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Abstract 

We provide a natural gradient method that represents the steepest 
descent direction based on the underlying structure of the param­
eter space. Although gradient methods cannot make large changes 
in the values of the parameters, we show that the natural gradi­
ent is moving toward choosing a greedy optimal action rather than 
just a better action. These greedy optimal actions are those that 
would be chosen under one improvement step of policy iteration 
with approximate, compatible value functions, as defined by Sut­
ton et al. [9]. We then show drastic performance improvements in 
simple MDPs and in the more challenging MDP of Tetris. 

1 Introduction 

There has been a growing interest in direct policy-gradient methods for approximate 
planning in large Markov decision problems (MDPs). Such methods seek to find 
a good policy 7r among some restricted class of policies, by following the gradient 
of the future reward. Unfortunately, the standard gradient descent rule is non­
covariant. Crudely speaking, the rule !:l.()i = oJ] f / a()i is dimensionally inconsistent 
since the left hand side has units of ()i and the right hand side has units of l/()i 
(and all ()i do not necessarily have the same dimensions). 

In this paper, we present a covariant gradient by defining a metric based on the 
underlying structure of the policy. We make the connection to policy iteration 
by showing that the natural gradient is moving toward choosing a greedy optimal 
action. We then analyze the performance of the natural gradient in both simple 
and complicated MDPs. Consistent with Amari's findings [1], our work suggests 
that the plateau phenomenon might not be as severe using this method. 

2 A Natural Gradient 

A finite MDP is a tuple (S, So, A, R, P) where: S is finite set of states, So is a start 
state, A is a finite set of actions, R is a reward function R : S x A --+ [0 , Rmax], and 
P is the transition model. The agent 's decision making procedure is characterized 
by a stochastic policy 7r(a; s) , which is the probability of taking action a in state 
s (a semi-colon is used to distinguish the random variables from the parameters of 



the distribution). We make the assumption that every policy 7r is ergodic, ie has a 
well-defined stationary distribution p7f. Under this assumption, the average reward 
(or undiscounted reward) is 1]( 7r) == 2:: s ,a p7f (s )7r(a; S )R(s, a), the state-action value 
is Q7f(S, a) == E7f{2:::oR(st,at) -1](7r)lso = s,ao = a} and the value function is 
J7f(s) == E7f(a' ;s) {Q7f(s, a')}, where and St and at are the state and action at time t. 
We consider the more difficult case where the goal of the agent is to find a policy that 
maximizes the average reward over some restricted class of smoothly parameterized 
policies, fr = {7rO : 8 E ~m}, where tro represents the policy 7r(a; S, 8). 

The exact gradient of the average reward (see [8, 9]) is: 

\11](8) = Lp7f(s)\17r(a;s, 8)Q7f(s ,a) (1) 
s,a 

where we abuse notation by using 1](8) instead of 1](7ro). The steepest descent 
direction of 1](8) is defined as the vector d8 that minimizes 1](8 + d8) under 
the constraint that the squared length Id812 is held to a small constant. This 
squared length is defined with respect to some positive-definite matrix G(8), ie 
Id812 == 2::ij Gij (8)d8id8j = d8T G(8)d8 (using vector notation). The steepest de­
scent direction is then given by G- 1\11](8) [1]. Standard gradient descent follows 
the direction \11](8) which is the steepest descent under the assumption that G(8) 
is the identity matrix, I. However, this as hoc choice of a metric is not necessarily 
appropriate. As suggested by Amari [1], it is better to define a metric based not 
on the choice of coordinates but rather on the manifold (ie the surface) that these 
coordinates parameterize. This metric defines the natural gradient. 

Though we slightly abuse notation by writing 1](8), the average reward is technically 
a function on the set of distributions {7rO : 8 E ~m}. To each state s, there 
corresponds a probability manifold, where the distribution 7r(a; S, 8) is a point on 
this manifold with coordinates 8. The Fisher information matrix of this distribution 
7r(a; s,8) is 

F (8) = E [81og 7r(a; s,8) o log 7r(a; s,8)] 
s - 7f(a;s,O) 08i 08j ' (2) 

and it is clearly positive definite. As shown by Amari (see [1]), the Fisher infor­
mation matrix, up to a scale, is an invariant metric on the space of the parameters 
of probability distributions. It is invariant in the sense that it defines the same 
distance between two points regardless of the choice of coordinates (ie the param­
eterization) used, unlike G = I. 

