Policy Gradient Meth.

Policy-Gradient Methods

» Policy-Gradient techniques attempt at direct optimization of

expected return
EW.@ [Gt]

for parameterized stochastic policy

mo(als) = P[A: = a|S; = s, 0].

» Policy-function is also called actor.

> We will discuss actor-only (optimize parametric policy) and
actor-critic (learn both policy and critic parameters in
tandem) methods.
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One-Step MDPs/Gradient Bandits

Let py(y) denote probability of an action/output, A(y) be the
reward/quality of an output.

Objective: Ep, [A(y)]
Gradient: VE,[A(y)] = Vo Z po(y)A(y)

y
= Vops(y)A(y)
y

)

=" pa(y)Valog pa(y)A(y)
y

=E,,[A(y) Vg log pa(y)].

=y Zz(y )Y oms()AL)
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Policy Gradient Methods

Score Function Gradient Estimator for Bandit

» Bandit Gradient Ascent:
> Sample y; ~ py,
» Update 0 < 6 + a(A(yi) Vo log po(yi))-

» Update by stochastic gradient g; = A(y;) Vg log ps(y;i) yields
unbiased estimator of Ep, [A(y)]
> Intuition: Vylog ps(y) is called the score function.
» Moving in the direction of g; pushes up the score of the sample
y; in proportion to its reward A(y;).
> In RL terms: High reward samples are weighted higher -
reinforced!
» Estimator is valid even if A(y) is non-differentiable.
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Policy Gradient Methods

Score Function Gradient Estimator for MDPs

Let y = So, Ao, R1, ..., RT ~ mp be an episode, and
R(y)=Ri+ R+ ... +7T 'Rr = L, 7" 'R, be its total
discounted reward.

> Objective: Er, [R(y)].

> Gradient: E,[R(y) ZZ;OI Vo log mg(Ae|St)]-

» Reinforcement Gradient Ascent:
» Sample episode y = SO,A(%J Ri,...,RT ~ mp,
> Obtain reward R(y) = > ,_; V' 'R,
> Update 0« 0+ o(R(y) 15" Vo log mo(A:|St)).
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Policy Gradient Meth.

General Form of Policy Gradient Algorithms

Formalized for expected per time-step reward with respect to
action-value g, (S, At).

> Objective: Er,[qr,(St, At

> Gradient: Er,[qnr, (St, At) Ve log mg(A¢|St)]-

» Policy Gradient Ascent:
» Sample episode y = Sp, Ao, R1, ..., RT ~ 7.
» For each time step t:
» Obtain reward qr,(St, Ar),
» Update 0 < 0 + a(Gn, (St, At) Vo log mo(Ac|St)).
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Policy Gradient Methods

Policy Gradient Algorithms

> General form for expected per time-step return qr,(St, At) is
known as Policy Gradient Theorem [Sutton et al., 2000].
> Since g, (s, a) is normally not known, one can use the actual
discounted return G; at time step t, calculated from sampled
episode. This leads to the REINFORCE algorithm
[Williams, 1992].
> Problems of Policy Gradient Algorithms, esp. REINFORCE:
» Large variance in discounted returns calculated from sampled
episodes.
» Each gradient update is done independently of past gradient
estimates.
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Policy Gradient Methods

Variance Reduction by Baselines

» Variance of REINFORCE can be reduced by comparison of
actual return G; to a baseline b(s) for state s that is constant
with respect to actions a. Example: average return so far.

» Update :

0+ 6+ a(Gt — b(St))Vg |0g WQ(Atlst)).

> Can be interpreted as Control Variate [Ross, 2013]:
» Goal is to augment random variable X (= stochastic gradient)
with highly correlated variable Y such that
Var(X — Y) = Var(X) + Var(Y) — 2Cov(X, Y) is reduced.
> Gradient remains unbiased since E[X — Y + E[Y]] = E[X].

Exercise: Show that E[Y] = 0 for constant baselines.
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Actor-Critic Methods

> Learning a critic in order to get an improved estimate of the
expected return will also reduce variance.
» Critic: TD(0) update for linear approximation
q‘ll's(s7 a) =~ qw(57 a) = ¢(57 a)TW'
» Actor: Policy gradient update reinforced by gy (s, a).

> Simple Actor-Critic [Konda and Tsitsiklis, 2000]:
» Sample a ~ my.
» For each step t:
> Sample reward r ~ RZ, transition s’ ~ PZ_, action
a ~mo(s',),
0 r+7qu(s’, @) = qu(s, a),
0 < 0 + oV logmo(als)qu(s, a),
w  w+ Bo¢(s, a),
a+a, s+ s

Exercise: What is the difference between REINFORCE and
Actor-Critic in terms of number of updates per step?

vvyVvyy
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Policy Gradient Meth.

Bias and Compatible Function Approximation

> Approximating g, (s,a) = qu(s, a) introduces bias. Unless
1. Value approximator is compatible with the policy, i.e., the
change in value equals the score function s.t.

Vwqw(s,a) = Vglog (s, a),
2. Parameters w are set to minimize the squared error
¢ = Ex,[(gn, (5, 2) — qu(s. 2))’],

» Then policy gradient is exact:

By [dry (5, 2) Vi log m(a]s)] = Er, [qu (s, a) Ve log mg(als)]-

Exercise: Prove the compatible function approximation property!
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Policy Gradient Methods

Advantage Actor-Critic

» Combine idea of baseline with actor-critic by using advantage
function that compares action-value function g, (s, a) to
state-value function v, (s) = Eaur[gn, (s, a)].

» Use approximate TD error
S =1+ 7w (s') — viu(s),

where state-value is approximated by v, (s), and action-value
is approximated by sample gy (s') = r + yvu (s').
» Update Actor: 0 < 0 + aVglog mg(als)(qu(s’) — vw(s)).
Update Critic: w = arg miny,(qw(s’) — v (s))%.

v

Reinforcement Learning, Winter 2017/19



Policy Gradie thods

Summary: Policy-Gradient Methods

> Build upon huge knowlegde in stochastic optimization which
provides excellent theoretical understanding of
convergence properties.

» Gradient-based techniques are model-free since MDP
transation matrix is not dependent on 6.

> Directly applicable to continuous output spaces and
stochastic policies.

» Problem of high variance in actor-only methods can be
mitigated by the critic’s low-variance estimate of expected
return.
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Overall Summary and Outlook

What have we covered:
> Policy evaluation (a.k.a. prediction) using DP

> Policy optimization (a.k.a. control) using Value-based
techniques of DP, MC, or both: TD.

» Policy-gradient techniques for direct stochastic optimization
of parametric policies.
What did we leave out:
> Proofs: See Bertsekas & Tsitsiklis and papers on reading list.

> Subleties of exploration/exploitation (selecting random start
states in MC vs. random actions in PG), on/off policy
learning (SARSA vs. Q-learning), ...

> See papers on reading list.
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