Structured prediction

Institute for Computational Linguistics Heidelberg University

10 October 2018

1 Structured Prediction

- 2 Large-margin SP
- 3 Non-linearity

Structured prediction

Institute for Computational Linguistics Heidelberg University

10 October 2018

(related to project N3)

- **1** Structured Prediction
- 2 Large-margin SP
- 3 Non-linearity

Structured Prediction

- in this part we will use MT as a running example
- also we will use SMT and not NMT
 - simpler
 - ➡ easier to get insights
 - people are still working to bring large-margin methods into NMT
 - ➡ many IL methods were proposed for linear models

A structured prediction problem consists of

- \blacksquare an input space ${\mathcal X}$
- an output space \mathcal{Y}
- a fixed but unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
- a loss function $\ell(y^*, \hat{y}) \to \mathbb{R}^+$ which measures the distance between the true (y^*) and predicted (\hat{y}) outputs.

Structured prediction

A structured prediction problem consists of

- an input space \mathcal{X}
- an output space $\mathcal Y$
- a fixed but unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
- a loss function $\ell(y^*, \hat{y}) \to \mathbb{R}^+$ which measures the distance between the true (y^*) and predicted (\hat{y}) outputs.

The goal of structured learning is to use N samples, $\{x_i, y_i\}_{i=1}^N$, to learn a mapping $f : \mathcal{X} \to \mathcal{Y}$ that minimizes the expected structured loss under \mathcal{D}

Structured prediction

A structured prediction problem consists of

- an input space \mathcal{X}
- an output space $\mathcal Y$
- a fixed but unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
- a loss function $\ell(y^*, \hat{y}) \to \mathbb{R}^+$ which measures the distance between the true (y^*) and predicted (\hat{y}) outputs.

The goal of structured learning is to use N samples, $\{x_i, y_i\}_{i=1}^N$, to learn a mapping $f : \mathcal{X} \to \mathcal{Y}$ that minimizes the expected structured loss under \mathcal{D}

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(y^*,\hat{y})]$$

- source **f**: Vénus est la jumelle infernale de la Terre
- unreachable reference: Venus is the Earth's hellish twin
- oracle: Venus is the hellish twin of the Earth

- source **f**: Vénus est la jumelle infernale de la Terre
- unreachable reference: Venus is the Earth's hellish twin
- oracle: Venus is the hellish twin of the Earth

- source **f**: Vénus est la jumelle infernale de la Terre
- unreachable reference: Venus is the Earth's hellish twin
- oracle: Venus is the hellish twin of the Earth

translation e₁: Venus – the twin of hell of the Earth

- source **f**: Vénus est la jumelle infernale de la Terre
- unreachable reference: Venus is the Earth's hellish twin
- oracle: Venus is the hellish twin of the Earth

- translation or: Vanue the ballish twin of the Earth
- translation \mathbf{e}_2 : Venus the <u>hellish twin</u> of the Earth

- source **f**: Vénus est la jumelle infernale de la Terre
- unreachable reference: Venus is the Earth's hellish twin
- oracle: Venus is the hellish twin of the Earth

- translation e_2 : Venus the hellish twin of the Earth
- translation e₃: Venus is the hellish twin of the Earth

- source **f**: Vénus est la jumelle infernale de la Terre
- unreachable reference: Venus is the Earth's hellish twin
- oracle: Venus is the hellish twin of the Earth

- **translation** e_0 : Venus twin of hell of the Earth
- **translation** e_1 : Venus <u>the</u> twin of hell of the Earth
- **translation** e_2 : Venus the <u>hellish twin</u> of the Earth
- translation e_3 : Venus is the hellish twin of the Earth
- in NMT everything is reachable, but oracles are still useful:
- starting from a suboptimal prefix, find the best continuation wrt ref

Rough classification task taxonomy

 $\{0,1\}$

Rough classification task taxonomy

Binary classes

- 2 Multiple classes
 - ➡ one-vs-all + winner-takes-all
 - one-vs-one + vote
 - "with features" / output codes [Crammer and Singer, 2002]

 $\begin{array}{c} \{0,1\} \\ \{0,1,\ldots,K\} \\ \arg\max_y w_y^\top x \qquad [Vapnik, 1998] \\ \arg\max_{yy'} w_{yy'}^\top x \qquad \text{folklore?} \\ \arg\max_y w^\top h(x,y) \end{array}$

