
Quick Intro into Reinforcement Learning

Artem Sokolov

Institute for Computational Linguistics, Heidelberg University

10 October 2018

n this is not a replacement to the RL course (summer semester)

n we will only introduce basic concepts and notation

n slides from the David Silver’s course

á www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

á + videos!

n which in turn is based on the RL book by Sutton and Barto

á http://incompleteideas.net/book/the-book-2nd.html

Artem Sokolov | 10 October 2018 2 / 71

www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book-2nd.html

RL

RL is a branch of science that studies decision making

How is RL different from other ML learning paradigms?

n No direct supervision, only a reward signal

n Time really matters (sequential, non i.i.d data)

n Agent’s actions affect the subsequent data it receives

n feedback is delayed, not instantaneous

Artem Sokolov | 10 October 2018 3 / 71

Rewards

n A reward Rt is a scalar feedback signal

á being a scalar is quite a natural requirement, because at some point
the agent needs to rank actions and pick one

á but it’s also one of the sources of problems which IL aims to solve

n Indicates how well agent is doing at step t

n The agent’s job is to maximise cumulative reward

RL is based on:

Reward Hypothesis

All goals can be described by the maximisation of expected cumulative
reward

Artem Sokolov | 10 October 2018 4 / 71

Examples of rewards

n drone flying

á negative for crashing
á positive for finishing

n driving

á negative for crashing another car, running over a pedestrian, etc.
á positive for following the speed limits, keeping distance, etc.

n games

á negative for dying and/or for each time unit passed
á positive for eating ‘food’, collecting ‘treasures’, finishing a level

n investment

á positive for each $ of revenue
á negative for each $ of loss

n humanoid robot walk

á negative for falling
á positive for the height of head, for forward motion

Artem Sokolov | 10 October 2018 5 / 71

Sequential Decision Making

n Goal: select actions to maximise total future reward

n Actions may have long term consequences

n Reward may be delayed

n May be better to sacrifice immediate reward to gain more in long-term

n Examples:

á Financial investment (may take months to mature)
á Refuelling a helicopter (might prevent a crash in several hours)
á Sacrificing a figure in chess (might help winning many moves from now)

Artem Sokolov | 10 October 2018 6 / 71

Agent

Artem Sokolov | 10 October 2018 7 / 71

Agent and Environment

n At each step t the agent:

á Executes action At
á Receives observation Ot
á Receives scalar reward Rt

n The environment:

á Receives action At
á Emits observation Ot+1

á Emits scalar reward Rt+1

n t increments at environment’s
step

Artem Sokolov | 10 October 2018 8 / 71

History and State

n The history is the sequence of observations, actions, rewards

Ht = O1, R1, A1, . . . , At−1, Ot, Rt

á i.e. all observable variables up to time t
á i.e. the sensorimotor stream of a robot

n State is the information used to determine what happens next

n Formally, state is a function of the history:

St = f(Ht)

n distinction between a state of the environment and the agent’s state:
á environment state is usually unobservable
á even if it partially is, may be irrelevant

n agent’s state
á this is the basis for agent’s decision taking and RL algorithms
á may partially include the environment state through sensors
á and this is usually the function St = function of our choice(Ht)

Artem Sokolov | 10 October 2018 9 / 71

Markov State

n a state is Markov if contains all useful info for decision taking

n definition a state St is Markov iff

P [St+1|St] = P [St+1|S1, . . . , St]

n in other words St is a sufficient statistics

n Ht is trivially Markov

n the state of the environment is also Markov (by definition)

Artem Sokolov | 10 October 2018 10 / 71

Fully Observable Environments

Full observability: agent directly
observes environment state

Ot = Sat = Set

n Agent state = environment

Artem Sokolov | 10 October 2018 11 / 71

Major Components of an RL Agent

n Policy: agent’s behaviour function

n Value function: how good is each state and/or action

n Model: agent’s representation of the environment

Artem Sokolov | 10 October 2018 12 / 71

Policy

n A policy is the agent’s behaviour

n It is a map from state to action, e.g.