Since the average reward is defined on a set of these distributions , the straightfor­
ward choice we make for the metric is: 

(3) 

where the expectation is with respect to the stationary distribution of 7ro. Notice 
that although each Fs is independent of the parameters of the MDP's transition 
model, the weighting by the stationary distribution introduces dependence on these 
parameters. Intuitively, Fs (8) measures distance on a probability manifold corre­
sponding to state sand F(8) is the average such distance. The steepest descent 
direction this gives is: 

(4) 



3 The Natural Gradient and Policy Iteration 

We now compare policy improvement under the natural gradient to policy iteration. 
For an appropriate comparison, consider the case in which Q7r (s, a) is approximated 
by some compatible function approximator r(s ,a;w) parameterized by w [9, 6]. 

3.1 Compatible Function Approximation 

For vectors (), w E ~m, we define: 

'IjJ (s , a)7r = \7logn(a;s,()), r(s,a;w) = wT 'ljJ7r(s,a) (5) 

where [\7logn(a;s, ())]i = 8logn(a;s, ())!8()i. Let w minimize the squared error 
f(W, n) == L,s ,a p7r (s )n(a; s, ())(r (s, a; w) _Q7r (s, a))2. This function approximator is 
compatible with the policy in the sense that if we use the approximations f7r (s, a; w) 
in lieu of their true values to compute the gradient (equation 1), then the result 
would still be exact [9, 6] (and is thus a sensible choice to use in actor-critic schemes). 

Theorem 1. Let w minimize the squared error f(W, no). Then 

w = ~1}(()) . 

Proof. Since w minimizes the squared error, it satisfies the condition 8f!8wi = 0, 
which implies: 

LP7r(s)n(a;s,()) 'ljJ7r (s,a)( 'ljJ7r (s,a?w - Q7r(s,a)) = O. 
s,a 

or equivalently: 

s,a s,a 

By definition of 'ljJ7r, \7n(a;s,()) = n(a;s,()) 'ljJ7r(s,a) and so the right hand side is 
equal to \71}. Also by definition of 'ljJ7r, F( ()) = L,s ,a p7r (s )n( a; s, ()) 'ljJ7r (s, a )'ljJ7r (s, a) T. 

Substitution leads to: 
F(())w = \71}(()) . 

Solving for w gives w = F(()) - l\71}(()), and the result follows from the definition of 
the natural gradient. D 

Thus, sensible actor-critic frameworks (those using f7r(s , a; w)) are forced to use the 
natural gradient as the weights of a linear function approximator. If the function ap­
proximation is accurate, then good actions (ie those with large state-action values) 
have feature vectors that have a large inner product with the natural gradient. 

3.2 Greedy Policy Improvement 

A greedy policy improvement step using our function approximator would choose 
action a in state s if a E argmaxa, f7r (s, a'; w). In this section, we show that the 
natural gradient tends to move toward this best action, rather than just a good 
action. 

Let us first consider policies in the exponential family (n(a ;s, ()) IX exp(()T¢sa) 
where ¢sa is some feature vector in ~m). The motivation for the exponential family 
is because it has affine geometry (ie the flat geometry of a plane), so a translation of 
a point by a tangent vector will keep the point on the manifold. In general, crudely 



speaking, the probability manifold of 7r(a; s, 0) could be curved, so a translation of 
a point by a tangent vector would not necessarily keep the point on the manifold 
(such as on a sphere). We consider the general (non-exponential) case later. 

We now show, for the exponential family, that a sufficiently large step in the natural 
gradient direction will lead to a policy that is equivalent to a policy found after a 
greedy policy improvement step. 

