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Goals

1 introduce online learning

2 introduce the notion of regret

3 present basic algorithms

4 create building blocks for many imitation learning algorithms
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Real world online learning tasks

n advertising (which ad to display)

n medical treatment (which drug to prescribe)
n design/functionality rollouts (works or not)
n spam/malware filtering (filter or keep)
n stock market (sell or acquire bonds)
n network routing (which path to take)
n compression (what’s the next symbol)
n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information
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Relation to batch learning

Batch learning

many i.i.d examples D = {xi, yi}Ni=1

define some loss `(D) (e.g. negative log-likelihood, square error)

learn a model by `(D)→ min

deploy on a test set

Online learning

one example xt

predict ŷt

get feedback

suffer some penalty `t(xt, ŷt)

improve the model

repeat

n note: no training/testing set distinction
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improve the model

repeat

n note: no training/testing set distinction
| October 10, 2018 4 / 41



Examples

input xt ∈ X input space

truth yt ∈ Y truth space

prediction ŷt ∈ P decision space

X Y P penalty/loss

online regression Rd R R |yt − ŷt|
online classification Rd {1, . . . ,K} {1, . . . ,K} [[yt 6= ŷt]]

expert advice RN Rd {1, . . . , N} yt[ŷt]
structured prediction Km Km Km

∑m
i=1[[y

i
t 6= ŷit]]
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structured prediction Km Km Km
∑m

i=1[[y
i
t 6= ŷit]]
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online classification Rd {1, . . . ,K} {1, . . . ,K} [[yt 6= ŷt]]
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Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©

á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s
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Why online learning?

not only a question of resources:

n the larger the data, the harder it is

á to guarantee stationarity
á to ensure that test/train instances come from the same D
á to guarantee i.i.d
á to ensure labels are stochastic as well

n hence algorithms need to be adaptive

n frequent re-training is not always an option (because resources, ...)
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Advantages

Online learning

one example xt

predict ŷt

get feedback

suffer some penalty `t(xt, ŷt)

improve the model

repeat

n small memory footprint

n faster updates

n faster adaptation

n better test performance (in a certain sense)
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The space of online learning

n environment

á i.i.d assumption is convenient
á often cannot be guaranteed or is obviously violated
á sometimes we assume nothing about distribution: ‘adversarial case’

n feedback

á full information is best
á but correct labels are expensive and slow to get
á often partial feedback is all you have: ‘bandit case’

n structure

á no state (important but rare case)
á usually there is some state or context
á structured spaces (actions change the environment)
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The space of online learning algorithms

feedback

environment

structure

IL is at the frontal plane (., ., MDP)

[Seldin’15]
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The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state
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MDP

expert advice

adversarial bandits
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IL is at the frontal plane (., ., MDP)
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Adversarial Environment with Full Information

(adversarial just means there are no statistical assumptions)
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Measure of success

Online learning protocol

1: for t = 0, . . . do
2: observe xt (if available)
3: predict ŷt
4: suffer loss `t(ŷt)
5: update

n `t are arbitrary (e.g., does not mean these are uniformly distributed)

n could be random or non-random, depend on previous history

n we want algorithms that work in any case

What about the goal?

n no training set, so cannot minimize loss over training set

n even if we could, does not always make sense as `t can be anything

á measure of success has to be calculated w.r.t. to the whole
interaction, not just some end objective
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Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’
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Adversary restriction

Different definitions of regret

n regret is a tool to analyze a problem,
to test it under different assumptions

n w/o any restrictive assumptions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly
n different regret definitions than reflect our knowledge about the

environment:

1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h
∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =
T∑
t=1

`t(wt)−min
h∈H

T∑
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`t(h)
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Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1
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RT =
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t=1

|yt − ŷt| −min
h∈H

T∑
t=1

|yt − h(xt)|

n take simplest H = {h0, h1}, where ha ≡ a (constant, 0 or 1, function)

n Exercise: can you make the learner always lose? [Shalev-Shwartz’12]

n wait until ŷt and set yt = 1− ŷt
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| October 10, 2018 15 / 41



Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
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n for any h ∈ {h0(·), h1(·)}, minh∈H
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Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4:

5: predict ŷt = r
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}
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Consistent

1: Initialize V0 = H
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3: observe xt
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6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

Analysis:

n ∀t at least one h is removed if there was an error (and none if not)

n 1 ≤ |Vt| ≤ |H| −#errors

n RT = #errors− 0 = #errors ≤ |H| − 1

n can we do better? hint: purge hypotheses faster
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Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

Halving

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose by majority vote r = argmaxr∈{0,1} |h ∈ Vt : h(xt) = r|
5: predict ŷt = r
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

