Quick Intro into Reinforcement Learning

Artem Sokolov

Institute for Computational Linguistics, Heidelberg University

10 October 2018

m this is not a replacement to the RL course (summer semester)
we will only introduce basic concepts and notation

slides from the David Silver's course

= www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
= -+ videos!

m which in turn is based on the RL book by Sutton and Barto
= http://incompleteideas.net/book/the-book-2nd.html

Artem Sokolov | 10 October 2018 2/71

www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book-2nd.html

\
RL is a branch of science that studies decision making

How is RL different from other ML learning paradigms?
m No direct supervision, only a reward signal
Time really matters (sequential, non i.i.d data)

u
m Agent's actions affect the subsequent data it receives
u

Artem Sokolov | 10 October 2018 3/71

m A reward R; is a scalar feedback signal

= being a scalar is quite a natural requirement, because at some point
the agent needs to rank actions and pick one
= but it's also one of the sources of problems which IL aims to solve

m Indicates how well agent is doing at step t

m The agent’s job is to maximise cumulative reward

RL is based on:

Reward Hypothesis

All goals can be described by the maximisation of expected cumulative
reward

Artem Sokolov | 10 October 2018 4/71

Examples of rewards

m drone flying
= negative for crashing
= positive for finishing
m driving
= negative for crashing another car, running over a pedestrian, etc.
= positive for following the speed limits, keeping distance, etc.
B games

= negative for dying and/or for each time unit passed
= positive for eating ‘food’, collecting ‘treasures’, finishing a level

B investment

= positive for each $ of revenue
= negative for each $ of loss

® humanoid robot walk

= negative for falling
= positive for the height of head, for forward motion

Artem Sokolov | 10 October 2018 5/71

Sequential Decision Mak

Goal: select actions to maximise total future reward
Actions may have long term consequences
Reward may be delayed

May be better to sacrifice immediate reward to gain more in long-term

Examples:

= Financial investment (may take months to mature)
= Refuelling a helicopter (might prevent a crash in several hours)
= Sacrificing a figure in chess (might help winning many moves from now)

Artem Sokolov | 10 October 2018 6/71

observation /R RN O A e action

I | ‘? 1 \ (Ve "%’L —— a } ‘_“1/ I
Ot : “ \ o & . % ,“L" t

reward Rt

Artem Sokolov | 10 October 2018

Agent and Environment

observation /f' RN W A action
SAL ()
o, > N Ay 4, m At each step t the agent:
‘P = Executes action A,
= = Receives observation O;
\ = Receives scalar reward R;
reward | R m The environment:

= Receives action A;
= Emits observation O
= Emits scalar reward R;i

B t increments at environment's
step

Artem Sokolov | 10 October 2018 1

History and State

m The history is the sequence of observations, actions, rewards

Hy=01,R1, A1, ..., 41,0 Ry

= j.e. all observable variables up to time ¢
= j.e. the sensorimotor stream of a robot

State is the information used to determine what happens next

Formally, state is a function of the history:

Sy = f(Hy)

m distinction between a state of the environment and the agent'’s state:
= environment state is usually unobservable
= even if it partially is, may be irrelevant
B agent's state
= this is the basis for agent's decision taking and RL algorithms
= may partially include the environment state through sensors
= and this is usually the function S; = function_of _our_choice(Hy)

Artem Sokolov | 10 October 2018 9/71

m a state is Markov if contains all useful info for decision taking
m definition a state S; is Markov iff
P[S;41|St] = P[St+1]S1, - - -, Si]
m in other words S; is a sufficient statistics
m H,; is trivially Markov
m the state of the environment is also Markov (by definition)

Artem Sokolov | 10 October 2018 10 /71

Fully Observable Environments

observation /4 (% . 4
N
0, > —
Ny
=
&
reward R

Artem Sokolov | 10 October 2018

action

Full observability: agent directly
observes environment state

O =5 =5

m Agent state = environment

11/

Major Components of an RL Agent

m Policy: agent's behaviour function
m Value function: how good is each state and/or action

