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The purpose of imitation learning is to efficiently learn a desired behavior
by imitating an expert’'s behavior.

We want to
B in general: learn how to navigate an environment like the expert

® in particular (structured prediction): make inference tractable

Artem Sokolov | 11 October 2018 2/25



Preliminaries

m finite horizon MDP (S, A, P,C, po,T)
= S —set of S states
= A — set of A actions
= P, :SxAxS — [0,1] — transition distribution
= C;: S x A—[0,1] — cost distribution
= po:S — [0,1] — initial state distribution
= T — maximal horizon
* — expert policy we wish to mimic
m:S x A—|[0,1] — some stochastic policy

dt — state distribution at time step ¢ (vector in R¥)

=T ZtT 1 dt. — state visitation frequency at time step ¢

7T
J(m) =T, Eg,~dt Eq,~n(s,)[C (51, ar)] — cost we wish to minimize
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Example: POS tagging

m finite horizon MDP (S, A, P,C, po,T)
= S — previous word and tag, and current word, (x;_1,yi—1, ;)
= A — set of possible POS tags
= P, :SxAxS —[0,1] — deterministic:
P({@i, yis miv1) | (®im1,Yi-1,24),45) = 1
= (C;:S x A— [0,1] - hamming cost

C((wi—1,Yi-1,%:),y:) = Lyi # y;]
= po:S — [0,1] — say, uniform
= T — maximum number of input tokens

m 7% — deterministically outputs the correct label,
(i1, Yim1, 7)) = Y}

B 7:S8xA—[0,1] —e.g. deterministic 7(s) = arg max, score(s,a)
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Different shapes of J

Expected cost:

T
'](ﬂ-) = Z ]Estwd;Eatwﬂ(st) [C(Sta at)]

=1
May seem unintuitive at first if you used to think in terms of trajectories.
Define:
m 7=(s1,a1,...,ar—_1,S7) — trajectory
m trajectory distribution

T
px(T) = po(s1) H7T<at71lstfl)Pt71(5t|5t71> ai—1)
t=2
m state distribution
t—1
dy (s¢) = Z po(s1) HW(ai71|5171)371(81|81—17 ai-1)
{si,aiti<t—1 i=2
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= Z Z Z pr(T)C (8¢, at)

t=1 {s;,a;}i<t—1 {5i,ai }i>t

T T
= Z > polsy) [ r(aialsin)Pica(silsiot, aio1)Cse, ar)
t= Si,ai}' —1 {527(Ll}z>t 1=2

—Z > D s H?r ai—1|si—1)Pi—1(si[si—1, ai—1)m(a¢|s¢) C (st, ar

1= 1{517a1}1<t 19,5t
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t—1
—Z Z > po(sy HwaH|s7¢,1>34<si\si,1,ai,nw(at\socwt,at)

_Z o> di(se)mladsi)Clst, ar)

t=1 Stth (ltNﬂ'(ét)

T
=D Eqnat Egyun(s) [Clst,ar)]
t=1
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IL with Behavioral Cloning
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IL approach

converting structured prediction into a search problem with specified
search space and actions;

A defining structured features over each state to capture the
inter-dependency between output variables;

E constructing a reference policy based on training data;

A learning a policy that imitates the reference policy.

The question is — what is ‘imitates’?
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Behavioral cloning

Very natural thing to do:
m let's learn to predict the same thing as the expert!

m after all, isn’t it the very meaning of imitation?
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m note: the state distribution comes from the expert (or labeled data)
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Behavioral cloning

Very natural thing to do:
m let's learn to predict the same thing as the expert!
m after all, isn't it the very meaning of imitation?

m define an error of not predicting the expert’s actions:

simplest case e(s,a) = I[a # 7*(s)]
€7r(8) = anw(s) [6(8, a)]

learn by driving this error to minimum:

7 =argminEs 4 . [ex(s)]
s

m note: the state distribution comes from the expert (or labeled data)

