.3) If the Markov chaig=N{$, P) has mixing time
T, then the Markov chain formed by the procéXs X, 1,..., Xk} has mixing tim&, where

T<tin(ek+1)).

Note 1. For a controlled POMDP, the Markov chain formed by the process
{X, %i+1,- .., %4k} has the same mixing time as the Markov chain formed by the process

{><[7Yta Utu >([+1) v JYt+k717Ut+k717 ><t+k}

We now look at showing the relationship between the covariance betweegaimples in a
sequence and the variance of an individual sample. We show that thefgaacovariance of two
samplesx, X over the variance of an individual sample decreases exponentially in

Theorem 2. Let M= ($, P) be a finite ergodic Markov chain, and lbe its stationary distribution.
Letf be some mapping § — R. The tuplegM,f) has associated positive constaatandL (called
mixing constantga, L )) such that, for all t> 0,

|Covn(t; )| < La'Var(f(X))

where X~ 11, and Covq(t;f) is the auto-covariance of the proce$g(Xs)}, i.e. Cowvy(t;f) =
En[(f(Xs) — Enf (Xs)) (f(Xstt) — Enf (Xs4t))], whereEq[-] denotes the expectation over the chain
with initial distribution Tt Furthermore, if M has mixing time we have:

1. for reversible M, and anf, we may choosk = 2e anda = exp(—1/1); and

2. for any M (that is, any finite ergodic M), and ahywe may choose = /2|S|e anda =
exp(—1/(21)).

The proof is shown in Appendix B, along with proofs for the rest of thitise.
Using this result, the variance of the sample average can be bounddibas fo
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Theorem 3. Let M = ($,P) be a finite ergodic Markov chain, with mixing timeand letrt be its
stationary distribution. Let be some mappinf): § — R. Let{X;} be a sample path generated by
M, with initial distribution 1, and let X~ 1t With (M, f) mixing constantsa, L) chosen such that
a <exp(—1/(21)), there is anQ* < 6Lt such that

1 T-1 ok
Var(T t;f@g)) < ?Var(f(X)).

Provided acceptable mixing constants can be chosen, Theorem 3 givesnte rate as in the
case of independent random variables, that is, the variance des s 1/T). The most that can
be done to improve the bound of Theorem 3 is to reduce the cori3taittwas seen, in Theorem 2,
that good mixing constants can be chosen for functions on reversibleoMehains. We would like
to deal with more general chains also, and the mixing constants given imérh&dor functions on
ergodic Markov chains lead @* increasing with the size of the state space. However, for bounded
functions on ergodic Markov chains we have the following result:

Theorem 4. Let M= ($, P) be a finite ergodic Markov chain, and ebe its stationary distribution.
If M has mixing timer, then for any functiorii: § — [—c,c] and any0 < € < €1, we have

Var (%Ejf()@) <&+ <1+ 25r(1+c)e+4r|n%> %Var(f(X)),

where{X} is a process generated by M with initial distributiog % 11, and X~ Tt

Here we have an additional errarwhich we may decrease at the cost of athpenalty in the
constant multiplying the variance term.
Consider the following corollary of Theorem 4.

Corollary 5. Let M= ($,P) be a finite ergodic Markov chain, and latbe its stationary distribu-
tion. If M has mixing time, then for any functiori: § — [—c,c|, we have

- -1
Var (%:;?(x@) < 4tln (7(1+ C)Jr4—1T (%Var(f(X))) ) %Var(f(X))
+(1+81) %Var(f(x))

where{X:} is a process generated by M with initial distributiog % 11, and X~ Tt

Here, again, our bound approaches zero aéf{d))/T — 0, but at the slightly slower rate of

-1
o) (%Var(f(x)) In <e+ (%Var(f(x))> >) ,

where we have ignored the dependence andc. For a fixed variance the rate of decreas# iis
O(In(T)/T), slightly worse than th®©(1/T) rate for independent random variables.
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5. Baseline Control Variate

As stated previously, a baseline may be selected with regard given only éstiheation variance.
In this section we consider how the baseline affects the variance of adiegt estimates when the
samples are iid, and the discounted value function is known. We show thex, wging Theorem 3
or Theorem 4 to bound covariance terms, this is reasonable, and indaatrtin in analysis (that is,
from not analyzing the variance af with baseline directly) associated with the choice of baseline
is negligible. This statement will be made more precise later.

Section 5.2 looks at the Markov chain of states generated by the contrdl®DP and is
concerned with producing a baseling:l§ — R to minimize the variance

0§(b5)=:van1< P (35(1) - b50>)), @®)

plj

where, for somef : § x S — RX, Varg(f(i, ) = Ex(f(i,j) —Enf (i, }))? with Ex[-] denoting the
expectation over the random variablegwith i ~ tandj ~ P;. Equation (8) serves as a definition
of oﬁ(b5). The section gives the minimal value of this variance, and the minimizing baseldts-: A
tionally, the minimum variance and corresponding baseline is given for sewhere the baseline
is a constantb € R. In both cases, we give expressions for the excess variance doatsual
baseline, in terms of a weighted squared distance between the baseline aptintal one. We can
thus show the difference between the variance for the optimal constsalirteaand the variance
obtained whei = EnJg(i).

Section 5.3 considers a baseling b)” — R for the GPOMDP estimates. It shows how to
minimize the variance of the estimate

02 (by) ZVarn<DUE*€S)’) (%(J) —by(y))>, 9)

where, for somd : § x 9 x Ux S — RX, Varg(f(i,y,u, ) = Ex(f(i,y,u, j) — Ef (i,y,u, j))* with,
in this caseE[-] denoting the expectation over the random variablgs, j with i ~ 1y ~ (i),

u~ u(y), andj ~ P;(u). Equation (9) serves as a definitiona@(by). The case where the state
space is fully observed is shown as a consequence.

5.1 Matching Analysis and Algorithm

The analysis in following sections will look at Equation (8) and Equation K¥Bre we will show

that the results of that analysis can be applied to the variance of a reabidgdiithm for generating

[gn estimates. Specifically, we compare the variance quantity of Equation (9)ightwariation

of the At estimate produced by GPOMDP, where the chain is run for an 8digps. We consider

the estimate

5 def 1 "< Opy, (M)
T & Hi (M)

and are interested in improving the variance by use of a baseline, thatlsirgythe estimate

1T
A9 (by) £ =
3

AL

T+S
def -
307, rﬂézmww, (10)
S=

( t+1) b?’(Yt)>
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We delay the main result of the section, Theorem 7, to gain an insight into thebeééind it. In

Section 3.4 we saw how GPOMDP can be thought of as similar to the esmﬁtﬁ‘}eEquation (6).
Using a baseline gives us the new estimate

e@ :g_l —

( 155 - by (). (11)

The termJt(eSD in Equation (11) is an unbiased estimate of the discounted value function. The
following lemma shows that, in analysis of the baseline, we can consider theudied value
function to be known, not estimated.

Lemma 6. Let {X} be a random process over the spake Define arbitrary functions on the

spaceX: f: X - R,J: X — R, anda : X — R. For all t let k be a random variable such that
E[X|X =i]=J(i). Then

1 T—lf
\Y/ — —
ar(T tZ (%) (& —alX) ) (

Z <xt>>>
Zot-00)

—ﬂré

/’—“\
4|k=

The proof of Lemma 6 is given in Appendix C, along with the proof of Thaorebelow.
Direct application of Lemma 6 gives,

T-1
() = v} (00 00)

1T71Dput(y) (est 2
+E<ft_ uutwt; (a5 Ja(xtm)) .

Thus, we see that we can split the variance of this estimate into two componenfasths the
variance of this estimate wit.lig<EStj replaced by the true discounted value function; and the second
is a component independent of our choice of baseline. We can nowheseelm 3 or Corollary 5
to bound the covariance terms, leaving us to analyze Equation (9).

We can obtain the same sort of result, using the same reasoning, for thetestienare inter-
ested in studying in practlcezé\T (by) (see Equation (12) below).

Theorem 7. LetD= (S, U, ,P,v,r, 1) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Let M = (S, P) be the resultant Markov chain of states, andrgie its stationary distribution; M
has a mixing time; {Z} = {X,Y;,Ut, X1} is a process generated by D, starting X 1. Suppose
thata(-) is a function uniformly bounded i, and 4(j) is the random variablg ¢, 3°r (Ws) where

the states \Ware generated by D starting ing\= j. There are constants:C< 7+ 7B(R+ M) and
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C, = 20tB?R(R + M) such that for all TS> 1 we have

(3 e (405 o)
< h(rln e(S+1)) V rﬂ(Dp{ES)/) iy, J))>)
2

(“”< S+ ( M(y))( <J>—Ja<j>)) )

2 1 C: , KA-B)*\] (T+9In(e(S+1)) .5

1-p8 C
whereh : R™ — R* is continuous and increasing with{(0) = 0, and is given by

h(x) = 9x+ 4xIn <1(il|3 ; ‘1> .

By selectingS=T in Theorem 7, and applying m(T+S)(b9/) with absolutely bounded/ we
obtain the desired result:

Var(A(TJrT)(by)) <h (Wc@(bﬁ) +N(D,T)+0(In(T)BT). (12)

Here N(D,T) is the noise term due to using an estimate in place of the discounted value function
and does not depend on the choice of baseline. The remaining term is arfdereln(T)RT; it is
almost exponentially decreasinginand hence negligible. The functidris due to the application
of Theorem 4, and consequently the discussion in Section 4 on the ratzmafade applies here,
that is, a log penalty is paid. In this case, @(by) fixed, the rate of decrease@In?(T)/T).

Note that we may replacglu,(y))/Hu(y) with (Opij)/pij in Theorem 7. So if th¢pij)/ pij
can be calculated, then Theorem 7 also relates the analysis of EquationsBredtlizable algorithm
for generatinglgn estimates; in this case an estimate produced by watching the Markov précess o
states.

5.2 Markov Chains

Here we look at baselines fdrign estimates for a parameterized Markov chain and associated

reward function (a Markov reward process). The Markov chairtates generated by a controlled

POMDP (together with the POMDPs reward function) is an example of sucbcegs. However,

the baselines discussed in this section require knowledge of the state tandsknowledge of

(Opij(8))/pij (6) to estimate. More practical results for POMDPs are given in the next section
Consider the following assumption.

Assumption 4. The parameterized Markov chain(®) = ($,P(6)) and associated reward function
r:S — R satisfy: M(0) is irreducible and aperiodic, with stationary distributian there is aR <
such that for all ic § we haver(i)| < R; and for alli, j € §, and all® € RK, the partial derivatives
Opij (8) exist, and there is 8 < o such that]|(Op;j(8))/pij (0)|| < B.
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For any controlled POMDP satisfying Assumptions 1, 2 and 3, Assumptionadisgied for the
Markov chain formed by the subproce%} together with the reward function for the controlled
POMDP.

