Markov Decision Processes

Formalizing User/Environment: Markov
Decision Processes (MDPs)

A Markov decision process is a tuple (S, A, P, R) where
> S is a set of states,
» A is a finite set of actions,
> P is a state transition probability matrix s.t.
P2, =P[St1 =55t =5,Ac = 4],

> R is a reward function s.t. R2 = E[Ry4+1|S: = s, Ar = 3].

Reinforcement Learning, Winter 2017/19



Markov Decision Pre

Dynamics of MDPs

One-step dynamics of the environment under the Markov property
is completely specified by probability distribution over pairs of next
state and reward s, r, given state and action s, a:

> p(s'rls,a) = P[Str1 =5, Rey1 = r|Se = 5, Ar = a].

Exercise: Specify P2, and R2 in terms of p(s', r|s, a).

Reinforcement Learning, Winter 2017/19



Markov Decision P!

Formalizing Agent/System: Policies

A stochastic policy is a distribution over actions given states s.t.
> m(als) = P[A: = a|S: = s].
> A policy completely specifies the behavior of an agent/system.

» Policies are parameterized 7y, e.g. by a linear model or a
neural nework - we use 7 to denote 7y if unambiguous.

> Deterministic policies a = 7(s) also possible.

Reinforcement Learning, Winter 2017/19




Dynamic Programm

Policy Evaluation and Policy Optimization

Two central tasks in RL:
> Policy evaluation (a.k.a. prediction): Evaluate the
expected reward for a given policy.
> Policy optimization (a.k.a. learning/control): Find the
optimal policy / optimize a parametric policy under the
expected reward criterion.

Reinforcement Learning, Winter 2017/19



Dynamic Programm

Return and Value Functions

» The total discounted return from time-step t for discount
ve€[0,1]is
» Gt = Rep1+ YRz + PRz + .o = D o Y Regier.
> The action-value function g, (s, a) on an MDP is the
expected return starting from state s, taking action a, and
following policy 7 s.t.
> Gn(s,a) = Ex[G|S: = s, Ar = a).
> The state-value function v(s) on an MDP is the expected
return starting from state s and following policy 7 s.t.
> Vr(s) = Ex[G|St = 5] = Eanr[gx(s, a)].

Reinforcement Learning, Winter 2017/19



Dynamic Program

Bellman Expectation Equation

The state-value function can be decomposed into immediate
reward plus discounted value of successor state s.t.

V7r(5) = EF[Rt+1 + 'YV‘lr(St+1)|5t = 5]

= m(als) (Ri +7) Pl Vn(S')> :

acA s'eS

In matrix notation:

Ve =R" +~vP"Vr.

Reinforcement Learning, Winter 2017/19



Dynamic Programm

Policy Evaluation by Linear Programming

The value of v; can be found directly by solving the linear
equations of the Bellman Expectation Equation:

> Solving linear equations:

v, =(1—~P")IR"

> Only applicable to small MDPs.

Reinforcement Learning, Winter 2017/19



Dynamic Program

Policy Evaluation by Dynamic Programming
(DP)

Value of v, can also be found by iterative application of Bellman
Expectation Equation:

> lterative policy evaluation:

Vi1 = R™ + P .

» Performs dynamic programming by recursive decomposition
of Bellman equation.

» Can be parallelized (or backed up asynchronously), thus
applicable to large MDPs.

» Converges to v.

Reinforcement Learning, Winter 2017/19



Dynamic Programm

Policy Optimization using Bellman Optimality
Equation

An optimal policy 7, can be found by maximizing over the optimal
action-value function g.(s, a) = maxs g(s, a) s.t.

() = argmax g.(s, a).
a

The optimal value functions are recursively related by the Bellman
Optimality Equation:

q«(s,a) = Er, [Res1 + max Gx(Se41,)[Se = 5, Ar = 3]

=RI+~ E Py max q:(s',d).
a
s'eS

Reinforcement Learning, Winter 2017/19



Dynamic Program

Policy Optimization by Value Iteration

The Bellman Optimality Equation is non-linear and requires
iterative solutions such as value iteration by dynamic programming:

» Value iteration for g-function:

qk+1(57 a) = R? +7 Z P;s’ mjx qk(sl7 a,)‘
s'eS

» Converges to g.(s, a).

Exercise: Write the g-value iterations in terms of matrix operations.

Reinforcement Learning, Winter 2017/19



Dynamic Programming

Summary: Dynamic Programming

> Earliest RL algorithms with well-defined convergence
properties.

» Bellman equation gives recursive decomposition for iterative
solution to various problems in policy evaluation and policy
optimization.

» Can be trivially parallelized or even run asynchronously.

> We need to know a full MDP model with all transitions
and rewards, and touch all of them in learning!

Reinforcement Learning, Winter 2017/19