Question: which known approach in NMT does this correspond to?
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Behavioral cloning

Very natural thing to do:
m let's learn to predict the same thing as the expert!
m after all, isn't it the very meaning of imitation?

m define an error of not predicting the expert’s actions:

simplest case e(s,a) = I[a # 7*(s)]
€7r(8) = anw(s) [6(8, a)]

learn by driving this error to minimum:

7 =argminEs 4 . [ex(s)]
s

m note: the state distribution comes from the expert (or labeled data)

Teacher forcing
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Behavioral cloning may not work
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Counter examples

m we will show two examples where the error is unacceptably high

m intuitively this happens because the learner cannot recover from
unseen situations

m this phenomenon is sometimes called ‘exposure bias’

m it is hypothesized that this could be the reason for NMT
hallucinations
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Sequence Prediction a-la CRF

m Given x = (21,22,...,27), predict y = (y1,¥2,...,yr) € {0,1}T

m Assumption (x,y) ~ D iid

m Prediction g; = fi(x)

m Loss of classifier: Hamming loss E(xyy)wp[ztil Iy; # gjz]]
Structure of D:
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Reduction to binary classification

To achieve a reduction to binary classification, let's choose a class of
binary classifiers for each position i:

fl(X) ZXl — {0, 1}
fl(X) Z{O, 1} X Xl — {0, 1}
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Obtain a set of training examples {x,y} sampled from D
A Learn:

fl(X) : Xl — {O, 1}
fz(X) : {0, 1} X Xz — {0, ]_}

El Given a test example x, predict

i1 =f1(x)
Uit1 =fir1(9i,x)
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Obtain a set of training examples {x,y} sampled from D
A Learn:

fl(X) : Xl — {0, 1}
fZ(X) : {0, 1} X Xz — {0, 1}

El Given a test example x, predict

i1 =f1(x)
Uit1 =fir1(9i,x)

m assume we learned the classifiers f;
and all f; happen to have some small error, E[f;(vy;, ;) # y;] =€
m Question: what will be the Hamming loss on the full sequence x,

if the f; is applied in every position? Basically, how successful is our
reduction?
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Error Accumulation

m will obtain a lower bound for reducing structural sequence learning to
binary classification

B such reductions permit reusing known results from other tasks
m lower bounds highlighting difficulties

Artem Sokolov | 11 October 2018 16 / 25



Simplifications:
m assume for simplicity that

P(fir1(yirTog1) #vip1) | i) =€

for any y; (0 or 1)
m test time predictions: ¥;r1 = f(Ui, x;)
® in combination with the 1st asumption, this means g; 1 is biased to

stick to whatever previous prediciton was

m assume fi(z1) =y; and y = (y1,91,...,y1) (all the same)

m define a random variable z; = I[y; # y?], that flips with prob. € and
stays on the previous value with prob. 1 — ¢
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Simplifications:

assume for simplicity that

P(fis1(Yi, wiv1) # yiy1) | vi) =€
for any y; (0 or 1)
test time predictions: §;+1 = f(9i, i)
in combination with the 1st asumption, this means ;1 is biased to

stick to whatever previous prediciton was

assume fi(z1) =y1 andy = (y1,y1,...,y1) (all the same)
define a random variable z; = I[y; # y/], that flips with prob. € and
stays on the previous value with prob. 1 — ¢

They form a Markov Reward (here, loss) Process with the transition
matrix:

1—¢€ €
P_< € 1—e>

After t transitions:

i 1 1+(1-2¢) 1—(1-2¢)
P_2<1—(1—26)t 1+ (1-2e)t >

Exercise: Proof this by induction with base case ¢t = 1.
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pt_1 1+ (1—2€e)t 1—(1—2¢)
2\ 1—(1-2€e)% 1+ (1—2e)
B {— 0
1/1 1
f p—
P_>2<1 1>
me=0
1/1 1
t—f
P2<1 1)
me=1
= t=2k )
i 1(2 0
P_2(0 2)
= t=2k+1
;1[0 2
P=3\120
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Expected number of errors