Now consider a control variate of the form

bs(i, ) defTﬁDpljb5( i)

for estimation of the integral in Equation (3). We refer to the functign  — R as a baseline.
As shown in Section 3.5, the integral of the baseline control vadiate j) over$ x S can be
calculated analytically and is equal to zero. Thus an estimate of the integral

Lo (ORI — 05(3. 1) €<

forms an unbiased estimate [Gfn.
The following theorem gives the minimum variance, and the baseline to adhieveinimum
variance. We use% to denote the variance of the estimate without a baseline,

0% :Varn<%\]p,(j)>,
J

and we recall, from Equation (8), tha%(b5) denotes the variance with a baseline,

02 (bs) = Varn( Pi (3 <j>—b5<i>)).

Pij

Theorem 8. Let M(6) = ($,P(8)) and r: S — R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then

(E [(Dpij/pij)z‘Jﬁ(])’ iDZ

03 (b5) = inf o3(bs) = 0% ~ Eion -
Py ke E | (Opy/py) H
whereE|[-|i] is the expectation over the resultant state j conditioned on being in state i, that is

j ~ P;, andR? is the space of functions mappigo R. This infimum is attained with the baseline

[(Dpu/ﬂﬂzqﬂJW}
[ Dpu/ﬂjz @

s\) =
The proof uses the following lemma.

<Dp_T)2 i] —2b()E !(Dp—T)ZJg(J')
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Proof.

. . 2
2(bs) = En(Dpf’j” (Jp<j>—b5<i>)—En[Dp” (JB<1>—b5<i>)D

= e (P00 B 20| ) ~ (SR~ [Dp—f’]”'bﬂi)mz

— %+En <Dp—f’l”b5<>)2—2(Dp'j’j”b5<i>)'<mp—f’j”~l(>>] (13)
= 02+FEin b2(i)E[<%ﬁ>2T:i]
— 2ny(i) [(%’")ZJ 0 rzi”,

where Equation (13) uses

Pij (i,))esxs

from (7). |

I
o

2bs(I)E

Proof of Theorem 8 We use Lemma 9 and minimize for eaich $. Differentiating with respect to
E [ (Opi/py)23())| ]

each (i) gives
(22} =[50 30
[ Opij/pij) 2 |}

=bs(i) =
which implies the result. [ |

The following theorem shows that the excess variance due to a subopéisadine function can
be expressed as a weighted squared distance to the optimal baseline.

Theorem 10. Let M(8) = (S,P(8)) and r: § — R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then
Upij 2 . ey 2
T <—”> (bS(l)_b.S(')) ] .

Pij

()
Pij

(Dp—f’j”)ZJs(n i

0% (bs) — 0% (by) =

Proof. For each € $, define§ andW as

S = E

W = E
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Lemma 9 and the definition ofiin Theorem 8 imply that

2
G3(bs) ~G3(b) = B |EE()S ~ 2bs(iW + g

S
En <b5(i)\/§_ %)2
= En| (bs(i) —b3()’s]
(%5) (ot —bz<i>)2] .

Pij

- Eg

The following theorem gives the minimum variance, the baseline to achieve tliraumninvari-
ance, and the additional variance away from this minimum, when restrictedoiestant baseline,
b € R. We useo?(b) to denote the variance with constant basetine

02 (b) = VarT[(Dp” (%)~ b)). (14)

plj

The proof uses Lemma 9 in the same way as the proof of Theorem 8. Tofeoptbe last statement
follows that of Theorem 10 by replacirgywith S= ExS, andW with W = EW.

Theorem 11. Let M(6) = (S,P(8)) and r: S — R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then

E- (O /02 Ja(i 2
2 (b % it 62 (b — 2_( Tr[( Pij / Pij) JB(J)])
o5(b") = inf 05(b) = 05 2 :
bkt Er(Opij/pij)
This infimum is attained with
. Ex[@P/py)*B(0)
En(Opij/pj)°
The excess variance due to a suboptimal constant baseline b is given by,

N\ 2
a3 (6) ~o3(b) = Bn( L) (b-b)%

A baseline of the fornb = EnJg(i) is often promoted as a good choice. Theorem 11 gives us a
tool to measure how far this choice is from the optimum.
Corollary 12. Let M(8) = ($,P(8)) and r: § — R be a Markov chain and reward function satisfy-
ing Assumption 4. Then
2 : 2 . 2
(Bn(Om1 /i) Endp() — x| (O /Py (1))
En(Opij/pij)? .

0% (E(i)) —o5(b") =
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Notice that the sub-optimality of the choite= EnJs(i) depends on the independence of the
random variable$Opi; /pij)? and $(j); if they are nearly independeritJs (i) is a good choice.

Of course, when considering sample paths of Markov chains, Cordlargnly shows the
difference of the twdoundson the variance given by Theorem 7, but it gives an indication of the
true distance. In particular, as the ratio of the mixing time to the sample path lerggtinbe small,
the difference between the variances in the dependent case aps dlaathof Corollary 12.

5.3 POMDPs

Consider a control variate over the extended spage)” x U x S of the form
o (i, y,u, J) = 15vy (i) Ouu(y)pij (W)b(i, y).

Again, its integral is zero.

/ 0 (i.y.u, j)e(dixdyxduxdj)
(ILY,U,))ESXY X UXS

-3 mvy<i>b<i,y>m<

ies,yey

Hu(Y)Pij (U)> =0.

uel,jes

Thus an unbiased estimate of the integral

| (Tevy () Dha()P1j (U3 (1) — & (Y, U, 1)) €(dixdyxduxd j)

(LY, u,) ) ES XY xUXS

is an unbiased estimate 0kn. Here results analogous to those achievedfg(i, j) can be ob-
tained. However, we focus on the more interesting (and practical) cae géstricted control

variate
def

Oor(i,¥; U, ) = 169y (1) Oa(y)pij (U) by ()-
Here, only information that can be observed by the controller (the chsensy) may be used to
minimize the variance. Recall, from Equation (9), we u%g{by) to denote the variance with such
a restricted baseline control variate,

| .
02 (by) =Varn( p‘jg(y? (ng—by(y))).

We useog, to denote the variance without a baseline, that is

2 _ Oru(y) - .
oy_Varn< ™) JB(1)>.

We have the following theorem.

Theorem 13. Let D= (5, U,9,P,v,r,u) be a controlled POMDP satisfying Assumptions 1, 2
and 3, with stationary distributiom. Then

def . - ZJB(j) :
N ) R
a5 (biy) = inf 0%.(by) =05 —En EH[(DHU(Y)/UU(Y))Z‘)/} |

bf)/ €RY
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whereEr[-]y] is the expectation (af-distributed random variables, that is, random variables dis-
tributed as inE.[-]) conditioned on observing y, and this infimum is attained with the baseline

Er [ (Oy() /M) (0)|y]
Er | (Ow()/m))y]

by (y) =

Furthermore, when restricted to the class of constant baseline® ithe minimal variance occurs
with

Er | (OWy()/Ha(¥)* 31|
En(Ow(y)/W()?

We have again uself to denote the optimal constant baseline. Note though thdb'timere
differs from that given in Theorem 11. The proof uses the following lemma

Lemma 14. For anyb,,

(&)

Proof. Following the same steps as in the proof of Lemma 9,

05 (by) = 0% + Er [b3(y) En

0 _ 0 . 2
(by) = E( M‘j;g) (%)~ by ) —En[ Y (JB(J)—by(y))D

<Duu<y> by(y)>2_2 <Duu<y> o) (Duum " j)>]

_ 2
= Oy+En Hu(y) Hu(Y)

2 2.( Opy(y) ?
09""% by (IZJTWV (Y)pij (u )( ta(y) >
2

~2by(y) (Z_TﬁVy(i)Uu(Y)pij (1) (Dp‘:“(% J;s(n)] .
LU,

Note that for functionsa?y — Randf: S x99 x Ux S — R

Za ZTEVy A')“U )f(rvya G?i)

70§
OyyTeVy (NHa(Y)Pi(8) ¢ . o
- Jopmog T

implying the result. [ |
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Proof of Theorem 13We apply Lemma 14 and minimize for each (y) independently, to obtain

En[(Duu(W/uu(y))st(j)‘y]
En| (Ow)/m)y]

Substituting gives the optimal variance. A similar argument gives the optimataairbaseline.

by (y) =

Example 1. Consider the k-armed bandit problem (for example, see Sutton and,B888). Here
each action is taken independently and the resultant state depends onlg aatitn performed;

that is W(y) = pu andpij (u) = pj(u). So, writing R = Eusepn [Ste1 Br(X)], we have

_ Opa(y) 4 .
e = E”{ Hu(Y) JB(J)}

— B |2 (1) +Ry)

Note that this last line i independent, and it follows frofimg_.1 [gn = [n that
On = Ogn VB € [0,1]. (15)

For k=2 (2 actions{us, u>}) we have y, +py, = 1 andOpy, = —Opy,, and so the optimal constant
baseline is given by

Er | (Ohu(y)/Ha(¥))*3 <>}

Er(OHa(y) /Mu(Y))?
Eup | (OHo/ M) (J}

Euop O/ M)
TN muﬂ+uuZ(DuuZ/m2>2E{r|uz1

- TGS TR TS

s My (1 ol L )
L + = E[r|ug )+
oy + Hoy \ gy 1)+ BN r L] ) 4Ry

= HuE[r|ud] + u,E[r|ug] + R,

where we have uséd|r|u] to denote; ,,r(j). From (15) we know tha may be chosen arbi-
trarily. Choosingp = 0 gives R = 0 and we regain the result of Dayan (1990).

In the special case of a controlled MDP we obtain the result that would pected. This
follows immediately from Theorem 13.

Corollary 15. LetD= (S, U,P,r,pn) be a controlled MDP satisfying Assumptions 1, 2 and 3, with
stationary distributionrt. Then

(&[0 /2 50)|i])°
E [ (Om(i)/m(i))?] ]

inf o2 (b 0% —FEi.
by €RS 7 (by) = 05 ~ Eirr
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and this infimum is attained with the baseline
E [ (O (1) /i) 30 ]
E | (On(i)/ma)?]i]

The following theorem shows that, just as in the Markov chain case, tianearof an estimate
with an arbitrary baseline can be expressed as the sum of the varian¢bevigptimal baseline and
a certain squared weighted distance between the baseline function apdiring baseline function.

by (i) =

Theorem 16. Let (S, U, 9" ,P,v,r,1) be a controlled POMDP satisfying Assumptions 1, 2 and 3,
with stationary distributiont Then

% (by) ~ 0 (by) = B [(%)2 ()~ 55,9

2

Furthermore if the estimate using’,bthe optimalconstantbaseline defined in Theorem 13,
has varianceozy(b*), we have that the varianae%,(b) of the gradient estimate with an arbitrary

constant baseline is 5
Gzy(b)—ozy(b*)—En<DLEL(’§/))/)> (b—b)2.
Proof. For eachy € 7, defineS, andW, as
_ Ohu(v)'\ ?
¥ - E[(w(v)) y]’
_ 0w\, .
W= E[( b(y) ) ) y]'

Follow the steps in Theorem 10, replacifigwith §;, andW with W,. The constant baseline case
follows similarly by considerings = ExS, andW = EnpW\. |

In Section 7.1 we will see how Theorem 16 can be used to construct ticptadgorithm for
finding a good baseline. In most cases it is not possible to calculate the optseline, p, a
priori. However, for a parameterized class of baseline functions,diggriadescent approach could
be used to find a good baseline. Section 7.1 explores this idea.

