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SMT vs. NMT

n in this part we will use MT as a running example

n also we will use SMT and not NMT

á simpler
á easier to get insights
á people are still working to bring large-margin methods into NMT
á many IL methods were proposed for linear models
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Structured prediction

A structured prediction problem consists of

n an input space X
n an output space Y
n a fixed but unknown distribution D over X × Y
n a loss function `(y∗, ŷ)→ R+ which measures the distance between

the true (y∗) and predicted (ŷ) outputs.

E(x,y)∼D[`(y
∗, ŷ)]
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Aspired learning of optimal translations

n source f : Vénus est la jumelle infernale de la Terre

n unreachable reference: Venus is the Earth’s hellish twin

n oracle: Venus is the hellish twin of the Earth

Learning on an SMT lattice:

0

2Vénus:Venus

1
Vénus_est:Venus

3

est:is

NULL:-

4

la:the 5
la_jumelle:twin

jumelle:twin

7
infernale:hellish

6

infernale:infernal
8

infernale:of_hell

jumelle:twin
jumelle:twin

9
de_la_Terre:of_the_Earth

n translation e0: Venus – twin of hell of the Earth

n translation e1: Venus – the twin of hell of the Earth

n translation e2: Venus – the hellish twin of the Earth

n translation e3: Venus is the hellish twin of the Earth

n in NMT everything is reachable, but oracles are still useful:

n starting from a suboptimal prefix, find the best continuation wrt ref

| 10 October 2018 5 / 17



Aspired learning of optimal translations

n source f : Vénus est la jumelle infernale de la Terre

n unreachable reference: Venus is the Earth’s hellish twin

n oracle: Venus is the hellish twin of the Earth

Learning on an SMT lattice:

0

2Vénus:Venus

1
Vénus_est:Venus

3

est:is

NULL:-

4

la:the 5
la_jumelle:twin

jumelle:twin

7
infernale:hellish

6

infernale:infernal
8

infernale:of_hell

jumelle:twin
jumelle:twin

9
de_la_Terre:of_the_Earth

n translation e0: Venus – twin of hell of the Earth

n translation e1: Venus – the twin of hell of the Earth

n translation e2: Venus – the hellish twin of the Earth

n translation e3: Venus is the hellish twin of the Earth

n in NMT everything is reachable, but oracles are still useful:

n starting from a suboptimal prefix, find the best continuation wrt ref

| 10 October 2018 5 / 17



Aspired learning of optimal translations

n source f : Vénus est la jumelle infernale de la Terre

n unreachable reference: Venus is the Earth’s hellish twin

n oracle: Venus is the hellish twin of the Earth

Learning on an SMT lattice:

0

2Vénus:Venus

1
Vénus_est:Venus

3

est:is

NULL:-

4

la:the 5
la_jumelle:twin

jumelle:twin

7
infernale:hellish

6

infernale:infernal
8

infernale:of_hell

jumelle:twin
jumelle:twin

9
de_la_Terre:of_the_Earth

n translation e0: Venus – twin of hell of the Earth

n translation e1: Venus – the twin of hell of the Earth

n translation e2: Venus – the hellish twin of the Earth

n translation e3: Venus is the hellish twin of the Earth

n in NMT everything is reachable, but oracles are still useful:

n starting from a suboptimal prefix, find the best continuation wrt ref

| 10 October 2018 5 / 17



Aspired learning of optimal translations

n source f : Vénus est la jumelle infernale de la Terre

n unreachable reference: Venus is the Earth’s hellish twin

n oracle: Venus is the hellish twin of the Earth

Learning on an SMT lattice:

0

2Vénus:Venus

1
Vénus_est:Venus

3

est:is

NULL:-

4

la:the 5
la_jumelle:twin

jumelle:twin

7
infernale:hellish

6

infernale:infernal
8

infernale:of_hell

jumelle:twin
jumelle:twin

9
de_la_Terre:of_the_Earth

n translation e0: Venus – twin of hell of the Earth

n translation e1: Venus – the twin of hell of the Earth

n translation e2: Venus – the hellish twin of the Earth

n translation e3: Venus is the hellish twin of the Earth

n in NMT everything is reachable, but oracles are still useful:

n starting from a suboptimal prefix, find the best continuation wrt ref

| 10 October 2018 5 / 17



Aspired learning of optimal translations

n source f : Vénus est la jumelle infernale de la Terre

n unreachable reference: Venus is the Earth’s hellish twin

n oracle: Venus is the hellish twin of the Earth

Learning on an SMT lattice:

0

2Vénus:Venus

1
Vénus_est:Venus

3

est:is

NULL:-

4

la:the 5
la_jumelle:twin

jumelle:twin

7
infernale:hellish

6

infernale:infernal
8

infernale:of_hell

jumelle:twin
jumelle:twin

9
de_la_Terre:of_the_Earth

n translation e0: Venus – twin of hell of the Earth

n translation e1: Venus – the twin of hell of the Earth

n translation e2: Venus – the hellish twin of the Earth

n translation e3: Venus is the hellish twin of the Earth

n in NMT everything is reachable, but oracles are still useful:

n starting from a suboptimal prefix, find the best continuation wrt ref

| 10 October 2018 5 / 17



Aspired learning of optimal translations

n source f : Vénus est la jumelle infernale de la Terre

n unreachable reference: Venus is the Earth’s hellish twin

n oracle: Venus is the hellish twin of the Earth

Learning on an SMT lattice:

0

2Vénus:Venus

1
Vénus_est:Venus

3

est:is

NULL:-

4

la:the 5
la_jumelle:twin

jumelle:twin

7
infernale:hellish

6

infernale:infernal
8

infernale:of_hell

jumelle:twin
jumelle:twin

9
de_la_Terre:of_the_Earth

n translation e0: Venus – twin of hell of the Earth

n translation e1: Venus – the twin of hell of the Earth

n translation e2: Venus – the hellish twin of the Earth

n translation e3: Venus is the hellish twin of the Earth

n in NMT everything is reachable, but oracles are still useful:

n starting from a suboptimal prefix, find the best continuation wrt ref

| 10 October 2018 5 / 17



Rough classification task taxonomy

1 Binary classes {0, 1}

2 Multiple classes {0, 1, . . . ,K}
á one-vs-all + winner-takes-all argmaxy w

>
y x [Vapnik, 1998]

á one-vs-one + vote argmaxyy′ w
>
yy′x folklore?

á “with features”/output codes argmaxy w
>h(x, y)

[Crammer and Singer, 2002]

3 Structured (”very-very multiple”) classes trees, graphs
á Paths on graphs

optimal sequence of robot’s actions
optimal labelling of a sequence
optimal translation on a lattice

0

2Vénus:Venus

1
Vénus_est:Venus

3

est:is

NULL:-

4

la:the 5
la_jumelle:twin

jumelle:twin

7
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“Translation table”: RL → SP

RL/IL SMT NMT

MDP M phrase-lattice E word-lattice E
state s lattice node v decoder state + attention

actions a phrase-edges e vocabulary words
action sequence ξ translation e translation e

features fs,a features h(ei, fi) –
score w>

∑
a∈ξ f

s,a score w>
∑

ei∈e h(ei; fi) score
∑

ei∈e log p(ei|w)
example behavior reference/oracle reference/oracle

planning decoding decoding
policy - 'output layer

horizon max path length max output length

any a is possible
from any s

only ei that
survived pruning

any word from
vocabulary
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Large-margin SP
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Edge characteristics

s s′
a

< fs,a, `s,a, µs,a >

1 f s,a – Rd features collect into matrix (F )d×(|s|×|a|)
2 µs,a – path indicator (“trajectory was here”) whole path – vector µ

3 cs,a – edge cost c(µ) = c>µ

á should decompose over edges
á simplest: linear c = w>F

4 `s,a – loss suffered when taking this edge `(µ) = `>µ

á ` should decompose over edges
á if not (e.g. F1 or BLEU are not decomposable) can use some use

BLEU-approximating decomposition – an oracle
á here we will assume here that ` is decomposable
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Learning task for structured prediction

Let’s go from a binary linear separation problem to structured prediction.
And let’s fix the inference rule:

ŷi = argmax
y

w>Fiµ

Find such w that:

1 when winner path is found according to the rule argmaxµw
>Fiµ

2 example paths µi should win:

3 for avoid ill-posed problem & for generalization require: ||w|| → min

4 include slack variables for non-separable case: ζi
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Formulation of learning task – specific loss

So far there was no structure loss ` to minimize
∑

i `
>
i µ

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss:
I[yf(x) < 0] ≤ max(0, 1− yf(x))

2 idea: more flexible γ to approximate more general losses γ = `>i µ

3 train examples should win surely:

max
w,ζi

1

N

N∑
i=1

ζi +
λ

2
||w||2

| 10 October 2018 11 / 17



Formulation of learning task – specific loss

So far there was no structure loss ` to minimize
∑

i `
>
i µ

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss:
I[yf(x) < 0] ≤ max(0, 1− yf(x))

