
Learning to Search

Artem Sokolov

Institute for Computational Linguistics, Heidelberg University

15 October 2018

Learning to Search
structured prediction as search problem

Artem Sokolov | 15 October 2018 2 / 20

Structured learning

A structured learning problem consists of

n an input space X
n an output space Y
n a fixed but unknown data distribution D over X × Y
n a loss function `(y∗, ŷ)→ R+, which measures the distance between

the true (y∗) and predicted (ŷ) outputs.

The goal of structured learning is to use N samples, {xi, yi}Ni=1 ∼ D and
learn a mapping f : X → Y,
that minimizes the expected loss E(x,y)∼D[`(y, f(x))]

Artem Sokolov | 15 October 2018 3 / 20

Simple Perceptron

Perceptron [Rosenblatt, 1958]

1: init: w0 = 0
2: for t = 0, . . . do
3: observe xt
4: predict ŷt = sign(w>t xt) (values: 0 or 1)
5: recieve true label yt
6: if ŷt 6= yt then
7: update wt+1 = wt + xt
8: else
9: keep wt+1 = wt

10: end if

Artem Sokolov | 15 October 2018 4 / 20

Perceptron as Online Convex Optimization

n the 0/1 loss, I[y · w>x ≤ 0], is unfortunately non-convex

n we already know that we should build some convex surrogate:

`(w, x) = max(0, 1− y · w>x)

n this is called ‘hinge-loss’

n it’s convex and upper-bounds the 0/1 loss,
`t(w, x) ≥ I[y · w>x ≤ 0],∀w

Artem Sokolov | 15 October 2018 5 / 20

Perceptron as Online Convex Optimization

Now we have an online convex optimization task:

1 receive xt

2 predict pt = sign(w>t xt)

3 suffer loss `t(w, xt) = max(0, 1− y · w>xt)
4 update wt

We know already Follow-The-Regularized-Leader as a way to no-regret:

wt = argmin
t∑
i=1

`t(w, xi)+

Artem Sokolov | 15 October 2018 6 / 20

Perceptron as Online Convex Optimization

Now we have an online convex optimization task:

1 receive xt

2 predict pt = sign(w>t xt)

3 suffer loss `t(w, xt) = max(0, 1− y · w>xt)
4 update wt (how?)

We know already Follow-The-Regularized-Leader as a way to no-regret:

wt = argmin
t∑
i=1

`t(w, xi)+

Artem Sokolov | 15 October 2018 6 / 20

Perceptron as Online Convex Optimization

Now we have an online convex optimization task:

1 receive xt

2 predict pt = sign(w>t xt)

3 suffer loss `t(w, xt) = max(0, 1− y · w>xt)
4 update wt

We know already Follow-The-Regularized-Leader as a way to no-regret:

wt = argmin
t∑
i=1

`t(w, xi) +R(w)

Artem Sokolov | 15 October 2018 6 / 20

Perceptron as Online Convex Optimization

Now we have an online convex optimization task:

1 receive xt

2 predict pt = sign(w>t xt)

3 suffer loss `t(w, xt) = max(0, 1− y · w>xt)
4 update wt

We know already Follow-The-Regularized-Leader as a way to no-regret:

wt = argmin
t∑
i=1

`t(w, xi) +
1

2ν
||w||22

Artem Sokolov | 15 October 2018 6 / 20

Perceptron as Online Convex Optimization

We also know that for convex functions it is sufficient to work with
linearized losses, setting zt = ∇w`t(w):

Theorem

Consider FTRL, linear losses `t(w) = w>zt, and regularization
R(w) = 1

2ν ||w||
2
2 and w, u ∈ S = Rd, then

RT (u) ≤
1

2ν
||u||22 +

ν

2

T∑
t=1

||zt||22 .

n when there is no error the gradient is zero

n zt is the gradient

n gradient of w>xt is just xt

Artem Sokolov | 15 October 2018 7 / 20

Perceptron as Online Convex Optimization

We also know that for convex functions it is sufficient to work with
linearized losses, setting zt = ∇w`t(w):

Theorem

Consider FTRL, linear losses `t(w) = w>zt, and regularization
R(w) = 1

2ν ||w||
2
2 and w, u ∈ S = Rd, then

RT (u) ≤
1

2ν
||u||22 +

ν

2

∑
t∈{errors}

||zt||22 .