Rough classification task taxonomy

- 2 Multiple classes
 - ➡ one-vs-all + winner-takes-all
 - ➡ one-vs-one + vote
 - "with features" /output codes [Crammer and Singer, 2002]
- 3 Structured ("very-very multiple") classes
 - Paths on graphs
 - optimal sequence of robot's actions
 - optimal labelling of a sequence
 - optimal translation on a lattice

 $\begin{array}{c} \{0,1\} \\ \{0,1,\ldots,K\} \\ \arg\max_y w_y^\top x \qquad [Vapnik, 1998] \\ \arg\max_{yy'} w_{yy'}^\top x \qquad \text{folklore?} \\ \arg\max_y w^\top h(x,y) \end{array}$

trees, graphs

RL/IL	SMT	NMT
MDP ${\mathcal M}$	phrase-lattice E	word-lattice E
state s	lattice node v	decoder state $+$ attention
actions a	phrase-edges e	vocabulary words
action sequence ξ	translation ${f e}$	translation \mathbf{e}
features $f^{s,a}$	features $h(e_i, f_i)$	_
score $w^{ op} \sum_{a \in \xi} f^{s,a}$	score $w^{\top} \sum_{e_i \in \mathbf{e}} h(e_i; f_i)$	score $\sum_{e_i \in \mathbf{e}} \log p(e_i w)$
example behavior	reference/oracle	reference/oracle
planning	decoding	decoding
policy	-	\simeq output layer
horizon	max path length	max output length
any a is possible	only e_i that	any word from
from any s	survived pruning	vocabulary

Large-margin SP

1 $f^{s,a} - \mathbb{R}^d$ features collect into matrix $(F)_{d \times (|s| \times |a|)}$ 2 $\mu^{s,a}$ - path indicator ("trajectory was here") whole path - vector μ 3 $c^{s,a}$ - edge cost $c(\mu) = c^{\top}\mu$

- 1 $f^{s,a} \mathbb{R}^d$ features collect into matrix $(F)_{d \times (|s| \times |a|)}$ 2 $\mu^{s,a}$ - path indicator ("trajectory was here") whole path - vector μ 3 $c^{s,a}$ - edge cost $c(\mu) = c^{\top}\mu$
 - should decompose over edges

- 1 $f^{s,a} \mathbb{R}^d$ features collect into matrix $(F)_{d \times (|s| \times |a|)}$ 2 $\mu^{s,a}$ - path indicator ("trajectory was here") whole path - vector μ 3 $c^{s,a}$ - edge cost $c(\mu) = c^{\top}\mu$
 - should decompose over edges
 - \implies simplest: linear $c = w^\top F$

1 $f^{s,a} - \mathbb{R}^d$ features **2** $\mu^{s,a} - \text{path indicator ("trajectory was here") whole path - vector <math>\mu$ **3** $c^{s,a} - \text{edge cost}$ $c(\mu) = c^{\top}\mu$

- should decompose over edges
- \implies simplest: linear $c = w^{\top} F$
- 4 $\ell^{s,a}$ loss suffered when taking this edge

 $\ell(\mu) = \ell^{\top} \mu$

1 $f^{s,a} - \mathbb{R}^d$ features collect into matrix $(F)_{d \times (|s| \times |a|)}$ 2 $\mu^{s,a}$ - path indicator ("trajectory was here") whole path - vector μ 3 $c^{s,a}$ - edge cost $c(\mu) = c^{\top}\mu$

- should decompose over edges
- \implies simplest: linear $c = w^{\top} F$
- 4 $\ell^{s,a}$ loss suffered when taking this edge

 $\ell(\mu) = \ell^\top \mu$

→ ℓ should decompose over edges

1 $f^{s,a} - \mathbb{R}^d$ features collect into matrix $(F)_{d \times (|s| \times |a|)}$ **2** $\mu^{s,a}$ - path indicator ("trajectory was here") whole path - vector μ **3** $c^{s,a}$ - edge cost $c(\mu) = c^{\top}\mu$

