
Online Learning

| October 10, 2018 1 / 41

Goals

1 introduce online learning

2 introduce the notion of regret

3 present basic algorithms

4 create building blocks for many imitation learning algorithms

| October 10, 2018 2 / 41

Real world online learning tasks

n advertising (which ad to display)

n medical treatment (which drug to prescribe)
n design/functionality rollouts (works or not)
n spam/malware filtering (filter or keep)
n stock market (sell or acquire bonds)
n network routing (which path to take)
n compression (what’s the next symbol)
n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

| October 10, 2018 3 / 41

Real world online learning tasks

n advertising (which ad to display)
n medical treatment (which drug to prescribe)

n design/functionality rollouts (works or not)
n spam/malware filtering (filter or keep)
n stock market (sell or acquire bonds)
n network routing (which path to take)
n compression (what’s the next symbol)
n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

| October 10, 2018 3 / 41

Real world online learning tasks

n advertising (which ad to display)

n medical treatment (which drug to prescribe)

n design/functionality rollouts (works or not)

n spam/malware filtering (filter or keep)

n stock market (sell or acquire bonds)

n network routing (which path to take)

n compression (what’s the next symbol)

n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

| October 10, 2018 3 / 41

Real world online learning tasks

n advertising (which ad to display)
n medical treatment (which drug to prescribe)
n design/functionality rollouts (works or not)
n spam/malware filtering (filter or keep)

n stock market (sell or acquire bonds)
n network routing (which path to take)
n compression (what’s the next symbol)
n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

| October 10, 2018 3 / 41

Real world online learning tasks

n advertising (which ad to display)

n medical treatment (which drug to prescribe)

n design/functionality rollouts (works or not)

n spam/malware filtering (filter or keep)

n stock market (sell or acquire bonds)

n network routing (which path to take)

n compression (what’s the next symbol)

n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

| October 10, 2018 3 / 41

Real world online learning tasks

n advertising (which ad to display)

n medical treatment (which drug to prescribe)

n design/functionality rollouts (works or not)

n spam/malware filtering (filter or keep)

n stock market (sell or acquire bonds)

n network routing (which path to take)

n compression (what’s the next symbol)

n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

| October 10, 2018 3 / 41

Real world online learning tasks

n advertising (which ad to display)

n medical treatment (which drug to prescribe)

n design/functionality rollouts (works or not)

n spam/malware filtering (filter or keep)

n stock market (sell or acquire bonds)

n network routing (which path to take)

n compression (what’s the next symbol)

n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

| October 10, 2018 3 / 41

Real world online learning tasks

n advertising (which ad to display)

n medical treatment (which drug to prescribe)

n design/functionality rollouts (works or not)

n spam/malware filtering (filter or keep)

n stock market (sell or acquire bonds)

n network routing (which path to take)

n compression (what’s the next symbol)

n weather (will it rain tomorrow), etc.

in every task there is a decision to be made under missing information

| October 10, 2018 3 / 41

Relation to batch learning

Batch learning

many i.i.d examples D = {xi, yi}Ni=1

define some loss `(D) (e.g. negative log-likelihood, square error)

learn a model by `(D)→ min

deploy on a test set

Online learning

one example xt

predict ŷt

get feedback

suffer some penalty `t(xt, ŷt)

improve the model

repeat

n note: no training/testing set distinction

| October 10, 2018 4 / 41

Relation to batch learning

Batch learning

many i.i.d examples D = {xi, yi}Ni=1

define some loss `(D) (e.g. negative log-likelihood, square error)

learn a model by `(D)→ min

deploy on a test set

Online learning

one example xt

predict ŷt

get feedback

suffer some penalty `t(xt, ŷt)

improve the model

repeat

n note: no training/testing set distinction

| October 10, 2018 4 / 41

Relation to batch learning

Batch learning

many i.i.d examples D = {xi, yi}Ni=1

define some loss `(D) (e.g. negative log-likelihood, square error)

learn a model by `(D)→ min

deploy on a test set

Online learning

one example xt

predict ŷt

get feedback

suffer some penalty `t(xt, ŷt)

improve the model

repeat

n note: no training/testing set distinction
| October 10, 2018 4 / 41

Examples

input xt ∈ X input space

truth yt ∈ Y truth space

prediction ŷt ∈ P decision space

X Y P penalty/loss

online regression Rd R R |yt − ŷt|
online classification Rd {1, . . . ,K} {1, . . . ,K} [[yt 6= ŷt]]

expert advice RN Rd {1, . . . , N} yt[ŷt]
structured prediction Km Km Km

∑m
i=1[[y

i
t 6= ŷit]]

| October 10, 2018 5 / 41

Examples

input xt ∈ X input space

truth yt ∈ Y truth space

prediction ŷt ∈ P decision space

X Y P penalty/loss

online regression Rd R R |yt − ŷt|

online classification Rd {1, . . . ,K} {1, . . . ,K} [[yt 6= ŷt]]
expert advice RN Rd {1, . . . , N} yt[ŷt]

structured prediction Km Km Km
∑m

i=1[[y
i
t 6= ŷit]]

| October 10, 2018 5 / 41

Examples

input xt ∈ X input space

truth yt ∈ Y truth space

prediction ŷt ∈ P decision space

X Y P penalty/loss

online regression Rd R R |yt − ŷt|
online classification Rd {1, . . . ,K} {1, . . . ,K} [[yt 6= ŷt]]

expert advice RN Rd {1, . . . , N} yt[ŷt]
structured prediction Km Km Km

∑m
i=1[[y

i
t 6= ŷit]]