As before, Theorem 16 also gives us a tool to measure how far thiredse- ExJg(i) is from
the optimum.

Corollary 17. Let D= (S,U,9,P,v,r,u) be a controlled POMDP satisfying Assumptions 1, 2
and 3, with stationary distributiom. Then

(En(Oa(y)/a9)? Enda (1)~ Er [ (Cay) /o))2 (1)) )
Ere(Oby(¥)/Hu())? '

As in the case of a Markov reward process, the sub-optimality of the choic&rJs(i) de-
pends on the independence of the random varialilies(y) /Ui (y))? and $(j); if they are nearly
independentErJs(i) is a good choice.

03 (Ens(i)) — inf 03.(b) =
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6. Value Functions: Actor-Critic Methods

Consider the estimate produced by GPOMDP (see Equation (5)) in the MDR)sehere the state

is observed. In this section we look at replacihghe biased and noisy estimate of the discounted
value function, inAr with an arbitrary value function, that is, a function ¥ — R. For a MDP,
this gives the following estimate éfgn:

v_el7
T_T%

Imagine that the discounted value functiog, i known. By replacingk with Js(X;) in Equa-
tion (5), that is, by choosing W= Js, the bias and noise due $is removed. This seems a good
choice, but we may be able to do better. Indeed we will see that in some tbassslection of
a value function differing from the discounted value function can renadlvestimation variance,
whilst introducing no bias.

V (Xe11)- (16)

6.1 Control Variate for a Value Function

Consider a control variate of the form

bp(i,u, j) Loy )P (WAR(])

where
def

T
Ag(j) = lim E Z Bk_ld(XtJrk,xt+1+k)

T—o &1

Xey1= j]

and f
d(i, ) € (i) + BV (j) — V().

We make the following assumption.
Assumption 5. Forall j € S, [V (j)| <M < co.

Under this assumption, the estimation of the integral
[ O (0py (W(]) ~ p(i,u. 1)) €l duxd) an
(uj)esxuxs

has an expected bias frogn of

/(i uj)esx ﬂx5¢B(i7u’ j)Q:(diXdUde) B ieS,ueZa,jeSTﬁD%(i)pij (u) (JB(J) _V(J)) :

This can be easily seen by noting that under Assumption 5, afdd6,1),

M) = JmE

.
z BA 1 (r (k) + BY (Xer14k) — V (%)) ‘ Xey1= J]
=1

= JB(J.)_V(J.)"‘.#@&E[BTV(Xt+HT)|Xt+1:”
= () —-VQ).
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We see then thaﬂ&\T’ gives an estimate of the integral in Equation (17). The following theorem
gives a bound on the expected value of the squared Euclidean distetmeeh this estimate and
[(Jgn. Notice that the bound includes both bias and variance terms.

Theorem 18. Let D= (S, U,P,r, ) be a controlled MDP satisfying Assumptions 1, 2 and 3, with
stationary distributiort. Let{X;,U; } be a process generated by D, starting~XTtt Then

E (A\T/ — Dm)z = Var(%r_l Dﬁz%)V(NH)) + <En [%AB(DDZ,

and hence there is a* such that

E(aY - 0pn) < %*Varn(DpUL(S)vm) ¥ (E H‘:‘(‘S)AMDDZ.

(5[0 ) "

- Var(%rg DUE?‘(%)V(KH)) + (En [D“L:L('i(;)AB(J')DZ
)

< Lvar( By (j)) + (ks H‘:‘gf;)wj)])z. 19)

Note that

Hu(i) T & M (%)

which means that the second term of Equation (18) is zero, and the firsbtsromes the variance
of the estimate. Equation (19), and hence Theorem 18, follow from €he8r |

EH[D“”(”W} _E FH D““t“)thm] ,

Corollary 19. Let D= (S, U,P,r,n) be a controlled MDP satisfying Assumptions 1, 2 and 3. Let
M = (S, P) be the resultant chain of states, and febe its stationary distribution; M has mixing
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timet. Let{X,U;} be a process generated by D, startingX1t Then for any0 < € < e* there is
aC < 1+50t(1+M)+8tine~! such that

e (Y - 0gn)” < ke Zvan( v () o+ (5, {Dp‘jgf;)Asu)DZ.

Proof. Apply Theorem 4 to the first part of Theorem 18, for each ofkh@imensions, noting that
the mixing time of the processX;, Ut, Xi+1} is at mostrin(2e) < 2t (Lemma 1). |

6.2 Zero Variance, Zero Bias Example

Write v=V — Js. The bias due to using V in place qf i given by
Gy,

whereG is aK x |§| matrix with its j' column given by ;. s yc ¢, T§ Op, (1)pij (U). If vis in the right
null space ofG then this bias is zero. An example of suchia a constant vectox,= (c,c,...,c)’.
This can be used to construct a trivial example of Iﬁ¥/v(Equation (16)) can produce an unbiased,
zero variance estimate. The observation that we need only considerfuatitimns that span the
range space db to produce a “good” gradient estimate, in the sense that convergesudtsnmay
be obtained, was made by Konda and Tsitsiklis (2003, 2000); Sutton &08I0). Here we wish
to consider a richer class of value functions for the purpose of actreelycing the variance of
gradient estimates.

Consider a controlled MD® = ($, U,P,r, ) satisfying Assumptions 1, 2 and 3, and with
r(i) = (1—B)c, for some constart, and alli € $. This gives a value function of{i) = c, for all
i €5, and consequently

Opn = ZTEDHu(i)CZCZTﬁDZHu(i) =0.

! u

Withv = (—c,—c,...,—c)’, and selecting the fixed value function¥J; + v, we have

Opy(i)y,, .\ o
(i) V(j)=0, vi,u, j.

SoAY will produce a zero bias, zero variance estimatélgfi. Note also that if the MDP is such
that there exists anu pair such that RiX; = i,Uy = u} > 0 andOy,(i) # 0 then selecting \= J
gives an estimate that, whilst still unbiased, has non-zero variance véhe e

(v

has a non-zero probability of occurrence.
A less trivial example is given in Appendix D.
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7. Algorithms

In Section 5 and Section 6 we have seen bounds on squared erradadrgrestimates when using
various additive control variates. For the baseline control variatesawe &lso seen the choice of
baseline which minimizes this bound. Though it may not be possible to selectshbdseline or
value function a priori, data could be used to help us choose. For a par&ed baseline, or value
function, we could improve the error bounds via gradient decent. In dusosm we explore this
idea.

7.1 Minimizing Weighted Squared Distance to the Optimal Baseline
Given a controlled POMDP and a parameterized class of baseline functions

{by(",w): Y = R|lweR"},
we wish to choose a baseline function to minimize the variance of our gradiBmia¢es. Theo-
rem 16 expresses this variance as the sum of the optimal variance andraddistance between
the baseline function and the optimal one. It follows that we can minimize theneariaf our gra-
dient estimates by minimizing the distance between our baseline and the optimumebashe
next theorem shows that we can use a sample path of the controlled POMB#htate the gradi-

ent (with respect to the parameters of the baseline function) of this distsWecaeed to make the
following assumptions about the parameterized baseline functions.

Assumption 6. There are bound®,G < o« such that for all yc 9, and allw € R", the baseline
function is boundedby (y,w)| < M, and the gradient of the baseline is boundgdby (v, w)|| < G.

We dropwin the notation, and, to avoid confusion, we writéygu) to denote (O, (y)) /Hu(Y)]%,
where the gradient is with respect to the parameters of the p6licy,

Theorem 20. Let D= (S, U,9",P,v,r,u) be a controlled POMDP satisfying Assumptions 1, 2
and 3. Letby : 9 x R- — R be a parameterized baseline function satisfying Assumption 6. If
{X,Y;,Ut } is a sample path of the controlled POMDP (for any) Xhen with probabilityl

T t—-1
2003 (by) = Jim 3 (B(%-1) = Boy () —10)) 3 B> D0y ()Y,

t= S=
Proof. From Theorem 16,

2003 (by) = En [¢2(40) Dby (¥) (b (9) ~B5 )]

but
Er [¢%(y.0) Dby (y) b;;(y)}

= Tvy(i)p 2(y, u) Oby (y)
i,y,u
erai (”) a(y) Py (0)g?(y, 0) Js (i)
SraTeVy(NHa(y)g?(y, 0)

= 3 Oby(y) S Tevy(i)ka(y)ij (W)g?(y,u) (i)
y

Lw]
= En[Oby (y)g*(y,u) ()]
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Also, as () is uniformly bounded, we can write

o)

by (%) = tz 1BS_t_l(b9’(stl) — Bby (Ys)).
N

The boundedness of r, and the dominated convergence theorem, likgveise (X;+1) =E[Y &1 B 1r(Xs) [Xe+a].
Now we have

%chf(by) =En gz(Yt,Ut) Dby(Yt) i Bs_t_l (by(Ys—l) - Bby(Ys) - I'(XS)) : (20)
s=t+1

The rest of the proof is as the proof of Baxter and Bartlett (2001, fémed!): we use an ergodicity
result to express the expectation as an average, then show that weireetdrthe tail of thg
decaying sum.

AssumeXy ~ Tt Write X to denote the tupléX:, Y;,Ut), write P to denote the correspond-
ing transition matrix, and writét to denote the corresponding statlonary distributionfsg, =
vy (i) (y)). Now consider running the Markov chain on the procgég backwards. We have

Pr{>~<_1,>~<o,>~<l,...} B Pr{)~(_1} f’kl)zo _ ﬁ)lllsk,l%

e AR i

asftis the unique distribution such thitP® = 7. This gives the distribution foX_1, and repeating
this argument gives the distribution fr», X_3,.... Denote this doubly infinite process B¥: }*.,.
We wish to look at the behavior of time averages of the function

F({X}7..) = 62(Yo, Uo) Tby(Yo) is“ (B (¥Ys-1) — Bby(Ys) (%)) .

Specifically, we would like to show that

Tlanw?Zf(GmGXt} ) =E[f({%)7.)].  wea (21)

where&™ denotesm applications of the shift operata@®, and whereS ({%}%,,) = {W}*,, with
W = X1 for all t. Doob (1994) 2 Ergodic theorem, pg. 119) tells us, provided t&ds one-to-one
and measure preserving, and that f is square integrable, the leftildanaf £quation (21) is almost
surely constant, and furthermore, provided that the only invariant &saoe sets of measure zero
and their complements, this constant is equal to the right hand side of EquetijorEkpanding f
and& in Equation (21) then gives, with probability one,

T 1 oo
%Dcy(by)_ lim = Z)g (%, U) Oby (V) 5 B (by(Yoo1) — Bby (Ys) —1(Xs)) . (22)
s=t+1

It remains to be shown that the conditions of tfeErgodic theorem hold.