Analysis:

n ∀t at least one half of Vt is removed if there was an error

n 1 ≤ |Vt| ≤ |H|/2#errors

n RT (h
∗) = #errors ≤ log2 |H|
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Failure of realizability for infinite |H|

Finiteness of H is crucial

Example

n real line X = (0, 1), thresholds H =
{
hθ : (0, 1)→ {0, 1}

}
n hθ(x) = sign(θ − x)
n ∃ a sequence of xt, yt generated by some θ on which the Halving

will have RT = T

Solution:

n maintain Lt (left) and Rt (right)

n L0 = 0, R0 = 1

n pick a random xt ∈ (Lt, Rt)

n receive ŷt
n report yt = 1− ŷt
n Rt+1 = xtyt +Rtŷt
n Lt+1 = xtŷt + Ltyt
n ∀t Rt − Lt > 0
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Randomization

n realizability assumption may be too harsh for our application
n instead add an element of surprise to our predictions:

á remember to require the adversary to commit to yt before seeing ŷt
á will change lines 4 and 5 in the Consistent

Consistent

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose h = argmaxr∈{0,1} |h ∈ Vt : h(xt) = r|
5: predict ŷt(wt) = h(xt)
6: receive true yt
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

RT =

T∑
t=1

Ept [[ŷt 6= yt]]−min
h∈H

T∑
t=1

[[h(xt) 6= yt]] ← note regret changed again

=
T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√
0.5T ln |H|
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Summary so far

n we had full information (i.e., we received the true yt)

n different adversary restrictions help to get regret bounds

á realizability + finiteness

Consistent RT ≤ |H| − 1
Halving RT ≤ log2 |H|

á randomization

Randomized RT ≤
√

0.5T ln |H|
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Learning with Experts’ Advice
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Learning with Experts’ Advice

n imagine horse-races

n you know nothing about horses §
n luckily you have knowledgeable friends willing to give you advice ©
n you need to apportion a fixed sum of money between them

á goal: minimize losses / maximize profit
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Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =
T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)
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Hedge algorithm

n if one of the friends is perfect can get ≤ log2N mistakes with Halving

n but making a mistake does not necessarily mean we should disqualify
a friend

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0
2: for t = 1, . . . do
3: compute pt =

wt∑N
i=1 wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i] ← “soft disqualification”

Theorem

For any `1, . . . , `T and any i ∈ {1, . . . , N}

RT =
T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] ≤
√
2T lnN + lnN
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Exercise

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0

2: for t = 1, . . . do

3: compute pt =
wt∑N

i=1
wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i]

Exercise: [Marchetti-Spaccamela’11]

n 3 experts: 1st playing always Rock, 2nd – Scissors, and 3rd – Paper

n your opponent plays first Rock T/3 times, then Scissors T/3 times
and then Paper T/3 times

0 T/3 2T/3 T

Rock Scissors Paper

n loss: -1 if won, +1 if lost, 0 if tie
n describe roughly 1) the most probable strategies played by Hedge,

2) when they switch and 3) the final distribution
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Relation to boosting

n Hedge inspired Boosting – a powerful concept of combining weak
algorithms into a strong one

n idea:

á treat your training examples as experts
á changing weights focuses attention on difficult examples

H Gödel Prize 2003
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Infinite hypotheses space
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Infinite hypotheses space

n we’ll introduce online convex optimization

n map some the problems we talked to the new language

Online convex optimization

1: Input: a convex set S ⊂ Rd
2: for t = 0, . . . do
3: predict wt ∈ S
4: receive a convex loss function `t : S → R
5: suffer loss `t(wt)
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Example: Online Regression

n measurements (features) X = Rd

n truths and decision Y = D = R
n common loss functions:

á `t(pt, yt) = (pt − yt)2
á `t(pt, yt) = |pt − yt|

n simple hypothesis class H = {x 7→
∑d

i=1w[i]x[i] : w ∈ Rd} (linear
predictors)

note: both loss functions `t are convex
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Example: Expert Advice

n measurements X = Rd, where xi is the advice of the ith expert

n truths Y = [0, 1]d

n decisions pt ∈ D = {1, . . . , d}
n loss function: `(p, y) = yt[pt]

n hypothesis class H = {h1, . . . , hd}, where hi(x) = i,∀x (constant
predictors)

note: since D is discrete, the losses `t are not convex
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Example: Online Classification

n measurements X
n binary truths and decisions Y = D = {0, 1}
n loss function: `t(pt, yt) = |pt − yt|
n finite hypothesis class H = {h1, . . . , hk}

note: since D is discrete, the losses `t are again not convex
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Convexification

n how can we map non-convex to convex tasks?