- should decompose over edges
- \implies simplest: linear $c = w^{\top} F$
- 4 $\ell^{s,a}$ loss suffered when taking this edge
 - → ℓ should decompose over edges
 - if not (e.g. F1 or BLEU are not decomposable) can use some use BLEU-approximating decomposition – an oracle

 $\ell(\mu) = \ell^{\top} \mu$

1 $f^{s,a} - \mathbb{R}^d$ features collect into matrix $(F)_{d \times (|s| \times |a|)}$ 2 $\mu^{s,a}$ - path indicator ("trajectory was here") whole path - vector μ 3 $c^{s,a}$ - edge cost $c(\mu) = c^{\top}\mu$

- ➡ should decompose over edges
- \implies simplest: linear $c = w^{\top} F$
- 4 $\ell^{s,a}$ loss suffered when taking this edge
 - → ℓ should decompose over edges
 - if not (e.g. F1 or BLEU are not decomposable) can use some use BLEU-approximating decomposition – an oracle
 - ➡ here we will assume here that ℓ is decomposable

 $\ell(\mu) = \ell^{\top} \mu$

Let's go from a binary linear separation problem to structured prediction. And let's fix the inference rule:

$$\hat{y}_i = \operatorname*{arg\,max}_y w^\top F_i \mu$$

Let's go from a binary linear separation problem to structured prediction. And let's fix the inference rule:

$$\hat{y}_i = \operatorname*{arg\,max}_y w^\top F_i \mu$$

Find such w that: 1 when winner path is found according to the rule $\arg \max_{\mu} w^{\top} F_{i} \mu$ 2 example paths μ_{i} should win: $\mu_{i} = \arg \max_{\mu} w^{\top} F_{i} \mu$

$$\mu_i = \arg\max_{\mu} w^\top F_i \mu$$

Let's go from a binary linear separation problem to structured prediction. And let's fix the inference rule:

$$\hat{y}_i = \operatorname*{arg\,max}_y w^\top F_i \mu$$

$$\forall i, \quad \mu \quad w^\top F_i \mu_i \ge w^\top F_i \mu$$

Let's go from a binary linear separation problem to structured prediction. And let's fix the inference rule:

$$\hat{y}_i = \operatorname*{arg\,max}_y w^\top F_i \mu$$

Find such w that:

- **1** when winner path is found according to the rule $\arg \max_{\mu} w^{\top} F_{i\mu}$
- **2** example paths μ_i should win: $\forall i \quad w^{\top} F_i \mu_i \geq \max_{\mu} w^{\top}$

$$\arg \max_{\mu} w^{\top} F_{i} \mu$$
$$_{i} \geq \max_{\mu} w^{\top} F_{i} \mu$$

$$\forall i, \quad w^{\top} F_i \mu_i \ge \max_{\mu} w^{\top} F_i \mu$$

Let's go from a binary linear separation problem to structured prediction. And let's fix the inference rule:

$$\hat{y}_i = \operatorname*{arg\,max}_y w^\top F_i \mu$$

Find such w that:

- **1** when winner path is found according to the rule $\arg \max_{\mu} w^{\top} F_{i} \mu$
- 2 example paths μ_i should win: $\forall i \quad w^\top F_i \mu_i \geq \max_{\mu} w^\top F_i \mu$
- 3 for avoid ill-posed problem & for generalization require: $||w||
 ightarrow \min$

$$\begin{split} \min_{w} ||w||^2 \\ \forall i, \quad w^\top F_i \mu_i \geq \max_{\mu} w^\top F_i \mu \end{split}$$

Let's go from a binary linear separation problem to structured prediction. And let's fix the inference rule:

$$\hat{y}_i = \operatorname*{arg\,max}_{y} w^\top F_i \mu$$

Find such w that:

- **1** when winner path is found according to the rule $\arg \max_{\mu} w^{\top} F_i \mu$
- **2** example paths μ_i should win: $\forall i \quad w^\top F_i \mu_i \geq \max_{\mu} w^\top F_i \mu$
- 3 for avoid ill-posed problem & for generalization require: $||w||
 ightarrow \min$
- 4 include slack variables for non-separable case:

$$\begin{split} \min_{w,\zeta_i} \frac{1}{N} \sum_{i=1}^N \zeta_i + \frac{\lambda}{2} ||w||^2 \\ \forall i, \quad w^\top F_i \mu_i \geq \max_\mu w^\top F_i \mu - \zeta_i \end{split}$$