1. & is one-to-oneBy considering hows behaves at each index, we see that it is a bijection.
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2. Gis measure preserving.hatis, for a set of sequenc&sA and& (A) have the same measure.
This follows from the Markov property, and from the fact that the transitiperator at time,
as well as the marginal distribution &, is identical for all times. Specifically, we have the
following. LetA~ C Abe the smallest set such tha{ P }°,, € A} = Pr{{W}*,, € A" NA},
and writeAs = {Ws: {W}*,, € A~} andAZ = {{W}Z : {(W}”,, € A"}, where{W}2 is the
process starting @at=s; and ending at = s,. For anyswe have
Pr{e ({%}",) €A} = /XeAS Pr{Xees = x} Pr{ {K )2, € AZa|Kor = x}
X Pr{ {%}° € AS_‘O}‘ Xsi1= x} ¢(dx)
- /XGAS Pr{Xe=x} Pr{ {%}2,, € ASs[ % =x}
xPr{{%}7, e Al

- Pr{{)?t}fm c A}.

We also have '[Nha(t%*l (the inverse of5) is measure preserving; by the change of variables
W} = 6 ({X}%a)-

Xs = x} ¢(dx)

3. fis square integrableThe measure ofiX; }*, is finite, and|f| is bounded.

4. If set Ais such tha&—1(A) = A (whereG1(A) = {{W}”,, : G({W}>,,) € A}), then either
A has measure zero, or A has measure dDensider a sef of positive measure such that
S~1(A) = A, and writeA for its complement. A is a bijection, we also have th&t 1(A) =
A. Assumption 1 implies tha#, = S (at least, this is true for the state component, and,
without loss of generality, we may assume it is true for the extended spiieed. assume
thatAgN Ag = 0, and hencé\ N A, = 0 for all t, then the measure éf must be zero. We will
show thatdg N Ag = 0.

UnlessA has measure zero, for each AgN Ay we must have that P{W =% € AZL Wp = x}
and P{{W}7 € AT|Wp = x} are both positive, by the Markov property. HencégfnAg is
non-empty there must be a set of positive measure, which we dBnibtat follows sequences
in A~ until timet = 0, and then follows sequencesAn. Without loss of generality, let us
assume thaB c A~. We will also assume that if ¢ Bthen&~1(b) € B, as the existence &
implies the existence & = BU{&(b)} with the same properties. We will show that such

aB does not exist, and therefafg N Ag = 0.

Let A%, = {{W}%, : {W}3, € A%}, the set of sequences that follow until time s,

and then follow any sequence. We have tB&t, ¢ A%,. Construct the seB* c B by

B* = limi_. & (B) (note, 5 (B) is a non-increasing sequence of sets, and hence its limit
exists). We have thad*(B) c 67(B)",, = & !(B%,) c & {(A%,) = A*,, and soB* =
liminf;_., &~ *(B) C limsup_,., A, = A~, where the last equality follows from*,, being
non-increasing. Furthermore, by the dominated convergence theazdrawe Pf{Ws}*,, €

B*} = limi_o P{{W}®,, € 6'(B)} = Pr{{Ws}*,, € B} > 0. This means that the sBt has
positive measure and is a subset of batandA, which is impossible, and so suctBaloes

not exist.
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The statement given by Equation (21) is for a sample suchhatr, but can be generalized to
an arbitrary distribution using the convergence{¥f} to stationarity. Indeed, for the finite chains
we consider, all states have positieeneasure, and hence Equation (22) holds{pr tonly if it
holds for allXg € S.

If we truncate the inner sum &, the norm of the error is

(o]

) 1 T-1
im 5 G704, U) Doy ()

T—o

s=T+1

pst-1 (bfy(stl) —Bby (Ys) — r(Xs)) H

l (Y, Uy) Oby ()BT | by (V) St
Jim = %g t,Up) Oby (V)B (y T) ZHB )H

| 172, BT< R
im = § B%G M+—)
THth; 1-p
= 0,

IN

where we have used Assumptions 2, 3, and 6. This gives

1 T
QDOZy(by) = lim — Z)g (Y%, U Oby (%) S B (by (Ys-1) — Bbo(Ys) = 1(Xs))
s=t+1
and changing the order of summation gives the result. |

Theorem 20 suggests the use of Algorithm 1 to compute the gradie@l(@@) with respect to
the parameters of the baseline function @he theorem implies that, as the number of samples
gets large, the estimate produced by this algorithm approaches the triengrad

Algorithm 1 Compute estimate of gradient of distance to optimal baseline
given
e A controlled POMDR(S, U, ,P,v,r ).

e The sequence of states, observations and controls generated byntialed POMDP,
{io,Yo,Uo,i1, Y1, ... iT-1,¥7-1,Ur—1,iT, Y1}
e A parameterized baseline functiog b9 x Rt — R.
write g%(y, u) to denote](Dpu(y)) /Hu(Y)]*-
setzg=0(z € RY), Ag =0 (Ag € RY)
for all {it,yt, Uk, it+layt+1} do
Z 11 =Bz + Oby (%, W)W, )

Dep1 =D+ g1 ((by (Y, 0) — BBy (Y1, @) — F(Xe11)) Zr1 — D)
end for

In Bartlett and Baxter (2002) a variant of the GPOMDP algorithm is shovgiM®an estimate
that, in finite time and with high probability, is closelin. A similar analysis could be performed
for the estimate produced by Algorithm 1, in particular, we could replace (Cpy, (V) /1y, (Ut)
andR; = r(X) in Bartlett and Baxter (2002) withl, = * (%, Up) Oby (V) and R = by (Yi—1) —

Bby (V) —r(X). Notice thatl; andR occur in precisely the same way in GPOMDP to produce an
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estimate of

E

I:lt z BSths]
s=t+1

as ﬁt andR; occur in Algorithm 1 to produce an estimate of

E |i|t Z Bs_t_lﬁs .

s=t+1

Algorithm 2 gives an online version of Algorithm 1. The advantage of suchlgorithm is that
the baseline may be updated whilst the estimate of the performance gradieimgschlculated.
Such a strategy for updates would, however, affect the convezgeneerformance gradient esti-
mates (for constant baselines this may be avoided, see Section 8.2).€Rtieqof the convergence
of Algorithm 2, and the convergence of performance gradient estimatbg ipresence of online
baseline updates, is not addressed in this paper; though simulations imSexfcand 8.3 show
that performing such online baseline updates can give improvements.

Algorithm 2 Online version of Algorithm 1
given
e A controlled POMDP(S, U, ,P,v,r ).
e The sequence of states, observations and controls generated byntraled POMDP,
{io,Yo,Uo,i1,Y1,...,iT-1,Y1-1,Ur_1,iT,Y7}.
e A parameterized baseline functiog b9 x Rt — R.

e A sequence of step sizeg,
write g?(y, u) to denotel(Opu(y))/Hu(y)]*
setzg =0 (z € RY)
for all {itay'[a Ut, it+1,YI+1} do
Z+1 = Bz + Oby (Y1, 1) G2 (W, Ur)
01 = @ — W (Byr (Y, %) — BPy (Vir1, @) — F(%i11)) Z+1
end for

7.2 Minimizing Bound on Squared Error when using a Value Function
Given a controlled MDP and a parameterized class of value functions,
{V(,w):5 > RlweR"},

we wish to choose a value function to minimize the expected squared ernargriaalient estimates.
Theorem 18 gives a bound on this error,

Er = $Varn<mut‘zi(;)V(j,co)> + <IE,T [DJ:‘ES)AB(LCO)DZ.

We dropw in the notation, and write (@, u) to denote(Ouy(i))/Hu(i), where the gradient is with
respect to the policy parameteés We can compute the gradient of this bound:

n3er = 03 (S Ven(gi.uv () + (Exlgiuagi)’)
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- (%DE [(0.0V ()]~ F 0(Enlgl.uV ()7 + 0 (En [g(tu)AB(m)z)

— (T Enlt@iuv (i) (@60 @V (D))

2 (Erlali,wV () (B [96,0) OV (5))])
— (Ex[g(,As()]) (Ex () (OV(D))])). (23)

This gradient can be estimated from a single sample path of the controlled{MBBs}. We need
the following assumption on the value function.

Assumption 7. There are bound$/1,G < « such that for all ic §, and all w € R", the value
function is boundedy (i,w)| < M, and the gradient of the value function is boundgdy (i, w)|| <
G.

Algorithm 3 gives an estimate of (23) from a sample path of the controlled MDRstructing
this estimate from the following four estimations:

S
AAs = %Z:(g(XS,US)V(XsH))'(g(Xs,Us)(DV(XS+1))’) € R

LS 906 UV (%) K
ABs = =Y g(Xs,Us)V (Xsi1 € RX;
18—1
ACs = §Zo(r(xyl)+BV(XS+2)—V(XS+1))ZS+1 €RS;
S=
151 ,
MDs = g3 90%Us) (IV (%6:) € RO,
S—=

wherezp = 0 andzs1 = Bz + g(Xs,Us). The estimate of the gradient then becomes

Qr Q* / / /
As= | DA~ —ABADs —~ ACGADs ) .

Notice thatAAs,ABs, and ADgs are simply sample averages (produced by the Markov chain)
estimating the relevant expectations in Equation (23). We see from Thé&oasich Corollary 5 that
the variance of these estimates @@n(S)/S), giving swift convergence. By noting the similarity
between the expectation in Equation (20) and the expectation estimat#dsbyve see that the
ergodicity and truncation arguments of Theorem 20, and the convergiésuussion following, also
hold for theACg estimate.