B Model: agent’'s representation of the environment

Artem Sokolov | 10 October 2018 12 /71

m A policy is the agent’s behaviour
m It is a map from state to action, e.g.
= Deterministic policy: a = 7(s)
= Stochastic policy: m(als) = P[A; = a|S; = s]

Artem Sokolov | 10 October 2018 13 /71

Value function

m Value function is a prediction of future reward
m Used to evaluate the goodness/badness of states

m And therefore to select between actions, e.g.

V(s) = E[Rty1 + YRiq2 + Y2Riiz+ ... |Sy = s

Artem Sokolov | 10 October 2018 14 /71

m A model predicts what the environment will do next
m P predicts the next state
® R predicts the next (immediate) reward, e.g.

Py = P[Si11 = 5|5 = s,4s =]

ss!

RZ = E[Rt+1\5t = S,At = a]

Artem Sokolov | 10 October 2018 15 /71

Agent Taxonomy

m Value based

(no explicit policy, value ®m Model-based

function) (policy and/or value function +
m Policy based model)

(explicit policy, no value m Model-free

function) (policy and/or value function,
m Actor-Critic based no model)

(policy, value function)

Artem Sokolov | 10 October 2018 16 / 71

Agent Taxonomy

Model-Free
Value Function Actor Policy
Critic
Value-Based Policy-Based
\ Model-Based
Model

Artem Sokolov | 10 October 2018 17 /71

Learning and Planning

m Learning
= The environment is initially unknown
= The agent interacts with the environment
= The agent improves its policy
m Planning:
= A model of the environment is known
= The agent performs computations with its model (without any external
interaction)
= The agent improves its policy
= a.k.a. search

Artem Sokolov | 10 October 2018 18 /71

Exploration and Exploitation

Reinforcement learning is like trial-and-error learning

[

m The agent should discover a good policy
m From its experiences of the environment
[

Without losing too much reward along the way

Artem Sokolov | 10 October 2018 19 /71

Exploration and Exploitation

m exploration finds more information about the environment
m exploitation exploits known information to maximise reward

®m both are important

Artem Sokolov | 10 October 2018 20/ 71

B Restaurant Selection

= Exploitation - Go to your favourite restaurant
= Exploration - Try a new restaurant

m Online Banner Advertisements

= Exploitation - Show the most successful advert
= Exploration - Show a different advert

m Qil Drilling
= Exploitation - Drill at the best known location
= Exploration - Drill at a new location

m Game Playing

= Exploitation - Play the move you believe is best
= Exploration - Play an experimental move

Artem Sokolov | 10 October 2018 21/ 71

Prediction & Control

m Prediction: evaluate a policy (find V(s))
m Control: find the best policy

Artem Sokolov | 10 October 2018 22 /71

Markov Decision Process

Artem Sokolov | 10 October 2018 23 /71

Markov decision processes formalize an environment for RL

m Where the environment is fully observable (i.e. the current state
completely characterises the process)

m Almost all RL problems can be formalised as MDPs,
m Optimal control primarily deals with continuous MDPs

m Bandits are MDPs with one state

Artem Sokolov | 10 October 2018 24 /71

m a state is Markov if contains all useful info for decision taking
m definition: a state S; is Markov iff
P[S;41|St] = P[St+1]S1, - - -, Si]
m in other words S; is a sufficient statistics
m H,; is trivially Markov
m the state of the environment is also Markov (by definition)

Artem Sokolov | 10 October 2018 25 /71

Markov state

For a Markov state s and successor state s’, the state transition probability
is defined by

