
Policy Gradient Methods

Policy-Gradient Methods

� Policy-Gradient techniques attempt at direct optimization of
expected return

Eπθ
[Gt ]

for parameterized stochastic policy

πθ(a|s) = P[At = a|St = s, θ].

� Policy-function is also called actor.

� We will discuss actor-only (optimize parametric policy) and
actor-critic (learn both policy and critic parameters in
tandem) methods.
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Policy Gradient Methods

One-Step MDPs/Gradient Bandits

Let pθ(y) denote probability of an action/output, Δ(y) be the
reward/quality of an output.

Objective: Epθ [Δ(y)]

Gradient: ∇θEpθ [Δ(y)] = ∇θ

�

y

pθ(y)Δ(y)

=
�

y

∇θpθ(y)Δ(y)

=
�

y

pθ(y)

pθ(y)
∇θpθ(y)Δ(y)

=
�

y

pθ(y)∇θ log pθ(y)Δ(y)

= Epθ [Δ(y)∇θ log pθ(y)].
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Policy Gradient Methods

Score Function Gradient Estimator for Bandit

� Bandit Gradient Ascent:
� Sample yi ∼ pθ,
� Update θ ← θ + α(Δ(yi )∇θ log pθ(yi )).

� Update by stochastic gradient gi = Δ(yi )∇θ log pθ(yi ) yields
unbiased estimator of Epθ [Δ(y)]

� Intuition: ∇θ log pθ(y) is called the score function.
� Moving in the direction of gi pushes up the score of the sample

yi in proportion to its reward Δ(yi ).
� In RL terms: High reward samples are weighted higher -

reinforced!
� Estimator is valid even if Δ(y) is non-differentiable.
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Policy Gradient Methods

Score Function Gradient Estimator for MDPs

Let y = S0,A0,R1, . . . ,RT ∼ πθ be an episode, and
R(y) = R1 + γR2 + . . .+ γT−1RT =

�T
t=1 γ

t−1Rt be its total
discounted reward.

� Objective: Eπθ
[R(y)].

� Gradient: Eπθ
[R(y)

�T−1
t=0 ∇θ log πθ(At |St)].

� Reinforcement Gradient Ascent:
� Sample episode y = S0,A0,R1, . . . ,RT ∼ πθ,
� Obtain reward R(y) =

�T
t=1 γ

t−1Rt ,
� Update θ ← θ + α(R(y)

�T−1
t=0 ∇θ log πθ(At |St)).
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Policy Gradient Methods

General Form of Policy Gradient Algorithms

Formalized for expected per time-step reward with respect to
action-value qπθ

(St ,At).

� Objective: Eπθ
[qπθ

(St ,At)].

� Gradient: Eπθ
[qπθ

(St ,At)∇θ log πθ(At |St)].
� Policy Gradient Ascent:

� Sample episode y = S0,A0,R1, . . . ,RT ∼ πθ.
� For each time step t:

� Obtain reward qπθ (St ,At),
� Update θ ← θ + α(qπθ (St ,At)∇θ log πθ(At |St)).

Reinforcement Learning, Winter 2017/19 33(40)



Policy Gradient Methods

Policy Gradient Algorithms

� General form for expected per time-step return qπθ
(St ,At) is

known as Policy Gradient Theorem [Sutton et al., 2000].

� Since qπθ
(s, a) is normally not known, one can use the actual

discounted return Gt at time step t, calculated from sampled
episode. This leads to the REINFORCE algorithm
[Williams, 1992].

� Problems of Policy Gradient Algorithms, esp. REINFORCE:
� Large variance in discounted returns calculated from sampled

episodes.
� Each gradient update is done independently of past gradient

estimates.
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Policy Gradient Methods

Variance Reduction by Baselines

� Variance of REINFORCE can be reduced by comparison of
actual return Gt to a baseline b(s) for state s that is constant
with respect to actions a. Example: average return so far.

� Update :

θ ← θ + α(Gt − b(St))∇θ log πθ(At |St)).

� Can be interpreted as Control Variate [Ross, 2013]:
� Goal is to augment random variable X (= stochastic gradient)

with highly correlated variable Y such that
Var(X − Y ) = Var(X ) + Var(Y )− 2Cov(X ,Y ) is reduced.

� Gradient remains unbiased since E[X − Y + E[Y ]] = E[X ].

Exercise: Show that E[Y ] = 0 for constant baselines.

Reinforcement Learning, Winter 2017/19 35(40)



Policy Gradient Methods

Actor-Critic Methods
� Learning a critic in order to get an improved estimate of the

expected return will also reduce variance.
� Critic: TD(0) update for linear approximation

qπθ
(s, a) ≈ qw (s, a) = φ(s, a)�w .

� Actor: Policy gradient update reinforced by qw (s, a).

� Simple Actor-Critic [Konda and Tsitsiklis, 2000]:
� Sample a ∼ πθ.
� For each step t:

� Sample reward r ∼ Ra
s , transition s � ∼ Pa

s,·, action
a� ∼ πθ(s

�, ·),
� δ ← r + γqw (s

�, a�)− qw (s, a),
� θ ← θ + α∇θ log πθ(a|s)qw (s, a),
� w ← w + βδφ(s, a),
� a ← a�, s ← s �.

Exercise: What is the difference between REINFORCE and
Actor-Critic in terms of number of updates per step?
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Policy Gradient Methods

Bias and Compatible Function Approximation

� Approximating qπθ
(s, a) ≈ qw (s, a) introduces bias. Unless

1. Value approximator is compatible with the policy, i.e., the
change in value equals the score function s.t.

∇wqw (s, a) = ∇θ log πθ(s, a),

2. Parameters w are set to minimize the squared error

� = Eπθ
[(qπθ

(s, a)− qw (s, a))
2],

� Then policy gradient is exact:

Eπθ
[qπθ

(s, a)∇θ log πθ(a|s)] = Eπθ
[qw (s, a)∇θ log πθ(a|s)].

Exercise: Prove the compatible function approximation property!
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Policy Gradient Methods

Advantage Actor-Critic

� Combine idea of baseline with actor-critic by using advantage
function that compares action-value function qπθ

(s, a) to
state-value function vπθ

(s) = Ea∼π[qπθ
(s, a)].

� Use approximate TD error

δw = r + γvw (s
�)− vw (s),

where state-value is approximated by vw (s), and action-value
is approximated by sample qw (s

�) = r + γvw (s
�).

� Update Actor: θ ← θ + α∇θ log πθ(a|s)(qw (s �)− vw (s)).

� Update Critic: w = argminw (qw (s
�)− vw (s))

2.
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Policy Gradient Methods

Summary: Policy-Gradient Methods

� Build upon huge knowlegde in stochastic optimization which
provides excellent theoretical understanding of
convergence properties.

� Gradient-based techniques are model-free since MDP
transation matrix is not dependent on θ.

� Directly applicable to continuous output spaces and
stochastic policies.

� Problem of high variance in actor-only methods can be
mitigated by the critic’s low-variance estimate of expected
return.
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Summary

Overall Summary and Outlook

What have we covered:

� Policy evaluation (a.k.a. prediction) using DP

� Policy optimization (a.k.a. control) using Value-based
techniques of DP, MC, or both: TD.

� Policy-gradient techniques for direct stochastic optimization
of parametric policies.

What did we leave out:

� Proofs: See Bertsekas & Tsitsiklis and papers on reading list.

� Subleties of exploration/exploitation (selecting random start
states in MC vs. random actions in PG), on/off policy
learning (SARSA vs. Q-learning),...

� See papers on reading list.
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