| October 10, 2018 5 / 41

Examples

input xt ∈ X input space

truth yt ∈ Y truth space

prediction ŷt ∈ P decision space

X Y P penalty/loss

online regression Rd R R |yt − ŷt|
online classification Rd {1, . . . ,K} {1, . . . ,K} [[yt 6= ŷt]]

expert advice RN Rd {1, . . . , N} yt[ŷt]

structured prediction Km Km Km
∑m

i=1[[y
i
t 6= ŷit]]

| October 10, 2018 5 / 41

Examples

input xt ∈ X input space

truth yt ∈ Y truth space

prediction ŷt ∈ P decision space

X Y P penalty/loss

online regression Rd R R |yt − ŷt|
online classification Rd {1, . . . ,K} {1, . . . ,K} [[yt 6= ŷt]]

expert advice RN Rd {1, . . . , N} yt[ŷt]
structured prediction Km Km Km

∑m
i=1[[y

i
t 6= ŷit]]

| October 10, 2018 5 / 41

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©

á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| October 10, 2018 6 / 41

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©

á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| October 10, 2018 6 / 41

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©

á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| October 10, 2018 6 / 41

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©

á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| October 10, 2018 6 / 41

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©
á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| October 10, 2018 6 / 41

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©
á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| October 10, 2018 6 / 41

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©
á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| October 10, 2018 6 / 41

Why online learning?

n early days 50-70s: online learning is a requirement

á first computers, very low memory, very slow CPUs
á perceptron from 1957 is originally an online algorithm!

n later 70-90s: batch learning became possible

á reasonable CPU power, reasonable memory
á great convergence guarantees!

n 2000s-now:
á computers are very powerful, memory is cheap ©
á still batch algorithms explode memory and time §

easy access to data made datasets practically infinite
discarding data is a bad idea, we want it all!

n some people say that “data acquisition outpaced the Moore’s law”

effectively are back into the 50s

| October 10, 2018 6 / 41

Why online learning?

not only a question of resources:

n the larger the data, the harder it is

á to guarantee stationarity
á to ensure that test/train instances come from the same D
á to guarantee i.i.d
á to ensure labels are stochastic as well

n hence algorithms need to be adaptive

n frequent re-training is not always an option (because resources, ...)

| October 10, 2018 7 / 41

Why online learning?

not only a question of resources:

n the larger the data, the harder it is

á to guarantee stationarity
á to ensure that test/train instances come from the same D
á to guarantee i.i.d
á to ensure labels are stochastic as well

n hence algorithms need to be adaptive

n frequent re-training is not always an option (because resources, ...)

| October 10, 2018 7 / 41

Why online learning?

not only a question of resources:

n the larger the data, the harder it is

á to guarantee stationarity
á to ensure that test/train instances come from the same D
á to guarantee i.i.d
á to ensure labels are stochastic as well

n hence algorithms need to be adaptive

n frequent re-training is not always an option (because resources, ...)

| October 10, 2018 7 / 41

Advantages

Online learning

one example xt

predict ŷt

get feedback

suffer some penalty `t(xt, ŷt)

improve the model

repeat

n small memory footprint

n faster updates

n faster adaptation

n better test performance (in a certain sense)

| October 10, 2018 8 / 41

The space of online learning

n environment

á i.i.d assumption is convenient
á often cannot be guaranteed or is obviously violated
á sometimes we assume nothing about distribution: ‘adversarial case’

n feedback

á full information is best
á but correct labels are expensive and slow to get
á often partial feedback is all you have: ‘bandit case’

n structure

á no state (important but rare case)
á usually there is some state or context
á structured spaces (actions change the environment)

| October 10, 2018 9 / 41

The space of online learning

n environment

á i.i.d assumption is convenient
á often cannot be guaranteed or is obviously violated
á sometimes we assume nothing about distribution: ‘adversarial case’

n feedback

á full information is best
á but correct labels are expensive and slow to get
á often partial feedback is all you have: ‘bandit case’

n structure

á no state (important but rare case)
á usually there is some state or context
á structured spaces (actions change the environment)

| October 10, 2018 9 / 41

The space of online learning

n environment

á i.i.d assumption is convenient
á often cannot be guaranteed or is obviously violated
á sometimes we assume nothing about distribution: ‘adversarial case’

n feedback

á full information is best
á but correct labels are expensive and slow to get
á often partial feedback is all you have: ‘bandit case’

One-armed bandits

á you have to find a machine that gives you most money

á you only know your current reward from the chosen machine

n structure

á no state (important but rare case)

á usually there is some state or context

á structured spaces (actions change the environment)

| October 10, 2018 9 / 41

The space of online learning

n environment

á i.i.d assumption is convenient
á often cannot be guaranteed or is obviously violated
á sometimes we assume nothing about distribution: ‘adversarial case’

n feedback

á full information is best
á but correct labels are expensive and slow to get
á often partial feedback is all you have: ‘bandit case’

n structure

á no state (important but rare case)
á usually there is some state or context
á structured spaces (actions change the environment)

| October 10, 2018 9 / 41

The space of online learning algorithms

feedback

environment

structure

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

MDP

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

MDP

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

MDP

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

MDP

expert advice

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

MDP

expert advice

adversarial bandits

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

MDP

expert advice

adversarial bandits

stochastic bandits

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

MDP

expert advice

adversarial bandits

stochastic bandits

∼stochastic approximation

IL is at the frontal plane (., ., MDP)

