Online Learning

- 1 introduce online learning
- 2 introduce the notion of regret
- **3** present basic algorithms
- 4 create building blocks for many imitation learning algorithms

Real world online learning tasks

advertising (which ad to display)

Real world online learning tasks

- advertising (which ad to display)
- medical treatment (which drug to prescribe)

- advertising (which ad to display)
- medical treatment (which drug to prescribe)
- design/functionality rollouts (works or not)

Real world online learning tasks

- advertising (which ad to display)
- medical treatment (which drug to prescribe)
- design/functionality rollouts (works or not)
- spam/malware filtering (filter or keep)

- advertising (which ad to display)
- medical treatment (which drug to prescribe)
- design/functionality rollouts (works or not)
- spam/malware filtering (filter or keep)
- stock market (sell or acquire bonds)

- advertising (which ad to display)
- medical treatment (which drug to prescribe)
- design/functionality rollouts (works or not)
- spam/malware filtering (filter or keep)
- stock market (sell or acquire bonds)
- network routing (which path to take)

- advertising (which ad to display)
- medical treatment (which drug to prescribe)
- design/functionality rollouts (works or not)
- spam/malware filtering (filter or keep)
- stock market (sell or acquire bonds)
- network routing (which path to take)
- compression (what's the next symbol)

- advertising (which ad to display)
- medical treatment (which drug to prescribe)
- design/functionality rollouts (works or not)
- spam/malware filtering (filter or keep)
- stock market (sell or acquire bonds)
- network routing (which path to take)
- compression (what's the next symbol)
- weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

Relation to batch learning

Batch learning

many i.i.d examples $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$ define some loss $\ell(\mathcal{D})$ (e.g. negative log-likelihood, square error) learn a model by $\ell(\mathcal{D}) \to \min$ deploy on a test set

Relation to batch learning

Batch learning

many i.i.d examples $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$

define some loss $\ell(\mathcal{D})$ (e.g. negative log-likelihood, square error) learn a model by $\ell(\mathcal{D}) \to \min$

deploy on a test set

Online learning

one example x_t predict \hat{y}_t get feedback suffer some penalty $\ell_t(x_t, \hat{y}_t)$ improve the model repeat

Relation to batch learning

Batch learning

many i.i.d examples $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$

define some loss $\ell(\mathcal{D})$ (e.g. negative log-likelihood, square error) learn a model by $\ell(\mathcal{D}) \to \min$

deploy on a test set

Online learning one example x_t predict \hat{y}_t get feedback suffer some penalty $\ell_t(x_t, \hat{y}_t)$ improve the model repeat

note: no training/testing set distinction

input $x_t \in \mathcal{X}$	input space
truth $y_t \in \mathcal{Y}$	truth space
prediction $\hat{y}_t \in \mathcal{P}$	decision space
<i>x y</i>	${\cal P}$ penalty/loss

	input $x_t \in \mathcal{X}$		input space	
	truth $y_t \in \mathcal{Y}$		truth space	
	prediction $\hat{y}_t \in \mathcal{P}$		decision space	
	X	${\mathcal Y}$	${\cal P}$	penalty/loss
online regression	\mathbb{R}^{d}	\mathbb{R}	\mathbb{R}	$ y_t - \hat{y}_t $

input $x_t \in \mathcal{X}$			input space		
truth $y_t \in \mathcal{Y}$		$y_t \in \mathcal{Y}$ t	truth space		
pre	ediction	$\hat{y}_t \in \mathcal{P}$ c	lecision space		
	X	\mathcal{Y}	\mathcal{P}	penalty/loss	

	input	$x_t \in \mathcal{X}$	input space	
	truth	$y_t \in \mathcal{Y}$ t	truth space	
pre	ediction	$\hat{y}_t \in \mathcal{P}$	decision space	
	X	${\mathcal Y}$	\mathcal{P}	penalty/loss
online regression online classification expert advice	\mathbb{R}^d \mathbb{R}^d \mathbb{R}^N	$ \begin{array}{c} \mathbb{R} \\ \{1, \dots, K \\ \mathbb{R}^d \end{array} $	$\mathbb{R} \\ \{1, \dots, K\} \\ \{1, \dots, N\}$	$egin{aligned} y_t - \hat{y}_t \ [\![y_t eq \hat{y}_t]\!] \ y_t [\hat{y}_t] \end{aligned}$

 $\begin{array}{ll} \text{input } x_t \in \mathcal{X} & \text{input space} \\ \text{truth } y_t \in \mathcal{Y} & \text{truth space} \\ \text{prediction } \hat{y}_t \in \mathcal{P} & \text{decision space} \end{array}$

	X	\mathcal{Y}	\mathcal{P}	penalty/loss
online regression	\mathbb{R}^{d}	\mathbb{R}	\mathbb{R}	$ y_t - \hat{y}_t $
online classification	\mathbb{R}^{d}	$\{1,\ldots,K\}$	$\{1,\ldots,K\}$	$\llbracket y_t \neq \hat{y}_t \rrbracket$
expert advice	\mathbb{R}^{N}	\mathbb{R}^{d}	$\{1,\ldots,N\}$	$y_t[\hat{y}_t]$
structured prediction	K^m	K^m	K^m	$\sum_{i=1}^{m} \llbracket y_t^i eq \hat{y}_t^i rbracket$

Why online learning?

- ➡ first computers, very low memory, very slow CPUs
- perceptron from 1957 is originally an online algorithm!

- ➡ first computers, very low memory, very slow CPUs
- perceptron from 1957 is originally an online algorithm!
- later 70-90s: batch learning became possible
 - ➡ reasonable CPU power, reasonable memory
 - ➡ great convergence guarantees!

- ➡ first computers, very low memory, very slow CPUs
- perceptron from 1957 is originally an online algorithm!
- later 70-90s: batch learning became possible
 - ➡ reasonable CPU power, reasonable memory
 - ➡ great convergence guarantees!
- **2000**s-now:
 - ➡ computers are very powerful, memory is cheap ☺

- ➡ first computers, very low memory, very slow CPUs
- perceptron from 1957 is originally an online algorithm!
- later 70-90s: batch learning became possible
 - ➡ reasonable CPU power, reasonable memory
 - ➡ great convergence guarantees!
- **2000**s-now:
 - ➡ computers are very powerful, memory is cheap ☺
 - still batch algorithms explode memory and time ③

- ➡ first computers, very low memory, very slow CPUs
- perceptron from 1957 is originally an online algorithm!
- later 70-90s: batch learning became possible
 - ➡ reasonable CPU power, reasonable memory
 - ➡ great convergence guarantees!