Pss/ = P[St+1 = S/|St == S]
State transition matrix P defines transition probabilities from all states s
to all successor states s’

to

P11 . --Pln
P = from ..
1851 o 0 0 180

Artem Sokolov | 10 October 2018 26 /71

Types of Markov Processes

Markov Process

Definition
A Markov Process is a tuple (S, P)
m sis a (finite) set of state

m P is a transition matrix Psgy = P[Si11 = §'|St = 5]

Artem Sokolov | 10 October 2018 27 /71

Types of Markov Processes

Markov Reward Process

Definition

A Markov Process is a tuple (S, P, R,~)

s is a (finite) set of state

P is a transition matrix Pyy = P[S;y1 = §'|Si = 5]
R is a reward function, R(s) = E[R;4+1|S; = s]

n
]
]
m 7 is a discount factor, v € [0, 1]

Artem Sokolov | 10 October 2018 27 /71

Two more concepts

m Return:
o0

Gt = Rer1 +YRera+ - = Y Y Rirkn
k=0

= ~ =~ () — short-sighted evaluation
= ~ ~ 1 — far-sighted evaluation
= why: math convenience, evidence in nature, less emphasis on future

m Value function:
V(s) = E[G¢|S; = s]

Artem Sokolov | 10 October 2018 28 /71

Bellman equation for expectations

I
ﬁ

V(s) (G| St = 8]

[Rit1 +YRey2 + V2 Rio + ... |St = 8]
[Rit1 +7Gr41|St = 5]
[

Riy1 + 9V (St41)[St = 8]

E
E
E

Artem Sokolov | 10 October 2018 29 /71

Bellman equation for expectations

V(s) = E[G:|S; = s]
=E[Rit1 + YRipo + YV Rigo + ... |St = 8]
= E[Ri41 +7Gt41|S: = 5]
= E[Rit1 + 7V (St41)[St = 4]

In the matrix form:

V(s) = R(s) +~ Z P,V (s)
s'eS
V =R+~PV

where V, R are column-vectors, and P is a matrix

Artem Sokolov | 10 October 2018 29 /71

Solving Bellman equation

V =R+ PV
V(I —-~P)=R
V =(I-+P)"'R

m expensive: O(n?)
B matrix inversion feasible only for small MDPs

m iterative methods for large MDPs

Artem Sokolov | 10 October 2018 30/ 71

D 0 @ 0 @ 0 @ 0 @) 0 @\ 1 D

start

m all episodes start in the center state, C

m proceed either left or right by one state on each step, with equal
probability.
m episodes terminate either on the extreme left or the extreme right

m when an episode terminates on the right, a reward of +1 occurs; all
other rewards are zero.

B because this task is undiscounted, the true value of each state is the
probability of terminating on the right if starting from that state.

m value of the center state is v, (C) = 0.5.
m values of all the states, A through E, are 1/6, 2/6, 3/6, 4/6, 5/6

Artem Sokolov | 10 October 2018 31/71

DO@()@()@()@)O@\lD
start

all episodes start in the center state, C

proceed either left or right by one state on each step, with equal
probability.

episodes terminate either on the extreme left or the extreme right

B when an episode terminates on the right, a reward of +1 occurs; all
other rewards are zero.

B because this task is undiscounted, the true value of each state is the
probability of terminating on the right if starting from that state.
m value of the center state is v,(C) = 0.5.

m values of all the states, A through E, are 1/6, 2/6, 3/6, 4/6, 5/6

Exercise: write a Python program that calculates it

import numpy as np

—— — — ——

np.array (
np.array (

I
R
P

Cinv(I-P), P), R)

V = np.dot(np.dot(np.linalg

/71

Artem Sokolov | 10 October 2018

Markov Decision Process

Markov Reward Process

Definition

A Markov Process is a tuple (S, P, R,~)

S is a (finite) set of state

P is a transition matrix Pyy = P[S;y1 = §'|S; = 5]
R is a reward function, R(s) = E[R;4+1|S; = s]

n
n
]
m 7 is a discount factor, v € [0, 1]