á Deterministic policy: a = π(s)
á Stochastic policy: π(a|s) = P [At = a|St = s]

Artem Sokolov | 10 October 2018 13 / 71

Value function

n Value function is a prediction of future reward

n Used to evaluate the goodness/badness of states

n And therefore to select between actions, e.g.

V (s) = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

Artem Sokolov | 10 October 2018 14 / 71

Model

n A model predicts what the environment will do next

n P predicts the next state

n R predicts the next (immediate) reward, e.g.

P ass′ = P [St+1 = s|St = s,At = a]

Ras = E[Rt+1|St = s,At = a]

Artem Sokolov | 10 October 2018 15 / 71

Agent Taxonomy

n Value based
(no explicit policy, value
function)

n Policy based
(explicit policy, no value
function)

n Actor-Critic based
(policy, value function)

n Model-based
(policy and/or value function +
model)

n Model-free
(policy and/or value function,
no model)

Artem Sokolov | 10 October 2018 16 / 71

Agent Taxonomy

Artem Sokolov | 10 October 2018 17 / 71

Learning and Planning

n Learning

á The environment is initially unknown
á The agent interacts with the environment
á The agent improves its policy

n Planning:

á A model of the environment is known
á The agent performs computations with its model (without any external

interaction)
á The agent improves its policy
á a.k.a. search

Artem Sokolov | 10 October 2018 18 / 71

Exploration and Exploitation

n Reinforcement learning is like trial-and-error learning

n The agent should discover a good policy

n From its experiences of the environment

n Without losing too much reward along the way

Artem Sokolov | 10 October 2018 19 / 71

Exploration and Exploitation

n exploration finds more information about the environment

n exploitation exploits known information to maximise reward

n both are important

Artem Sokolov | 10 October 2018 20 / 71

Examples

n Restaurant Selection

á Exploitation - Go to your favourite restaurant
á Exploration - Try a new restaurant

n Online Banner Advertisements

á Exploitation - Show the most successful advert
á Exploration - Show a different advert

n Oil Drilling

á Exploitation - Drill at the best known location
á Exploration - Drill at a new location

n Game Playing

á Exploitation - Play the move you believe is best
á Exploration - Play an experimental move

Artem Sokolov | 10 October 2018 21 / 71

Prediction & Control

n Prediction: evaluate a policy (find V (s))

n Control: find the best policy

Artem Sokolov | 10 October 2018 22 / 71

Markov Decision Process

Artem Sokolov | 10 October 2018 23 / 71

MDPs

Markov decision processes formalize an environment for RL

n Where the environment is fully observable (i.e. the current state
completely characterises the process)

n Almost all RL problems can be formalised as MDPs,

n Optimal control primarily deals with continuous MDPs

n Bandits are MDPs with one state

Artem Sokolov | 10 October 2018 24 / 71

Markov State

n a state is Markov if contains all useful info for decision taking

n definition: a state St is Markov iff

P [St+1|St] = P [St+1|S1, . . . , St]

n in other words St is a sufficient statistics

n Ht is trivially Markov

n the state of the environment is also Markov (by definition)

Artem Sokolov | 10 October 2018 25 / 71

Markov state

For a Markov state s and successor state s′, the state transition probability
is defined by

Pss′ = P [St+1 = s′|St = s]

State transition matrix P defines transition probabilities from all states s
to all successor states s′

P = from

toP11 . . . P1n

. . .
Pn1 . . . Pnn



Artem Sokolov | 10 October 2018 26 / 71

Types of Markov Processes

Markov Process

Definition

A Markov Process is a tuple (S, P)

n s is a (finite) set of state

n P is a transition matrix Pss′ = P [St+1 = s′|St = s]

n R is a reward function, R(s) = E[Rt+1|St = s]

n γ is a discount factor, γ ∈ [0, 1]

Artem Sokolov | 10 October 2018 27 / 71

Types of Markov Processes

Markov Reward Process

Definition

A Markov Process is a tuple (S, P,R, γ)

n s is a (finite) set of state

n P is a transition matrix Pss′ = P [St+1 = s′|St = s]

n R is a reward function, R(s) = E[Rt+1|St = s]

n γ is a discount factor, γ ∈ [0, 1]