2000s-now:

- ➡ computers are very powerful, memory is cheap ☺
- still batch algorithms explode memory and time O
 - easy access to data made datasets practically infinite
 - discarding data is a bad idea, we want it all!

- ➡ first computers, very low memory, very slow CPUs
- perceptron from 1957 is originally an online algorithm!
- later 70-90s: batch learning became possible
 - ➡ reasonable CPU power, reasonable memory
 - ➡ great convergence guarantees!

2000s-now:

- ➡ computers are very powerful, memory is cheap ☺
- still batch algorithms explode memory and time O
 - easy access to data made datasets practically infinite
 - discarding data is a bad idea, we want it all!
 - some people say that "data acquisition outpaced the Moore's law"

- ➡ first computers, very low memory, very slow CPUs
- perceptron from 1957 is originally an online algorithm!
- later 70-90s: batch learning became possible
 - ➡ reasonable CPU power, reasonable memory
 - ➡ great convergence guarantees!

2000s-now:

- ➡ computers are very powerful, memory is cheap ☺
- still batch algorithms explode memory and time ③
 - easy access to data made datasets practically infinite
 - discarding data is a bad idea, we want it all!
 - some people say that "data acquisition outpaced the Moore's law"

effectively are back into the 50s

not only a question of resources:

- the larger the data, the harder it is
 - to guarantee stationarity
 - \implies to ensure that test/train instances come from the same $\mathcal D$
 - to guarantee i.i.d
 - to ensure labels are stochastic as well

not only a question of resources:

- the larger the data, the harder it is
 - ➡ to guarantee stationarity
 - \implies to ensure that test/train instances come from the same $\mathcal D$
 - to guarantee i.i.d
 - ➡ to ensure labels are stochastic as well
- hence algorithms need to be adaptive

not only a question of resources:

- the larger the data, the harder it is
 - to guarantee stationarity
 - ightarrow to ensure that test/train instances come from the same ${\cal D}$
 - ➡ to guarantee i.i.d
 - ➡ to ensure labels are stochastic as well
- hence algorithms need to be adaptive
- frequent re-training is not always an option (because resources, ...)

- small memory footprint
- faster updates
- faster adaptation
- better test performance (in a certain sense)

environment

- ➡ i.i.d assumption is convenient
- ➡ often cannot be guaranteed or is obviously violated
- ➡ sometimes we assume nothing about distribution: 'adversarial case'

environment

- ➡ i.i.d assumption is convenient
- ➡ often cannot be guaranteed or is obviously violated
- sometimes we assume nothing about distribution: 'adversarial case'

feedback

- ➡ full information is best
- ➡ but correct labels are expensive and slow to get
- often partial feedback is all you have: 'bandit case'

The space of online learning

environment

- ➡ i.i.d assumption is convenient
- ➡ often cannot be guaranteed or is obviously violated
- sometimes we assume nothing about distribution: 'adversarial case'
- feedback
 - ➡ full information is best
 - ➡ but correct labels are expensive and slow to get
 - often partial feedback is all you have: 'bandit case'

One-armed bandits

➡ you have to find a machine that gives you most money

➡ you only know your current reward from the chosen machine

environment

- ➡ i.i.d assumption is convenient
- ➡ often cannot be guaranteed or is obviously violated
- sometimes we assume nothing about distribution: 'adversarial case'

feedback

- ➡ full information is best
- ➡ but correct labels are expensive and slow to get
- ➡ often partial feedback is all you have: 'bandit case'
- structure
 - no state (important but rare case)
 - usually there is some state or context
 - structured spaces (actions change the environment)

The space of online learning algorithms

The space of online learning algorithms

Adversarial Environment with Full Information

Adversarial Environment with Full Information

(adversarial just means there are no statistical assumptions)

1: for t = 0, ... do

- 2: observe x_t (if available)
- 3: predict \hat{y}_t
- 4: suffer loss $\ell_t(\hat{y}_t)$
- 5: update
- ℓ_t are arbitrary (e.g., does not mean these are uniformly distributed)
- could be random or non-random, depend on previous history
- we want algorithms that work in any case

1: for $t = 0, \ldots$ do

- 2: observe x_t (if available)
- 3: predict \hat{y}_t
- 4: suffer loss $\ell_t(\hat{y}_t)$
- 5: update
- ℓ_t are arbitrary (e.g., does not mean these are uniformly distributed)
- could be random or non-random, depend on previous history
- we want algorithms that work in any case

What about the goal?

1: for t = 0, ... do

- 2: observe x_t (if available)
- 3: predict \hat{y}_t
- 4: suffer loss $\ell_t(\hat{y}_t)$
- 5: update
- ℓ_t are arbitrary (e.g., does not mean these are uniformly distributed)
- could be random or non-random, depend on previous history
- we want algorithms that work in any case

What about the goal?

no training set, so cannot minimize loss over training set

1: for $t = 0, \ldots$ do

- 2: observe x_t (if available)
- 3: predict \hat{y}_t
- 4: suffer loss $\ell_t(\hat{y}_t)$
- 5: update
- ℓ_t are arbitrary (e.g., does not mean these are uniformly distributed)
- could be random or non-random, depend on previous history
- we want algorithms that work in any case

What about the goal?

- no training set, so cannot minimize loss over training set
- even if we could, does not always make sense as ℓ_t can be anything

1: for $t = 0, \ldots$ do

- 2: observe x_t (if available)
- 3: predict \hat{y}_t
- 4: suffer loss $\ell_t(\hat{y}_t)$
- 5: update
- ℓ_t are arbitrary (e.g., does not mean these are uniformly distributed)
- could be random or non-random, depend on previous history
- we want algorithms that work in any case

What about the goal?