Artem Sokolov | 10 October 2018 33/71

Markov Decision Process

Markov Decision Process

Definition

A Markov Process is a tuple (S, P, A, R,)

S is a (finite) set of state

A is a (finite) set of actions

P is a transition matrix P%, = P[S;41 = §'|S; = 5, Ay = a]
R is a reward function, R%(s) = E[R;11|S: = s, A¢ = d]

7 is a discount factor, v € [0, 1]

Artem Sokolov | 10 October 2018 33/71

Markov Decision Process

Markov Process

Definition

A Markov Process is a tuple (S, P, A, R,)
m S is a (finite) set of state
m P is a transition matrix g = P[Siy1 = §'|S; = 3]
® R is a reward function, (s) = E[R4+1]S; = 5]
[

7 is a discount factor, v € [0, 1]

New concept:

m Policy 7 is a distribution over actions given state:
m(als) = P[A; = a|S; = 5]

m policy = behaviour of the agent

B depends on the Markov state

Artem Sokolov | 10 October 2018 33/71

Induced MRP

m MDP (S, A, P,R,~) and policy 7
m can reduce to an MRP (S, P™, R™,)

Pl =) m(als)Py

acA

Riy =) m(als)Riy

acA

Artem Sokolov | 10 October 2018 34 /71

Policies

Classes:
B wrt time:

= stationary (=time-independent)
= non-stationary (=time-dependent)

B wrt certainty:
= deterministic (Vs3a, w(als) = 1)
= stochastic (otherwise)

® was: state-value function:
Vﬂ—(S) = EW[G”St = S]
V7T(5> = EW[Rt + VUW(SH»l’St = 5]
® new: action-value function:
QW(S,(I) = Ew[Gt’St =84, Ay = CL]
QW(Sa a) = Ew[Rt + V%(Stﬂa At+1)\5t =54, Ap = a]

Bellman equation for expectations

Value function:

Un(s) = Ex[Gt|St = 5] = Ex[Ret1 + 7V (St41)| St = 4]

Similarly for action-value function:

¢r(s,a) = Ex[Rit1 + vqr (St41, Ae41)|St = s, Ap =]

Artem Sokolov | 10 October 2018 36 /71

Relations of ¢ and v

a s'es
v(s) = Z (s,a)[rs —i—’yz Z (s',a")q(s',a")]
s'eS acA
A\\ B\ 3.3/88 44/53|15
\ +5 15|3.012.3/1.9/0.5
+10) B' + 0.110.7/ 0.7 0.4|-0.4
/ -1.0[-0.4/-0.4/-0.6-1.2
Actions
AK 1.9-1.3/-1.2]-1.4-2.0

Exercise: confirm that the center cell has v(s) ~ 0.7 using v(s) of it's
neighbors

Artem Sokolov | 10 October 2018 37 /71

Optimal Value Function

Definition

Optimal state-value function v*(s) is the max value-function over rs:
v*(s) = maxv.(s)
s

Similarly, for action-value function

q*(s,a) = max qr(s,a)
™

m they characterize the best possible performance in the MDP

m to “solve an MDP” is to find v* or ¢*

Artem Sokolov | 10 October 2018 38 /71

Existence of optimal policies

Thm
For any MDP
m dr%, sit. 7 > 7,V (possibly non-unique)

m For any optimal policy

Artem Sokolov | 10 October 2018 39/71

Finding Optimal Policy

An optimal policy can be found by maximising over a,

“(als) 1, if a =argmax,c4¢"(s,a)
m™*(als) =
0, otherwise

m There is always a deterministic optimal policy for any MDP

m If we know ¢*(s,a), we immediately have the optimal policy

Artem Sokolov | 10 October 2018 40 /71

Relations of ¢ and v

a s'es
q(s,a) = RE+~ Y P Y w(s,d)g(s',d)
s'eS a€A

Artem Sokolov | 10 October 2018 41/ 71

Relations of ¢ and v

v*(s) = mgxw(s, a)q* (s, a)
) =+ 7 3 P ()