¢ 1 1+(1—26)t 1—(1—26)t
P _2< 1—(1—2€)! 1+(1—2e)f>

m to track errors we're interested in elements (2,1) and (1,2)
m thanks to the assumptions, they look the same
m let's sum them up to figure out the error over the whole sequence:

N | =
i]-
—

|

—

|

[\
S

T— (1 —2¢)TH
( 1—(1—2¢) —1)
— (1 —2¢)Tt! N 1

4e 2

I
NN ol M\’ﬂ
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T
H = Elerror] = 3

+
Exercise: Do a Taylor expansion of (1 —2¢)T+! up to O(€?)

Artem Sokolov | 11 October 2018 20 /25



1—(1—2¢)TH

H = Elerror] = g — +
Exercise: Do a Taylor expansion of (1 —2¢)T+! up to O(€?)
1
H ~ §T(T + 1)e+--- = O(eT?)

100 T T T T

H(10")) e

H(1072) o

H(107)

10172 ——

10272 ——

80 [F103 T2 1

0 = f

0 20 40 60 80 100
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Something unexpected

m you'd expect that if per-step error probability is € then you'll make
~ ¢T of them over a sequence of length T’

m instead errors grow like €72 instead of T’
m of course this is for small €, and you can make > T in total

€=0.005 ——
€=0.001 ——
500 |- Rl

100 200 300 400 500 600 700 800 900 1000

m but for small € the errors can quickly accumulate
m intuitively, once an error is committed the learner cannot recover
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Another example

To see this phenomenon better, let's consider not a chain, but a real FST:
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a1

oS
a

expert policy m* always picks a1 in sg, as in s1, and aq in s

dz = (7, *7,0)

policy 7 with prob. (1 — €T") executes a; in sg, and az in other states
e<1/T

error of 71 Eguq ., [I[7*(s) # 7(s)]] = €Ta + T2 -0+ 0-1=¢

so it could have been found by behavioral cloning

T-step expected cost: 0 with prob. (1 —€T"), and T with prob. €7, so
eT?

N
N
N
&



Let 7 be such that Egg, . [ex(s)] < €. Then J(7r) < J(n*) + €T?.
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Let 7 be such that Egg, . [ex(s)] < €. Then J(7r) < J(n*) + €T?.

m this is an upper bound, so maybe it's not that bad?
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Let 7 be such that Egg, . [ex(s)] < €. Then J(7r) < J(n*) + €T?.

m this is an upper bound, so maybe it's not that bad?
m actually, the examples above have just showed that this is tight

m so there are MDPs where the error actually scales as O(eT?)
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assume ¢; = Eq g _, [ex(s)] =€, Vi
consider two cases at time ¢:

7 did not make any mistake during 1...¢t —1
H it did at least once

m p; prob. of case 1, d; state distribution of 7 in case 1, e; prob of 7's
mistake at ¢ in case 1

m d] state distribution of 7* in case 2, and ¢} prob. of mistake at ¢ in
case 2

| d;* = ptdt + (1 — pt)di
o =peg+ (1 —pr)eg
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[PeEsa, [Ca(5)] + (1 = pt)Esna, [Ca (s)]]

,i
M'ﬂ

i
N

[PtEsna, [Ca(s)] + (1 — pr)]] C()<1)

E

“
Il
s

[PtEs~d, [Cr=(s) + €] + (1 — pt)]] (making an error at t)

WE

-
Il
—

[PtEsd, [Cr=(s)] + prer + (1 — p1)]]

I
E

#
Il
—

(note J (") = piBa, [Cr=] + (1 — p1)Eg; [Crr])

T T
<T@+ lpee+ (L—p)] < J(@*) + ) [ee + (1 — py)]
t=1 t=1
T t—1 T t
STE)+) e+ ) el =J@)+> ) & < J(r*) + T
t=1 =1 t=1 1=1
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