[Seldin’15]

| October 10, 2018 10 / 41

The space of online learning algorithms

feedback

environment

structure

full bandit

i.i.d

adversarial

no state

context

MDP

expert advice

adversarial bandits

stochastic bandits

∼stochastic approximation

IL is at the frontal plane (., ., MDP)
[Seldin’15]

| October 10, 2018 10 / 41

Adversarial Environment with Full Information

(adversarial just means there are no statistical assumptions)

| October 10, 2018 11 / 41

Adversarial Environment with Full Information
(adversarial just means there are no statistical assumptions)

| October 10, 2018 11 / 41

Measure of success

Online learning protocol

1: for t = 0, . . . do
2: observe xt (if available)
3: predict ŷt
4: suffer loss `t(ŷt)
5: update

n `t are arbitrary (e.g., does not mean these are uniformly distributed)

n could be random or non-random, depend on previous history

n we want algorithms that work in any case

What about the goal?

n no training set, so cannot minimize loss over training set

n even if we could, does not always make sense as `t can be anything

á measure of success has to be calculated w.r.t. to the whole
interaction, not just some end objective

| October 10, 2018 12 / 41

Measure of success

Online learning protocol

1: for t = 0, . . . do
2: observe xt (if available)
3: predict ŷt
4: suffer loss `t(ŷt)
5: update

n `t are arbitrary (e.g., does not mean these are uniformly distributed)

n could be random or non-random, depend on previous history

n we want algorithms that work in any case

What about the goal?

n no training set, so cannot minimize loss over training set

n even if we could, does not always make sense as `t can be anything

á measure of success has to be calculated w.r.t. to the whole
interaction, not just some end objective

| October 10, 2018 12 / 41

Measure of success

Online learning protocol

1: for t = 0, . . . do
2: observe xt (if available)
3: predict ŷt
4: suffer loss `t(ŷt)
5: update

n `t are arbitrary (e.g., does not mean these are uniformly distributed)

n could be random or non-random, depend on previous history

n we want algorithms that work in any case

What about the goal?

n no training set, so cannot minimize loss over training set

n even if we could, does not always make sense as `t can be anything

á measure of success has to be calculated w.r.t. to the whole
interaction, not just some end objective

| October 10, 2018 12 / 41

Measure of success

Online learning protocol

1: for t = 0, . . . do
2: observe xt (if available)
3: predict ŷt
4: suffer loss `t(ŷt)
5: update

n `t are arbitrary (e.g., does not mean these are uniformly distributed)

n could be random or non-random, depend on previous history

n we want algorithms that work in any case

What about the goal?

n no training set, so cannot minimize loss over training set

n even if we could, does not always make sense as `t can be anything

á measure of success has to be calculated w.r.t. to the whole
interaction, not just some end objective

| October 10, 2018 12 / 41

Measure of success

Online learning protocol

1: for t = 0, . . . do
2: observe xt (if available)
3: predict ŷt
4: suffer loss `t(ŷt)
5: update

n `t are arbitrary (e.g., does not mean these are uniformly distributed)

n could be random or non-random, depend on previous history

n we want algorithms that work in any case

What about the goal?

n no training set, so cannot minimize loss over training set

n even if we could, does not always make sense as `t can be anything

á measure of success has to be calculated w.r.t. to the whole
interaction, not just some end objective

| October 10, 2018 12 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary

n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)−?

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht

á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)−
T∑
t=1

`t(ht)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H

á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)−min
h∈H

T∑
t=1

`t(h)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)−min
h∈H

T∑
t=1

`t(h)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)−min
h∈H

T∑
t=1

`t(h)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Regret

What do we want to achieve?

n in principle we want to minimize our total loss

n still not ideal, because `t can scale arbitrary
n so we need a relative measure

á e.g., w.r.t. to some fixed (but unknown) strategy h = ht
á or w.r.t. to the best strategy from a set H
á note: the larger is H the harder is the task

n we measure a ‘cost of ignorance’ or ‘regret for not following that
strategy’

RT =

T∑
t=1

`t(ŷt)−min
h∈H

T∑
t=1

`t(h)

Our ultimate goal:

n average regret RT /T → 0

n as fast as possible

n as the learning goes on, our loss is less and less different from the alternative one
(‘we have no regret’)

n such algorithms are even called like that, ‘no-regret algorithms’

| October 10, 2018 13 / 41

Adversary restriction

Different definitions of regret

n regret is a tool to analyze a problem,
to test it under different assumptions

n w/o any restrictive assumptions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly
n different regret definitions than reflect our knowledge about the

environment:

1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h
∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =
T∑
t=1

`t(wt)−min
h∈H

T∑
t=1

`t(h)

| October 10, 2018 14 / 41

Adversary restriction

Different definitions of regret

n regret is a tool to analyze a problem,
to test it under different assumptions

n w/o any restrictive assumptions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly
n different regret definitions than reflect our knowledge about the

environment:

1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h
∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =
T∑
t=1

`t(wt)−min
h∈H

T∑
t=1

`t(h)

| October 10, 2018 14 / 41

Adversary restriction

Different definitions of regret

n regret is a tool to analyze a problem,
to test it under different assumptions

n w/o any restrictive assumptions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly
n different regret definitions than reflect our knowledge about the

environment:

1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h
∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =
T∑
t=1

`t(wt)−min
h∈H

T∑
t=1

`t(h)

| October 10, 2018 14 / 41

Adversary restriction

Different definitions of regret

n regret is a tool to analyze a problem,
to test it under different assumptions

n w/o any restrictive assumptions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly

n different regret definitions than reflect our knowledge about the
environment:

1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h
∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =
T∑
t=1

`t(wt)−min
h∈H

T∑
t=1

`t(h)

| October 10, 2018 14 / 41

Adversary restriction

Different definitions of regret

n regret is a tool to analyze a problem,
to test it under different assumptions

n w/o any restrictive assumptions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly
n different regret definitions than reflect our knowledge about the

environment:

1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h
∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =
T∑
t=1

`t(wt)−min
h∈H

T∑
t=1

`t(h)

| October 10, 2018 14 / 41

Adversary restriction

Different definitions of regret

n regret is a tool to analyze a problem,
to test it under different assumptions

n w/o any restrictive assumptions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly
n different regret definitions than reflect our knowledge about the

environment:
1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h
∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =
T∑
t=1

`t(wt)−min
h∈H

T∑
t=1

`t(h)

| October 10, 2018 14 / 41

Adversary restriction

Different definitions of regret

n regret is a tool to analyze a problem,
to test it under different assumptions

n w/o any restrictive assumptions online learning is too hard (or
impossible)

n need to restrict the power of adversary and vary RT accordingly
n different regret definitions than reflect our knowledge about the

environment:
1 if we believe that true data is generated by some fixed function h∗,
yt = h∗(xt), it’s reasonable to minimize RT w.r.t. to that function

RT (h
∗) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(h
∗)

2 if not, the adversary must not at least change his mind at will, i.e. has
to commit to some yt before seeing ŷt; then it makes sense to optimize
RT w.r.t. to the best function from some set H:

RT (H) =
T∑
t=1

`t(wt)−min
h∈H

T∑
t=1

`t(h)

| October 10, 2018 14 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

| October 10, 2018 15 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

`(ŷt)−min
h∈H

T∑
t=1

`t(h(xt))

| October 10, 2018 15 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

|yt − ŷt| −min
h∈H

T∑
t=1

|yt − h(xt)|

| October 10, 2018 15 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

|yt − ŷt| −min
h∈H

T∑
t=1

|yt − h(xt)|

n take simplest H = {h0, h1}, where ha ≡ a (constant, 0 or 1, function)

n Exercise: can you make the learner always lose? [Shalev-Shwartz’12]

n wait until ŷt and set yt = 1− ŷt

| October 10, 2018 15 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

|yt − ŷt| −min
h∈H

T∑
t=1

|yt − h(xt)|

n take simplest H = {h0, h1}, where ha ≡ a (constant, 0 or 1, function)

n Exercise: can you make the learner always lose? [Shalev-Shwartz’12]

n wait until ŷt and set yt = 1− ŷt

| October 10, 2018 15 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

|yt − ŷt| −min
h∈H

T∑
t=1

|yt − h(xt)|

n take simplest H = {h0, h1}, where ha ≡ a (constant, 0 or 1, function)

n Exercise: can you make the learner always lose? [Shalev-Shwartz’12]

n wait until ŷt and set yt = 1− ŷt
| October 10, 2018 15 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

|yt − ŷt| −min
h∈H

T∑
t=1

|yt − h(xt)|

n wait until ŷt and set yt = 1− ŷt

n for any h ∈ {h0(·), h1(·)}, minh∈H
∑T

t=1 |yt − h(xt)| ≤ T/2
n RT (H) =

∑T
t=1 |yt− ŷt|−minh∈H

∑T
t=1 |yt−h(xt)| ≥ T−T/2 = T/2

| October 10, 2018 15 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

|yt − ŷt| −min
h∈H

T∑
t=1

|yt − h(xt)|

n wait until ŷt and set yt = 1− ŷt
n for any h ∈ {h0(·), h1(·)}, minh∈H

∑T
t=1 |yt − h(xt)| ≤ T/2

n RT (H) =
∑T

t=1 |yt− ŷt|−minh∈H
∑T

t=1 |yt−h(xt)| ≥ T−T/2 = T/2

| October 10, 2018 15 / 41

Adversary restriction

What happens if we don’t have the commitment requirement?

Example: online classification

1: for t = 0, . . . do
2: observe xt
3: predict ŷt ∈ {0, 1}
4: receive true yt
5: suffer loss `t(ŷt) = |yt − ŷt|
6: update wt+1

RT =

T∑
t=1

|yt − ŷt| −min
h∈H

T∑
t=1

|yt − h(xt)|

n wait until ŷt and set yt = 1− ŷt
n for any h ∈ {h0(·), h1(·)}, minh∈H

∑T
t=1 |yt − h(xt)| ≤ T/2

n RT (H) =
∑T

t=1 |yt− ŷt|−minh∈H
∑T

t=1 |yt−h(xt)| ≥ T−T/2 = T/2

| October 10, 2018 15 / 41

Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4:

5: predict ŷt = r
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

| October 10, 2018 16 / 41

Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

Consistent

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose any h ∈ Vt
5: predict ŷt = r
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

| October 10, 2018 16 / 41

Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

Consistent

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose any h ∈ Vt
5: predict ŷt = r
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

Analysis:

n ∀t at least one h is removed if there was an error (and none if not)

n 1 ≤ |Vt| ≤ |H| −#errors

n RT = #errors− 0 = #errors ≤ |H| − 1

n can we do better? hint: purge hypotheses faster

| October 10, 2018 16 / 41

Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

Consistent

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose any h ∈ Vt
5: predict ŷt = r
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

Analysis:

n ∀t at least one h is removed if there was an error (and none if not)

n 1 ≤ |Vt| ≤ |H| −#errors

n RT = #errors− 0 = #errors ≤ |H| − 1

n can we do better? hint: purge hypotheses faster

| October 10, 2018 16 / 41

Algorithm for the realizability case

Realizability assumption: ∃h∗ ∈ H s.t. ∀t yt = h∗(xt). Also |H| <∞

Halving

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose by majority vote r = argmaxr∈{0,1} |h ∈ Vt : h(xt) = r|
5: predict ŷt = r
6: receive true yt = h∗(xt)
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