- no training set, so cannot minimize loss over training set
- even if we could, does not always make sense as ℓ_t can be anything
- measure of success has to be calculated w.r.t. to the whole interaction, not just some end objective

What do we want to achieve?

in principle we want to minimize our total loss

$$R_T = \sum_{t=1}^T \ell_t(\hat{y}_t)$$

- in principle we want to minimize our total loss
- still not ideal, because ℓ_t can scale arbitrary

$$R_T = \sum_{t=1}^T \ell_t(\hat{y}_t)$$

- in principle we want to minimize our total loss
- still not ideal, because ℓ_t can scale arbitrary
- so we need a **relative** measure

$$R_T = \sum_{t=1}^T \ell_t(\hat{y}_t) - ?$$

What do we want to achieve?

- in principle we want to minimize our total loss
- still not ideal, because ℓ_t can scale arbitrary
- so we need a **relative** measure

 \Rightarrow e.g., w.r.t. to some fixed (but unknown) strategy $h = h_t$

$$R_T = \sum_{t=1}^{T} \ell_t(\hat{y}_t) - \sum_{t=1}^{T} \ell_t(h_t)$$

- in principle we want to minimize our total loss
- still not ideal, because ℓ_t can scale arbitrary
- so we need a **relative** measure
 - \Rightarrow e.g., w.r.t. to some fixed (but unknown) strategy $h = h_t$
 - \Rightarrow or w.r.t. to the best strategy from a set \mathcal{H}

$$R_T = \sum_{t=1}^T \ell_t(\hat{y}_t) - \min_{h \in \mathcal{H}} \sum_{t=1}^T \ell_t(h)$$

- in principle we want to minimize our total loss
- still not ideal, because ℓ_t can scale arbitrary
- so we need a **relative** measure
 - \Rightarrow e.g., w.r.t. to some fixed (but unknown) strategy $h = h_t$
 - \Rightarrow or w.r.t. to the best strategy from a set \mathcal{H}
 - \implies note: the larger is $\mathcal H$ the harder is the task

$$R_T = \sum_{t=1}^T \ell_t(\hat{y}_t) - \min_{h \in \mathcal{H}} \sum_{t=1}^T \ell_t(h)$$

- in principle we want to minimize our total loss
- still not ideal, because ℓ_t can scale arbitrary
- so we need a **relative** measure
 - \Rightarrow e.g., w.r.t. to some fixed (but unknown) strategy $h = h_t$
 - \Rightarrow or w.r.t. to the best strategy from a set \mathcal{H}
 - \implies note: the larger is $\mathcal H$ the harder is the task
- we measure a 'cost of ignorance' or 'regret for not following that strategy'

$$R_T = \sum_{t=1}^T \ell_t(\hat{y}_t) - \min_{h \in \mathcal{H}} \sum_{t=1}^T \ell_t(h)$$

What do we want to achieve?

- in principle we want to minimize our total loss
- still not ideal, because ℓ_t can scale arbitrary
- so we need a **relative** measure
 - \Rightarrow e.g., w.r.t. to some fixed (but unknown) strategy $h = h_t$
 - \blacksquare or w.r.t. to the best strategy from a set \mathcal{H}
 - \implies note: the larger is $\mathcal H$ the harder is the task
- we measure a 'cost of ignorance' or 'regret for not following that strategy'

$$R_T = \sum_{t=1}^T \ell_t(\hat{y}_t) - \min_{h \in \mathcal{H}} \sum_{t=1}^T \ell_t(h)$$

Our ultimate goal:

- average regret $R_T/T \rightarrow 0$
- as fast as possible
- as the learning goes on, our loss is less and less different from the alternative one ('we have no regret')
- such algorithms are even called like that, 'no-regret algorithms'

Adversary restriction

 regret is a tool to analyze a problem, to test it under different assumptions

- regret is a tool to analyze a problem, to test it under different assumptions
- w/o any restrictive assumptions online learning is too hard (or impossible)

- regret is a tool to analyze a problem, to test it under different assumptions
- w/o any restrictive assumptions online learning is too hard (or impossible)
- need to restrict the power of adversary and vary R_T accordingly

- regret is a tool to analyze a problem, to test it under different assumptions
- w/o any restrictive assumptions online learning is too hard (or impossible)
- need to restrict the power of adversary and vary R_T accordingly
- different regret definitions than reflect our knowledge about the environment:

- regret is a tool to analyze a problem, to test it under different assumptions
- w/o any restrictive assumptions online learning is too hard (or impossible)
- need to restrict the power of adversary and vary R_T accordingly
- different regret definitions than reflect our knowledge about the environment:
 - 1 if we believe that true data is generated by some fixed function h^* , $y_t = h^*(x_t)$, it's reasonable to minimize R_T w.r.t. to that function

$$R_T(h^*) = \sum_{t=1}^T \ell_t(w_t) - \sum_{t=1}^T \ell_t(h^*)$$

- regret is a tool to analyze a problem, to test it under different assumptions
- w/o any restrictive assumptions online learning is too hard (or impossible)
- need to restrict the power of adversary and vary R_T accordingly
- different regret definitions than reflect our knowledge about the environment:
 - 1 if we believe that true data is generated by some fixed function h^* , $y_t = h^*(x_t)$, it's reasonable to minimize R_T w.r.t. to that function

$$R_T(h^*) = \sum_{t=1}^T \ell_t(w_t) - \sum_{t=1}^T \ell_t(h^*)$$

2 if not, the adversary must not at least change his mind at will, i.e. <u>has</u> to commit to some y_t before seeing \hat{y}_t ; then it makes sense to optimize $\overline{R_T}$ w.r.t. to the best function from some set \mathcal{H} :

$$R_T(\mathcal{H}) = \sum_{t=1}^T \ell_t(w_t) - \min_{h \in \mathcal{H}} \sum_{t=1}^T \ell_t(h)$$

Example: online classification

- 1: for t = 0, ... do
- 2: observe x_t
- 3: predict $\hat{y}_t \in \{0, 1\}$
- 4: receive true y_t
- 5: suffer loss $\ell_t(\hat{y}_t) = |y_t \hat{y}_t|$
- 6: update w_{t+1}

$$R_T = \sum_{t=1}^T \ell(\hat{y}_t) - \min_{h \in \mathcal{H}} \sum_{t=1}^T \ell_t(h(x_t))$$