Artem Sokolov | 10 October 2018 27 / 71

Two more concepts

n Return:

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1

á γ ' 0 – short-sighted evaluation
á γ ' 1 – far-sighted evaluation
á why: math convenience, evidence in nature, less emphasis on future

n Value function:
V (s) = E[Gt|St = s]

Artem Sokolov | 10 October 2018 28 / 71

Bellman equation for expectations

V (s) = E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+2 + . . . |St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γV (St+1)|St = s]

In the matrix form:

V (s) = R(s) + γ
∑
s′∈S

Pss′V (s′)

V = R+ γPV

where V,R are column-vectors, and P is a matrix

Artem Sokolov | 10 October 2018 29 / 71

Bellman equation for expectations

V (s) = E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+2 + . . . |St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γV (St+1)|St = s]

In the matrix form:

V (s) = R(s) + γ
∑
s′∈S

Pss′V (s′)

V = R+ γPV

where V,R are column-vectors, and P is a matrix

Artem Sokolov | 10 October 2018 29 / 71

Solving Bellman equation

V =R+ γPV

V (I − γP) =R
V =(I − γP)−1R

n expensive: O(n3)

n matrix inversion feasible only for small MDPs

n iterative methods for large MDPs

Artem Sokolov | 10 October 2018 30 / 71

Example

n all episodes start in the center state, C

n proceed either left or right by one state on each step, with equal
probability.

n episodes terminate either on the extreme left or the extreme right

n when an episode terminates on the right, a reward of +1 occurs; all
other rewards are zero.

n because this task is undiscounted, the true value of each state is the
probability of terminating on the right if starting from that state.

n value of the center state is vπ(C) = 0.5.

n values of all the states, A through E, are 1/6, 2/6, 3/6, 4/6, 5/6

Artem Sokolov | 10 October 2018 31 / 71

Example

n all episodes start in the center state, C

n proceed either left or right by one state on each step, with equal
probability.

n episodes terminate either on the extreme left or the extreme right

n when an episode terminates on the right, a reward of +1 occurs; all
other rewards are zero.

n because this task is undiscounted, the true value of each state is the
probability of terminating on the right if starting from that state.

n value of the center state is vπ(C) = 0.5.

n values of all the states, A through E, are 1/6, 2/6, 3/6, 4/6, 5/6

Exercise: write a Python program that calculates it
Artem Sokolov | 10 October 2018 31 / 71

Python

import numpy as np
I = np . eye (7)
R = np . a r r a y ([0 , 0 , 0 , 0 , 0 , 0 . 5 , 0])
P = np . a r r a y ([[1 , 0 , 0 , 0 , 0 , 0 , 0] ,

[0 . 5 , 0 , 0 . 5 , 0 , 0 , 0 , 0] ,
[0 , 0 . 5 , 0 , 0 . 5 , 0 , 0 , 0] ,
[0 , 0 , 0 . 5 , 0 , 0 . 5 , 0 , 0] ,
[0 , 0 , 0 , 0 . 5 , 0 , 0 . 5 , 0] ,
[0 , 0 , 0 , 0 , 0 . 5 , 0 , 0 . 5] ,
[0 , 0 , 0 , 0 , 0 , 0 , 1]])

V = np . dot (np . dot (np . l i n a l g . i n v (I−P) , P) , R)

Artem Sokolov | 10 October 2018 32 / 71

Markov Decision Process

Markov Reward Process

Definition

A Markov Process is a tuple (S, P,R, γ)

n S is a (finite) set of state

n P is a transition matrix Pss′ = P [St+1 = s′|St = s]

n R is a reward function, R(s) = E[Rt+1|St = s]

n γ is a discount factor, γ ∈ [0, 1]

New concept:

n Policy π is a distribution over actions given state:

π(a|s) = P [At = a|St = s]

n policy = behaviour of the agent

n depends on the Markov state

Artem Sokolov | 10 October 2018 33 / 71

Markov Decision Process

Markov Decision Process

Definition

A Markov Process is a tuple (S, P,A,R, γ)

n S is a (finite) set of state

n A is a (finite) set of actions

n P is a transition matrix P ass′ = P [St+1 = s′|St = s,At = a]

n R is a reward function, Ra(s) = E[Rt+1|St = s,At = a]

n γ is a discount factor, γ ∈ [0, 1]

New concept:

n Policy π is a distribution over actions given state:

π(a|s) = P [At = a|St = s]

n policy = behaviour of the agent

n depends on the Markov state

Artem Sokolov | 10 October 2018 33 / 71

Markov Decision Process

Markov Process

Definition

A Markov Process is a tuple (S, P,A,R, γ)

n S is a (finite) set of state

n P is a transition matrix ss′ = P [St+1 = s′|St = s]

n R is a reward function, (s) = E[Rt+1|St = s]

n γ is a discount factor, γ ∈ [0, 1]

New concept:

n Policy π is a distribution over actions given state:

π(a|s) = P [At = a|St = s]

n policy = behaviour of the agent

n depends on the Markov state

Artem Sokolov | 10 October 2018 33 / 71

Induced MRP

n MDP (S,A, P,R, γ) and policy π

n can reduce to an MRP (S, P π, Rπ, γ)

P πss′ =
∑
a∈A

π(a|s)P ass′

Rπss′ =
∑
a∈A

π(a|s)Rass′

Artem Sokolov | 10 October 2018 34 / 71

Policies

Classes:

n wrt time:
á stationary (=time-independent)
á non-stationary (=time-dependent)

n wrt certainty:
á deterministic (∀s∃a, π(a|s) = 1)
á stochastic (otherwise)

n was: state-value function:

Vπ(s) = Eπ[Gt|St = s]

Vπ(s) = Eπ[Rt + γvπ(St+1|St = s]

n new: action-value function:

qπ(s, a) = Eπ[Gt|St = st, At = a]

qπ(s, a) = Eπ[Rt + γqπ(St+1, At+1)|St = st, At = a]

Artem Sokolov | 10 October 2018 35 / 71

Bellman equation for expectations

Value function:

vπ(s) = Eπ[Gt|St = s] = Eπ[Rt+1 + γV (St+1)|St = s]

Similarly for action-value function:

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = s]

Artem Sokolov | 10 October 2018 36 / 71

Relations of q and v

v(s) =
∑
a

π(s, a)q(s, a)

v(s) =
∑
a

π(s, a)[ras + γ
∑
s′∈S

P ass′v(s
′)]

v(s) =
∑
a

π(s, a)[ras + γ
∑
s′∈S

P ass′
∑
a∈A

π(s′, a′)q(s′, a′)]

Exercise: confirm that the center cell has v(s) ' 0.7 using v(s) of it’s
neighbors
Artem Sokolov | 10 October 2018 37 / 71

Optimal Value Function

Definition

Optimal state-value function v∗(s) is the max value-function over πs:

v∗(s) = max
π

vπ(s)

Similarly, for action-value function

q∗(s, a) = max
π

qπ(s, a)

n they characterize the best possible performance in the MDP

n to “solve an MDP” is to find v∗ or q∗

Artem Sokolov | 10 October 2018 38 / 71

Existence of optimal policies

Thm

For any MDP

n ∃π∗, s.t. π∗ ≥ π,∀π (possibly non-unique)

n For any optimal policy

vπ∗(s) = v∗(s)

qπ∗(s, a) = q∗(s, a)

Artem Sokolov | 10 October 2018 39 / 71

Finding Optimal Policy

An optimal policy can be found by maximising over a,

π∗(a|s) =

{
1, if a = argmaxa∈A q

∗(s, a)

0, otherwise

n There is always a deterministic optimal policy for any MDP

n If we know q∗(s, a), we immediately have the optimal policy

Artem Sokolov | 10 October 2018 40 / 71

Relations of q and v

v(s) =
∑
a

π(s, a)q(s, a)

q(s, a) = Ras + γ
∑
s′

P ass′v(s
′)

v(s) =
∑
a

π(s, a)[Ras + γ
∑
s′∈S

P ass′v(s
′)]

q(s, a) = Ras + γ
∑
s′∈S

P ass′
∑
a∈A

π(s′, a′)q(s′, a′)

