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The purpose of imitation learning is to efficiently learn a desired behavior
by imitating an expert’s behavior.

We want to

n in general: learn how to navigate an environment like the expert

n in particular (structured prediction): make inference tractable
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Preliminaries

n finite horizon MDP (S,A, P, C, ρ0, T )

á S – set of S states
á A – set of A actions
á Pt : S ×A× S → [0, 1] – transition distribution
á Ct : S ×A → [0, 1] – cost distribution
á ρ0 : S → [0, 1] – initial state distribution
á T – maximal horizon

n π∗ – expert policy we wish to mimic

n π : S ×A → [0, 1] – some stochastic policy

n dtπ – state distribution at time step t (vector in RS)

n dπ = 1
T

∑T
t=1 d

t
π – state visitation frequency at time step t

n J(π) =
∑T

t=1 Est∼dtπEat∼π(st)[C(st, at)] – cost we wish to minimize
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Example: POS tagging

n finite horizon MDP (S,A, P, C, ρ0, T )

á S – previous word and tag, and current word, 〈xi−1, yi−1, xi〉
á A – set of possible POS tags
á Pt : S ×A× S → [0, 1] – deterministic:

P (〈xi, yi, xi+1〉 | 〈xi−1, yi−1, xi〉, yi) = 1
á Ct : S ×A → [0, 1] – hamming cost

C(〈xi−1, yi−1, xi〉, yi) = I[yi 6= y∗i ]
á ρ0 : S → [0, 1] – say, uniform
á T – maximum number of input tokens

n π∗ – deterministically outputs the correct label,
π∗(〈xi−1, yi−1, xi〉) = y∗i

n π : S ×A → [0, 1] – e.g. deterministic π(s) = arg maxa score(s, a)
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Different shapes of J

Expected cost:

J(π) =

T∑
t=1

Est∼dtπEat∼π(st)[C(st, at)]

May seem unintuitive at first if you used to think in terms of trajectories.
Define:

n τ = (s1, a1, . . . , aT−1, sT ) – trajectory

n trajectory distribution

ρπ(τ) = ρ0(s1)

T∏
t=2

π(at−1|st−1)Pt−1(st|st−1, at−1)

n state distribution

dπt (st) =
∑

{si,ai}i≤t−1

ρ0(s1)
t−1∏
i=2

π(ai−1|si−1)Pi−1(si|si−1, ai−1)
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J(π)

J(π) = Eτ∼ρ[
T∑
t=1

C(st, at)] this is expected cost by definition

=
∑
τ

ρπ(τ)

T∑
t=1

C(st, at)

=

T∑
t=1

∑
τ

ρπ(τ)C(st, at)

=

T∑
t=1

∑
{si,ai}i≤t−1

∑
{si,ai}i≥t

ρπ(τ)C(st, at)

=

T∑
t=1

∑
{si,ai}i≤t−1

∑
{si,ai}i≥t

ρ0(s1)

T∏
i=2

π(ai−1|si−1)Pi−1(si|si−1, ai−1)C(st, at)

=

T∑
t=1

∑
{si,ai}i≤t−1

∑
at,st

ρ0(s1)

t−1∏
i=2

π(ai−1|si−1)Pi−1(si|si−1, ai−1)π(at|st)C(st, at)
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J(π)

=

T∑
t=1

∑
{si,ai}i≤t−1

∑
at,st

ρ0(s1)

t−1∏
i=2

π(ai−1|si−1)Pi−1(si|si−1, ai−1)π(at|st)C(st, at)

=

T∑
t=1

∑
st∼dtπ

∑
at∼π(st)

dtπ(st)π(at|st)C(st, at)

=

T∑
t=1

Est∼dtπEat∼π(st)[C(st, at)]
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IL with Behavioral Cloning
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IL approach

1 converting structured prediction into a search problem with specified
search space and actions;

2 defining structured features over each state to capture the
inter-dependency between output variables;

3 constructing a reference policy based on training data;

4 learning a policy that imitates the reference policy.