Example: online classification

- 1: for t = 0, ... do
- 2: observe x_t
- 3: predict $\hat{y}_t \in \{0, 1\}$
- 4: receive true y_t
- 5: suffer loss $\ell_t(\hat{y}_t) = |y_t \hat{y}_t|$
- 6: update w_{t+1}

$$R_T = \sum_{t=1}^{T} |y_t - \hat{y}_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |y_t - h(x_t)|$$

Example: online classification

- 1: for t = 0, ... do
- 2: observe x_t
- 3: predict $\hat{y}_t \in \{0, 1\}$
- 4: receive true y_t
- 5: suffer loss $\ell_t(\hat{y}_t) = |y_t \hat{y}_t|$
- 6: update w_{t+1}

$$R_T = \sum_{t=1}^{T} |y_t - \hat{y}_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |y_t - h(x_t)|$$

take simplest $\mathcal{H} = \{h_0, h_1\}$, where $h_a \equiv a$ (constant, 0 or 1, function)
Example: online classification

- 1: for $t = 0, \ldots$ do
- 2: observe x_t
- 3: predict $\hat{y}_t \in \{0, 1\}$
- 4: receive true y_t
- 5: suffer loss $\ell_t(\hat{y}_t) = |y_t \hat{y}_t|$
- 6: update w_{t+1}

$$R_T = \sum_{t=1}^{T} |y_t - \hat{y}_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |y_t - h(x_t)|$$

• take simplest $\mathcal{H} = \{h_0, h_1\}$, where $h_a \equiv a$ (constant, 0 or 1, function)

Exercise: can you make the learner always lose? [Shalev-Shwartz'12]

Example: online classification

- 1: for $t = 0, \ldots$ do
- 2: observe x_t
- 3: predict $\hat{y}_t \in \{0, 1\}$
- 4: receive true y_t
- 5: suffer loss $\ell_t(\hat{y}_t) = |y_t \hat{y}_t|$
- 6: update w_{t+1}

$$R_T = \sum_{t=1}^{T} |y_t - \hat{y}_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |y_t - h(x_t)|$$

- take simplest $\mathcal{H} = \{h_0, h_1\}$, where $h_a \equiv a$ (constant, 0 or 1, function)
- **Exercise:** can you make the learner always lose? [Shalev-Shwartz'12] wait until \hat{y}_t and set $y_t = 1 - \hat{y}_t$

Example: online classification

- 1: for $t = 0, \ldots$ do
- 2: observe x_t
- 3: predict $\hat{y}_t \in \{0, 1\}$
- 4: receive true y_t
- 5: suffer loss $\ell_t(\hat{y}_t) = |y_t \hat{y}_t|$
- 6: update w_{t+1}

$$R_T = \sum_{t=1}^{T} |y_t - \hat{y}_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |y_t - h(x_t)|$$

wait until \hat{y}_t and set $y_t = 1 - \hat{y}_t$

Example: online classification

- 1: for $t = 0, \ldots$ do
- 2: observe x_t
- 3: predict $\hat{y}_t \in \{0, 1\}$
- 4: receive true y_t
- 5: suffer loss $\ell_t(\hat{y}_t) = |y_t \hat{y}_t|$
- 6: update w_{t+1}

$$R_T = \sum_{t=1}^{T} |y_t - \hat{y}_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |y_t - h(x_t)|$$

• wait until \hat{y}_t and set $y_t = 1 - \hat{y}_t$

for any $h \in \{h_0(\cdot), h_1(\cdot)\}$, $\min_{h \in \mathcal{H}} \sum_{t=1}^T |y_t - h(x_t)| \le T/2$

Example: online classification

- 1: for $t = 0, \ldots$ do
- 2: observe x_t
- 3: predict $\hat{y}_t \in \{0, 1\}$
- 4: receive true y_t
- 5: suffer loss $\ell_t(\hat{y}_t) = |y_t \hat{y}_t|$
- 6: update w_{t+1}

$$R_T = \sum_{t=1}^{T} |y_t - \hat{y}_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |y_t - h(x_t)|$$

• wait until \hat{y}_t and set $y_t = 1 - \hat{y}_t$

■ for any $h \in \{h_0(\cdot), h_1(\cdot)\}$, $\min_{h \in \mathcal{H}} \sum_{t=1}^T |y_t - h(x_t)| \le T/2$ ■ $R_T(\mathcal{H}) = \sum_{t=1}^T |y_t - \hat{y}_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^T |y_t - h(x_t)| \ge T - T/2 = T/2$ Realizability assumption: $\exists h^* \in \mathcal{H} \text{ s.t. } \forall t \ y_t = h^*(x_t). \text{ Also } |\mathcal{H}| < \infty$

Realizability assumption: $\exists h^* \in \mathcal{H} \text{ s.t. } \forall t \ y_t = h^*(x_t). \text{ Also } |\mathcal{H}| < \infty$

Consistent

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose any $h \in V_t$
- 5: predict $\hat{y}_t = r$
- 6: receive true $y_t = h^*(x_t)$
- 7: update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$

Algorithm for the realizability case

Realizability assumption: $\exists h^* \in \mathcal{H} \text{ s.t. } \forall t \ y_t = h^*(x_t). \text{ Also } |\mathcal{H}| < \infty$

Consistent

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose any $h \in V_t$
- 5: predict $\hat{y}_t = r$
- 6: receive true $y_t = h^*(x_t)$

7: update
$$V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$$

Analysis:

- $\forall t \text{ at least one } h \text{ is removed if there was an error (and none if not)}$
- $1 \leq |V_t| \leq |\mathcal{H}| \#$ errors

•
$$R_T = \# \text{errors} - 0 = \# \text{errors} \le |\mathcal{H}| - 1$$

Algorithm for the realizability case

Realizability assumption: $\exists h^* \in \mathcal{H} \text{ s.t. } \forall t \ y_t = h^*(x_t).$ Also $|\mathcal{H}| < \infty$

Consistent

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose any $h \in V_t$
- 5: predict $\hat{y}_t = r$
- 6: receive true $y_t = h^*(x_t)$

7: update
$$V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$$

Analysis:

- $\forall t \text{ at least one } h \text{ is removed if there was an error (and none if not)}$
- $1 \leq |V_t| \leq |\mathcal{H}| \#$ errors
- $R_T = \# \operatorname{errors} 0 = \# \operatorname{errors} \le |\mathcal{H}| 1$
- can we do better? hint: purge hypotheses faster