An online implementation is complicated by the multiplication of expectations. The online
algorithm (Algorithm 4) uses a decaying window of time (normalized for theahtiecay) in the
calculation of the expectations.
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Algorithm 3 Compute estimate of gradient of squared error wrt value function parameter
given
e A controlled POMDP(S, U, ,P,v,r ).
e The sequence of states, observations and controls generated bynttaled POMDP,
{io, Uo, il, R 7is, Us, i5+1}.
e A parameterized value function \(S:x R- — R.
write g(i,u) to denote(Opy(i)) /Hu(i).

setzg = 0 (zp € RX), AAy = 0 (AA € RY), ABp = 0 (ABg € RK), ACy = 0 (ACo € RK) and
ADg = 0 (ADg € RK*L)

forall {is,Us,iss1,isi2} dO
Zsi1 = Bzs+g(is, Us)

DAsi1 = DAs+ 5_% (( g(is, Us)V |s+1))/ (g(i& Us) (Dv(iwl))/) _AAS)
ABs,1 = ABs+ 51 (9(is, Us)V (isi1) — AB)

ACsi1 = ACs+ 37 ((r(ist1) + BV (isy2) — V (is1)) Zsr1 — ACs)
ADs;1 = ADs+ 511 (9(is, Us) (OV (isy1))' — ADs)

end for

As= (L DAs— L ABADs— ACKADs)’

Algorithm 4 Online version of Algorithm 3
given
e A controlled POMDRS, U, 9", P,v,r, 1).
e The sequence of states, observations and controls generated bynttaled POMDP,
{io, Uo, il, R is, Us, I3+1}
e0cR,0<axl

e Asequence of step sizeg,

e A parameterized value function \(5:x Rt — R.

write g(i,u) to denote(Opy(i)) /Hu(i).
setzg = 0 (2 € RX), AAG = 0 (AAg € RY), ABy = 0 (ABp € RK), ACo = 0 (ACp € RX) and
ADg = 0 (ADg € RK*L)
for all {is,Us,iss1,is+2} dO

Zs11 = Bzs+d(is, Us)

DAsi1 = abAs+ (g(is, Us)V (ist1))" (9(is, Us) (OV (iss1))")

ABsi1 = aABs+g(is, Us)V (ist1)

ACsi1 = aACs+ (r(isy1) + BV (isr2) — V(ist1)) Zsi1

ADsg;1 = 0ADs+ g(is, Us) (DV(i5+1))/

a o 1-a ZQ* / 1-a 2 / '
o= v (255) Fone— (1258x) " Fomave- () ackeos
end for
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7.3 Minimizing the Bias Error when using a Value Function

As the number of stepB gets large, the errdgr of the gradient estimate becomes proportional to
the square of the bias error,

E.. = (Ex[o(i,u)Ag(})])?.

The gradient of this quantity, with respect to the parameters of the valgédancan be computed
using Algorithm 3, withQ* /T = 0. In this case, onlACs andADs need to be computed.

7.4 Minimizing Bound on Sample Error when using a Value Function

A more restrictive approach is to minimize the error seen at each sample,

R=En(g(i,u)Ag(j))*.

This approach directly drives V towardg dnd as such does not aim for additional beneficial cor-
relation. It produces an algorithm that is very similar to TD Sutton (1988)hba the benefit that
the relative magnitude of the gradient with respect to the policy parametekeisitdao account. In
this way, more attention is devoted to accuracy in regions of the state spadargéfyradients.

For a parameterized class of value functiofg,(-,w) : § — R|w € ]RL} , we can determine the
gradient of this quantity.

D%R = D%En(g(i,U)AB(j))z

= —En[(al,u)(OV (1)) (3 wAs() |
= ~Er|(g(i.u))* OV (i)Ag())].

If the value function satisfies Assumption 7, the gradient may be estimatedithgi@ sample path
from a controlled MDP. The ergodicity and truncation argument is the sarti@tim the proof of

Theorem 20. .

ARy — % 5 (106 BV 0%:2) =V X))

t=

wherez = 0, andz.1 = Bz + (9(%.Ur))? OV (X1).

8. Simulation Examples

This section describes some experiments performed in simulated environfiestighe estimates
suggested by Sections 5 and 6 are tested in a simple, simulated setting. This sitimpieis then
used to test the algorithms of Section 7. Finally, a larger, target-trackinggséttirsed to test a
number of gradient estimates at various stages of the learning process.

8.1 Three State MDP, using Discounted Value Function

This section describes experiments comparing choices of control vasiatedimple three state
MDP. The system is the described in detail in Baxter et al. (2001). Thidegrln was compared

to the gradient estimates produced with a variety of schemes: GPOMDP watiypabntrol variate;

a constant baseline set iy Js(i); the optimum constant baseline, described in Theorem 11, the
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optimum baseline function, described in Corollary 15; and a value functatnats trained using
Algorithm 3 with Q* /T set to 0001. This value function had a distinct parameter for each state, all
initially set to zero.

Because of its simplicity, a number of quantities can be computed explicitly, inguketrue
gradientln, the discounted value functior,Jthe expectation of the discounted value function,
the optimal baseline, and the optimal constant baseline. All experiments wesgudettomputed
discounted value function in themBr] estimations rather than the discounted sum of future rewards,
an estimate of the discounted value function. For each experiment, the dataNezted over 500
independent runs, with = 0.95.

Figures 2 and 3 plot the mean and standard deviation (respectively) aflétige norm differ-
ence of the gradient estimate frdom, as a function of the number of time steps. The relative norm
difference of a gradient estimafefrom the true gradienin is given by

14— Oin|l
10N

It is clear from the figures that the use of these control variates gigesisant variance reduc-
tions over GPOMDP. It is also clear that the optimum baseline gives betferpance than the use
of the expectation of the discounted value function as a baseline. For this M8 performance
difference between the optimum baseline and the optimum constant basehmaligise optimum
baseline of this system,@: (6.352546.352546.26938/, is close to a constant function. The
optimum constant baselinel® = 6.33837.

Since the value o2* /T was fixed when optimizing the value function, the asymptotic error of
its associated gradient estimate is non-zero, as Figure 2 shows. Hpthevexpected error remains
smaller than that of GPOMDP for all but very large value$ pand the standard deviation is always
smaller.

8.2 Online Training

Instead of precomputing the optimum baseline, and pretraining the valugoiunthey could be
learned online, whilst estimatiniggn. Figures 4 and 5 show experiments on the same three state
MDP as in Section 8.1, but here the baseline and value function were deantiee, using Al-
gorithm 2 and Algorithm 4 respectively. GPOMDP and baseline plots weze %80 independent
runs, the value function plots were over 1000 independent rurgva&lue of 095 was used, and

the online training step sizg was set to 1In(1+t). For the value functionQ*/T was set to @M1

anda was set to 9. The baseline and the value function had a parameter for each statend
initially set to zero.

It is clear from the figures that the online baseline algorithm gives a signtfilmprovement
from the GPOMDP algorithm. Looking at the error using the online valuetfom@lgorithm we
see a performance increase over GPOMDP nkkecomes large.

Note that the baseline, when trained online, is non-stationary, and thiemgfradtimate becomes

IS [ sty
A=3 Y oW (M;B r(X) bm).
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Exact Value Function—Mean Error
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Figure 2: The mean of the relative norm difference fram using no control variate (GPOMDP-
Jp); using the expected discounted value function as a baseliné€(B);-using the opti-
mum baseline (BL-p(y)); using the optimal constant baseline (BL); and using a pre-
trained value function (VF-pretrained). In all cases the explicitly calcdldiscounted
value function was used in place of the estimatggxcept, of course, for the pretrained
value function case, where the value function is used in place of the estidnates

Exact Value Function—Standard Deviation
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Figure 3: The standard deviation of the relative norm difference fiom(see Figure 2 for an
explanation of the key).
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This non-stationarity could mean an additional bias in the estimate, though wsee#ay the graphs
that, at least in this case, this additional bias is small. The estimate that we actgsilty u

=7 Zizt ~1(Y-1) = Bb-1(M%)))

wherez, the eligibility trace, is given byo = 0 andz 1 = Bz + (Opy, (1)) /My, (Yt). One might

argue that this additionally correlates our baseline with any errors due toutietion of the sum

of discounted future rewards. This should make little difference, eXoegmall T; we have seen

that, for the modified estimam(ﬁs)(by), any influence this error has is exponentially decreasing.
Note that for any constant baseline we need not worry about nonfsiétiy as we have

T T
t;Zt (br —Bbr) = (tZth) (1-PB)br

so by additionally keeping track & = lez{ we have the estimate, at tinie

-I-let — (br —Bbr)) Tziztr ——ZTl B)br

an unbiased estimate @fgn; again, treating the error due to the truncation of the discounted sum
of future rewards as negligible.

8.3 Locating a Target

These experiments deal with the task of a puck, moving in a plane, learninggtie la target. The
puck had unit mass,.05 unit radius, and was controlled by applying a 5 unit force in either the
positive or negativex direction and either the positive or negatiyalirection. The puck moved
within a 5x 5 unit area with elastic walls and a coefficient of friction o®@05; gravity being set
to 9.8. The simulator worked at a granularity of100 of a second with controller updates at every
1/20 of a second. The distance between the puck and the target locatigiveass a reward at
each update time. Every 30 seconds this target and the puck was sehttoercation, and the
puck’sx andy velocities set randomly in the range10,10].

The puck policy was determined by a neural network with seven inputsidaem layer, and
four outputs; the outputs computing a tanh squashing function. The inputs ¢tornkeller were:
the x andy location of the puck, scaled to be [ir1,1]; thex andy location of the puck relative to
the target, scaled by the dimension sizes; the velocity of the puck, scaledrai@ speed of 10
units per second was mapped to a value of 1; and a constant input of pply sun offset. The
outputs of the neural network gave a weighti&gs (0, 1), to each of théx,y) thrust combinations:
(=5,-5); (—5,5); (5,—5); and(5,5). So, collating the seven inputs in the vectpwe have

7
Ei = SQSh z ei’ka , i € {1,2,3,4},
k=1

whereb is a vector of 28 elements, one elemdhy, for eachi, k pair, and the squashing function
is sgsiix) = (14-tanh(x))/2. The probability of thé™" thrust combination is then given by
&i

i 79 =< T
ki (v;8) 5§,
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Figure 4: The mean of the relative norm difference fradm using no control variate (GPOMDP);
using a baseline trained online (BL-online); and using a value functionetlaimline

(VF-online).
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Figure 5: The standard deviation of the relative norm difference friqm(see Figure 4 for an
explanation of the key).
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where actions have been labelled with the associated thrust combination.

The puck was first trained using conjugate gradient ascent, with GPOQMEPT = 10°) used
to estimate the gradient. The parameters of the policy were recorded ain?8gdong the training
curve: at the initial parameter setting £ 0); and at each change in line search direction. Results
for 4 of the 28 points are shown in Figure 6. The results show the meanl@9éndependent trials,
of the relative norm difference between gradient estimates when usamgja of different baselines,
all learned onliney = 1/In(1+t)) and initially set to zero, and an estimateldfn. The second
order baseline was a second order polynomial of the inputs, that is, agkiting the inputs in the

vectoryv,
7

7 7
b(v,w) = oo+ H WeoVk+ Y Z(U)k,IVkVI,
& ELiE

wherew is a vector of 32 elements, with one elemeant,, for each second order terv;, one
additional elementuy o, for each first order ternw,, and one additional elemeniy g, for the
constant term. The estimate Dgn was produced by averaging the unbiaseg estimates at
T = 223, an average over 400 samples.

Figure 6 shows that each baseline method performed better than GPOMbBRhevsecond
order baseline performing the best of these. The estimated averagd sewlethe estimated optimal
constant baseline performed almost equally, and both performed bettethéhanline constant
baseline in this case. That the two estimation methods performed almost equaltly suggest
that, in this case, the random variabi&gs,(y) /i (y))? and $(j) are close to independent. It might
be that for most policies, or at least policies atéhelues we testedEnJz (i) || > || (i) — Ends(i)|],
since this implies

RN AN O\ O\ 0 0 o
E[( o) JB(”] ~ () B+ B | (S0 (1) Eanm)]
~ EH<D“‘:LES)’>>2ET[JB(i).

