Policy Gradient Methods

Policy-Gradient Methods

 Policy-Gradient techniques attempt at direct optimization of expected return

 $\mathbb{E}_{\pi_{\theta}}[G_t]$

for parameterized stochastic policy

 $\pi_{\theta}(a|s) = P[A_t = a|S_t = s, \theta].$

- Policy-function is also called actor.
- We will discuss actor-only (optimize parametric policy) and actor-critic (learn both policy and critic parameters in tandem) methods.

One-Step MDPs/Gradient Bandits

Let $p_{\theta}(y)$ denote probability of an action/output, $\Delta(y)$ be the reward/quality of an output.

Objective:
$$\mathbb{E}_{p_{\theta}}[\Delta(y)]$$

Gradient: $\nabla_{\theta}\mathbb{E}_{p_{\theta}}[\Delta(y)] = \nabla_{\theta}\sum_{y} p_{\theta}(y)\Delta(y)$
 $= \sum_{y} \nabla_{\theta}p_{\theta}(y)\Delta(y)$
 $= \sum_{y} \frac{p_{\theta}(y)}{p_{\theta}(y)}\nabla_{\theta}p_{\theta}(y)\Delta(y)$
 $= \sum_{y} p_{\theta}(y)\nabla_{\theta}\log p_{\theta}(y)\Delta(y)$
 $= \mathbb{E}_{p_{\theta}}[\Delta(y)\nabla_{\theta}\log p_{\theta}(y)].$

Score Function Gradient Estimator for Bandit

Bandit Gradient Ascent:

- Sample y_i ~ p_θ,
- ▶ Update $\theta \leftarrow \theta + \alpha(\Delta(y_i)\nabla_{\theta} \log p_{\theta}(y_i)).$
- Update by stochastic gradient g_i = Δ(y_i)∇_θ log p_θ(y_i) yields unbiased estimator of E_{p_θ}[Δ(y)]
- ▶ Intuition: $\nabla_{\theta} \log p_{\theta}(y)$ is called the **score function**.
 - Moving in the direction of g_i pushes up the score of the sample y_i in proportion to its reward Δ(y_i).
 - In RL terms: High reward samples are weighted higher reinforced!
 - Estimator is valid even if $\Delta(y)$ is non-differentiable.

Score Function Gradient Estimator for MDPs

Let $y = S_0, A_0, R_1, \dots, R_T \sim \pi_{\theta}$ be an episode, and $R(y) = R_1 + \gamma R_2 + \dots + \gamma^{T-1}R_T = \sum_{t=1}^T \gamma^{t-1}R_t$ be its total discounted reward.

- Objective: $\mathbb{E}_{\pi_{\theta}}[R(y)]$.
- Gradient: $\mathbb{E}_{\pi_{\theta}}[R(y) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(A_t | S_t)].$

Reinforcement Gradient Ascent:

- ▶ Sample episode $y = S_0, A_0, R_1, ..., R_T \sim \pi_{\theta}$, ▶ Obtain reward $R(y) = \sum_{t=1}^{T} \gamma^{t-1} R_t$, ▶ Update $\theta \leftarrow \theta + \alpha(R(y) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(A_t | S_t))$.

General Form of Policy Gradient Algorithms

Formalized for expected per time-step reward with respect to action-value $q_{\pi_{\theta}}(S_t, A_t)$.

- Objective: $\mathbb{E}_{\pi_{\theta}}[q_{\pi_{\theta}}(S_t, A_t)].$
- Gradient: $\mathbb{E}_{\pi_{\theta}}[q_{\pi_{\theta}}(S_t, A_t)\nabla_{\theta}\log \pi_{\theta}(A_t|S_t)].$

Policy Gradient Ascent:

- Sample episode $y = S_0, A_0, R_1, \ldots, R_T \sim \pi_{\theta}$.
- ▶ For each time step *t*:
 - Obtain reward $q_{\pi_{\theta}}(S_t, A_t)$,
 - ▶ Update $\theta \leftarrow \theta + \alpha(q_{\pi_{\theta}}(S_t, A_t)\nabla_{\theta} \log \pi_{\theta}(A_t|S_t)).$

Policy Gradient Algorithms

- General form for expected per time-step return q_{πθ}(S_t, A_t) is known as **Policy Gradient Theorem** [Sutton et al., 2000].
- Since q_{πθ}(s, a) is normally not known, one can use the actual discounted return G_t at time step t, calculated from sampled episode. This leads to the **REINFORCE** algorithm [Williams, 1992].
- Problems of Policy Gradient Algorithms, esp. REINFORCE:
 - Large variance in discounted returns calculated from sampled episodes.
 - Each gradient update is done independently of past gradient estimates.