Analysis:

n ∀t at least one half of Vt is removed if there was an error

n 1 ≤ |Vt| ≤ |H|/2#errors

n RT (h
∗) = #errors ≤ log2 |H|

| October 10, 2018 16 / 41

Failure of realizability for infinite |H|

Finiteness of H is crucial

Example

n real line X = (0, 1), thresholds H =
{
hθ : (0, 1)→ {0, 1}

}
n hθ(x) = sign(θ − x)
n ∃ a sequence of xt, yt generated by some θ on which the Halving

will have RT = T

Solution:

n maintain Lt (left) and Rt (right)

n L0 = 0, R0 = 1

n pick a random xt ∈ (Lt, Rt)

n receive ŷt
n report yt = 1− ŷt
n Rt+1 = xtyt +Rtŷt
n Lt+1 = xtŷt + Ltyt
n ∀t Rt − Lt > 0

| October 10, 2018 17 / 41

Failure of realizability for infinite |H|

Finiteness of H is crucial

Example

n real line X = (0, 1), thresholds H =
{
hθ : (0, 1)→ {0, 1}

}
n hθ(x) = sign(θ − x)
n ∃ a sequence of xt, yt generated by some θ on which the Halving

will have RT = T

Exercise: construct such a sequence [Shalev-Shwartz’12]

Solution:

n maintain Lt (left) and Rt (right)

n L0 = 0, R0 = 1

n pick a random xt ∈ (Lt, Rt)

n receive ŷt
n report yt = 1− ŷt
n Rt+1 = xtyt +Rtŷt
n Lt+1 = xtŷt + Ltyt
n ∀t Rt − Lt > 0

| October 10, 2018 17 / 41

Failure of realizability for infinite |H|

Finiteness of H is crucial

Example

n real line X = (0, 1), thresholds H =
{
hθ : (0, 1)→ {0, 1}

}
n hθ(x) = sign(θ − x)
n ∃ a sequence of xt, yt generated by some θ on which the Halving

will have RT = T

Solution:

n maintain Lt (left) and Rt (right)

n L0 = 0, R0 = 1

n pick a random xt ∈ (Lt, Rt)

n receive ŷt
n report yt = 1− ŷt
n Rt+1 = xtyt +Rtŷt
n Lt+1 = xtŷt + Ltyt
n ∀t Rt − Lt > 0

| October 10, 2018 17 / 41

Randomization

n realizability assumption may be too harsh for our application
n instead add an element of surprise to our predictions:

á remember to require the adversary to commit to yt before seeing ŷt
á will change lines 4 and 5 in the Consistent

Consistent

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose h = argmaxr∈{0,1} |h ∈ Vt : h(xt) = r|
5: predict ŷt(wt) = h(xt)
6: receive true yt
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

RT =

T∑
t=1

Ept [[ŷt 6= yt]]−min
h∈H

T∑
t=1

[[h(xt) 6= yt]] ← note regret changed again

=
T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√
0.5T ln |H|

| October 10, 2018 18 / 41

Randomization

n realizability assumption may be too harsh for our application
n instead add an element of surprise to our predictions:

á remember to require the adversary to commit to yt before seeing ŷt
á will change lines 4 and 5 in the Consistent

Randomized

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose probability pt
5: predict ŷt(wt) = 1 with prob. pt
6: receive true yt
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

RT =

T∑
t=1

Ept [[ŷt 6= yt]]−min
h∈H

T∑
t=1

[[h(xt) 6= yt]] ← note regret changed again

=
T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√
0.5T ln |H|

| October 10, 2018 18 / 41

Randomization

n realizability assumption may be too harsh for our application
n instead add an element of surprise to our predictions:

á remember to require the adversary to commit to yt before seeing ŷt
á will change lines 4 and 5 in the Consistent

Randomized

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose probability pt
5: predict ŷt(wt) = 1 with prob. pt
6: receive true yt
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

RT =

T∑
t=1

Ept [[ŷt 6= yt]]−min
h∈H

T∑
t=1

[[h(xt) 6= yt]] ← note regret changed again

=

T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√

0.5T ln |H|

| October 10, 2018 18 / 41

Randomization

n realizability assumption may be too harsh for our application
n instead add an element of surprise to our predictions:

á remember to require the adversary to commit to yt before seeing ŷt
á will change lines 4 and 5 in the Consistent

Randomized

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose probability pt
5: predict ŷt(wt) = 1 with prob. pt
6: receive true yt
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

RT =

T∑
t=1

Ept [[ŷt 6= yt]]−min
h∈H

T∑
t=1

[[h(xt) 6= yt]] ← note regret changed again

=

T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt|

≤
√

0.5T ln |H|

| October 10, 2018 18 / 41

Randomization

n realizability assumption may be too harsh for our application
n instead add an element of surprise to our predictions:

á remember to require the adversary to commit to yt before seeing ŷt
á will change lines 4 and 5 in the Consistent

Randomized

1: Initialize V0 = H
2: for t = 0, . . . do
3: observe xt
4: choose probability pt
5: predict ŷt(wt) = 1 with prob. pt
6: receive true yt
7: update Vt+1 = {h ∈ Vt : h(xt) = yt}

RT =

T∑
t=1

Ept [[ŷt 6= yt]]−min
h∈H

T∑
t=1

[[h(xt) 6= yt]] ← note regret changed again

=

T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√
0.5T ln |H|

| October 10, 2018 18 / 41

Summary so far

n we had full information (i.e., we received the true yt)

n different adversary restrictions help to get regret bounds

á realizability + finiteness

Consistent RT ≤ |H| − 1
Halving RT ≤ log2 |H|

á randomization

Randomized RT ≤
√

0.5T ln |H|

| October 10, 2018 19 / 41

Summary so far

n we had full information (i.e., we received the true yt)

n different adversary restrictions help to get regret bounds
á realizability + finiteness