9. Conclusions

We have shown that the use of control variate techniques can rediicat@n variance when
estimating performance gradients. The first technique was to add a bagdine we analyzed
the variance quantities of (8) and (9), the estimation variance when usimageadirie under the
assumption that the discounted value function is known and samples mayeiddependently.
We have given the optimal baseline, the baseline that minimizes this variamckaam expressed
the additional variance resulting from using an arbitrary baseline as aedigquared distance
from this optimum. Similar results have also been shown for a constant baddéne it was also
shown how much additional variance results from using the expectedudigtbvalue function, a
popular choice of baseline, in place of the optimal constant baseline. Véeals shown that the
estimation variance from(T+S) (by), arealizable estimate 6fgn formed from a single sample path
of the associated POMDP, is bounded by the stationary variance plus antdgpendent of the
choice of baseline, and another term of negligible magnitude.

A second control variate technique used to reduce estimation variande veggace estimates
of the discounted value function with some appropriate value function V.aw¥e shown that, even
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Figure 6: Each plot shows the mean, over 100 independent runs, oflttizve norm difference
from Cgn: using no baseline-); using a constant baseline, trained onlire-(); using
a second order polynomial of the inputs as a baseline, trained onag (singEnJg (i)
as a baseline, estimated onlimZ(); and using the optimal constant baseline, estimated
online (+~). The referencélgn is estimated by averaging the unbiased estimates at
T = 223, The four plots show four of the 28 parameter values at the end pointxbf ea
line search in the conjugate gradient ascent algorithm, when training ongleéltzcation
example using GPOMDP (witli = 10®) to produce gradient estimates. The remaining
24 parameter values give similar plots.
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if the discounted value function is known, selecting V to be equal to the disedwalue function
is not necessarily the best choice. We have shown examples where tlei€#st) where additional
reduction in estimation variance can be achieved by selecting V to be a fumttienthan the
discounted value function, with no addition of estimation bias. We have also giloound on the
expected squared error of the estima¥e an estimate oflgn that uses V in place of discounted
value function estimates and is formed from a single sample path of the asdddiare

The gradient estimate!éﬁs)(by) andA\T/ use a baselinejpband a value function V, respectively,
in their calculations. In experiments on a toy problem we investigated the impeus obtained
when using the optimal choice of baselineﬁfp+s)(by), and also when using the value function
minimizing the bound on expected squared error of estimatA¥jrSignificant improvement was
shown.

In general the optimal choices for the baseline and the value function mdermown. We
have explored the idea of using gradient descent on the error bdended in this paper to learn a
good choice for a baseline, or for a value function. We have givdizaéde algorithms to obtain the
appropriate gradient estimates, along with their online versions. In expesre the toy problem,
and in a target location problem, we have seen some improvements giversbyatperithms.

In experiments we have looked at using the online versions of the algoritHestion 7; updat-
ing the baseline (or value function) whilst estimating the gradient of the pegiace. Consequently
some additional bias in the performance gradient estimate is likely to haveedciihe results of
the experiments, however, would suggest that this bias is small. Furthleohioterest is the study
of the convergence of these online algorithms, and also the convergetimeperformance whilst
using these online algorithms.
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Appendix A. Discussion of Assumption 1

The details in this section can be found in texts covering Markov chainsigexample, Puterman
(1994); Grimmett and Stirzaker (1992); Seneta (1981). We include thedefme the terms used
in Assumption 1; show how Assumption 1 may be relaxed; and give an intuitimuiotise of
Assumption 1.

The states of a Markov chaiMl = ($,P) can be divided into equivalence classes under the
communicating relatior—. We definei < i, and writei < j if there are integersn,n > 0 such
that pl(jm) >0 and pgi”) > 0, where pi(jt) is theij™ entry of thet-step transition matri®t. We call a
classS$ C S recurrent if its states are recurrent, otherwise we call it transient. Aistegeurrent if
Pr{X =i for somet > 0|Xo =i} = 1, otherwise it is transient. Notice that this means that once the
chain enters a recurrent class it never leaves, but rather visits afi sfdteat class infinitely often.

If the chain is finite then it will eventually leave every transient class and setdeme recurrent
class.
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We say a Markov chaiM = ($,P) is irreducible if the spacg forms a single class undes;
necessarily a recurrent class for finite Markov chains. We can re¢eixréducibility condition, and
instead allow anys that contains a single recurrent clagsplus a set (possibly containing more
than one class) of transient statgssuch that P§X; € Sg for somet > 0|Xp=j} =1forall j € St
(guaranteed for finite chains).

The periodd, of a stateé € § of a Markov chairM = ($,P) is the greatest common divisor of
the set of timegt > 0: pi(it) > 0}. Itis uniform across the states of a class. A state, and consequently
a class, is aperiodic il = 1. We can relax the aperiodicity condition and allow arbitrary periods.
ConsiderSg to be constructedr = SpUS1U---USq_1, whered is the period ofSg and the sets
are chosen such that{P 1 € Sic;1(moda) X% € Sk} = 1.

Our interest is in the existence and uniqueness of the stationary distrilbbufidre existence of
Tt stems from the Markov chain reaching, and never leaving, a recuwilassg, combined with the
forgetfulness of the Markov property. The uniquenessisfems from us allowing only a single
recurrent class. So given a finite Markov ch8n= ($, P) with the constructiors = St U $r, and
SrR=SoUS1U---USq-1, as above, we have, writingo 1) (i) to denote the number of times state
is visited before timd’,

TlianTlem)(i) =T, a.s. (24)

Equation (24) is helpful in two ways. Firstly, our choice of performancasunee, (2), is the
expected average ofX;), where{X} is produced by the chain. We see from (24) that this value
is independent of the initial state, and we could equivalently use the exipeaitee of (X), with
X ~ 1t Secondly, we are interested in calculating expectations over the stataigtifyution (such
aslgn), and we see from (24) that this expectation can be calculated by afgpersingle sample
path generated by the Markov chain, almost surely. In Section 4 it is saewditan even do well
with a finite length sample path; it is here we use the assumption of irreducibilitg@eribdicity.

The analytical results of Section 5 and Section 6 use Theorem 3, Theaath@orollary 5 of
Section 4 to bound the variance terms of the form

1T71
Var| = § f , 25
ar(T t; (Xt)> (25)

whereX; is generated by a Markov chamM = ($,P) starting in the stationary distributioxy ~ T,
with variance terms of the form

Var(f(X)), (26)
whereX ~ 1t The proofs of these results use the property
TIim Pr{Xr =i} =T, (27)
which holds whengsg is aperiodic, and is stronger than Equation (24). In particular, Equa2ion (

holds with the addition of the set of transient staggs indeed the variance quantities of Equa-
tion (25) and (26) are not affected by such an addition, as thgrsbasT-measure zero. Also,

when $g is periodic, writingxt(k) for the d-step subprocess with elementsdnand ) for the
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stationary distribution corresponding to this irreducible aperiodic chairmave

1 dT-1
Var(ﬁ t;) f(X[)>

1 dT-1 1 dT-1 2
= E <d_T 2 f(xt)_E[d—Tt_ f(XO‘vaT[]) Xo~T
B 1 d-1d-1 1T*l (ko) 1T71 (ko)
Al [ES LR ES SOl
1< T-1

:
- - i _ T\ 2

= %i;jE (%:_1“()({(”)—1*3_%:_11‘(&(”)xo~n_> X()NT[]

< 35| (B[ e )

(that the distribution of(ék) is K whenXg ~ Ttis due to the sets having equaitmeasure.) It is
now straightforward to give analogous results to those of Section 5 arftbf the Markov chain
consists of a single, possibly periodic, recurrent class plus a sensfdrd states.

The justification in studying the variance quantity (25) is that, after leavingahefstatessy,
the distribution over states will approachexponentially quickly. Whilst this does not hold for
periodic chains, it does hold that the distribution over states restricted tetloé tmes{ Ty + dt :

t €{0,1,2...}}, whereTy is the first timeX; hits the se;, will approachrt®) exponentially quickly.

Appendix B. Proofs for Section 4

In this section we give the proofs for Theorem 2, Theorem 3, Thedreamd Corollary 5 of Sec-
tion 4. Before giving the proof of Theorem 2 we first look at some pridgee of Markov chains. In
particular, we look at the covariance decay matrix of a finite ergodic Mackain.

Definition 4. Let M= ($,P) be a finite ergodic Markov chain, and latbe its stationary distribu-
tion. We denote theovariance decay matrdf this chain by Oit), and define it by

D(t) £'N2 (P —ert) N~

where, givers = {1,2,....,n}, N? = diag(\/T, /TG, .., /&), andMn-2 = [N¥2] %,

We will see that the gain of the auto-covariance over the variance caouvel by the spectral
norm of the covariance decay matrix. First we will give a bound on thetsgdenorm of the co-
variance decay matrix for general finite ergodic Markov chains. Themvill give a much tighter
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bound for reversible finite ergodic Markov chains. The spectral noirian matrix is given by the
following definition.

Definition 5. Thespectral nornof a matrix A is denotedA||, . It is the matrix norm induced by the

Euclidean norm,

def
Il = max||AX]|.

[x]=1

An equivalent definition is

1Ay = max|Ax] = rq|axx/x'A'Ax— VAmax(AA),

whereAmax(A) denotes the largest eigenvalue of the matrix A. A% i& symmetric and positive
semi-definite, all of its eigenvalues are real and positive.

Note 2. We have that, for any matrix A
[[AX] < [[All [IX]]-

This can be seen from: fdiix|| # 0

Recall the following two definitions.

Definition 6. Thetotal variation distancbetween two distributions, g on the finite sef is given
by

drv(p,q) 2ZIp. Gl= > (pi—a)
ies i€spi>q

Definition 7. Themixing time of a finite ergodic Markov chain M- ($,P) is defined as
T d:e'cmin{t > 0 : maxdry (P},P}) < e‘l} ,
IaJ
where P denotes thée'l row of the t-step transition matrix'P

Note 3. Denoting d def max j drv (Pit, P}) for s,t > 1 we have thatd s < dids, and hence

d < exp(—[t/T]).

Note 4. We have that
maxdry (B, T) < d.
[ISX}
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The sub-multiplicative property in Note 3 can be seen from

drv (Pt+s Pt+s) _ Z pi(|t+s) o pﬁ+s)>
LA+ (t-+s)
lesip ™ >pj
t t
=3 3 (e-e)ed
les:pid> pﬁ}ﬁ) keS
t t
- 2 (pi(k)— i) 2 Py
kes: pl(k >p]k IE.S:p"t+S >p5}+s)
t t
-y (s 3 e
kes:ply>pi lespl T plt
< tpt (5 _ KO
< dry (R}, max “;Hj%.%g
>p|
< drv (PP s, (28)

wherepi(jt) denotes théj™ component oP!, and we have used thay pi(lt) pfk) pﬁs Asd <1,
this also implieg); is non-increasing (far> 1). The inequality in Note 3 then follows from applying
the sub-multiplicative property tojt/t| <t, giving

4 < vt >
|11 t<t.