Algorithm for the realizability case

Realizability assumption: $\exists h^* \in \mathcal{H} \text{ s.t. } \forall t \ y_t = h^*(x_t). \text{ Also } |\mathcal{H}| < \infty$

Halving

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose by majority vote $r = \arg \max_{r \in \{0,1\}} |h \in V_t : h(x_t) = r|$

5: predict
$$\hat{y}_t = r$$

6: receive true $y_t = h^*(x_t)$

7: update
$$V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$$

Analysis:

- $\forall t$ at least one half of V_t is removed if there was an error
- $1 \le |V_t| \le |\mathcal{H}|/2^{\text{\#errors}}$
- $R_T(h^*) = \# \operatorname{errors} \leq \log_2 |\mathcal{H}|$

Failure of realizability for infinite $|\mathcal{H}|$

Finiteness of ${\mathcal H}$ is crucial

Example

• real line $\mathcal{X} = (0,1)$, thresholds $\mathcal{H} = \{h_{\theta} : (0,1) \to \{0,1\}\}$

•
$$h_{\theta}(x) = sign(\theta - x)$$

■ ∃ a sequence of x_t, y_t generated by some θ on which the Halving will have $R_T = T$

Failure of realizability for infinite $|\mathcal{H}|$

Finiteness of ${\mathcal H}$ is crucial

Example

• real line $\mathcal{X} = (0,1)$, thresholds $\mathcal{H} = \{h_{\theta} : (0,1) \to \{0,1\}\}$

•
$$h_{\theta}(x) = sign(\theta - x)$$

■ ∃ a sequence of x_t, y_t generated by some θ on which the Halving will have $R_T = T$

Exercise: construct such a sequence

[Shalev-Shwartz'12]

Failure of realizability for infinite $|\mathcal{H}|$

Finiteness of ${\mathcal H}$ is crucial

Example

• real line $\mathcal{X} = (0, 1)$, thresholds $\mathcal{H} = \{h_{\theta} : (0, 1) \to \{0, 1\}\}$

•
$$h_{\theta}(x) = sign(\theta - x)$$

■ ∃ a sequence of x_t, y_t generated by some θ on which the Halving will have $R_T = T$

Solution:

• maintain L_t (left) and R_t (right)

•
$$L_0 = 0, R_0 = 1$$

- pick a random $x_t \in (L_t, R_t)$
- receive \hat{y}_t
- report $y_t = 1 \hat{y}_t$

$$R_{t+1} = x_t y_t + R_t \hat{y}_t$$

$$L_{t+1} = x_t \hat{y}_t + L_t y_t$$

$$\forall t \ R_t - L_t > 0$$

- realizability assumption may be too harsh for our application
- instead add an element of surprise to our predictions:
 - → remember to require the adversary to commit to y_t before seeing \hat{y}_t
 - ➡ will change lines 4 and 5 in the Consistent

Consistent

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose $h = \arg \max_{r \in \{0,1\}} |h \in V_t : h(x_t) = r|$
- 5: predict $\hat{y}_t(w_t) = h(x_t)$
- 6: receive true y_t
- 7: update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$

- realizability assumption may be too harsh for our application
- instead add an element of surprise to our predictions:
 - → remember to require the adversary to commit to y_t before seeing \hat{y}_t
 - ➡ will change lines 4 and 5 in the Consistent

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose probability p_t
- 5: predict $\hat{y}_t(w_t) = 1$ with prob. p_t
- 6: receive true y_t
- 7: update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$

- realizability assumption may be too harsh for our application
- instead add an element of surprise to our predictions:
 - → remember to require the adversary to commit to y_t before seeing \hat{y}_t
 - ➡ will change lines 4 and 5 in the Consistent

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose probability p_t
- 5: predict $\hat{y}_t(w_t) = 1$ with prob. p_t
- 6: receive true y_t

7: update
$$V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$$

$$R_T = \sum_{t=1}^T \mathbb{E}_{p_t} \llbracket \hat{y}_t \neq y_t \rrbracket - \min_{h \in \mathcal{H}} \sum_{t=1}^T \llbracket h(x_t) \neq y_t \rrbracket \qquad \leftarrow \text{ note re}$$

 \leftarrow note regret changed again

- realizability assumption may be too harsh for our application
- instead add an element of surprise to our predictions:
 - → remember to require the adversary to commit to y_t before seeing \hat{y}_t
 - ➡ will change lines 4 and 5 in the Consistent

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose probability p_t
- 5: predict $\hat{y}_t(w_t) = 1$ with prob. p_t
- 6: receive true y_t

7: update
$$V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$$

$$R_{T} = \sum_{t=1}^{T} \mathbb{E}_{p_{t}} [\![\hat{y}_{t} \neq y_{t}]\!] - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} [\![h(x_{t}) \neq y_{t}]\!]$$

= $\sum_{t=1}^{T} |p_{t} - y_{t}| - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} |h(x_{t}) - y_{t}|$

 $\leftarrow \mathsf{note} \ \mathsf{regret} \ \mathsf{changed} \ \mathsf{again}$

- realizability assumption may be too harsh for our application
- instead add an element of surprise to our predictions:
 - → remember to require the adversary to commit to y_t before seeing \hat{y}_t
 - ➡ will change lines 4 and 5 in the Consistent

- 1: Initialize $V_0 = \mathcal{H}$
- 2: for t = 0, ... do
- 3: observe x_t
- 4: choose probability p_t
- 5: predict $\hat{y}_t(w_t) = 1$ with prob. p_t
- 6: receive true y_t

7: update
$$V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$$

$$\begin{split} R_T &= \sum_{t=1}^T \mathbb{E}_{p_t} \left[\!\left[\hat{y}_t \neq y_t \right]\!\right] - \min_{h \in \mathcal{H}} \sum_{t=1}^T \left[\!\left[h(x_t) \neq y_t \right]\!\right] \qquad \leftarrow \text{ note regret changed agai} \\ &= \sum_{t=1}^T |p_t - y_t| - \min_{h \in \mathcal{H}} \sum_{t=1}^T |h(x_t) - y_t| \le \sqrt{0.5T \ln |\mathcal{H}|} \end{split}$$