Consistent RT ≤ |H| − 1
Halving RT ≤ log2 |H|

á randomization

Randomized RT ≤
√

0.5T ln |H|

| October 10, 2018 19 / 41

Summary so far

n we had full information (i.e., we received the true yt)

n different adversary restrictions help to get regret bounds
á realizability + finiteness

Consistent RT ≤ |H| − 1
Halving RT ≤ log2 |H|

á randomization

Randomized RT ≤
√

0.5T ln |H|

| October 10, 2018 19 / 41

Learning with Experts’ Advice

| October 10, 2018 20 / 41

Learning with Experts’ Advice

n imagine horse-races

n you know nothing about horses §
n luckily you have knowledgeable friends willing to give you advice ©
n you need to apportion a fixed sum of money between them

á goal: minimize losses / maximize profit

| October 10, 2018 21 / 41

Learning with Experts’ Advice

n imagine horse-races

n you know nothing about horses §
n luckily you have knowledgeable friends willing to give you advice ©
n you need to apportion a fixed sum of money between them

á goal: minimize losses / maximize profit

| October 10, 2018 21 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =
T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =
T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =
T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =
T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉

n goal

RT =
T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =

T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =

T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =

T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Experts’ Advice

n stateless case
(you have friend’s identity, but not horses’ breakfast menu or expert
history)

n N friends

n loss vector `t ∈ [0, 1]N e.g., `t[i] = 0.3 if ith friend lost 30 cents

n prediction pt ∈ [0, 1]N ,
∑N

i=1 pt[i] = 1 your distribution of money

n loss
∑N

i=1 pt[i]`t[i] = 〈pt, `t〉
n goal

RT =

T∑
t=1

〈pt, `t〉 − min
i=1,...,N

T∑
t=1

`t[i]︸ ︷︷ ︸
loss of the best friend

→ min

n note: you don’t know how good your friends are

n note: horses/friends can conspire against you

n but in the limit you can do as good as the best friend in hindsight!

n (in terms of average loss per race)

| October 10, 2018 22 / 41

Hedge algorithm

n if one of the friends is perfect can get ≤ log2N mistakes with Halving

n but making a mistake does not necessarily mean we should disqualify
a friend

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0
2: for t = 1, . . . do
3: compute pt =

wt∑N
i=1 wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i] ← “soft disqualification”

Theorem

For any `1, . . . , `T and any i ∈ {1, . . . , N}

RT =
T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] ≤
√
2T lnN + lnN

| October 10, 2018 23 / 41

Hedge algorithm

n if one of the friends is perfect can get ≤ log2N mistakes with Halving

n but making a mistake does not necessarily mean we should disqualify
a friend

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0
2: for t = 1, . . . do
3: compute pt =

wt∑N
i=1 wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i] ← “soft disqualification”

Theorem

For any `1, . . . , `T and any i ∈ {1, . . . , N}

RT =
T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] ≤
√
2T lnN + lnN

| October 10, 2018 23 / 41

Hedge algorithm

n if one of the friends is perfect can get ≤ log2N mistakes with Halving

n but making a mistake does not necessarily mean we should disqualify
a friend

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0
2: for t = 1, . . . do
3: compute pt =

wt∑N
i=1 wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i] ← “soft disqualification”

Theorem

For any `1, . . . , `T and any i ∈ {1, . . . , N}

RT =
T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] ≤
√
2T lnN + lnN

| October 10, 2018 23 / 41

Hedge algorithm

n if one of the friends is perfect can get ≤ log2N mistakes with Halving

n but making a mistake does not necessarily mean we should disqualify
a friend

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0
2: for t = 1, . . . do
3: compute pt =

wt∑N
i=1 wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i] ← “soft disqualification”

Theorem

For any `1, . . . , `T and any i ∈ {1, . . . , N}

RT =

T∑
t=1

〈pt, `t〉 −min
j

T∑
t=1

`t[j] ≤
√
2T lnN + lnN

| October 10, 2018 23 / 41

Exercise

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0

2: for t = 1, . . . do

3: compute pt =
wt∑N

i=1
wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i]

Exercise: [Marchetti-Spaccamela’11]

n 3 experts: 1st playing always Rock, 2nd – Scissors, and 3rd – Paper

n your opponent plays first Rock T/3 times, then Scissors T/3 times
and then Paper T/3 times

0 T/3 2T/3 T

Rock Scissors Paper

n loss: -1 if won, +1 if lost, 0 if tie
n describe roughly 1) the most probable strategies played by Hedge,

2) when they switch and 3) the final distribution

| October 10, 2018 24 / 41

http://www.dis.uniroma1.it/~alberto/didattica/tcs-2011/exercise-3/exercise-learning.pdf

Exercise

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0

2: for t = 1, . . . do

3: compute pt =
wt∑N

i=1
wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i]

Exercise: [Marchetti-Spaccamela’11]

n 3 experts: 1st playing always Rock, 2nd – Scissors, and 3rd – Paper
n your opponent plays first Rock T/3 times, then Scissors T/3 times

and then Paper T/3 times

0 T/3 2T/3 T

Rock Scissors Paper

n loss: -1 if won, +1 if lost, 0 if tie
n describe roughly 1) the most probable strategies played by Hedge,

2) when they switch and 3) the final distribution

| October 10, 2018 24 / 41

http://www.dis.uniroma1.it/~alberto/didattica/tcs-2011/exercise-3/exercise-learning.pdf