Theorem 2. For 7r(a; s, 0) ex: exp(OT 1>sa), assume that ~'TJ(O) is non-zero and that 
w minimizes the approximation error. Let7roo (a;s) =lima-+oo7r(a;s , O+a~'TJ(O)). 
Then 7r 00 (a; s) 1- 0 if and only if a E argmaxa, F' (s, a'; w). 

Proof. By the previous result, F'(s,a;w) = ~'TJ(O)T'lj;7r(s,a). By definition of 
7r(a; s, 0) , 'lj;7r (s, a) = 1>sa - E7r (a';s ,O) (1)sa'). Since E7r (a';s,O) (1)sa') is not a function 
of a, it follows that 

argmaxa , r(s, a'; w) = argmaxa , ~'TJ(Of 1>sa' . 

After a gradient step, 7r(a; s, 0 + a~'TJ(O)) ex: exp(OT 1>sa + a~'TJ(O)T 1>sa). 
~'TJ(O) 1- 0, it is clear that as a -+ 00 the term ~'TJ(O)T 1>sa dominates , 
7r 00 (a, s) = 0 if and only if a f{. argmaxa , ~ 'TJ( 0) T 1>sa' . 

Since 
and so 

D 

It is in this sense that the natural gradient tends to move toward choosing the best 
action. It is straightforward to show that if the standard non-covariant gradient 
rule is used instead then 7roo (a; s) will select only a better action (not necessarily 
the best), ie it will choose an action a such that F'(s ,a;w) > E7r(a';s){F'(s,a';w)}. 
Our use of the exponential family was only to demonstrate this point in the extreme 
case of an infinite learning rate. 

Let us return to case of a general parameterized policy. The following theorem shows 
that the natural gradient is locally moving toward the best action, determined by 
the local linear approximator for Q7r (s, a). 

Theorem 3. Assume that w minimizes the approximation error and let the update 
to the parameter be 0' = 0 + a~'TJ(O). Then 

7r(a; s, 0') = 7r(a; s, 0)(1 + r(s , a; w)) + 0(a2 ) 

Proof. The change in 0, ,6.0, is a~'TJ(O), so by theorem 1, ,6.0 = aw. To first order, 

7r(a; s, 0') 7r(a; s, 0) + fJ7r(a~;, O)T ,6.0 + 0(,6.02 ) 

7r(a; s, 0)(1 + 'lj;(s, af ,6.0) + 0(,6.02 ) 

7r(a; s, 0)(1 + a'lj;(s, af w) + 0(a2 ) 

7r(a;s,O)(l + ar(s,a;w)) + 0(a2 ) , 

where we have used the definition of 'lj; and f. D 

It is interesting to note that choosing the greedy action will not in general improve 
the policy, and many detailed studies have gone into understanding this failure [3]. 
However, with the overhead of a line search, we can guarantee improvement and 
move toward this greedy one step improvement. Initial improvement is guaranteed 
since F is positive definite. 



4 Metrics and Curvatures 

Obviously, our choice of F is not unique and the question arises as to whether or 
not there is a better metric to use than F. In the different setting of parameter 
estimation, the Fisher information converges to the Hessian, so it is asymptotically 
efficient [1], ie attains the Cramer-Rao bound. Our situation is more similar to 
the blind source separation case where a metric is chosen based on the underlying 
parameter space [1] (of non-singular matrices) and is not necessarily asymptotically 
efficient (ie does not attain second order convergence). As argued by Mackay [7], 
one strategy is to pull a metric out of the data-independent terms of the Hessian (if 
possible), and in fact, Mackay [7] arrives at the same result as Amari for the blind 
source separation case. 

Although the previous sections argued that our choice is appropriate, we would like 
to understand how F relates to the Hessian V 2TJ(B), which, as shown in [5], has the 
form: 

sa 
(6) 

Unfortunately, all terms in this Hessian are data-dependent (ie are coupled to state­
action values) . It is clear that F does not capture any information from these last 
two terms, due to their VQ7r dependence. The first term might have some relation 
to F due the factor of V27f. However, the Q values weight this curvature of our 
policy and our metric is neglecting such weighting. 