2 idea: more flexible γ to approximate more general losses γ = `>i µ

3 train examples should win surely:

max
w,ζi

1

N

N∑
i=1

ζi +
λ

2
||w||2

∀i, µ w>F>i µi ≥ w>Fiµ− ζi

| 10 October 2018 11 / 17



Formulation of learning task – specific loss

So far there was no structure loss ` to minimize
∑

i `
>
i µ

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss:
I[yf(x) < 0] ≤ max(0, 1− yf(x))

2 idea: more flexible γ to approximate more general losses γ = `>i µ

3 train examples should win surely:

max
w,ζi

1

N

N∑
i=1

ζi +
λ

2
||w||2

∀i, µ w>F>i µi ≥ w>Fiµ− ζi

| 10 October 2018 11 / 17



Formulation of learning task – specific loss

So far there was no structure loss ` to minimize
∑

i `
>
i µ

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss:
I[yf(x) < 0] ≤ max(0, 1− yf(x))

2 idea: more flexible γ to approximate more general losses γ = `>i µ

3 train examples should win surely: ∀i, µ w>Fiµi ≥ w>Fiµ+ `iµ

max
w,ζi

1

N

N∑
i=1

ζi +
λ

2
||w||2

∀i, µ w>F>i µi ≥ w>Fiµ+ l>i µ− ζi

| 10 October 2018 11 / 17



Formulation of learning task – specific loss

So far there was no structure loss ` to minimize
∑

i `
>
i µ

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss:
I[yf(x) < 0] ≤ max(0, 1− yf(x))

2 idea: more flexible γ to approximate more general losses γ = `>i µ

3 train examples should win surely:
∀i w>Fiµi ≥ maxµ(w

>Fi + `i)µ

max
w,ζi

1

N

N∑
i=1

ζi +
λ

2
||w||2

∀i, w>Fiµi ≥ max
µ

(w>Fiµ+ `>i µ)− ζi

| 10 October 2018 11 / 17



Formulation of learning task – specific loss

So far there was no structure loss ` to minimize
∑

i `
>
i µ

Generalizing Hamming loss / Loss-augmented problem:

1 unit margin upper-bounds Hamming loss:
I[yf(x) < 0] ≤ max(0, 1− yf(x))

2 idea: more flexible γ to approximate more general losses γ = `>i µ

3 train examples should win surely:
∀i w>Fiµi ≥ maxµ(w

>Fi + `i)µ

max
w,ζi

1

N

N∑
i=1

ζi +
λ

2
||w||2

∀i, w>Fiµi ≥ max
µ

(w>Fiµ+ `>i µ)− ζi

NB: maxµ(w
>Fiµ+ `>i µ) is “loss-augemented inference”

[Tsochantaridis et al., 2006]
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Optimization

max
w,ζi

1

N

N∑
i=1

ζi +
λ

2
||w||2

∀i, w>Fiµi ≥ max
µ

(w>Fiµ+ `>i µ)− ζi

1 in the optimum: ζi = maxµ(w
>F>i µ+ `>i µ)− w>Fiµi

2 how to see this:
á suppose that ζi ≥ maxµ(w

>Fiµ+ `>i µ)− w>Fiµi
á change ζi → ζi − ε (with small enough ε)
á target function will decrease without violating constraints

3 substitute into the objective and obtain:

R(w) =
1

N

N∑
i=1

(
max
µ

(w>Fiµ+ `>i µ)− w>Fiµi
)
+
λ

2
||w||2
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Optimization
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µ

(w>Fiµ+ `>i µ)
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Non-linearity
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Why linear scoring functions are not sufficient?

1 simple and convenient, but too restrictive

2 in theory: motivated by max-entropy principle
á maximise entropy with known means of observables ⇔
á ⇔ optimise likelihood of a log-linear prob. distribution

3 in practice: we don’t want likelihood, we need task metrics

4 means of features are not saved:
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SMT to NMT

SMT: Linear scoring setting

R(w) =
1

N

N∑
i=1

(
max
µ

(w>Fiµ+ `>i µ)− w>Fiµ
)
+
λ

2
||w||22

NMT: Non-linear scoring setting

R[c] =
1

N

N∑
i=1

(
max
µ

(c(Fi, w)
>µ+ `>i µ)− c(Fi, w)>µi)

)

1 no regularization term: commonly regularize by early stopping

2 however, regularization term can smooth c (avoid abrupt jumps)

3 and make update resemble SEARN: ct+1 = (1− λ)ct + βh∗t
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