 ζ_i

Formulation of learning task – specific loss

So far there was no structure loss ℓ to minimize

 $\sum_i \ell_i^\top \mu$

Generalizing Hamming loss / Loss-augmented problem:

$$\max_{w,\zeta_i} \frac{1}{N} \sum_{i=1}^N \zeta_i + \frac{\lambda}{2} ||w||^2$$

Formulation of learning task – specific loss

So far there was no structure loss ℓ to minimize

 $\sum_i \ell_i^\top \mu$

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss:

 $\mathbb{I}[yf(x) < 0] \le \max(0, 1 - yf(x))$

So far there was no structure loss ℓ to minimize

 $\sum_i \ell_i^\top \mu$

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss: $\mathbb{I}[yf(x) < 0] \le \max(0, 1 - yf(x))$

2 idea: more flexible γ to approximate more general losses $\gamma = \ell_i^\top \mu$

$$\max_{\substack{w,\zeta_i}} \frac{1}{N} \sum_{i=1}^N \zeta_i + \frac{\lambda}{2} ||w||^2$$
$$\forall i, \mu \quad w^\top F_i^\top \mu_i \ge w^\top F_i \mu - \zeta_i$$

So far there was no structure loss ℓ to minimize

 $\sum_i \ell_i^\top \mu$

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss: $\mathbb{I}[yf(x) < 0] \le \max(0, 1 - yf(x))$

idea: more flexible γ to approximate more general losses γ = ℓ_i^Tμ
 train examples should win surely: ∀i, μ w^TF_iμ_i ≥ w^TF_iμ + ℓ_iμ

$$\max_{w,\zeta_i} \frac{1}{N} \sum_{i=1}^N \zeta_i + \frac{\lambda}{2} ||w||^2$$
$$\forall i, \mu \quad w^\top F_i^\top \mu_i \ge w^\top F_i \mu + l_i^\top \mu - \zeta$$

Formulation of learning task – specific loss

So far there was no structure loss ℓ to minimize

 $\sum_i \ell_i^\top \mu$

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss: $\mathbb{I}[yf(x) < 0] \le \max(0, 1 - yf(x))$

2 idea: more flexible γ to approximate more general losses $\gamma = \ell_i^\top \mu$

3 train examples should win surely: $\forall i \quad w^{\top}F_{i}\mu_{i} \geq \max_{\mu}(w^{\top}F_{i}+\ell_{i})\mu$

$$\max_{w,\zeta_i} \frac{1}{N} \sum_{i=1}^{N} \zeta_i + \frac{\lambda}{2} ||w||^2$$

$$\forall i, \quad w^\top F_i \mu_i \ge \max_{\mu} (w^\top F_i \mu + \ell_i^\top \mu) - \zeta_i$$

Formulation of learning task – specific loss

So far there was no structure loss ℓ to minimize

 $\sum_{i} \ell_{i}^{\top} \mu$

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss: $\mathbb{I}[yf(x) < 0] \le \max(0, 1 - yf(x))$

2 idea: more flexible γ to approximate more general losses $\gamma = \ell_i^\top \mu$

3 train examples should win surely: $\forall i \quad w^{\top} F_i \mu_i \geq \max_{\mu} (w^{\top} F_i + \ell_i) \mu$

$$\max_{\substack{w,\zeta_i}} \frac{1}{N} \sum_{i=1}^{N} \zeta_i + \frac{\lambda}{2} ||w||^2$$

$$\forall i, \quad w^\top F_i \mu_i \ge \max_{\mu} (w^\top F_i \mu + \ell_i^\top \mu) - \zeta_i$$

NB: $\max_{\mu} (w^{\top} F_i \mu + \ell_i^{\top} \mu)$ is "loss-augemented inference" [Tsochantaridis et al., 2006]

| 10 October 2018

$$\max_{w,\zeta_i} \frac{1}{N} \sum_{i=1}^N \zeta_i + \frac{\lambda}{2} ||w||^2$$

$$\forall i, \quad w^\top F_i \mu_i \ge \max_{\mu} (w^\top F_i \mu + \ell_i^\top \mu) - \zeta_i$$

$$\max_{w,\zeta_i} \frac{1}{N} \sum_{i=1}^{N} \zeta_i + \frac{\lambda}{2} ||w||^2$$

$$\forall i, \quad w^\top F_i \mu_i \ge \max_{\mu} (w^\top F_i \mu + \ell_i^\top \mu) - \zeta_i$$