v(s) = max +72P”/v
s'eS

¢*(s,a) = R+~ Z PZ, Z n(s',ad)g* (s, d")

s’eS a€A

Artem Sokolov | 10 October 2018 42 /71

Solving MDPs

Artem Sokolov | 10 October 2018 43 /71

Dynamic Programming

A method for solving complex problems, by breaking them down into
subproblems:

m Solve the subproblems
m Combine solutions to subproblems
Requirements:

m Optimal substructure (Principle of optimality applies, Optimal
solution can be decomposed into subproblems)

m Overlapping subproblems (Subproblems recur many times, Solutions
can be cached and reused)

m Markov decision processes satisfy both properties (Bellman equation
gives recursive decomposition, Value function stores and reuses
solutions)

Artem Sokolov | 10 October 2018 44 /71

Dynamic Programming

m Dynamic programming assumes full knowledge of the MDP
m It is used for planning in an MDP (which also assumes full knowledge)
m For prediction:

= Input: MDP (S, 4, P, R,~y) and policy =
= Qutput: value function v,
m For control:
= Input: MDP (S, A, P,R,~)
= Qutput: optimal value function v*
= and: optimal policy 7*

Artem Sokolov | 10 October 2018 45 /71

Iterative Policy Evaluation

m Problem: evaluate a given policy 7

m Solution: iterative application of Bellman expectation backup
V1 — V2 — -+ — Uy

m synchronously:

= At each iteration k + 1

= For all states s € S

= Update vi1+1(s) from vg(s") (by taking E)
= where s’ is a successor state of s

ver(s) = S wlals)(rs + 4 3 Poi(s))

s'eS

Artem Sokolov | 10 October 2018 46 / 71

Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating V =~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € 8:
v+ V(s)
V(s) < 2. m(als) Xy, (s 7] s, a) [r+7V(s")]
A — max(A, jv —V(s)])
until A < 0

Artem Sokolov | 10 October 2018 47 /71

Small Grid World

4 5 6 7 r= -1
on all transitions

actions

12 13 |14

Undiscounted episodic MDP (y = 1)

Nonterminal states 1, ..., 14

One terminal state (shown twice as shaded squares)
Actions leading out of the grid leave state unchanged
Reward is -1 until the terminal state is reached
Agent follows uniform random policy

m(n|-) = m(e|) = m(s|) = m(w]-) = 0.25

Policy evaluat

V| for the Greedy Policy
Random Policy w.rt Vg
0.0/0.0]0.0]0.0 Tl
k=0 00/0.0]0.0]0.0 5 o v d random
- 0.0[0.0] 00|00 D A A policy
0.0/0.0]0.0]0.0 el

7
T
1
T
1

0.0]-1.0]-1.0]-1.0

re1 1.0-1.0[-1.0[-1.0 Flblold-
10]-1.0]-1.0]-1.0 Pl |
-1.0-10]-1.0] 0.0 +l| -

0.0[-1.7]-2.0]-2.0
k=2 -1.7]-2.0[-2.0{-2.0
-2.0[-2.0/-2.0[-1.7

-2.0|-2.0/-1.7[0.0 b
Artem Sokolov | 10 October 2018 49 /71

YT
LT

Policy evaluation

00[-2.4-29[-3.0 — [|4
be3 2.4]-2.03.0]-2.0 P lq |,

29]-3.0[-2.9|-2.4 R

3.0]-2.9]2.4| 0.0 Ll 5| -

0.0]-6.1|-8.4[-9.0 — [~ |4
_ -6.1|-7.7|-8.4]-8.4 T la [y optimal

k=10 T policy

-8.4]-8.4-77]-6.1 o

-9.0/-8.4|-6.1] 0.0 Ll 5| -

0.0{-14.]-20-22. — - &

-14]-18]-20]-20. Pl e |,

-20.]-20.|-18]-14. el

22]20.|-14] 0.0 L - -

Artem Sokolov | 10 October 2018 50 / 71

Policy lteration

How to Improve a Policy?
Given an initial policy m:

m Evaluate the policy 7
vr(8) = E[Ri+1 + YRi42 + - .. |Se = 9]
m Improve the policy by acting greedily with respect to v,
7' = greedy(vy)

® In general, many iterations of improvement / evaluation

m this process of policy iteration always converges to 7*!