n when there is no error the gradient is zero

n zt is the gradient

n gradient of w>xt is just xt

Artem Sokolov | 15 October 2018 7 / 20

Perceptron as Online Convex Optimization

We also know that for convex functions it is sufficient to work with
linearized losses, setting zt = ∇w`t(w):

Theorem

Consider FTRL, linear losses `t(w) = w>zt, and regularization
R(w) = 1

2ν ||w||
2
2 and w, u ∈ S = Rd, then

RT (u) ≤
1

2ν
||u||22 +

ν

2

∑
t∈{errors}

||∇`t(wt)||2 .

n when there is no error the gradient is zero

n zt is the gradient

n gradient of w>xt is just xt

Artem Sokolov | 15 October 2018 7 / 20

Perceptron as Online Convex Optimization

We also know that for convex functions it is sufficient to work with
linearized losses, setting zt = ∇w`t(w):

Theorem

Consider FTRL, linear losses `t(w) = w>zt, and regularization
R(w) = 1

2ν ||w||
2
2 and w, u ∈ S = Rd, then

RT (u) ≤
1

2ν
||u||22 +

ν

2

∑
t∈{errors}

||xt||2 .

n when there is no error the gradient is zero

n zt is the gradient

n gradient of w>xt is just xt

Artem Sokolov | 15 October 2018 7 / 20

Perceptron Regret

RT (u) ≤
1

2ν
||u||22 +

ν

2

∑
t∈{errors}

||xt||2 .

n and let R = max ||xt|| (bounded features)

n use the definition of regret and the surrogate upper-bounding property∑
t

`(wt)−
∑
t

`(u) ≤ 1

2ν
||u||22 +

ν

2
R2 ·#errors

n set ν = ||u||
R
√
#errors

and rearrange

#errors−R ||u||
√

#errors−
T∑
t=1

`t(u) ≤ 0

n let’s assume realizability, ∃u∗, s.t. yt = sign((u∗)>xt),∀t

#errors−R ||u∗||
√
#errors ≤ 0

Artem Sokolov | 15 October 2018 8 / 20

Perceptron Regret

RT (u) ≤
1

2ν
||u||22 +

ν

2

∑
t∈{errors}

||xt||2 .

n and let R = max ||xt|| (bounded features)

n use the definition of regret and the surrogate upper-bounding property

#errors ≤
∑
t

`(wt)−
∑
t

`(u) ≤ 1

2ν
||u||22 +

ν

2
R2 ·#errors

n set ν = ||u||
R
√
#errors

and rearrange

#errors−R ||u||
√
#errors−

T∑
t=1

`t(u) ≤ 0

n let’s assume realizability, ∃u∗, s.t. yt = sign((u∗)>xt),∀t

#errors−R ||u∗||
√
#errors ≤ 0

Artem Sokolov | 15 October 2018 8 / 20

Perceptron Regret

RT (u) ≤
1

2ν
||u||22 +

ν

2

∑
t∈{errors}

||xt||2 .

n and let R = max ||xt|| (bounded features)

n use the definition of regret and the surrogate upper-bounding property

#errors ≤
∑
t

`(wt)−
∑
t

`(u) ≤ 1

2ν
||u||22 +

ν

2
R2 ·#errors

n set ν = ||u||
R
√
#errors

and rearrange

#errors−R ||u||
√
#errors−

T∑
t=1

`t(u) ≤ 0

n let’s assume realizability, ∃u∗, s.t. yt = sign((u∗)>xt),∀t

#errors−R ||u∗||
√
#errors ≤ 0

Artem Sokolov | 15 October 2018 8 / 20

Perceptron Regret

RT (u) ≤
1

2ν
||u||22 +

ν

2

∑
t∈{errors}

||xt||2 .

n and let R = max ||xt|| (bounded features)

n use the definition of regret and the surrogate upper-bounding property

#errors ≤
∑
t

`(wt)−
∑
t

`(u) ≤ 1

2ν
||u||22 +

ν

2
R2 ·#errors

n set ν = ||u||
R
√
#errors

and rearrange

#errors−R ||u||
√
#errors−

T∑
t=1

`t(u) ≤ 0

n let’s assume realizability, ∃u∗, s.t. yt = sign((u∗)>xt),∀t

#errors−R ||u∗||
√

#errors ≤ 0

Artem Sokolov | 15 October 2018 8 / 20

Perceptron Regret

n if we additionaly assume, that ||u∗|| ≤ 1/γ we get

#errors ≤ R2/γ2

[Novikoff, 1962]