The question is – what is ‘imitates’?
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Behavioral cloning

Very natural thing to do:

n let’s learn to predict the same thing as the expert!

n after all, isn’t it the very meaning of imitation?

n define an error of not predicting the expert’s actions:

simplest case e(s, a) = I[a 6= π∗(s)]

eπ(s) = Ea∼π(s)[e(s, a)]

n learn by driving this error to minimum:

π̂ = arg min
π

Es∼[eπ(s)]

n note: the state distribution comes from the expert (or labeled data)

Artem Sokolov | 11 October 2018 10 / 25



Behavioral cloning

Very natural thing to do:

n let’s learn to predict the same thing as the expert!

n after all, isn’t it the very meaning of imitation?

n define an error of not predicting the expert’s actions:

simplest case e(s, a) = I[a 6= π∗(s)]

eπ(s) = Ea∼π(s)[e(s, a)]

n learn by driving this error to minimum:

π̂ = arg min
π

Es∼[eπ(s)]

n note: the state distribution comes from the expert (or labeled data)

Artem Sokolov | 11 October 2018 10 / 25



Behavioral cloning

Very natural thing to do:

n let’s learn to predict the same thing as the expert!

n after all, isn’t it the very meaning of imitation?

n define an error of not predicting the expert’s actions:

simplest case e(s, a) = I[a 6= π∗(s)]

eπ(s) = Ea∼π(s)[e(s, a)]

n learn by driving this error to minimum:

π̂ = arg min
π

Es∼dπ∗ [eπ(s)]

n note: the state distribution comes from the expert (or labeled data)

Artem Sokolov | 11 October 2018 10 / 25



Behavioral cloning

Very natural thing to do:

n let’s learn to predict the same thing as the expert!

n after all, isn’t it the very meaning of imitation?

n define an error of not predicting the expert’s actions:

simplest case e(s, a) = I[a 6= π∗(s)]

eπ(s) = Ea∼π(s)[e(s, a)]

n learn by driving this error to minimum:

π̂ = arg min
π

Es∼dπ∗ [eπ(s)]

n note: the state distribution comes from the expert (or labeled data)

Artem Sokolov | 11 October 2018 10 / 25



Behavioral cloning

Very natural thing to do:

n let’s learn to predict the same thing as the expert!

n after all, isn’t it the very meaning of imitation?

n define an error of not predicting the expert’s actions:

simplest case e(s, a) = I[a 6= π∗(s)]
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Question: which known approach in NMT does this correspond to?
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n let’s learn to predict the same thing as the expert!

n after all, isn’t it the very meaning of imitation?

n define an error of not predicting the expert’s actions:

simplest case e(s, a) = I[a 6= π∗(s)]

eπ(s) = Ea∼π(s)[e(s, a)]
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π

Es∼dπ∗ [eπ(s)]

n note: the state distribution comes from the expert (or labeled data)

Teacher forcing
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Behavioral cloning may not work
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Counter examples

n we will show two examples where the error is unacceptably high

n intuitively this happens because the learner cannot recover from
unseen situations

n this phenomenon is sometimes called ‘exposure bias’

n it is hypothesized that this could be the reason for NMT
hallucinations
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Sequence Prediction a-la CRF

n Given x = (x1, x2, . . . , xT ), predict y = (y1, y2, . . . , yT ) ∈ {0, 1}T

n Assumption (x,y) ∼ D iid

n Prediction ŷi = fi(x)

n Loss of classifier: Hamming loss E(x,y)∼D
[∑T

t=1 I[yi 6= ŷi]
]

Structure of D:

x1 x2 x3 xT

y1 y2 y3 yT

[Kääriäinen’05]
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Reduction to binary classification

To achieve a reduction to binary classification, let’s choose a class of
binary classifiers for each position i:

f1(x) :X1 → {0, 1}
fi(x) :{0, 1} × Xi → {0, 1}

x1 xi+1

y1 yi yi+1
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Protocol

1 Obtain a set of training examples {x,y} sampled from D
2 Learn:

f1(x) : X1 → {0, 1}
fi(x) : {0, 1} × Xi → {0, 1}

3 Given a test example x, predict

ŷ1 =f1(x)

ŷi+1 =fi+1(ŷi,x)

n assume we learned the classifiers fi
n and all fi happen to have some small error, E[fi(yi, xi) 6= y∗i ] = ε
n Question: what will be the Hamming loss on the full sequence x,

if the fi is applied in every position? Basically, how successful is our
reduction?
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Error Accumulation

n will obtain a lower bound for reducing structural sequence learning to
binary classification

n such reductions permit reusing known results from other tasks

n lower bounds highlighting difficulties
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Simplifications:

n assume for simplicity that

P (fi+1(yi, xi+1) 6= y∗i+1) | yi) = ε

for any yi (0 or 1)
n test time predictions: ŷi+1 = f(ŷi, xi)
n in combination with the 1st asumption, this means ŷi+1 is biased to

stick to whatever previous prediciton was
n assume f1(x1) = y1 and y = (y1, y1, . . . , y1) (all the same)
n define a random variable zi = I[yi 6= y∗i ], that flips with prob. ε and

stays on the previous value with prob. 1− ε

They form a Markov Reward (here, loss) Process with the transition
matrix:

P =

(
1− ε ε
ε 1− ε

)
After t transitions:

P t =
1

2

(
1 + (1− 2ε)t 1− (1− 2ε)t

1− (1− 2ε)t 1 + (1− 2ε)t

)
Exercise: Proof this by induction with base case t = 1.
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Observations

P t =
1

2

(
1 + (1− 2ε)t 1− (1− 2ε)t

1− (1− 2ε)t 1 + (1− 2ε)t

)

n t→∞
P t → 1

2

(
1 1
1 1

)
n ε = 0

P t =
1

2

(
1 1
1 1

)
n ε = 1

á t = 2k

P t =
1

2

(
2 0
0 2

)
á t = 2k + 1

P t =
1

2

(
0 2
2 0

)
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Expected number of errors

P t =
1

2

(
1 + (1− 2ε)t 1− (1− 2ε)t

1− (1− 2ε)t 1 + (1− 2ε)t

)

n to track errors we’re interested in elements (2,1) and (1,2)

n thanks to the assumptions, they look the same

n let’s sum them up to figure out the error over the whole sequence:

1

2

T∑
t=1

1− (1− 2ε)t =
T

2
− 1

2

T∑
t=1

(1− 2ε)t

=
T

2
− 1

2

(1− (1− 2ε)T+1

1− (1− 2ε)
− 1
)

=
T

2
− 1− (1− 2ε)T+1

4ε
+

1

2
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H = E[error] =
T

2
− 1− (1− 2ε)T+1

4ε
+

1

2

Exercise: Do a Taylor expansion of (1− 2ε)T+1 up to O(ε2)

H ' 1

2
T (T + 1)ε+ · · · = Θ(εT 2)
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Something unexpected

n you’d expect that if per-step error probability is ε then you’ll make
' εT of them over a sequence of length T

n instead errors grow like εT 2 instead of εT

n of course this is for small ε, and you can make > T in total

n but for small ε the errors can quickly accumulate

n intuitively, once an error is committed the learner cannot recover
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Another example

To see this phenomenon better, let’s consider not a chain, but a real FST:

n expert policy π∗ always picks a1 in s0, a2 in s1, and a1 in s2
n d∗π = ( 1

T ,
T−1
T , 0)

n policy π with prob. (1− εT ) executes a1 in s0, and a2 in other states

n ε ≤ 1/T

n error of π: Es∼dπ∗ [I[π
∗(s) 6= π(s)]] = εT 1

T + T−1
T · 0 + 0 · 1 = ε

n so it could have been found by behavioral cloning

n T -step expected cost: 0 with prob. (1− εT ), and T with prob. εT , so
εT 2
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Theorem

[Ross & Bagnell’10]

Let π̂ be such that Es∼dπ∗ [eπ̂(s)] ≤ ε. Then J(π̂) ≤ J(π∗) + εT 2.

n this is an upper bound, so maybe it’s not that bad?

n actually, the examples above have just showed that this is tight

n so there are MDPs where the error actually scales as O(εT 2)
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Proof

n assume εi = Es∼dπ∗ [eπ̂(s)] = ε, ∀i
n consider two cases at time t:

1 π̂ did not make any mistake during 1 . . . t− 1
2 it did at least once

n pt prob. of case 1, dt state distribution of π in case 1, et prob of π̂’s
mistake at t in case 1

n d′t state distribution of π∗ in case 2, and e′t prob. of mistake at t in
case 2

n dtπ∗ = ptdt + (1− pt)d′t
n εt = ptet + (1− pt)e′t
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J(π) ≤
T∑
t=1

[ptEs∼dt [Cπ̂(s)] + (1− pt)Es∼dt [Cπ̂(s)]]

≤
T∑
t=1

[ptEs∼dt [Cπ̂(s)] + (1− pt)]] (C(.) ≤ 1)

≤
T∑
t=1

[ptEs∼dt [Cπ∗(s) + et] + (1− pt)]] (making an error at t)

=

T∑
t=1

[ptEs∼dt [Cπ∗(s)] + ptet + (1− pt)]]

(note J(π∗) = ptEdt [Cπ∗ ] + (1− pt)Ed′t [Cπ∗ ])

≤ J(π∗) +

T∑
t=1

[ptet + (1− pt)] ≤ J(π∗) +

T∑
t=1

[εt + (1− pt)]

≤ J(π∗) +

T∑
t=1

[εt +

t−1∑
i=1

εi] = J(π∗) +

T∑
t=1

t∑
i=1

εi ≤ J(π∗) + T 2ε
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