n randomization
n surrogate losses
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Convexification by Randomization

Expert Advice

n measurements X = Rd, where xi is the advice of the ith expert

n truths Y = [0, 1]d

n decisions pt ∈ D = {1, . . . , d}
n loss function: `(p, y) = yt[pt]

Mapping

n let the learner maintain a vector wt ∈ Rd, s.t.
∑d

i=1wt,i = 1

n the learner randomly picks the expert according to the distribution wt

n the adversary cannot base his `t on the sample from wt

n the loss suffered is now E[yt[pt]] = w>t yt (linear function)

Now the problem fits into online convex optimization with `t = w>t yt
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Convexification by Surrogate Losses

Online Classification with finite hypothesis class

n measurements xt ∈ X
n binary truths and decisions Y = D = {0, 1}
n loss function: `t(pt, yt) = |pt − yt|
n hypothesis class H = {h1, . . . , hk}

n let vt = (h1(xt), . . . , hk(xt)) ∈ {0, 1}k
n let the learner maintain a vector wt ∈ Rk, s.t.

∑k
i=1wt,i = 1

n prediction is done via

pt =

{
1, if w>t vt ≥ 1/2

0, if w>t vt < 1/2

n loss `t(w) = 2
∣∣w>vt − yt∣∣ I[pt 6= yt]

n `t is convex

n `t ≥ |pt − yt|
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Follow-The-Leader

Follow-The-Leader

∀t, wt = argmin
w∈S

t−1∑
i=1

`i(w)

+R(w)

Roughly the same in spirit as the Consistent algorithm.
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Follow-The-Leader

Follow-The-Regularized-Leader

∀t, wt = argmin
w∈S

t−1∑
i=1

`i(w)+R(w)

Roughly the same in spirit as the Consistent algorithm.

| October 10, 2018 34 / 41



Linear loss functions

n `t(w) = w>zt

n R(w) = 1
2ν ||w||

2
2

Exercise: find FTRL’s wt+1 in a closed form

wt+1 = −ν
t∑
i=1

zi = wt − νzt

wt+1 = wt − νzt
Linear loss is a special case that links FTRL to SGD.
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Lemma

Lemma

T∑
t=1

`t(wt)− `t(u) ≤ R(u)−R(w1) +

T∑
t=1

`t(wt)− `t(wt+1)

Proof idea:

n set f0 = R

n proof by induction
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Thm. for linear losses

Theorem

Consider FTRL, linear losses `t(w) = w>zt, and Euclidean regularization
R(w) = 1

2ν ||w||
2
2 and w, u ∈ S = Rd, then

RT (u) ≤
1

2ν
||u||22 + ν

T∑
t=1

||zt||22 .

Proof:
RT (u)

lemma
≤ R(u)−R(w1) +

T∑
t=1

`t(wt)− `t(wt+1)

≤ 1

2ν
||u||22 +

T∑
t=1

(wt − wt+1)
>zt

≤ 1

2ν
||u||22 + ν

T∑
t=1

||zt||22
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Linearization of convex functions

Convex functions: ∀u ∈ S, f(u) ≥ f(w) + (u− w)>z, z ∈ ∂f

For convex `t it follows that

T∑
t=1

`t(wt)− `t(u) ≤
T∑
t=1

w>t zt − u>zt.
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Apply FTRL to convex functions

n regret on convex functions is upper bounded by regret on tangent
linear functions

n if we use sub-gradients as linear approximations of convex functions,
we get the regret bound:

RT (u) ≤
1

2ν
||u||22 + ν

T∑
t=1

||∇`t||22 .

Turns out SGD is an instance of FTRL!

n if ||∇`t||22 ≤ TL2 and ||u||22 ≤ B, minimizing wrt. ν

RT (u) ≤ BL
√
2T .
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Regret bound

In general:

Theorem [Shalev-Shwartz’12]

For strongly convex R (not only quadratic), the regret w.r.t u ∈ S

T∑
t=1

`t(wt)−min
u∈S

T∑
t=1

`t(u) = O(
√
T )

Exact bound depends on

n the actual form of R

n the class of `t (linear, quadratic, etc.)

n other assumptions on S and `t

The average regret RT /T → 0.

| October 10, 2018 40 / 41



How to use this all?

n many IL algorithms call online learning as a subroutine

n all of deep learning is based on sub-gradient methods

n analysis and performance depends on the chosen
algorithm/regularization

n understanding these foundations allows being more informed when

á trying to improve IL approaches
á deciding on the regularization, loss functions etc.

[Shalev-Shwartz’12] “Online Learning and Online Convex Optimization”
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