Artem Sokolov | 10 October 2018 51 /71

Policy lteration

Policy Iteration (using iterative policy evaluation) for estimating m ~ .

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Loop:
A« 0
Loop for each s € 8:
v V(s)
V(s) « Zs,ﬂ p(s',r|s,m(s)) [r' + '\/V(s’)]
A« max(A, v — V(s)])

until A < @ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action + m(s)
7(s) ¢ argmax, >, . p(s',7[s,a)[r + V(s8]
If old-action # w(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7 &~ 7,; else go to 2

Artem Sokolov | 10 October 2018 52 /71

Car Rental

States: Two locations, maximum of 20 cars at each
Actions: Move up to 5 cars between locations overnight

Reward: $10 for each car rented (must be available)

Transitions: Cars returned and requested randomly
= Poisson distribution, n returns/requests with prob ;’—:e’"f

= 1st location: average requests = 3, average returns = 3
= 2nd location: average requests = 4, average returns = 2

Artem Sokolov | 10 October 2018 53 /71

Car Rental

T T T
e el e—
] i

0

< T3

T2

| 174,

s |

bl S f 0

o iy

g |

Q I

0 .20
#Cars at second location

Artem Sokolov | 10 October 2018 54 / 71

Why does Policy Improvement Work?

m Consider a deterministic policy, a = 7(s)
m We cannot deteriorate it by acting greedily

7' (s) = arg max g (s, a)
acA

m This improves or keeps the value from any state s over one step,
4n(5,7(5)) = max gz(s,0) > gx(s,7(s)) = va(s)
m It therefore improves the value function,

U (8) 2 vr(s)

0r(8) <qr(s,7'(5)) = Enr [Rit1 + y0r(Se41)|Sk = 5]
<Ex[Rir1 + v¥qr (Ser1, 7(St11))|St = 8]
<Er[Rit1 + Yax(St1 + V2 an (St42)[Se1 = 2)|S; = 5]
SUW/(S)

Artem Sokolov | 10 October 2018 55 /71

Value lteration

Very similar to policy evaluation, diffs are in the form of v-update:
m Problem: find optimal policy =

m Solution: iterative application of Bellman optimality backup

I P
m Using synchronous backups

= At each iteration k + 1

= For all states s € S

= Update vg1(s) from vy (s") (by taking max)

Convergence to v*

Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy

Artem Sokolov | 10 October 2018 56 / 71

Value lteration

Value Iteration, for estimating = =~ T,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8+, arbitrarily except that V(terminal) = 0

Loop:

| A+0

| Loop for each s € 8:

| v V(s)

| V(s) ¢ maxy Y, . p(s',7|s,a)[r + vV (s")]
| A« max(A, v — V(s)|)

until A < 6

Output a deterministic policy, m ~ 7, such that
m(s) = argmax, 3, .p(s’,7[s,a) [r+V(s)]

Question: Which algorithm does it remind for CRFs?