1 in the optimum: $\zeta_i = \max_{\mu} (w^\top F_i^\top \mu + \ell_i^\top \mu) - w^\top F_i \mu_i$

$$\max_{\substack{w,\zeta_i}} \frac{1}{N} \sum_{i=1}^{N} \zeta_i + \frac{\lambda}{2} ||w||^2 \forall i, \quad w^\top F_i \mu_i \ge \max_{\mu} (w^\top F_i \mu + \ell_i^\top \mu) - \zeta_i$$

1 in the optimum:
$$\zeta_i = \max_{\mu} (w^{\top} F_i^{\top} \mu + \ell_i^{\top} \mu) - w^{\top} F_i \mu_i$$

2 how to see this:

- \Rightarrow suppose that $\zeta_i \geq \max_{\mu} (w^{\top} F_i \mu + \ell_i^{\top} \mu) w^{\top} F_i \mu_i$
- ⇒ change $\zeta_i \rightarrow \zeta_i \varepsilon$ (with small enough ε)
- target function will decrease without violating constraints

$$\max_{w,\zeta_i} \frac{1}{N} \sum_{i=1}^{N} \zeta_i + \frac{\lambda}{2} ||w||^2 \forall i, \quad w^\top F_i \mu_i \ge \max_{\mu} (w^\top F_i \mu + \ell_i^\top \mu) - \zeta_i$$

1 in the optimum:
$$\zeta_i = \max_{\mu} (w^{\top} F_i^{\top} \mu + \ell_i^{\top} \mu) - w^{\top} F_i \mu_i$$

2 how to see this:

- \blacksquare suppose that $\zeta_i \geq \max_{\mu} (w^{\top} F_i \mu + \ell_i^{\top} \mu) w^{\top} F_i \mu_i$
- ⇒ change $\zeta_i \rightarrow \zeta_i \varepsilon$ (with small enough ε)
- target function will decrease without violating constraints
- **3** substitute into the objective and obtain:

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (w^{\top} F_{i} \mu + \ell_{i}^{\top} \mu) - w^{\top} F_{i} \mu_{i} \right) + \frac{\lambda}{2} ||w||^{2}$$

Objective

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (w^{\top} F_{i} \mu + \ell_{i}^{\top} \mu) - w^{\top} F_{i} \mu_{i} \right) + \frac{\lambda}{2} ||w||^{2}$$

1 R(w) is convex (sum of affine & convex functions)

- ${\bf 2}$ subgradient \sim usual gradient, except points of non-differentiability
 - in these points chose any tangent lower-bounding linear function

$$\frac{\partial R}{\partial w} = \frac{1}{N} \sum_{i=1}^{N} \left(F_i \mu_i^* - F_i \mu_i \right) + \lambda w$$
$$w_{t+1} = w_t - \alpha_t \frac{\partial R}{\partial w}$$

Objective

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (w^{\top} F_i \mu + \ell_i^{\top} \mu) - w^{\top} F_i \mu_i \right) + \frac{\lambda}{2} ||w||^2$$

1 R(w) is convex (sum of affine & convex functions)

- 2 subgradient \sim usual gradient, except points of non-differentiability
 - ➡ in these points chose any tangent lower-bounding linear function

$$\frac{\partial R}{\partial w} = \frac{1}{N} \sum_{i=1}^{N} \left(F_i \mu_i^* - F_i \mu_i \right) + \lambda w$$
$$w_{t+1} = w_t - \alpha_t \frac{\partial R}{\partial w}$$
$$w_{t+1} = w_t - \alpha_t \left(\frac{1}{N} \sum_{i=1}^{N} F_i (\mu_i^* - \mu_i) + \lambda w_t \right)$$

Objective

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (w^{\top} F_{i} \mu + \ell_{i}^{\top} \mu) - w^{\top} F_{i} \mu_{i} \right) + \frac{\lambda}{2} ||w||^{2}$$