- we had full information (i.e., we received the true y_t)
- different adversary restrictions help to get regret bounds

- we had full information (i.e., we received the true y_t)
- different adversary restrictions help to get regret bounds
 - ➡ realizability + finiteness

Consistent
$$R_T \leq |\mathcal{H}| - 1$$

• Halving $R_T \leq \log_2 |\mathcal{H}|$

- we had full information (i.e., we received the true y_t)
- different adversary restrictions help to get regret bounds
 - ➡ realizability + finiteness
 - Consistent $R_T \leq |\mathcal{H}| 1$
 - Halving $R_T \leq \log_2 |\mathcal{H}|$
 - randomization
 - **Randomized** $R_T \leq \sqrt{0.5T \ln |\mathcal{H}|}$

Learning with Experts' Advice

- imagine horse-races
- you know nothing about horses ③
- luckily you have knowledgeable friends willing to give you advice O
- you need to apportion a fixed sum of money between them

- imagine horse-races
- you know nothing about horses ☺
- luckily you have knowledgeable friends willing to give you advice ☺
- you need to apportion a fixed sum of money between them
- ➡ goal: minimize losses / maximize profit

I actually make a lot more money as a bookmaker than I ever did as a race horse...

(you have friend's identity, but not horses' breakfast menu or expert history)

(you have friend's identity, but not horses' breakfast menu or expert history)

N friends

(you have friend's identity, but not horses' breakfast menu or expert history)

- N friends
- loss vector $\ell_t \in [0,1]^N$ e.g., $\ell_t[i] = 0.3$ if *i*th friend lost 30 cents

(you have friend's identity, but not horses' breakfast menu or expert history)

- N friends
- loss vector l_t ∈ [0, 1]^N e.g., l_t[i] = 0.3 if ith friend lost 30 cents
 prediction p_t ∈ [0, 1]^N, ∑_{i=1}^N p_t[i] = 1 your distribution of money

(you have friend's identity, but not horses' breakfast menu or expert history)

- N friends
- loss vector l_t ∈ [0, 1]^N e.g., l_t[i] = 0.3 if ith friend lost 30 cents
 prediction p_t ∈ [0, 1]^N, ∑_{i=1}^N p_t[i] = 1 your distribution of money
- loss $\sum_{i=1}^{N} p_t[i]\ell_t[i] = \langle p_t, \ell_t \rangle$

(you have friend's identity, but not horses' breakfast menu or expert history)

- N friends
- loss vector $\ell_t \in [0, 1]^N$ e.g., $\ell_t[i] = 0.3$ if *i*th friend lost 30 cents prediction $p_t \in [0, 1]^N$, $\sum_{i=1}^N p_t[i] = 1$ your distribution of money loss $\sum_{i=1}^N p_t[i]\ell_t[i] = \langle p_t, \ell_t \rangle$ goal

$$R_T = \sum_{t=1}^{T} \langle p_t, \ell_t \rangle - \underbrace{\min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_t[i]}_{\text{loss of the best friend}} \to \min$$

(you have friend's identity, but not horses' breakfast menu or expert history)

- N friends
- loss vector $\ell_t \in [0, 1]^N$ e.g., $\ell_t[i] = 0.3$ if *i*th friend lost 30 cents
 prediction $p_t \in [0, 1]^N$, $\sum_{i=1}^N p_t[i] = 1$ your distribution of money
 loss $\sum_{i=1}^N p_t[i]\ell_t[i] = \langle p_t, \ell_t \rangle$ goal

$$R_T = \sum_{t=1}^{T} \langle p_t, \ell_t \rangle - \underbrace{\min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_t[i]}_{\text{loss of the best friend}} \to \min$$

note: you don't know how good your friends are

(you have friend's identity, but not horses' breakfast menu or expert history)

- N friends
- loss vector $\ell_t \in [0, 1]^N$ e.g., $\ell_t[i] = 0.3$ if *i*th friend lost 30 cents
 prediction $p_t \in [0, 1]^N$, $\sum_{i=1}^N p_t[i] = 1$ your distribution of money
 loss $\sum_{i=1}^N p_t[i]\ell_t[i] = \langle p_t, \ell_t \rangle$ goal

$$R_T = \sum_{t=1}^{T} \langle p_t, \ell_t \rangle - \underbrace{\min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_t[i]}_{\text{loss of the best fixed}} \to \min_{i=1,\dots,N} \underbrace{\sum_{t=1}^{T} \ell_t[i]}_{\text{loss of the best fixed}}$$

loss of the best friend

- note: you don't know how good your friends are
- note: horses/friends can conspire against you

(you have friend's identity, but not horses' breakfast menu or expert history)

- N friends
- loss vector $\ell_t \in [0, 1]^N$ e.g., $\ell_t[i] = 0.3$ if *i*th friend lost 30 cents
 prediction $p_t \in [0, 1]^N$, $\sum_{i=1}^N p_t[i] = 1$ your distribution of money
 loss $\sum_{i=1}^N p_t[i]\ell_t[i] = \langle p_t, \ell_t \rangle$ goal

$$R_T = \sum_{t=1}^{T} \langle p_t, \ell_t \rangle - \underbrace{\min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_t[i]}_{\text{loss of the best friend}} \to \min_{i=1,\dots,N} \underbrace{\sum_{t=1}^{T} \ell_t[i]}_{\text{loss of the best friend}} \to \max_{i=1,\dots,N} \underbrace{\sum_{t=1}^{T} \ell_t[i]}_{\text{loss of the best friend}$$

note: you don't know how good your friends are

- note: horses/friends can conspire against you
- but in the limit you can do as good as the best friend in hindsight!
- (in terms of average loss per race)

• if one of the friends is perfect can get $\leq \log_2 N$ mistakes with Halving

- if one of the friends is perfect can get $\leq \log_2 N$ mistakes with Halving
- but making a mistake does not necessarily mean we should disqualify a friend

- if one of the friends is perfect can get $\leq \log_2 N$ mistakes with Halving
- but making a mistake does not necessarily mean we should disqualify a friend

Hedge

- 1: init vector $w_1 \in \mathbb{R}^N_+$ s.t. $w_1[i] = 1/N$, learning rate $\mu > 0$
- 2: for t = 1, ... do

