Learning to Search

Artem Sokolov

Institute for Computational Linguistics, Heidelberg University

15 October 2018

Learning to Search
structured prediction as search problem

Artem Sokolov | 15 October 2018

N

Structured learning

A structured learning problem consists of
®E an input space X
B an output space Y
m a fixed but unknown data distribution D over X x Y
[

a loss function £(y*,9) — R™, which measures the distance between
the true (y*) and predicted () outputs.

The goal of structured learning is to use N samples, {:cl,yz}fil ~ D and
learn a mapping f: X —),
that minimizes the expected loss E, ,)p[¢(y, f(7))]

Artem Sokolov | 15 October 2018 3/20

Simple Percept

Perceptron [Rosenblatt, 1958]
1: init: wy =0
2. fort=0,...do
3: observe x;
predict §; = sign(w, ;) (values: 0 or 1)
recieve true label y;
if ﬁt 7é Yt then
update w1 = wy + x4
else
keep w1 = wy
10: end if

© ® N>R

Artem Sokolov | 15 October 2018 4 /20

Perceptron as Online Convex Optimization

m the 0/1 loss, I[y - w 'z < 0], is unfortunately non-convex
m we already know that we should build some convex surrogate:

{(w,z) = max(0,1 —y - w' x)

this is called ‘hinge-loss’
it's convex and upper-bounds the 0/1 loss,
b(w,z) > 1y -w'z <0],Yw

2

step(x)
max(0, 1-x)

05

Artem Sokolov | 15 October 2018 5/20

Perceptron as Online Convex Optimization

Now we have an online convex optimization task:

receive Ty
B predict p; = sign(w/ x)

T

B suffer loss ¢;(w,z;) = max(0,1 —y - w' xy)

A update wy

Artem Sokolov | 15 October 2018 6 /20

Perceptron as Online Convex Optimization

Now we have an online convex optimization task:

receive Ty
B predict p; = sign(w/ x)

T

B suffer loss ¢;(w,z;) = max(0,1 —y - w' xy)

@A update w; (how?)

Artem Sokolov | 15 October 2018 6 /20

Perceptron as Online Convex Optimization

Now we have an online convex optimization task:
receive Ty

B predict p; = sign(w/ x)

B suffer loss £;(w, x;) = max(0,1 —y - w ' x;)
A update wy

We know already Follow-The-Regularized-Leader as a way to no-regret:

t
wy = arg minZEt(w, x;) + R(w)
i=1

Artem Sokolov | 15 October 2018 6/ 20

Perceptron as Online Convex Optimization

Now we have an online convex optimization task:

receive Ty

B predict p; = sign(w/ x)

B suffer loss £;(w, 2;) = max(0,1 —y-w'

.’Et)
A update wy
We know already Follow-The-Regularized-Leader as a way to no-regret:

t
] 1
w; = arg min 5 Li(w, ;) + % Hng
i=1

Artem Sokolov | 15 October 2018 6/ 20

Perceptron as Online Convex Optimization

We also know that for convex functions it is sufficient to work with
linearized losses, setting z; = V¢ (w):

Theorem

Consider FTRL, linear losses ¢;(w) = w' %, and regularization

R(w) = % Hng and w,u € S = R?, then

T
1 2,V 2
Re(u) < g Il + 5 3 el

Artem Sokolov | 15 October 2018 7/20

Perceptron as Online Convex Optimization

We also know that for convex functions it is sufficient to work with
linearized losses, setting z; = V0 (w):

Theorem

Consider FTRL, linear losses ¢;(w) = w' %, and regularization

R(w) = % Hng and w,u € S = R% then

1 2 Vv 2
Rr(w) < ol +5 > [zl
2v 2
te{errors}

B when there is no error the gradient is zero

Artem Sokolov | 15 October 2018 7/20

Perceptron as Online Convex Optimization

We also know that for convex functions it is sufficient to work with
linearized losses, setting z; = V0 (w):

Theorem

Consider FTRL, linear losses ¢;(w) = w' %, and regularization

R(w) = % Hng and w,u € S = R% then

1 v
RT(U)<7HUH§+* > IVl (w)

te{errors}

B when there is no error the gradient is zero

m 2z is the gradient

Artem Sokolov | 15 October 2018 7/20

Perceptron as Online Convex Optimization

We also know that for convex functions it is sufficient to work with
linearized losses, setting z; = V0 (w):

Theorem

Consider FTRL, linear losses ¢;(w) = w' %, and regularization

R(w) = % Hng and w,u € S = R% then

1 2 v 2
Rr(u) < ol +5 > llall®
2v 2
te{errors}

B when there is no error the gradient is zero
m 2z is the gradient

m gradient of w'z; is just z;