1 R(w) is convex (sum of affine & convex functions)

- 2 subgradient \sim usual gradient, except points of non-differentiability
 - ➡ in these points chose any tangent lower-bounding linear function

$$\begin{aligned} \frac{\partial R}{\partial w} &= \frac{1}{N} \sum_{i=1}^{N} \left(F_{i} \mu_{i}^{*} - F_{i} \mu_{i} \right) + \lambda w \\ w_{t+1} &= w_{t} - \alpha_{t} \frac{\partial R}{\partial w} \\ w_{t+1} &= w_{t} - \alpha_{t} \left(\frac{1}{N} \sum_{i=1}^{N} F_{i} (\mu_{i}^{*} - \mu_{i}) + \lambda w_{t} \right) \\ \text{where } \mu_{i}^{*} &= \arg\max_{u} (w^{\top} F_{i} \mu + \ell_{i}^{\top} \mu) \end{aligned}$$

Non-linearity

1 simple and convenient, but too restrictive

- **1** simple and convenient, but too restrictive
- 2 in theory: motivated by max-entropy principle
 - ightarrow maximise entropy with known means of observables \Leftrightarrow
 - \Rightarrow \Leftrightarrow optimise likelihood of a log-linear prob. distribution

- **1** simple and convenient, but too restrictive
- 2 in theory: motivated by max-entropy principle
 - ightarrow maximise entropy with known means of observables \Leftrightarrow
 - \Rightarrow \Leftrightarrow optimise likelihood of a log-linear prob. distribution
- 3 in practice: we don't want likelihood, we need task metrics

- **1** simple and convenient, but too restrictive
- 2 in theory: motivated by max-entropy principle
 - maximise entropy with known means of observables \Leftrightarrow
 - \Rightarrow \Leftrightarrow optimise likelihood of a log-linear prob. distribution
- 3 in practice: we don't want likelihood, we need task metrics
- 4 means of features are not saved:

SMT to NMT

SMT: Linear scoring setting

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (w^{\top} F_{i} \mu + \ell_{i}^{\top} \mu) - w^{\top} F_{i} \mu \right) + \frac{\lambda}{2} ||w||_{2}^{2}$$

NMT: Non-linear scoring setting

$$R[c] = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (c(F_i, w)^{\top} \mu + \ell_i^{\top} \mu) - c(F_i, w)^{\top} \mu_i) \right)$$

1 no regularization term: commonly regularize by early stopping

SMT to NMT

SMT: Linear scoring setting

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (w^{\top} F_{i} \mu + \ell_{i}^{\top} \mu) - w^{\top} F_{i} \mu \right) + \frac{\lambda}{2} ||w||_{2}^{2}$$

NMT: Non-linear scoring setting

$$R[c] = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (c(F_i, w)^{\top} \mu + \ell_i^{\top} \mu) - c(F_i, w)^{\top} \mu_i) \right) + \frac{\lambda}{2} ||c||_{\mathcal{L}_2}^2$$

no regularization term: commonly regularize by early stopping
 however, regularization term can smooth c (avoid abrupt jumps)

SMT to NMT

SMT: Linear scoring setting

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (w^{\top} F_{i} \mu + \ell_{i}^{\top} \mu) - w^{\top} F_{i} \mu \right) + \frac{\lambda}{2} ||w||_{2}^{2}$$

NMT: Non-linear scoring setting

$$R[c] = \frac{1}{N} \sum_{i=1}^{N} \left(\max_{\mu} (c(F_i, w)^{\top} \mu + \ell_i^{\top} \mu) - c(F_i, w)^{\top} \mu_i) \right) + \frac{\lambda}{2} ||c||_{\mathcal{L}_2}^2$$

1 no regularization term: commonly regularize by early stopping 2 however, regularization term can smooth c (avoid abrupt jumps) 3 and make update resemble SEARN: $c_{t+1} = (1 - \lambda)c_t + \beta h_t^*$

Literature

Crammer, K. and Singer, Y. (2002).

On the learnability and design of output codes for multiclass problems. Machine learning, 47(2-3).

Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. (2006).

Maximum margin planning. In ICML.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2006).

Large margin methods for structured output. ${\sf JMLR}.$

Vapnik, V. (1998).

Statistical learning theory. Wiley, New York.