Variance Reduction by Baselines

- Variance of REINFORCE can be reduced by comparison of actual return G_t to a baseline b(s) for state s that is constant with respect to actions a. Example: average return so far.
- ► Update :

$$\theta \leftarrow \theta + \alpha (G_t - b(S_t)) \nabla_{\theta} \log \pi_{\theta} (A_t | S_t)).$$

- Can be interpreted as Control Variate [Ross, 2013]:
 - Goal is to augment random variable X (= stochastic gradient) with highly correlated variable Y such that Var(X − Y) = Var(X) + Var(Y) − 2Cov(X, Y) is reduced.
 - Gradient remains unbiased since $\mathbb{E}[X Y + \mathbb{E}[Y]] = \mathbb{E}[X]$.

Exercise: Show that $\mathbb{E}[Y] = 0$ for constant baselines.

Actor-Critic Methods

- Learning a critic in order to get an improved estimate of the expected return will also reduce variance.
 - Critic: TD(0) update for linear approximation q_{π₀}(s, a) ≈ q_w(s, a) = φ(s, a)^Tw.
 - Actor: Policy gradient update reinforced by $q_w(s, a)$.

Simple Actor-Critic [Konda and Tsitsiklis, 2000]:

- ► Sample a ~ π_θ.
- ▶ For each step t:
 - ▶ Sample reward $r \sim \mathcal{R}_{s}^{a}$, transition $s' \sim \mathcal{P}_{s,\cdot}^{a}$, action $a' \sim \pi_{\theta}(s', \cdot)$,
 - ► $\delta \leftarrow r + \gamma q_w(s', a') q_w(s, a),$
 - $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a|s) q_w(s,a),$
 - $w \leftarrow w + \beta \delta \phi(s, a)$,
 - ▶ $a \leftarrow a', s \leftarrow s'$.

Exercise: What is the difference between REINFORCE and Actor-Critic in terms of number of updates per step?

Bias and Compatible Function Approximation

- Approximating $q_{\pi_{\theta}}(s, a) \approx q_w(s, a)$ introduces bias. Unless
 - Value approximator is compatible with the policy, i.e., the change in value equals the score function s.t.

$$abla_w q_w(s, a) =
abla_\theta \log \pi_\theta(s, a),$$

2. Parameters w are set to minimize the squared error

$$\epsilon = \mathbb{E}_{\pi_{\theta}}[(q_{\pi_{\theta}}(s,a) - q_w(s,a))^2],$$

Then policy gradient is exact:

$$\mathbb{E}_{\pi_{\theta}}[q_{\pi_{\theta}}(s,a)\nabla_{\theta}\log\pi_{\theta}(a|s)] = \mathbb{E}_{\pi_{\theta}}[q_{w}(s,a)\nabla_{\theta}\log\pi_{\theta}(a|s)].$$

Exercise: Prove the compatible function approximation property!

Reinforcement Learning, Winter 2017/19

37(40)

Advantage Actor-Critic

- Combine idea of baseline with actor-critic by using advantage function that compares action-value function q_{πθ}(s, a) to state-value function v_{πθ}(s) = E_{a∼π}[q_{πθ}(s, a)].
- Use approximate TD error

$$\delta_{w} = r + \gamma v_{w}(s') - v_{w}(s),$$

where state-value is approximated by $v_w(s)$, and action-value is approximated by sample $q_w(s') = r + \gamma v_w(s')$.

- ▶ Update Actor: $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a|s)(q_w(s') v_w(s)).$
- ▶ Update Critic: w = arg min_w(q_w(s') v_w(s))².

Summary: Policy-Gradient Methods

- Build upon huge knowlegde in stochastic optimization which provides excellent theoretical understanding of convergence properties.
- Gradient-based techniques are model-free since MDP transation matrix is not dependent on θ.
- Directly applicable to continuous output spaces and stochastic policies.
- Problem of high variance in actor-only methods can be mitigated by the critic's low-variance estimate of expected return.

Overall Summary and Outlook

What have we covered:

- Policy evaluation (a.k.a. prediction) using DP
- Policy optimization (a.k.a. control) using Value-based techniques of DP, MC, or both: TD.
- Policy-gradient techniques for direct stochastic optimization of parametric policies.

What did we leave out:

- ▶ Proofs: See Bertsekas & Tsitsiklis and papers on reading list.
- Subleties of exploration/exploitation (selecting random start states in MC vs. random actions in PG), on/off policy learning (SARSA vs. Q-learning),...
- See papers on reading list.

References

- Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada.
- Ross, S. M. (2013). Simulation. Elsevier, fifth edition.
- Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning. An Introduction. The MIT Press.
- Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. In Advances in Neural Information Processings Systems (NIPS), Vancouver, Canada.
- Szepesvári, C. (2009). Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool.
- Watkins, C. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.
- Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8:229–256.