Note 4 can be seen from

2

kes

XD

JES  KkeS

T (plk _pjk> plk N ’

plk - ‘
jeS

k5

We will also consider the following, asymmetric, notion of distance.

Definition 8. Thex? distancebetween the distribution p and the distribution g on the finiteSset
with g > Oforalli € S, is given by

2\ Y2
de2(p,q) = def (z %) .
I=X)

Lemma 21. Let M= (S, P) be afinite ergodic Markov chain, and tebe its stationary distribution.
There exists a mixing time which is a property of M, such that

1Dy < /Eir (de(P, ) < ST madry (B < v/2]STexp(— [t/1))

Thus we havéiD(t)|[, < /2|S|exp(—[t/1]).
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Proof. Note thatD(t)'D(t) is symmetric and positive semi-definite and hence its eigenvalues are
real and positive. Label them, in non-increasing oragrl,, . ... This combined with the relation-
shipy; i =tr(D(t)'D(t)), where t(A) denotes the trace of the matix gives

0< A <tr(D(t)'D(t)).

Furthermore,
T 2 2
t(OODM) = F 5 (P - T) =Ein(de(Pm)
|65k65ﬂk
(t)
TPk (A® (t)
= Pk —Tk ) — TG By — Tk
iSKes Tk <' > ieZSkgs <' >
(t) 1 (t)
< — — D
< 3t n] (7 5o
(t)
< N —
< lsimax3 [p/ -~
= 2|S|maxdry (P}, m)
es
< 2[S|exp(-[t/1)).
The last inequality follows from Note 3 and Note 4. [ |

Recall that a reversible Markov chain has a transition probability matrix @tidsary distribu-
tion satisfying the detailed balance equations

TG Pij = T4 Pji,
foralli,j.

Lemma 22. Let M = (S, P) be a finite ergodic reversible Markov chain, andfebe its stationary
distribution. Order the eigenvalues of P such that A1 > |[A2| > |A3] >.... Then

IDO)I) = o'

Furthermore, if M has mixing time, we have that\,|' < 2exp(—|t/1]).

oo [T (M o_ Mo
i; plJ j (ﬂ) pjl TN pjl ’ (29)

and henceD(t)’ = D(t). Given a polynomial f-) and the symmetric matrid, Ax= Ax implies
f(A)x=f(A)x. Thus,

1P = y/Amax(PO'D®)) = 1 /Amax(D1)?) = maxin(D()].
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whereA;(D(t)),A2(D(t)),... are the eigenvalues @(t). The matrixD(t) is similar to (P' — ert)
via the matrixI %, and hence has the same eigenvaluesxLeb, X3, ... be the left eigenvectors of
P, labelled with the indices of their associated eigenvalues. Then

(P —et) = (P Pr) <N gt = { 0 12

Thereforel}, is the greatest magnitude eigenvalueDdt). Furthermore, ik # O is a right eigen-
vector ofD (t) with eigenvalue\, we have

,/ p —T | Xj = —= p: TGX; = AX, from (29),
165 ij J = \/r— ;; ( ji ) V/_T J

and so
Ay VK] = (P —10) v,
ics €S |jes
< W =] |
i€s jes
© _ “Ix:
< (rgglepik Trk])ZﬁJIXJ!
= 2maxdry (L) S VIgil.
jes
So from Note 3 and Note 4 we have that < 2exp—|t/T]). [

Lemma 23. Let M= (S P) be a finite ergodic Markov chain, and be its stationary distribution.
Let{X } be the process generated by M starting~Xrt For any two function$,g : S — R

E[(F(X) — Exf (1)) (9(Xsst) — Eng(i))]] < D)5 /B (F () — Enf (i))* B (0(i) — Engl(i))2.

Proof. Denoting_fto be the column vector of X) — Ef (i) over the stateg € §, then

Elteg. )| = [fnPyg

— |fniD()Nig

< 2 2HD(t)I‘I%g’2 (Schwartz)
< oWl ||fnE|, |nigl|,  (Note2)
= |D(t)||}\\/Eﬂ(ti)2En(gi)2‘ =
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Lemma 23 shows how covariance terms can be bounded by the varianeetbadtationary
distribution attenuated by the spectral norm of the covariance decay ma@mbining this with
Lemma 23 (or Lemma 22 for reversible chains) gives us Theorem 2.

Proof of Theorem 2By the application of Lemma 21 and Lemma 23,

|Cov(t;T)| < [[D(1)]], Varx(f) (Lemma 23)
< /2|S|exp(—|t/1])Varg(f)  (Lemma 21)
<

V2|5 ey/exp(—t/1)Varg(f).
This shows that Theorem 2 holds with somec /2|S|eand 0< a < exp(—1/(21)). If the chain

is reversible, then similarly, using Lemma 22, the bound of Theorem 2 holdsLwith?e and
a =exp(—1/1). [ |

We can use the result of Theorem 2 to prove Theorem 3. Recall thatdie3 shows how the
variance of an average of dependent samples can be boundedL)j¥) times the variance of a
sample distributed according to the stationary distribution.

Proof of Theorem 3.

171 1 T-1 2
Var(Tt;f(X[)> = ﬁE<t;(f(Xt)_Ef(xt))>

1 T-1T-1
= ﬁtZOtZOE[(f(Kl)—Ef(&))(f(th)—Ef(th))]
o
— ﬁthZZo ov(|ta —ta];f)
1 T2

= > (T—It])Covn(lt];f).
t=—(T-1)

Then, using Theorem 2,

1 T-1 1 T-1 X
3 Z (T—IthCown(lthif) < = 5 (T-[thLalvar(f(x))
t=—(T-1) t=—(T-1)
L (T@A+a) 2a(1-a")
= ﬁ( o ") Var(f (X))
1/L(1+0)
< —
< g (FE ) vartx)
where the equality follows from
T-1 " T-1 . T-1 .
(T—Jtha™ = T+2T S a' -2 ta
t=—(T-1) t; tZl
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ZTG(l GT l T-1T-1

22“3

T T-1T-1
_ ( 2Ta> 2Ta —ZZ
l-a l1-a &

T(14+a) 2Ta’ Tt 1 aT s
_ Ta+a) _zz
1-a 1-a

T(l+a) 2Ta’ 20((1—0(T 1) 2(T-1a’

= T+ - 7

- "1-a 1-a (1—a)? R
_ T(+a) 20(l—a" Y +207 (1-a)

T l1-a (1—a)?

_ T(l+a) 2a(l-a’)

- 1-a (1-a)P

We may set thed* in Theorem 3 toQ* =L (14+a)/(1—a). Furthermore, recalling that <
exp(—1/(21)), we have

1+a 1
Q*=L——<2L < 6L
1-a -1 exp(—1/2r) ="

where the last inequality usés— exp(—1/(21))]71 < %r. Note that forx = 1/(2t) we have 0<
x < 1/2, and that for such ax

2
exp(—x) < 1—x+ >

& l—exp(—x) > (1—5)

30
1 1 2 (30)
- - < .=
1—exp—x) — X 2—
1 4
—_— =. |
1—exp(—x) 3x

Theorem 4 gives a result similar to Theorem 3, but without relying on fidm@®, and hence
without relying on the size of the state space. For the proof we find it Lisediefine the following.

Definition 9. Thetriangular discrimination(Topsge, 2000) between two distributiong) pn the
finite setS is given by

def (pl Q|)
da(p,q) = .
X)) 2 pitq

Note 5. We have thati (p,q) < 2drv(p, q).

pi —
Note 5 can be seen fro = —ql <y |pi—aqil
.g p|+q| 2 pu+q IRP AL
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Proof of Theorem 4Write g = f(i) — Ef(X), and writeV = ¥;.;Tg?, the variance of {X). We
have thatg;| < 2cfor alli € §. Now, we have for ang > 0 andt > 0,

E(f(Xs) — Ef (X)) (f (Xstt) — Ef (Xs41))

|Jzesnig' (p'(l) _T[‘) 9i
(t)
= Y Vi LD /ol + g

i,JES \/pl(J +Tj
1/2

2
U—T[) 1/2
2T ( J (Z g > (pi(jt) + Tfj) 912> (Schwartz)
€S  jes p,] + 1 S
1/2
(o))

1/2
pi(}) — T D (Note 5)

IN

i S

- (gremn) gy
3

< ()2 (2\/2+<2c Yy g’y
i JES

1/2

< 20/ (V2+2cv d) (31)

Consider the case wheve= Var(f(X)) > €. If d; <¢, from Equation (31), we have
E (f(Xs) — EF (X)) (f(Xost) — Ef (Xs10)) < 2v2(1+ 0’ V. (32)
This holds for alls,t such thatk < €, which is implied by

exp(—t/t+1) < €
& —t/t < Ine—-1

& t > T<1+In%>

1
= t 2tin =,
€

v

ase < e L. For alls,t we have
E (f(Xs) — Ef(Xs)) (f(Xs1) —Ef (Xs11)) <V, (33)
which is a Cauchy-Schwartz inequality:
E (f(Xs) = Ef(Xs)) (f (Xsy1) — Ef (Xs41))
= Y ngp;
i,]JES

= Y npyay/me) g
i,JES

1/2 1/2
<2Tug.zz p.,) (Z (zrnpf})) g%)
ies €S jes \ies
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1/2 1/2
JES

So from Equation (32) and Equation (33) we have

= (ng

ies
= V.

1T-1
Var(— Z)f()&))

1 T-1T-1
= T2 ZOtZ E th — Ef th)) (f(xt2>_Ef<th)>
1 T— 12 2 2 T-2T-s-1
- Ay m0 +2 % 3 106~ BH06) (0610) - B0
T-1
— 7 3 B0~ EI007 + 5 3 (T—0E(106) B 0X0) (10X)  B1(%)
L o l2onwe)
- Vg 3 (TOR(06) B (X0 BH(X)
5 o
_|__

1
< =V+4tin(e™
< FV+ (

1 %V +4v2(1+c)

T2 Z (T —E(f(X0) —Ef (X)) (f(X) — Ef (X))
[2tIn(1/e) ]

dtl/z 1 Vv
t=[2tIn(1/¢)|+1 T

1 1
< <1+4rln c +25T(1+C)8) ?V,

where the last line follows from

00

dt1/2

t=[2tIn(1/ge)|+1

IN

00

exp(—t/(2t)+1/2)
t=[2tIn(1/¢e)|+1

00

Ve Y en(-t/(2n)

t=[2tIn(1/e)|+1

¢éexp<—ln§) i(exp(—l/@r)))t
2
1
Vee - exp(—1/(21))
8,6

—Tg,
3

where we have again used Equation (30). For the case whe(gXay < € we have

171
Var(Tt;f( )

- TZZZE (%)

T-1T-1

—Ef(X,)) (F(X,) —Ef (X))

=0ty=
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< \/
TT? tlzmzz
< & (35)

As the variance is bounded either by Equation (34) or by Equation (3&jgtéheir sum gives the
result. |

Lastly, we prove the corollary to Theorem 4, which shows the essent&gabfalecrease of the
bound.

