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IL approach

Previously we saw that IL can be done by:

1 converting structured prediction into a search problem with specified
search space and actions;

2 defining structured features over each state to capture the
inter-dependency between output variables;

3 constructing a reference policy based on training data;

4 learning a policy that imitates the reference policy.

5 ‘imitates’ could mean:

á behavioral cloning
á cost-sensitive improvements to the policy (Searn)
á or correcting the student model with queries to the expert (DAgger)
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Alternative

[Ng&Russel’00]

[T]he entire field of reinforcement learning is founded on the
presupposition that the reward function,. . . is the most succinct, robust,
and transferable definition of the task.

In other words:

Reward Hypothesis

All goals can be described by the maximisation of expected cumulative
reward.
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Reward specification is hard

n real-world applications follow complex dynamics
(unknown or hard to specify exactly)

n often hard to specify what cost function should be minimized to
obtain the desired behavior

n so, it is hard to apply traditional RL methods to obtain a good
controller

n on the other hand, demonstrations of the desired behavior are easy

Idea of IRL

Let’s recover the reward first from demonstrations, and then use RL for
control/planning.

Implicit assumptions:

n it’s easier to learn the reward function than the policy directly

n the reward function generalizes better over states or similar tasks
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Tabular Rewards
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Preliminaries

n finite horizon MDP (S,A, P, C, ρ0, T )

á S – set of S states
á A – set of A actions
á Pt : S ×A× S → [0, 1] – transition distribution
á Ct : S ×A → [0, 1] – cost distribution
á R – unknown reward

n π∗ – expert policy we wish to mimic

n π : S ×A → [0, 1] – some policy (here, deterministic)

n γ – discount factor

n V ∗(s1) = E[R(s1) + γR(s2) + γ2R(s3) + . . . |π] – state-value function

n Q∗(s, a) = R(s) + γEs′∼Psa[V π(s′)] – action-value function

n V ∗(s) = maxπ V
π(s) – optimal state-value function

n Q∗(s, a) = maxπ Q
π(s, a) – optimal action-value function
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Bellman equation for expectations

Bellman Equations:

V (s) =E[R(s) + γ
∑
s′

Ps′π(s)(s
′)V π(s′)]

Q(s, a) =E[R(s) + γ
∑
s′

Ps′a(s
′)V π(s′)]

Optimal Policy:
π(s) = arg max

a∈A
Qπ(s, a)

IRL task

Find a set of possible reward functions R(s) such that the expert’s policy
π is the optimal policy in MDP (S,A, P, γ,R).
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Finite State Spaces

n assume that optimal π is π(s) ≡ a1, ∀s
n can rename action on every state if necessary

Thm.

Policy π(s) ≡ a1, ∀s iif

(Pa1 − Pa)(I − γPa1)−1 � R

Proof.
From Bellman equation: V π = (I − γPa1)−1R. From π optimality:

π(s) ≡ a1 ⇔∑
s′

Ps′a1(s)V π(s′) ≥
∑
s′

Ps′a(s)V
π(s′), ∀s, a⇔

Pa1(I − γPa1)−1R � Pa(I − γPa)−1R,∀a ∈ A \ a1
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Ill-posed problem

Pa1(I − γPa1)−1R � Pa(I − γPa)−1R,∀a ∈ A \ a1

n R = 0 would be a solution

n need additional restrictions on the solution

n One way to avoid ambiguity:∑
s∈S

Qπ(s, a1)− max
a∈A\a1

Qπ(s, a)→ max

á maximize the differences between the optimal quality and next best one
á similar in spirit to large-margin learning

n Another way - regularization:

−λ ||R||1

á produces sparser rewards
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Putting it all together

Linear programming task:

Can be solved with LP for small state-spaces. [Ng and Russell, 2000]
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Linear Rewards
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Infinite State Space

[Ng and Russell, 2000]

n S = Rn
n assume there is a subroutine for approximating V π

n assume there is a finite set of fixed bounded basis functions φi(s)
('features)

n we will look for rewards that are a linear function of features

R(s) = α1φ1(s) + · · ·+ αdφd(s)

V π(s) = α1V
π

1 (s) + · · ·+ αdV
π
d (s)

n where V π
i is a value for π if the reward is φi

n from the requirements of optimality of π

Es′∼Psa1 [V π(s′)] ≥ Es′∼Psa [V π(s′)]
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So far

n IRL can be understood as linear programming

n ambiguous solutions require additional assumptions

n LP can be solved for small sets of states

n for large spaces can be reduced to LP again via assuming a functional
structure on R
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Feature-matching