Similar to the blind source separation case, our metric clearly does not necessarily 
converge to the Hessian and so it is not necessarily asymptotically efficient (ie does 
not attain a second order convergence rate). However, in general, the Hessian will 
not be positive definite and so the curvature it provides could be of little use until 
B is close to a local maxima. Conjugate methods would be expected to be more 
efficient near a local maximum. 

5 Experiments 

We first look at the performance of the natural gradient in a few simple MDPs 
before examining its performance in the more challenging MDP of Tetris. It is 
straightforward to estimate F in an online manner , since the derivatives V log 7f 

must be computed anyway to estimate VTJ(B). If the update rule 

f f- f + V log 7f(at; St,B)Vlog7f(at; St,Bf 

is used in a T-Iength trajectory, then fiT is a consistent estimate of F. In our 
first two examples, we do not concern ourselves with sampling issues and instead 
numerically integrate the exact derivative (Bt = Bo + J~ VTJ(BddB). In all of our 
simulations, the policies tend to become deterministic (V log 7f -+ 0) and to prevent 
F from becoming singular, we add about 10- 31 at every step in all our simulations. 

We simulated the natural policy gradient in a simple I-dimensional linear quadratic 
regulator with dynamics x(t + 1) = .7x(t) + u(t) + E(t) and noise distribution 
E ~ G(O,l). The goal is to apply a control signal u to keep the system at 
x = 0, (incurring a cost of X(t)2 at each step). The parameterized policy used 
was 7f(u; x, B) ex exp(Blx2 + B2X). Figure lA shows the performance improvement 
when the units of the parameters are scaled by a factor of 10 (see figure text). No­
tice that the time to obtain a score of about 22 is about three orders of magnitude 
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Figure 1: A) The cost Vs . 10glo(time) for an LQG (with 20 time step trajectories). 
The policy used was 7f(u; x, ()) ex: exp(()lslX2 + ()2S2X) where the rescaling constants, 
Sl and S2, are shown in the legend. Under equivalent starting distributions (()lSl = 
()2S2 = -.8) , the right-most three curves are generated using the standard gradient 
method and the rest use the natural gradient. B) See text. C top) The average 
reward vs. time (on a 107 scale) of a policy under standard gradient descent using 
the sigmoidal policy parameterization (7f(I; s, ()i) ex: exp(()i)/(1 + exp(()i)), with the 
initial conditions 7f(i , 1) = .8 and 7f(j, 1) = .1. C bottom) The average reward vs. 
time (unscaled) under standard gradient descent (solid line) and natural gradient 
descent (dashed line) for an early window of the above plot. D) Phase space plot 
for the standard gradient case (the solid line) and the natural gradient case (dashed 
line) . 

faster. Also notice that the curves under different rescaling are not identical. This 
is because F is not an invariant metric due to the weighting by Ps. 

The effects of the weighting by p(s) are particularly clear in a simple 2-state MDP 
(Figure IB), which has self- and cross-transition actions and rewards as shown. 
Increasing the chance of a self-loop at i decreases the stationary probability of j. 
Using a sigmoidal policy parameterization (see figure text) and initial conditions 
corresponding to p(i) = .8 and p(j) = .2, both self-loop action probabilities will ini­
tially be increased under a gradient rule (since one step policy improvement chooses 
the self-loop for each state). Since the standard gradient weights the learning to 
each parameter by p(s) (see equation 1), the self-loop action at state i is increased 
faster than the self loop probability at j, which has the effect of decreasing the ef­
fective learning-rate to state j even further. This leads to an extremely fiat plateau 
with average reward 1 (shown in Figure lC top), where the learning for state j is 
thwarted by its low stationary probability. This problem is so severe that before the 
optimal policy is reached p(j) drops as low as 10-7 from its initial value of .2, which 
is disastrous for sampling methods. Figure 1 C bottom shows the performance of 
the natural gradient (in a very early time window of Figure lC top). Not only is 
the time to the optimal policy decreased by a factor of 107 , the stationary distri­
bution of state i never drops below .05. Note though the standard gradient does 
increase the average reward faster at the start, but only to be seduced by sticking 
at state i. The phase space plot in Figure ID shows the uneven learning to the 
different parameters, which is at the heart of the problem. In general, if a table 
lookup Boltzmann policy is used (ie 7f( a; s , ()) ex: exp( () sa)), it is straightforward to 
show that the natural gradient weights the components of ~'fJ uniformly (instead of 
using p(s)), thus evening evening out the learning to all parameters. 