Artem Sokolov | 15 October 2018 9 / 20

Structured Perceptron

Structured Perceptron [Collins and Roark, 2004]

1: input: training data {(xt, yt)}Nt=1

2: init: w0 = 0
3: for t = 0, . . . do
4: observe xt, yt
5: predict ŷt = argmaxy∈Y(x)w

>
t φ(xt, y)

6: if ŷt 6= yt then
7: update wt+1 = wt + φ(xt, yt)− φ(xt, ŷt)
8: end if

Thm

If ||φ(xt, yt)|| ≤ R and ∃u, ||u|| = 1 such that ∀t, y ∈ Y(xt):
u>φ(xt, yt) ≥ u>φ(xt, y) + γ, then

errors ≤ R2

γ2

Artem Sokolov | 15 October 2018 10 / 20

Structured Perceptron

Structured Perceptron [Collins and Roark, 2004]

1: input: training data {(xt, yt)}Nt=1

2: init: w0 = 0
3: for t = 0, . . . do
4: observe xt, yt
5: predict ŷt = argmaxy∈Y(x)w

>
t φ(xt, y) ← this is expensive

6: if ŷt 6= yt then
7: update wt+1 = wt + φ(xt, yt)− φ(xt, ŷt)
8: end if

Thm

If ||φ(xt, yt)|| ≤ R and ∃u, ||u|| = 1 such that ∀t, y ∈ Y(xt):
u>φ(xt, yt) ≥ u>φ(xt, y) + γ, then

errors ≤ R2

γ2

Artem Sokolov | 15 October 2018 10 / 20

Structured SVM

Let’s look again at the structured SVM model from the previous lecture

StructSVM Objective

R(w) =
1

N

N∑
i=1

(
max
µ

(w>F · µ+ l>i µ)− w>Fi · µi
)
+
λ

2
||w||2

n R(w) is convex (sum of affine & convex functions)

n denote ỹ = argmaxy(w
>φ(xt, y) + `(yt, y))

n can be minimized using batch subgradient method

∂R

∂w
=

1

N

N∑
i=1

(
φ(xt, yt)− φ(xt, ŷ)

)
+ λw

wt+1 = wt − αt
∂R

∂w

wt+1 = wt − αt(
1

N

N∑
i=1

(
φ(xi, yi)− φ(xi, ŷ)

)
+ λwt)

Artem Sokolov | 15 October 2018 11 / 20

Structured SVM

Rewriting in the same notation as perceptron:

StructSVM Objective

R(w) =
1

N

N∑
i=1

(
max
y∈Y

(w>φ(xt, y) + `(yt, y))− w>φ(xt, yt)
)
+
λ

2
||w||2

n R(w) is convex (sum of affine & convex functions)

n denote ỹ = argmaxy(w
>φ(xt, y) + `(yt, y))

n can be minimized using batch subgradient method

∂R

∂w
=

1

N

N∑
i=1

(
φ(xt, yt)− φ(xt, ŷ)

)
+ λw

wt+1 = wt − αt
∂R

∂w

wt+1 = wt − αt(
1

N

N∑
i=1

(
φ(xi, yi)− φ(xi, ŷ)

)
+ λwt)

Artem Sokolov | 15 October 2018 11 / 20

Structured SVM

Rewriting in the same notation as perceptron:

StructSVM Objective

R(w) =
1

N

N∑
i=1

(
max
y∈Y

(w>φ(xt, y) + `(yt, y))− w>φ(xt, yt)
)
+
λ

2
||w||2

n R(w) is convex (sum of affine & convex functions)

n denote ỹ = argmaxy(w
>φ(xt, y) + `(yt, y))

n can be minimized using batch subgradient method

∂R

∂w
=

1

N

N∑
i=1

(
φ(xt, yt)− φ(xt, ŷ)

)
+ λw

wt+1 = wt − αt
∂R

∂w

wt+1 = wt − αt(
1

N

N∑
i=1

(
φ(xi, yi)− φ(xi, ŷ)

)
+ λwt)

Artem Sokolov | 15 October 2018 11 / 20

Structured SVM

Rewriting in the same notation as perceptron:

StructSVM Objective

R(w) =
1

N

N∑
i=1

(
max
y∈Y

(w>φ(xt, y) + `(yt, y))− w>φ(xt, yt)
)
+
λ

2
||w||2

n R(w) is convex (sum of affine & convex functions)

n denote ỹ = argmaxy(w
>φ(xt, y) + `(yt, y)) ← this is expensive

n can be minimized using batch subgradient method

∂R

∂w
=

1

N

N∑
i=1

(
φ(xt, yt)− φ(xt, ŷ)

)
+ λw

wt+1 = wt − αt
∂R

∂w

wt+1 = wt − αt(
1

N

N∑
i=1

(
φ(xi, yi)− φ(xi, ŷ)

)
+ λwt)

Artem Sokolov | 15 October 2018 11 / 20

Loss-augemented inference

Where do we get ỹ?

ỹi = argmin
y∈Y

(w>φ(xi, y)− `(xi, y))

n this is the loss-augmented inference task

n requires a solution to a search problem in the underlying space

n has to be solved for every input instance (big data is a problem)

á solvable in O(T ·K) on chains and trees (long sequences are a problem)
á much harder or intractable for general graphs (e.g. MRFs)

Artem Sokolov | 15 October 2018 12 / 20

Problems

So we have two problems:

n when there is relation to the inference, the learning loop is expensive

á the non-probabilistic models above (Perceptron or SVM)

n or inference and learning maybe not related at all

á e.g. CRF: the learning objective knows nothing about inference
á same for many deep learning-based models

n often finding ỹ alone is not enough

á CRFs require feature expectations
á large-margin methods require n-best lists

n Learning as Search Optimization (LaSo) is tackling these problems

n get rid of the expensive argmax (global decision)
n decompose the structure building into local decisions

Artem Sokolov | 15 October 2018 13 / 20

Conversion of SP to search-based prediciton

Setup:

n input x ∈ X induces a search space Y(x)
n initial state b (also encodes x)

n set of states S
n transition function P (st+1|st, at) (here deterministic)

n for each (valid) sequence of states and actions, there is a
corresponding output y(e)

n loss `(e) = `(y∗, y(e)), where y∗ is the ground truth structure

n feature generating function φ : S → Rd, that expresses both the input
x and previous actions

n agent follows a policy π(at|st), which chooses an action at in state st

n trajectory τπ = (a1, s1, . . . , sT−1, aT , sT), where P (st+1|st, π(st))
n T is maximum lengths of τ

n goal: minπ E(x,y)∼D[`(y, τπ))]

Artem Sokolov | 15 October 2018 14 / 20

Search space

[Daume’15]

Artem Sokolov | 15 October 2018 15 / 20

Assumptions

n for any s ∈ S and y ∈ Y we can say if s can lead to y

n in this case we call it ‘y-good’, otherwise ‘y-bad’

n goal:

á first node can lead to any structure
á the queue always contains at least one y-good node

Artem Sokolov | 15 October 2018 16 / 20

LaSo

Artem Sokolov | 15 October 2018 17 / 20

Observations

n online learning algorithm

n search and learning are tightly intervened

n usually needs a size restriction on the queue

n similar to structured perceptron, except for early updates

n updates are done on errors (if the current beam cannot lead to the
right answer)

Artem Sokolov | 15 October 2018 18 / 20

Updates

wt+1 = wt +
∑
n∈sibs

φ(x, n)

|sibs|
−

∑
n∈nodes

φ(x, n)

|nodes|

Analysis:

n basically, follows the analysis for structured perceptron

n result: for separable problems with margin γ, number of errors is ≤ R2

γ2

n actually it’s not exactly true for subtle reasons, see [Xu and Fern, 2007]

Artem Sokolov | 15 October 2018 19 / 20

Limitations

n natural only for sequence labelling problems

n hard to apply for tasks with production in arbitrary order

Artem Sokolov | 15 October 2018 20 / 20

Literature

Artem Sokolov | 15 October 2018 21 / 20

Collins, M. and Roark, B. (2004).

Incremental parsing with the perceptron algorithm.
In ACL.

Novikoff, A. (1962).

On convergence proofs on perceptrons.
12:615–622.

Rosenblatt, F. (1958).

The perceptron: A probabilistic model for information storage and organization in the brain.
Psychological Review, pages 65–386.

Xu, Y. and Fern, A. (2007).

On learning linear ranking functions for beam search.
In ICML.

Artem Sokolov | 15 October 2018 21 / 20

	Literature