Exercise

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0

2: for t = 1, . . . do

3: compute pt =
wt∑N

i=1
wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i]

Exercise: [Marchetti-Spaccamela’11]

n 3 experts: 1st playing always Rock, 2nd – Scissors, and 3rd – Paper
n your opponent plays first Rock T/3 times, then Scissors T/3 times

and then Paper T/3 times

0 T/3 2T/3 T

Rock Scissors Paper

n loss: -1 if won, +1 if lost, 0 if tie

n describe roughly 1) the most probable strategies played by Hedge,
2) when they switch and 3) the final distribution

| October 10, 2018 24 / 41

http://www.dis.uniroma1.it/~alberto/didattica/tcs-2011/exercise-3/exercise-learning.pdf

Exercise

Hedge

1: init vector w1 ∈ RN+ s.t. w1[i] = 1/N , learning rate µ > 0

2: for t = 1, . . . do

3: compute pt =
wt∑N

i=1
wt[i]

4: receive loss `t
5: update wt+1[i] = wt[i]e

−µ`t[i]

Exercise: [Marchetti-Spaccamela’11]

n 3 experts: 1st playing always Rock, 2nd – Scissors, and 3rd – Paper
n your opponent plays first Rock T/3 times, then Scissors T/3 times

and then Paper T/3 times

0 T/3 2T/3 T

Rock Scissors Paper

n loss: -1 if won, +1 if lost, 0 if tie
n describe roughly 1) the most probable strategies played by Hedge,

2) when they switch and 3) the final distribution

| October 10, 2018 24 / 41

http://www.dis.uniroma1.it/~alberto/didattica/tcs-2011/exercise-3/exercise-learning.pdf

Relation to boosting

n Hedge inspired Boosting – a powerful concept of combining weak
algorithms into a strong one

n idea:

á treat your training examples as experts
á changing weights focuses attention on difficult examples

H Gödel Prize 2003

| October 10, 2018 25 / 41

Relation to boosting

n Hedge inspired Boosting – a powerful concept of combining weak
algorithms into a strong one

n idea:

á treat your training examples as experts
á changing weights focuses attention on difficult examples

H Gödel Prize 2003

| October 10, 2018 25 / 41

Relation to boosting

n Hedge inspired Boosting – a powerful concept of combining weak
algorithms into a strong one

n idea:

á treat your training examples as experts
á changing weights focuses attention on difficult examples

H Gödel Prize 2003

| October 10, 2018 25 / 41

Infinite hypotheses space

| October 10, 2018 26 / 41

Infinite hypotheses space

n we’ll introduce online convex optimization

n map some the problems we talked to the new language

Online convex optimization

1: Input: a convex set S ⊂ Rd
2: for t = 0, . . . do
3: predict wt ∈ S
4: receive a convex loss function `t : S → R
5: suffer loss `t(wt)

| October 10, 2018 27 / 41

Example: Online Regression

n measurements (features) X = Rd

n truths and decision Y = D = R
n common loss functions:

á `t(pt, yt) = (pt − yt)2
á `t(pt, yt) = |pt − yt|

n simple hypothesis class H = {x 7→
∑d

i=1w[i]x[i] : w ∈ Rd} (linear
predictors)

note: both loss functions `t are convex

| October 10, 2018 28 / 41

Example: Expert Advice

n measurements X = Rd, where xi is the advice of the ith expert

n truths Y = [0, 1]d

n decisions pt ∈ D = {1, . . . , d}
n loss function: `(p, y) = yt[pt]

n hypothesis class H = {h1, . . . , hd}, where hi(x) = i,∀x (constant
predictors)

note: since D is discrete, the losses `t are not convex

| October 10, 2018 29 / 41

Example: Online Classification

n measurements X
n binary truths and decisions Y = D = {0, 1}
n loss function: `t(pt, yt) = |pt − yt|
n finite hypothesis class H = {h1, . . . , hk}

note: since D is discrete, the losses `t are again not convex

| October 10, 2018 30 / 41

Convexification

n how can we map non-convex to convex tasks?

n randomization
n surrogate losses

| October 10, 2018 31 / 41

Convexification by Randomization

Expert Advice

n measurements X = Rd, where xi is the advice of the ith expert

n truths Y = [0, 1]d

n decisions pt ∈ D = {1, . . . , d}
n loss function: `(p, y) = yt[pt]

Mapping

n let the learner maintain a vector wt ∈ Rd, s.t.
∑d

i=1wt,i = 1

n the learner randomly picks the expert according to the distribution wt

n the adversary cannot base his `t on the sample from wt

n the loss suffered is now E[yt[pt]] = w>t yt (linear function)

Now the problem fits into online convex optimization with `t = w>t yt

| October 10, 2018 32 / 41

Convexification by Surrogate Losses

Online Classification with finite hypothesis class

n measurements xt ∈ X
n binary truths and decisions Y = D = {0, 1}
n loss function: `t(pt, yt) = |pt − yt|
n hypothesis class H = {h1, . . . , hk}

n let vt = (h1(xt), . . . , hk(xt)) ∈ {0, 1}k
n let the learner maintain a vector wt ∈ Rk, s.t.

∑k
i=1wt,i = 1

n prediction is done via

pt =

{
1, if w>t vt ≥ 1/2

0, if w>t vt < 1/2

n loss `t(w) = 2
∣∣w>vt − yt∣∣ I[pt 6= yt]

n `t is convex

n `t ≥ |pt − yt|

| October 10, 2018 33 / 41

Convexification by Surrogate Losses

Online Classification with finite hypothesis class

n measurements xt ∈ X
n binary truths and decisions Y = D = {0, 1}
n loss function: `t(pt, yt) = |pt − yt|
n hypothesis class H = {h1, . . . , hk}

n let vt = (h1(xt), . . . , hk(xt)) ∈ {0, 1}k
n let the learner maintain a vector wt ∈ Rk, s.t.