The game of Tetris provides a challenging high dimensional problem. As shown in 
[3], greedy policy iteration methods using a linear function approximator exhibit 
drastic performance degradation after providing impressive improvement (see [3] 
for a description of the game, methods, and results). The upper curve in Figure2A 
replicates these results. Tetris provides an interesting case to test gradient methods, 
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Figure 2: A) Points vs. 10g(Iterations) . The top curve duplicates the same results 
in [3] using the same features (which were simple functions of the heights of each 
column and the number of holes in the game). We have no explanation for this per­
formance degradation (nor does [3]). The lower curve shows the poor performance 
of the standard gradient rule. B) The curve on the right shows the natural policy 
gradient method (and uses the biased gradient method of [2] though this method 
alone gave poor performance). We found we could obtain faster improvement and 
higher asymptotes if the robustifying factor of 10- 3 I that we added to F was more 
carefully controlled (we did not carefully control the parameters). C) Due to the 
intensive computational power required of these simulations we ran the gradient in a 
smaller Tetris game (height of 10 rather than 20) to demonstrate that the standard 
gradient updates (right curve) would eventually reach the same performance of the 
natural gradient (left curve). 

which are guaranteed not to degrade the policy. We consider a policy compatible 
with the linear function approximator used in [3] (ie 7f(a;s, (}) ex: exp((}T¢sa) where 
¢sa are the same feature vectors). The features used in [3] are the heights of each 
column, the differences in height between adjacent columns, the maximum height, 
and the number of 'holes' . The lower curve in Figure 2A shows the particularly 
poor performance of the standard gradient method. In an attempt to speed learn­
ing, we tried a variety of more sophisticated methods to no avail, such as conjugate 
methods, weight decay, annealing, the variance reduction method of [2], the Hes­
sian in equation 6, etc. Figure 2B shows a drastic improvement using the natural 
gradient (note that the timescale is linear). This performance is consistent with our 
theoretical results in section 3, which showed that the natural gradient is moving 
toward the solution of a greedy policy improvement step. The performance is some­
what slower than the greedy policy iteration (left curve in Figure 2B) which is to be 
expected using smaller steps. However, the policy does not degrade with a gradient 
method. Figure 2 shows that the performance of the standard gradient rule (right 
curve) eventually reaches the the same performance of the natural gradient, in a 
scaled down version of the game (see figure text). 

6 Discussion 

Although gradient methods cannot make large policy changes compared to greedy 
policy iteration, section 3 implies that these two methods might not be that dis­
parate, since a natural gradient method is moving toward the solution of a policy 
improvement step. With the overhead of a line search, the methods are even more 
similar. The benefit is that performance improvement is now guaranteed, unlike in 
a greedy policy iteration step. 

It is interesting, and unfortunate, to note that the F does not asymptotically con­
verge to the Hessian, so conjugate gradient methods might be more sensible asymp­
totically. However, far from the converge point, the Hessian is not necessarily 



informative, and the natural gradient could be more efficient (as demonstrated in 
Tetris). The intuition as to why the natural gradient could be efficient far from the 
maximum, is that it is pushing the policy toward choosing greedy optimal actions. 
Often, the region (in parameter space) far from from the maximum is where large 
performance changes could occur. Sufficiently close to the maximum, little perfor­
mance change occurs (due to the small gradient), so although conjugate methods 
might converge faster near the maximum, the corresponding performance change 
might be negligible. More experimental work is necessary to further understand the 
effectiveness of the natural gradient. 
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