3: compute
$$p_t = \frac{w_t}{\sum_{i=1}^N w_t[i]}$$

- 4: receive loss ℓ_t
- 5: update $w_{t+1}[i] = w_t[i]e^{-\mu \ell_t[i]} \leftarrow$ "soft disqualification"
- if one of the friends is perfect can get $\leq \log_2 N$ mistakes with Halving
- but making a mistake does not necessarily mean we should disqualify a friend

Hedge

1: init vector $w_1 \in \mathbb{R}^N_+$ s.t. $w_1[i] = 1/N$, learning rate $\mu > 0$

2: for
$$t = 1, ...$$
 do

3: compute
$$p_t = \frac{w_t}{\sum_{i=1}^N w_t[i]}$$

4: receive loss ℓ_t

5: update
$$w_{t+1}[i] = w_t[i]e^{-\mu \ell_t[i]} \leftarrow$$
 "soft disqualification"

Theorem

For any
$$\ell^1, \ldots, \ell^T$$
 and any $i \in \{1, \ldots, N\}$

$$R_T = \sum_{t=1}^T \langle p_t, \ell_t \rangle - \min_j \sum_{t=1}^T \ell_t[j] \le \sqrt{2T \ln N} + \ln N$$

Exercise

Hedge

Exercise:

[Marchetti-Spaccamela'11]

■ 3 experts: 1st playing always Rock, 2nd – Scissors, and 3rd – Paper

Exercise

Hedge

Exercise:

[Marchetti-Spaccamela'11]

- 3 experts: 1st playing always Rock, 2nd Scissors, and 3rd Paper
- your opponent plays first Rock T/3 times, then Scissors T/3 times and then Paper T/3 times

Hedge

Exercise:

[Marchetti-Spaccamela'11]

- 3 experts: 1st playing always Rock, 2nd Scissors, and 3rd Paper
- your opponent plays first Rock T/3 times, then Scissors T/3 times and then Paper T/3 times

Hedge

Exercise:

[Marchetti-Spaccamela'11]

- 3 experts: 1st playing always Rock, 2nd Scissors, and 3rd Paper
- your opponent plays first Rock T/3 times, then Scissors T/3 times and then Paper T/3 times

loss: -1 if won, +1 if lost, 0 if tie

describe roughly 1) the most probable strategies played by Hedge,
 2) when they switch and 3) the final distribution

 Hedge inspired Boosting – a powerful concept of combining weak algorithms into a strong one Hedge inspired Boosting – a powerful concept of combining weak algorithms into a strong one

idea:

- treat your training examples as experts
- changing weights focuses attention on difficult examples

 Hedge inspired Boosting – a powerful concept of combining weak algorithms into a strong one

idea:

- ➡ treat your training examples as experts
- changing weights focuses attention on difficult examples

★ Gödel Prize 2003

Infinite hypotheses space

- we'll introduce online convex optimization
- map some the problems we talked to the new language

Online convex optimization

- 1: Input: a convex set $S \subset \mathbb{R}^d$
- 2: for t = 0, ... do
- 3: predict $w_t \in S$
- 4: receive a convex loss function $\ell_t: S \to \mathbb{R}$
- 5: suffer loss $\ell_t(w_t)$

- $lacksymbol{ heta}$ measurements (features) $\mathcal{X}=\mathbb{R}^d$
- truths and decision $\mathcal{Y} = \mathcal{D} = \mathbb{R}$
- common loss functions:

$$\bullet \ \ell_t(p_t, y_t) = (p_t - y_t)^2$$

$$\bullet \ \ell_t(p_t, y_t) = |p_t - y_t|$$

• simple hypothesis class $\mathcal{H} = \{x \mapsto \sum_{i=1}^d w[i]x[i] : w \in \mathbb{R}^d\}$ (linear predictors)

note: both loss functions ℓ_t are convex

- measurements $\mathcal{X} = \mathbb{R}^d$, where x_i is the advice of the *i*th expert
- truths $\mathcal{Y} = [0,1]^d$
- decisions $p_t \in \mathcal{D} = \{1, \dots, d\}$
- loss function: $\ell(p, y) = y_t[p_t]$
- hypothesis class $\mathcal{H} = \{h_1, \dots, h_d\}$, where $h_i(x) = i, \forall x$ (constant predictors)

note: since $\mathcal D$ is discrete, the losses ℓ_t are not convex

- measurements \mathcal{X}
- binary truths and decisions $\mathcal{Y} = \mathcal{D} = \{0, 1\}$

loss function:
$$\ell_t(p_t, y_t) = |p_t - y_t|$$

finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_k\}$

note: since \mathcal{D} is discrete, the losses ℓ_t are again **not** convex

how can we map non-convex to convex tasks?

- randomization
- surrogate losses

Expert Advice

- measurements $\mathcal{X} = \mathbb{R}^d$, where x_i is the advice of the *i*th expert
- truths $\mathcal{Y} = [0, 1]^d$

• decisions
$$p_t \in \mathcal{D} = \{1, \dots, d\}$$

• loss function: $\ell(p, y) = y_t[p_t]$

Mapping

- let the learner maintain a vector $w_t \in \mathbb{R}^d$, s.t. $\sum_{i=1}^d w_{t,i} = 1$
- the learner randomly picks the expert according to the distribution w_t
- the adversary cannot base his ℓ_t on the sample from w_t
- the loss suffered is now $\mathbb{E}[y_t[p_t]] = w_t^\top y_t$ (linear function)

Now the problem fits into online convex optimization with $\ell_t = w_t^{ op} y_t$

Convexification by Surrogate Losses

Online Classification with finite hypothesis class

- measurements $x_t \in \mathcal{X}$
- binary truths and decisions $\mathcal{Y} = \mathcal{D} = \{0, 1\}$
- loss function: $\ell_t(p_t, y_t) = |p_t y_t|$
- hypothesis class $\mathcal{H} = \{h_1, \dots, h_k\}$
- let $v_t = (h_1(x_t), \dots, h_k(x_t)) \in \{0, 1\}^k$

let the learner maintain a vector $w_t \in \mathbb{R}^k$, s.t. $\sum_{i=1}^k w_{t,i} = 1$ prediction is done via

$$p_t = \begin{cases} 1, \text{ if } w_t^\top v_t \ge 1/2\\ 0, \text{ if } w_t^\top v_t < 1/2 \end{cases}$$