∑k
i=1wt,i = 1

n prediction is done via

pt =

{
1, if w>t vt ≥ 1/2

0, if w>t vt < 1/2

n loss `t(w) = 2
∣∣w>vt − yt∣∣ I[pt 6= yt]

n `t is convex

n `t ≥ |pt − yt|

| October 10, 2018 33 / 41

Convexification by Surrogate Losses

Online Classification with finite hypothesis class

n measurements xt ∈ X
n binary truths and decisions Y = D = {0, 1}
n loss function: `t(pt, yt) = |pt − yt|
n hypothesis class H = {h1, . . . , hk}

n let vt = (h1(xt), . . . , hk(xt)) ∈ {0, 1}k
n let the learner maintain a vector wt ∈ Rk, s.t.

∑k
i=1wt,i = 1

n prediction is done via

pt =

{
1, if w>t vt ≥ 1/2

0, if w>t vt < 1/2

n loss `t(w) = 2
∣∣w>vt − yt∣∣ I[pt 6= yt]

n `t is convex

n `t ≥ |pt − yt|
| October 10, 2018 33 / 41

Follow-The-Leader

Follow-The-Leader

∀t, wt = argmin
w∈S

t−1∑
i=1

`i(w)

+R(w)

Roughly the same in spirit as the Consistent algorithm.

| October 10, 2018 34 / 41

Follow-The-Leader

Follow-The-Regularized-Leader

∀t, wt = argmin
w∈S

t−1∑
i=1

`i(w)+R(w)

Roughly the same in spirit as the Consistent algorithm.

| October 10, 2018 34 / 41

Linear loss functions

n `t(w) = w>zt

n R(w) = 1
2ν ||w||

2
2

Exercise: find FTRL’s wt+1 in a closed form

wt+1 = −ν
t∑
i=1

zi = wt − νzt

wt+1 = wt − νzt
Linear loss is a special case that links FTRL to SGD.

| October 10, 2018 35 / 41

Linear loss functions

n `t(w) = w>zt

n R(w) = 1
2ν ||w||

2
2

Exercise: find FTRL’s wt+1 in a closed form

wt+1 = −ν
t∑
i=1

zi = wt − νzt

wt+1 = wt − νzt
Linear loss is a special case that links FTRL to SGD.

| October 10, 2018 35 / 41

Linear loss functions

n `t(w) = w>zt

n R(w) = 1
2ν ||w||

2
2

Exercise: find FTRL’s wt+1 in a closed form

wt+1 = −ν
t∑
i=1

zi = wt − νzt

wt+1 = wt − νzt
Linear loss is a special case that links FTRL to SGD.

| October 10, 2018 35 / 41

Lemma

Lemma

T∑
t=1

`t(wt)− `t(u) ≤ R(u)−R(w1) +

T∑
t=1

`t(wt)− `t(wt+1)

Proof idea:

n set f0 = R

n proof by induction

| October 10, 2018 36 / 41

Thm. for linear losses

Theorem

Consider FTRL, linear losses `t(w) = w>zt, and Euclidean regularization
R(w) = 1

2ν ||w||
2
2 and w, u ∈ S = Rd, then

RT (u) ≤
1

2ν
||u||22 + ν

T∑
t=1

||zt||22 .

Proof:
RT (u)

lemma
≤ R(u)−R(w1) +

T∑
t=1

`t(wt)− `t(wt+1)

≤ 1

2ν
||u||22 +

T∑
t=1

(wt − wt+1)
>zt

≤ 1

2ν
||u||22 + ν

T∑
t=1

||zt||22

| October 10, 2018 37 / 41

Linearization of convex functions

Convex functions: ∀u ∈ S, f(u) ≥ f(w) + (u− w)>z, z ∈ ∂f

For convex `t it follows that

T∑
t=1

`t(wt)− `t(u) ≤
T∑
t=1

w>t zt − u>zt.

| October 10, 2018 38 / 41

Apply FTRL to convex functions

n regret on convex functions is upper bounded by regret on tangent
linear functions

n if we use sub-gradients as linear approximations of convex functions,
we get the regret bound:

RT (u) ≤
1

2ν
||u||22 + ν

T∑
t=1

||∇`t||22 .

Turns out SGD is an instance of FTRL!

n if ||∇`t||22 ≤ TL2 and ||u||22 ≤ B, minimizing wrt. ν

RT (u) ≤ BL
√
2T .

| October 10, 2018 39 / 41

Regret bound

In general:

Theorem [Shalev-Shwartz’12]

For strongly convex R (not only quadratic), the regret w.r.t u ∈ S

T∑
t=1

`t(wt)−min
u∈S

T∑
t=1

`t(u) = O(
√
T)

Exact bound depends on

n the actual form of R

n the class of `t (linear, quadratic, etc.)

n other assumptions on S and `t

The average regret RT /T → 0.

| October 10, 2018 40 / 41

How to use this all?

n many IL algorithms call online learning as a subroutine

n all of deep learning is based on sub-gradient methods

n analysis and performance depends on the chosen
algorithm/regularization

n understanding these foundations allows being more informed when

á trying to improve IL approaches
á deciding on the regularization, loss functions etc.

[Shalev-Shwartz’12] “Online Learning and Online Convex Optimization”

| October 10, 2018 41 / 41

	Adversarial Online Learning
	Hedge

	Infinite hypothesis spaces