Artem Sokolov | 10 October 2018 57 /71

Summary so far

Problem Bellman Equation Algorithm
Iterative
Policy Evaluation

Prediction | Bellman Expectation Equation

Bellman Expectation Equation

. Policy Iteration
+ Greedy Policy Improvement oy I

Control

Control Bellman Optimality Equation Value lteration

Artem Sokolov | 10 October 2018 58 /71

Gambler’s Problem

A gambler makes bets on coin flips

If the coin comes up heads, he wins as many dollars as he has staked
if it is tails, he loses his stake

pp, is the probability of getting coin heads

The game ends when the gambler wins/loses by reaching $100 or $0

On each flip, the gambler must decide what portion of his capital to
stake, in integer numbers of dollars.

m The state is the gambler's capital, s € {1,2,...,99}
m The actions are stakes, a € {0,1,..., min(s, 100 — s)}

m Reward = 0 on all transitions, except it's +1 when reaching $100

Artem Sokolov | 10 October 2018 59 /71

Value lteration

Final value /
0.8+ function — =/
/ /|
/ ‘
\/_alue 0.6 //
estimates //
0.4+ /
/
/
0.2 / ‘
/ g,;jfjlf— sweep 2
rr=" | |l sweep3
O-I T ‘I T 1
1 25 50 75 99
Capital
50
) 40
Final
policy
(stake) 20
10
1
: . : .)
1 25 50 75 99
Capital

Artem Sokolov | 10 October 2018 60 / 71

Programming task

B use a value-iteration skeleton code
m build the last plot

Artem Sokolov | 10 October 2018 61 /71

Artem Sokolov | 10 October 2018

Model-free RL

/71

m relied on know model P and R
m rarely the case in practice

® need model-free methods

Artem Sokolov | 10 October 2018 63 /71

Types of model-free prediction

m Monte-Carlo

m Temporal-Difference

Artem Sokolov | 10 October 2018 64 /71

Monte-Carlo Reinforcement Learning

MC methods learn directly from episodes of experience

MC is model-free: no knowledge of MDP transitions / rewards
MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return

Caveat: can only apply MC to episodic MDPs

All episodes must terminate

Artem Sokolov | 10 October 2018 65 /71

Monte-Carlo Policy Evaluation

m Goal: learn v, from episodes of experience under policy ™
S1,A1,Ro, ..., S, ~7
m Recall that the return is the total discounted reward:
Gt = Rip1 +YRipa+--+7" 'Ry
m Recall that the value function is the expected return:
vr(8) = Ex[Gy] St = 5]

m Monte-Carlo policy evaluation uses empirical mean return instead of
expected return

Artem Sokolov | 10 October 2018 66 / 71

First-visit MC prediction, for estimating V = v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following m: Sy, Ag, R1,51, A1, Ra, ..., S7—1,Ar_1, R
G +0
Loop for each step of episode, t =T —-1,7—-2,...,0:
G+~ ~vG + Ry
Unless S; appears in So, S1,...,5t—1:
Append G to Returns(St)
V(Sy) < average(Returns(Sy))

Artem Sokolov | 10 October 2018

Temporal Difference

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V(s), for all s € 8, arbitrarily except that V(terminal) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
A + action given by 7 for S
Take action A, observe R, S’
V(S) «+ V(S) + Q[B + 4V (S") — V(S)]
S« 8

until S is terminal

Artem Sokolov | 10 October 2018 68 / 71

m On-policy learning

= ‘Learn on the job’

= Learn about policy m from experience sampled from 7
m Off-policy learning

= ‘L ook over someone’s shoulder’

= | earn about policy 7 from experience sampled from g

Artem Sokolov | 10 October 2018 69 / 71

Sarsa (on-policy TD control) for estimating Q ~ g,

Algorithm parameters: step size a € (0,1], small ¢ > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
QS, 4) — Q(S, A) +a[R +~Q(S", A) — Q(S, A)]
S+ S5 A« A

until S is terminal

Artem Sokolov | 10 October 2018 70 /71

Q-learning (off-policy TD control) for estimating = ~ .

Algorithm parameters: step size « € (0, 1], small ¢ > 0
Initialize Q(s,a), for all s € 81, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) < Q(S,A) + « [R + ymax, Q(S’,a) — Q(S, A)]
S« S

until S is terminal

Artem Sokolov | 10 October 2018 71/ 71