Artem Sokolov | 10 October 2018 41 / 71

Relations of q and v

v∗(s) = max
a

π(s, a)q∗(s, a)

q∗(s, a) = Ras + γ
∑
s′

P ass′v
∗(s′)

v∗(s) = max
a

[Ras + γ
∑
s′∈S

P ass′v
∗(s′)]

q∗(s, a) = Ras + γ
∑
s′∈S

P ass′
∑
a∈A

π(s′, a′)q∗(s′, a′)

Artem Sokolov | 10 October 2018 42 / 71

Solving MDPs

Artem Sokolov | 10 October 2018 43 / 71

Dynamic Programming

A method for solving complex problems, by breaking them down into
subproblems:

n Solve the subproblems

n Combine solutions to subproblems

Requirements:

n Optimal substructure (Principle of optimality applies, Optimal
solution can be decomposed into subproblems)

n Overlapping subproblems (Subproblems recur many times, Solutions
can be cached and reused)

n Markov decision processes satisfy both properties (Bellman equation
gives recursive decomposition, Value function stores and reuses
solutions)

Artem Sokolov | 10 October 2018 44 / 71

Dynamic Programming

n Dynamic programming assumes full knowledge of the MDP

n It is used for planning in an MDP (which also assumes full knowledge)

n For prediction:

á Input: MDP (S,A, P,R, γ) and policy π
á Output: value function vπ

n For control:

á Input: MDP (S,A, P,R, γ)
á Output: optimal value function v∗

á and: optimal policy π∗

Artem Sokolov | 10 October 2018 45 / 71

Iterative Policy Evaluation

n Problem: evaluate a given policy π

n Solution: iterative application of Bellman expectation backup

v1 → v2 → · · · → vπ

n synchronously:

á At each iteration k + 1
á For all states s ∈ S
á Update vk+1(s) from vk(s

′) (by taking E)
á where s′ is a successor state of s

vk+1(s) =
∑

π(a|s)(rsa + γ
∑
s′∈S

P ass′vk(s
′))

Artem Sokolov | 10 October 2018 46 / 71

Iterative Policy Evaluation

Artem Sokolov | 10 October 2018 47 / 71

Small Grid World

n Undiscounted episodic MDP (γ = 1)

n Nonterminal states 1, ..., 14

n One terminal state (shown twice as shaded squares)

n Actions leading out of the grid leave state unchanged

n Reward is -1 until the terminal state is reached

n Agent follows uniform random policy

π(n|·) = π(e|·) = π(s|·) = π(w|·) = 0.25

Artem Sokolov | 10 October 2018 48 / 71

Policy evaluation

Artem Sokolov | 10 October 2018 49 / 71

Policy evaluation

Artem Sokolov | 10 October 2018 50 / 71

Policy Iteration

How to Improve a Policy?
Given an initial policy π:

n Evaluate the policy π

vπ(s) = E[Rt+1 + γRt+2 + . . . |St = s]

n Improve the policy by acting greedily with respect to vπ

π′ = greedy(vπ)

n In general, many iterations of improvement / evaluation

n this process of policy iteration always converges to π∗!

Artem Sokolov | 10 October 2018 51 / 71

Policy Iteration

Artem Sokolov | 10 October 2018 52 / 71

Car Rental

n States: Two locations, maximum of 20 cars at each

n Actions: Move up to 5 cars between locations overnight

n Reward: $10 for each car rented (must be available)

n Transitions: Cars returned and requested randomly

á Poisson distribution, n returns/requests with prob γn

n! e
−γ

á 1st location: average requests = 3, average returns = 3
á 2nd location: average requests = 4, average returns = 2

Artem Sokolov | 10 October 2018 53 / 71

Car Rental

Artem Sokolov | 10 October 2018 54 / 71

Why does Policy Improvement Work?