Artem Sokolov | 15 October 2018 7/20

Perceptron Regret

1 DY 2
Rr(u) < o—lull+5 Y llaell®.
2v 2
te{errors}

m and let R = max||x¢|| (bounded features)

Artem Sokolov | 15 October 2018 8/20

Perceptron Regret

1 DY 2
Rr(u) < o—lull+5 Y llaell®.
2v 2
te{errors}

m and let R = max||x¢|| (bounded features)
m use the definition of regret and the surrogate upper-bounding property

1
#errors < ztjﬂ(wt) - zt:ﬁ(u) < o ||ul)3 + %RQ - #errors

Artem Sokolov | 15 October 2018 8/20

Perceptron Regret

1 DY 2
Rr(u) < o—lull+5 Y llaell®.
2v 2
te{errors}

m and let R = max||x¢|| (bounded features)
m use the definition of regret and the surrogate upper-bounding property

1
#errors < ztjﬁ(wt) - zt:f(u) < o ||ul)3 + %RQ - #errors

||l

B setv = m and rearrange

T
#errors — R||ul| /#errors — th(u) <0
t=1

Artem Sokolov | 15 October 2018 8/20

Perceptron Regret

1 DY 2
Rr(u) < o—lull+5 Y llaell®.
2v 2
te{errors}

m and let R = max||x¢|| (bounded features)
m use the definition of regret and the surrogate upper-bounding property

1
#errors < ztjﬁ(wt) - zt:f(u) < o ||ul)3 + %RQ - #errors

_ [[ul|
moset v = pooo o and rearrange

T
#errors — R||ul| /#errors — th(u) <0
t=1

m let's assume realizability, Ju*, s.t. y; = sign((u*) " z;), Vvt

#errors — R||u*|| \/#errors <0

Artem Sokolov | 15 October 2018 8/20

Perceptron Regret

m if we additionaly assume, that ||u*|| < 1/7 we get

#errors < RQ/V2

Artem Sokolov | 15 October 2018 9/20

Structured Perceptron

Structured Perceptron [Collins and Roark, 2004]

1: input: training data { (@,) }Y,

2: init: wg =0

3: fort=0,...do

4: observe x;, y;

5: predict §; = arg max,cy(,) w] ¢z, y)
6: if yt 7é Yt then

7

8

update w1 = wi + ¢(xe, yr) — d(xt, Yr)
end if

Thm

If ||¢(z¢,4¢)|| < R and Fu, ||u|| = 1 such that Vt,y € V(zy):
u' o2, y) > u' ¢(xt,y) + 7, then

2
7 errors < —
Y

Artem Sokolov | 15 October 2018 10 / 20

Structured Perceptron

Structured Perceptron [Collins and Roark, 2004]

1: input: training data { (@,) }Y,

2: init: wg =0

3: fort=0,...do

4: observe x;, y;

5: predict §; = arg max,cy(,) w] ¢z, y) + this is expensive
6 if yt 7é Yt then

7

8

update w1 = wi + ¢(xe, yr) — d(xt, Y1)
end if

Thm

If ||¢(z¢,4¢)|| < R and Fu, ||u|| = 1 such that Vt,y € V(zy):
u' o2, y) > u' ¢(xt,y) + 7, then

2
7 errors < —
Y

Artem Sokolov | 15 October 2018 10 / 20

Structured SVM

Let's look again at the structured SVM model from the previous lecture

‘StructSVM Objective
1 A
Rw) = 5 Y (max(w -+t) = wT B i) + 5 ol

i=

Artem Sokolov | 15 October 2018 11 /20

Structured SVM

Rewriting in the same notation as perceptron:

‘ StructSVM Objective

A
Nz(mw Owe,y) +) — ' $lae,ye)) + 5 Il

Artem Sokolov | 15 October 2018 11 /20

Structured SVM

Rewriting in the same notation as perceptron:

‘ StructSVM Objective

A
- Z (masx(w T 6 9) + o)) — w7 b)) + 5

m R(w) is convex (sum of affine & convex functions)
m denote § = arg maxy(’wT¢($t, y) + Ly, y))
®m can be minimized using batch subgradient method

aw NZ< Ty, Yt) — Ay,)) + Aw

OR
W41 = Wt — at%
1 N

Wil = we — (55 > (¢($z‘,yi) — (i,)) + Awy)

-
Artem Sokolov | 15 October 2018 11 /20

Structured SVM

Rewriting in the same notation as perceptron:

‘ StructSVM Objective

A
- Z (masx(w T 6, y) + o w) — 0T bl wn)) + 5 ol

m R(w) is convex (sum of affine & convex functions)
m denote § = arg maxy(wT¢(wt, y) +L(yt,y)) < this is expensive
®m can be minimized using batch subgradient method

aw NZ< Ty, Yt) — Ay,)) + Aw

OR
Wiyl = Wt — Qg7 —

ow

1 N

Wil = we — (55 > (ﬁb(xz‘,yi) — (i,)) + Awy)

-
Artem Sokolov | 15 October 2018 11 /20

Loss-augemented inference

Where do we get 37

ji = argmin(w ' ¢(xi,y) — £(x,y))
yey

m this is the loss-augmented inference task

B requires a solution to a search problem in the underlying space
m has to be solved for every input instance (big data is a problem)

= solvable in O(T' - K') on chains and trees (long sequences are a problem)
= much harder or intractable for general graphs (e.g. MRFs)

Artem Sokolov | 15 October 2018 12 /20

So we have two problems:
m when there is relation to the inference, the learning loop is expensive
= the non-probabilistic models above (Perceptron or SVM)
m or inference and learning maybe not related at all

= e.g. CRF: the learning objective knows nothing about inference
= same for many deep learning-based models

m often finding ¢ alone is not enough

= CRFs require feature expectations
= |arge-margin methods require n-best lists

m Learning as Search Optimization (LaSo) is tackling these problems

m get rid of the expensive arg max (global decision)
m decompose the structure building into local decisions

Artem Sokolov | 15 October 2018 13 /20

Conversion of SP to search-based prediciton

Setup:
® input z € X induces a search space Y(z)
m initial state b (also encodes z)
m set of states S
m transition function P(s;y1|st,a;) (here deterministic)
m for each (valid) sequence of states and actions, there is a
corresponding output y(e)
loss ¢(e) = £(y*,y(e)), where y* is the ground truth structure

feature generating function ¢ : S — RY, that expresses both the input
x and previous actions

agent follows a policy m(a¢|s¢), which chooses an action a; in state s;
trajeCtory Tr = (ala S$1y---,8T-1,0T, ST)v where P(St+l|8t7 W(St))
T is maximum lengths of 7

goal: ming E(,) p[l(y, 7x))]

Artem Sokolov | 15 October 2018 14 /20

[Daume’15]

Artem Sokolov | 15 October 2018

m forany s € S and y € Y we can say if s can lead to y
B in this case we call it ‘y-good’, otherwise ‘y-bad’
m goal:

= first node can lead to any structure
= the queue always contains at least one y-good node

Artem Sokolov | 15 October 2018 16 / 20

Algo Learn(problem, initial, enqueue, w, x, y)
nodes «— MakeQueue(MakeNode(problem,initial))
while nodes is not empty do
node +— RemoveFront(nodes)
if none of nodesU {node} is y-good or
GoalTest(node) and node is not y-good then
sths < siblings(node, vy)
w — update(w, x, sibs, node U nodes)
nodes +— MakeQueue(sibs)
else
if GoalTest(node) then return w
next < Operators(node)
nodes «— enqueue(problem, nodes, next, w)
end if
end while

Artem Sokolov | 15 October 2018 17 / 20

online learning algorithm
search and learning are tightly intervened
usually needs a size restriction on the queue

similar to structured perceptron, except for early updates

updates are done on errors (if the current beam cannot lead to the
right answer)

Artem Sokolov | 15 October 2018 18 / 20

¢(z,n) ¢(z,n)
Wikl = Wit Z Z |nodes|

|sibs|
ne€sibs nenodes

Analysis:
m basically, follows the analysis for structured perceptron
m result: for separable problems with margin v, number of errors is < R—Q

m actually it's not exactly true for subtle reasons, see

Artem Sokolov | 15 October 2018 19 / 20

m natural only for sequence labelling problems

m hard to apply for tasks with production in arbitrary order

Artem Sokolov | 15 October 2018 20 /20

Literature

Artem Sokolov | 15 October 2018

Collins, M. and Roark, B. (2004)
Incremental parsing with the perceptron algorithm.

Novikoff, A. (1962).
On convergence proofs on perceptrons.

Rosenblatt, F. (1958)

The perceptron: A probabilistic model for information storage and organization in the brain.

) & @ &Y

Xu, Y. and Fern, A. (2007)
On learning linear ranking functions for beam search.

Artem Sokolov | 15 Oct

	Literature