Proof of Corollary 5. Selectinge such that, writing/ = Var(f (X)),
1 T 25

e vl

satisfies < € < e~1. Substituting this into the result of Theorem 4 gives
T-1 2
<1 2, f% > ST +2:(T1V+ g (” Tlioz(é(ﬁ) Z):/v
+4tin <4TV + 245(1+c))> ¥
4_TI_V <1+4r+4rln <4TV 245(1+c)>> ¥

(1+8T)T+4rln (7(1+c)+4—1T<¥) >¥ .

Appendix C. Proofs for Section 5.1

1+0),

IN

IN

In this section we give the proofs for Lemma 6 and Theorem 7 in Section 5.fewAauxiliary
lemmas are also given.

Proof of Lemma 6.Consider# -measurable random variablasB, with ¥ being somes-algebra.
If Bis alsoG-measurable for somg C ¥ such thatf[A| G| = B almost surely, then we have:

E[A—B]=0; and E[B(A—B)=0

(Note thatE[B(A—B)|G] = BE[A—B|G] = 0, almost surely). This gives us
Var(A) = E :(A—JE[A])Z}
~ E[((B-E[B)+(A-B)~EA-B)’]
= E|(B-E[B)+(A-B)’|
~ E[(B-E[B)’+2(B~E[B])(A-B)+ (A~ B)?|
— E[(B-E[B)?| +2E[B(A-B)] - 2E[BIE[A-B] +E (A~ B)?]
= Var(B)+E[(A-B)F. (36)
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Now choosing ¥ to be the smallesto-algebra such that the random variable
(Xo,---,X7-1,J0,-..,dr-1) and our functions ,fJ,a, for all X, are measurable, ang such
that(Xp, ..., Xr_1), and the functions o¥;, are measurable, we have that for

lTl 1Tl

=z ij X))  and == ij —a(X)),

A andB are F-measurableB is G-measurable, ang C ¥ . Furthermore, we have

1T1
E[AG] = [ %f )|x0,...,xT_1]

1T1

- 7 ;E (X))

1T1

S PACUCETARLEY

1T1

- 3 ;f ~ax))

The proof then follows from Equation 36. |

The proof of Theorem 7 requires some additional tools. In addition toW&0also consider a
variation of GPOMDP where a fixed length chain is used to estimate the disdowaite function:

T-1 t45-1
(9 def 1 ' Opy, (V) (s (S) def ot
AT == , 37 = B> r(Xs).
N PITRIARE 2 P

Lemma24.LetD= (S, U, ,P,v,r,u) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Then

(+S S BR S
<
Jar® - o] < TP
and similarly,
A BR s
Jar -] < 5P
whereA!™ denotesr¥ in the limit as S— o.
Proof.
HA (+9 H 17 Oy, () 509 1 Duut(Yt)Jt< 9
T & M) i T Hu, (V1) 1
T-1 c
1 D“Ut(Yt) ZI Bsftflr(xs) ’ C:T—i-s
T & Hu, (Y1) s=t+1+S
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1Tl Cc

BR= Zj Zl BS—t 1
T s=t+14S

1T lBS(l BC S-t— 1)

IN

- BRT 1-B
R s
< ——p.
< 1 gP
Obtain the boun(ﬁA(Tw) — A(TS) H similarly by considering the limit as — oo. |

Lemma 25. LetD= (S, U, ,P,v,r, ) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Let{Z} = {X,Y;, U, X%+1} be the process generated by D. For anyS$ x 9 x U x § — R satis-
fyingla(-)| <M, we have

v (25 00 (457 a) ) < var(2y B (45,2 |

5B?R(R+M)
(1-B)*

BS

and similarly,

175! Ohu (%) 1S D (%) (56
Var(T 2 o) (Jt(+)1 (Zt))> < Var(T > (Yt; <Jt(+%_a(zt))>

5B°R(R+M)

S
(1-B)? 4

where jw) denotes IE]S) in the limit as S— co.

Proof.

(150 (315 a2

( % = Dutulut( (Y;) (Jt(If) a(zt)) ) %TE: Dp‘:“t(g;) (Jﬁjf” —a(a))])z
t h t A

172 Opu (%) /9 172 Opu (%) (s

(?t oo (Fh-a@) -k T 2 <Jt“_a<z‘))]

O ) (s 10000 (4 ’
(2 (e =[5  (n))

1523



GREENSMITH, BARTLETT AND BAXTER

< e 1500 (45 ) oo

T-1 T-1
2500 (45 i) 25 00 3, )
x HA“S) —A(S’\H
172 1Dput(Y
= Var(T > e (¥ )*
|l D) L 24
+ Tt: b, (%) <+1 ) (Lemma 24)
< Var(1T 1D“U‘(Yt )>+
& )

T
(P ><1BRBBS)

15 D) SB*R(R 1 M) gs
< Var(Tt_ o (%) <Jt+1 a(Zt))>+ 1_p) B>.

Obtain the second result by replaclﬂfjs) with Jt(s), anth(S) with Jt(°°); thenA(T+S) — A(TS) becomes
(S _ pl)
Ay — Dy [ |

Using these Lemmas, and Theorem 4, we can now prove Theorem 7.

Proof of Theorem 71n this proof we will apply Theorem 4 to show that the variance of the sample
average i©(In(T)/T) times the variance of a single sample, and we will apply Lemma 6 to show
that the additional variance due to estimating the value function need nonbeleed. We first
use Lemma 25 to convert each of the samples within the average to be furariarfixed length

of the chain, that is, functions on states of the Markov pro¢#s#;,Us, . ..,Ui1s 1, %+s}. We can
then use Theorem 4 for the sample average of functions on this protess.

V= Varn<D”“(y) (J(i) —ali,yu, j))),

2
Hn[(?ﬁ‘éﬁ? (J(J)—JB(J'))> ] 7
and
_ 5E32R(R+M)BS
(1-p?
note that
bt (8-a@)| <355
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where||a||. is the maximum of the magnitudes of the components of vectnd denote the mixing
time of the proces$X;, Y;, U, ...,Ui1s 1, %+s} by T. We have

1S Do () (49
Val’<_|_ Z IJUt(Yt) (‘]tJrl _a(zt)>>

t

< VarGT lmﬁz%) (a5, - a(Zt))>+C (Lemma 25)
< Ke+ <1+275 1clB +4TIn%> %Var(% (Jis)—a(zo)))
e (Themen14)
) o 3 )
<1 i, CB >$+C (Lemma 25)
— Ke+ (1+§T ClBs+4 Tn }) <\T/+$+$> +C  (Lemma6)

Here, Theorem 4 was applied to each of Kelimensions of the quantity the variance is taken
over (recall that we consider the variance of a vector quantity to be theo$the variance of its
components). Now, similar to the proof of Corollary 5, we choose

1_K(V E C\' 25 G
e HaA\T T T 28 1-p’

giving

' Ouu ()
V r<T & Hu (%) (J‘(:f)_a(ztD)

25, G V E C
< Ket(1 E.C
= €+<+71 B s><T+T+T>+C

V E C -
43 <T+T+T>+[1+4r

(R & KV ELC ?
281 p A/A\T T T

IN

ViELS) e
T'T'T

< h(;V) —i—h(;E) —|—h<%C> +C
oS (TSR |y TS )

where the last line follows fromi < tin(e(S+ 1)) (Lemma 1), and from h being an increasing
function. Lastly, we have

(IS Lo
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< (% +8Tw

+4T'”(e($+ Dy <1Cil[3 T 20iB%R (RKiLll\;)ﬁ)r:(e(% 1) (B?S> 1) : 1> ’
) <% +8T|ne($+ 1) +4Tln(T)In(Te(S+ 1))

+4Tw In % +4T|n(e($+ Zin <1C—lB zmggégiﬁ'\" )> ! 1> Ny

2C, 1 Ci  K@-PB)?\](T+9In(e(S+1)) ¢
< 7(1—B)Z[In[3+m(1—[3+ G >] T 3.

The second step has used the increasing property afdng with In(e(S+ 1)) > 1 andpS/T < 1.
This gives us, for any, B > 0,

B BS -1 Bs -1 BS -1
Appendix D. Value Function Example

Here we consider a somewhat less trivial example than that presentectionS&2—an example
of reducing variance through appropriate choice of value functionyMiOP is shown in Figure 7.
Here actiorp; causes the MDP to have a tendency to stay in statnd actiore, causes the MDP
to have a tendency to move away framand stay in state, andss.

0.75 0.25

o) 0.75 SRR 0.25 S}

Figure 7: Transition probabilities for a toy 3 state, 2 action Markov decisiongss

Now consider the resultant controlled MDP when the single parameter, ddafgeindent policy

ed e ®
oo = o0 Uazzl—ualzm

along with any reward function satisfying Assumption 2 is used. Note that ¢msaled MDP
satisfies Assumptions 1, 2 and 3 for @llIFor the policy ab = 0 we havel,, = Ha, = 0.5 and

Ope, =05 O, = —0.5.
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The transition matrix and stationary distribution of the resultant chain are:

05 05 0 1/3
P=| 0 05 05 n=[ 1/3 |.
05 0 05 1/3

In this case the X 3 matrixG = (1/6,—1/6,0), and the right null space @ is {a1v; + 02Vs :

01,02 € R}, where
v - 1 Y, 8
v2\ o 1

Any value function of the form \&= Jz + a1v1 + azv2 will produce an unbiased estimateldfn. In
this case we have that, writing=r(s),

{(25213)2 B2-p) B
C=BP=F|p2-p B (@-p?

If we select3 = 0.9 this becomes
1 121 099 081 r 1 1.21r1 +0.99r,+0.81r3
Joo = 0.301 0.81 121 099 ro | = 0.301 0.81Ir1 +1.2Ir+0.993 |.
' 099 081 121 rs ' 0.99r1 +0.81rp+1.21r3
If we had r= (1/10,2/11,0)' then we would again have,d[= (1,1,81/99)] in the right null

space ofG, and we could again choose+/0 to obtain a zero bias, zero variance estimatelf.
Consider instead the reward function

(i) = | 4515 i=s
10 otherwise

J=(-pP) 'r=

so that 49 = (18.15,12.15,14.85)" and[pon = 1. We now have
Opy(i) . O () ..\ 2 Oue() . . 1\?
Va0 gg)) = (SO () ) - ([ S
= En(ds(j))*-1
1815
= n’( 12.15? ) -1
14.85?
— 2315225

The second line is obtained frojiiy,(i)/pu(i)] = 1 anddogn = 1. If we choosen; = —15.15//2
anda, = —14.85 then, for the value function ¥ Jg + 01v1 + 02v2, we have

Varn(DLE‘zi(;)V(j)> = En(DpuL(i(;)V(J)y_(E“[Dp:?i(;)v(j)pz

(18.15—15.15)?
= 1| (1215-15152 | -1

0

1527



GREENSMITH, BARTLETT AND BAXTER

a significant reduction in variance, with no additional bias.
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