Convexification by Surrogate Losses

Online Classification with finite hypothesis class

- measurements $x_t \in \mathcal{X}$
- binary truths and decisions $\mathcal{Y} = \mathcal{D} = \{0, 1\}$
- loss function: $\ell_t(p_t, y_t) = |p_t y_t|$
- hypothesis class $\mathcal{H} = \{h_1, \dots, h_k\}$
- let v_t = (h₁(x_t),...,h_k(x_t)) ∈ {0,1}^k
 let the learner maintain a vector w_t ∈ ℝ^k, s.t. Σ^k_{i=1} w_{t,i} = 1
 prediction is done via

$$p_t = \begin{cases} 1, \text{ if } w_t^\top v_t \ge 1/2\\ 0, \text{ if } w_t^\top v_t < 1/2 \end{cases}$$

Convexification by Surrogate Losses

Online Classification with finite hypothesis class

- measurements $x_t \in \mathcal{X}$
- binary truths and decisions $\mathcal{Y} = \mathcal{D} = \{0, 1\}$
- loss function: $\ell_t(p_t, y_t) = |p_t y_t|$
- hypothesis class $\mathcal{H} = \{h_1, \dots, h_k\}$
- let v_t = (h₁(x_t),...,h_k(x_t)) ∈ {0,1}^k
 let the learner maintain a vector w_t ∈ ℝ^k, s.t. Σ^k_{i=1} w_{t,i} = 1
 prediction is done via

$$p_t = \begin{cases} 1, \text{ if } w_t^\top v_t \ge 1/2\\ 0, \text{ if } w_t^\top v_t < 1/2 \end{cases}$$

■ loss $\ell_t(w) = 2 |w^\top v_t - y_t| \mathbb{I}[p_t \neq y_t]$ ■ ℓ_t is convex ■ $\ell_t \ge |p_t - y_t|$

Follow-The-Leader $\forall t, w_t = \operatorname*{arg\,min}_{w \in S} \sum_{i=1}^{t-1} \ell_i(w)$

Follow-The-Regularized-Leader

$$\forall t, w_t = \operatorname*{arg\,min}_{w \in S} \sum_{i=1}^{t-1} \ell_i(w) + R(w)$$

Roughly the same in spirit as the Consistent algorithm.

•
$$\ell_t(w) = w^\top z_t$$

• $R(w) = \frac{1}{2\nu} ||w||_2^2$

Exercise: find FTRL's w_{t+1} in a closed form

•
$$\ell_t(w) = w^{\top} z_t$$

• $R(w) = \frac{1}{2\nu} ||w||_2^2$

Exercise: find FTRL's w_{t+1} in a closed form

$$w_{t+1} = -\nu \sum_{i=1}^{t} z_i = w_t - \nu z_t$$

•
$$\ell_t(w) = w^{\top} z_t$$

• $R(w) = \frac{1}{2\nu} ||w||_2^2$

Exercise: find FTRL's w_{t+1} in a closed form

$$w_{t+1} = -\nu \sum_{i=1}^{t} z_i = w_t - \nu z_t$$

$$w_{t+1} = w_t - \nu z_t$$

Linear loss is a special case that links FTRL to SGD.

Lemma

$$\sum_{t=1}^{T} \ell_t(w_t) - \ell_t(u) \le R(u) - R(w_1) + \sum_{t=1}^{T} \ell_t(w_t) - \ell_t(w_{t+1})$$

Proof idea:

- set $f_0 = R$
- proof by induction

Theorem

Consider FTRL, linear losses $\ell_t(w) = w^{\top} z_t$, and Euclidean regularization $R(w) = \frac{1}{2\nu} ||w||_2^2$ and $w, u \in S = \mathbb{R}^d$, then

$$R_T(u) \le \frac{1}{2\nu} ||u||_2^2 + \nu \sum_{t=1}^T ||z_t||_2^2.$$

Proof:

$$R_{T}(u) \stackrel{\text{lemma}}{\leq} R(u) - R(w_{1}) + \sum_{t=1}^{T} \ell_{t}(w_{t}) - \ell_{t}(w_{t+1})$$

$$\leq \frac{1}{2\nu} ||u||_{2}^{2} + \sum_{t=1}^{T} (w_{t} - w_{t+1})^{\top} z_{t}$$

$$\leq \frac{1}{2\nu} ||u||_{2}^{2} + \nu \sum_{t=1}^{T} ||z_{t}||_{2}^{2}$$

Linearization of convex functions

Convex functions: $\forall u \in S, f(u) \ge f(w) + (u - w)^{\top} z, z \in \partial f$

For convex ℓ_t it follows that

$$\sum_{t=1}^{T} \ell_t(w_t) - \ell_t(u) \le \sum_{t=1}^{T} w_t^{\top} z_t - u^{\top} z_t.$$

October 10, 2018

- regret on convex functions is upper bounded by regret on tangent linear functions
- if we use sub-gradients as linear approximations of convex functions, we get the regret bound:

$$R_T(u) \le \frac{1}{2\nu} ||u||_2^2 + \nu \sum_{t=1}^T ||\nabla \ell_t||_2^2.$$

Turns out SGD is an instance of FTRL!

• if
$$||\nabla \ell_t||_2^2 \leq TL^2$$
 and $||u||_2^2 \leq B$, minimizing wrt. ν
 $R_T(u) \leq BL\sqrt{2T}.$

In general:

Theorem [Shalev-Shwartz'12]

For strongly convex R (not only quadratic), the regret w.r.t $u \in S$

$$\sum_{t=1}^{T} \ell_t(w_t) - \min_{u \in S} \sum_{t=1}^{T} \ell_t(u) = O(\sqrt{T})$$

Exact bound depends on

- the actual form of R
- the class of ℓ_t (linear, quadratic, etc.)
- other assumptions on S and ℓ_t

The average regret $R_T/T \rightarrow 0$.

- many IL algorithms call online learning as a subroutine
- all of deep learning is based on sub-gradient methods
- analysis and performance depends on the chosen algorithm/regularization
- understanding these foundations allows being more informed when
 - ➡ trying to improve IL approaches
 - deciding on the regularization, loss functions etc.

[Shalev-Shwartz'12] "Online Learning and Online Convex Optimization"