n Consider a deterministic policy, a = π(s)

n We cannot deteriorate it by acting greedily

π′(s) = argmax
a∈A

qπ(s, a)

n This improves or keeps the value from any state s over one step,

qπ(s, π
′(s)) = max

a
qπ(s, a) ≥ qπ(s, π(s)) = vπ(s)

n It therefore improves the value function,

vπ′(s) ≥ vπ(s)

vπ(s) ≤qπ(s, π′(s)) = Eπ′ [Rt+1 + γvπ(St+1)|St = s]

≤Eπ′ [Rt+1 + γqπ(St+1, π(St+1))|St = s]

≤Eπ′ [Rt+1 + γqπ(St+1 + γ2qπ(St+2)|St+1 = 2)|St = s]

≤vπ′(s)

Artem Sokolov | 10 October 2018 55 / 71

Value Iteration

Very similar to policy evaluation, diffs are in the form of v-update:

n Problem: find optimal policy π

n Solution: iterative application of Bellman optimality backup

v1 → v2 → · · · → v∗

n Using synchronous backups

á At each iteration k + 1
á For all states s ∈ S
á Update vk+1(s) from vk(s

′) (by taking max)

n Convergence to v∗

n Unlike policy iteration, there is no explicit policy

n Intermediate value functions may not correspond to any policy

Artem Sokolov | 10 October 2018 56 / 71

Value Iteration

Question: Which algorithm does it remind for CRFs?

Artem Sokolov | 10 October 2018 57 / 71

Summary so far

Artem Sokolov | 10 October 2018 58 / 71

Gambler’s Problem

n A gambler makes bets on coin flips

n If the coin comes up heads, he wins as many dollars as he has staked

n if it is tails, he loses his stake

n ph is the probability of getting coin heads

n The game ends when the gambler wins/loses by reaching $100 or $0

n On each flip, the gambler must decide what portion of his capital to
stake, in integer numbers of dollars.

n The state is the gambler’s capital, s ∈ {1, 2, . . . , 99}
n The actions are stakes, a ∈ {0, 1, . . . ,min(s, 100− s)}
n Reward = 0 on all transitions, except it’s +1 when reaching $100

Artem Sokolov | 10 October 2018 59 / 71

Value Iteration

Artem Sokolov | 10 October 2018 60 / 71

Programming task

n use a value-iteration skeleton code

n build the last plot

Artem Sokolov | 10 October 2018 61 / 71

Model-free RL

Artem Sokolov | 10 October 2018 62 / 71

So far

n relied on know model P and R

n rarely the case in practice

n need model-free methods

Artem Sokolov | 10 October 2018 63 / 71

Types of model-free prediction

n Monte-Carlo

n Temporal-Difference

Artem Sokolov | 10 October 2018 64 / 71

Monte-Carlo Reinforcement Learning

n MC methods learn directly from episodes of experience

n MC is model-free: no knowledge of MDP transitions / rewards

n MC learns from complete episodes: no bootstrapping

n MC uses the simplest possible idea: value = mean return

n Caveat: can only apply MC to episodic MDPs

n All episodes must terminate

Artem Sokolov | 10 October 2018 65 / 71

Monte-Carlo Policy Evaluation

n Goal: learn vπ from episodes of experience under policy π

S1, A1, R2, . . . , Sk ∼ π

n Recall that the return is the total discounted reward:

Gt = Rt+1 + γRt+2 + · · ·+ γT−1RT

n Recall that the value function is the expected return:

vπ(s) = Eπ[Gt|St = s]

n Monte-Carlo policy evaluation uses empirical mean return instead of
expected return

Artem Sokolov | 10 October 2018 66 / 71

MC

Artem Sokolov | 10 October 2018 67 / 71

Temporal Difference

Artem Sokolov | 10 October 2018 68 / 71

Model-free Control

n On-policy learning

á ‘Learn on the job’
á Learn about policy π from experience sampled from π

n Off-policy learning

á ‘Look over someone’s shoulder’
á Learn about policy π from experience sampled from µ

Artem Sokolov | 10 October 2018 69 / 71

Sarsa

Artem Sokolov | 10 October 2018 70 / 71

Q-learning

Artem Sokolov | 10 October 2018 71 / 71