µ(π) = Eπ[

∞∑
t=1

γtφ(st)] ∈ Rk

V π(s) = w · µ(π)

Observation

If ||w|| ≤ 1, φ(·) ∈ [0, 1], and ||µ(π)− µ(π∗)|| ≤ ε [Ng and Russell, 2000]∣∣∣V π − V π∗
∣∣∣ =

∣∣∣w>µ(π)− w>µ(π∗)
∣∣∣

≤ ||w|| ||µ(π)− µ(π∗)||
≤ 1 · ε = ε

Meaning: if we match features, we’ll get a policy not worse than the
expert’s one.
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Feature-matching algorithm

n start with some π0

n algorithm works by iteratively improving a mixture of policies

n∑
i=1

λiµ(πi), λi ≥ 0,
∑
i

λi = 1

n (randomization takes place once before the start)

n find the best weighting of features µ s.t.

max
t,w

t

s.t. w>µ(π∗) ≥ w>µi + t, j = 0, . . . , i− 1

||w|| ≤ 1

n after w is found, run an RL control algorithm to get a corresponding
policy πi

n add the πi to the set and repeat
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Guarantees

n if the algorithm terminates with tn+1 ≤ ξ

∀w, ||w|| ≤ 1 ∃i s.t. w>µ(πi) ≥ w>µ(π∗)− ξ

n one needs O(k ln k) samples of expert’s behavior in order to get
|V − V ∗| < ε
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IRL as Games
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IRL as Games
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IRL with Game Playing

n all we required is feature expectation match

n so the previous approach can be as good as the expert

n but also as bad as the expert
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Game-theoretic approach to IRL

Assumptions: [Syed and Schapire, 2008]

n ||w|| = 1 and w � 0, w ∈ Rk

n k-dim features φ(·) ∈ [−1, 1]k

n assume that the set of all (mixed) policies is fixed: Ψ

Objective:
V ∗ = max

ψ∈Ψ
min
w∈Rk

[w>µ(ψ)− w>µ(π∗)]

If we denote the game matrix G(i, j) = µj(i)− µ∗(i), where µj is the
vector of feature expectations for deterministic policy πj then

v∗ = max
ψ∈Ψ

min
w∈Rk

[w>Gψ] = min
w∈Rk

max
ψ∈Ψ

[w>Gψ]

Two observations:

n v∗ ≥ 0 (for any w the optimal policy has a non-negative v∗:
G is defined w.r.t the the π∗)

n could be even v∗ > 0 if µ(φ) � µ(π∗), because w � 0

n ⇒ we can improve over the expert (provided a sufficiently large Ψ)
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Expert Advice for IRL

Sketch of the algorithm

1: init: w0(i) = 1
2: G(i, µ) = ((1− γ)(µ(i)− µ∗(i)) + 2)/4
3: for t = 0, . . . do
4: ρ(i) = wt(i)∑

i wt(i)

5: compute the optimal policy πt w.r.t. R(s) = w>φ(s)
6: compute feature expectations µt = µ(πt)
7: wt+1(i) = wt · elnβG(i,µt)

8: return: mixed policy ψ that assign prob. 1
T to all πt

n similar in spirit to expert advice
n adversarial losses are the game values relative to the expert
n can be solved with online convex optimization
n sample complexity O(ln k) (for feature matching it was O(k ln k))
n can also be applied to the case of no expert (set µ∗ = 0)
n potentially can produce policies that are better than the expert
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Summary so far

Several ways to find ambiguity in reward recovery:

n maximizing the difference to the next-best action-values
[Ng and Russell, 2000]

n matching feature expectations with a max-margin on rewards
[Abbeel and Ng, 2004]

n formulating an adversarial game [Syed and Schapire, 2008]

n global decisions (a departure from a local, state-action, decision
making)

á minimizing trajectory disagreement with a task-dependent margin
[Ratliff et al., 2006]

á another way: maximize the entropy of trajectory distribution
[Ziebart et al., 2008]
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Max-Margin Reward Learning
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Maximum Entropy

The structured SVM model from a previous lecture

StructSVM Objective

R(w) =
1

N

N∑
i=1

(
max
y∈Y

(w>φ(xt, y) + `(yt, y))− w>φ(xt, yt)
)

+
λ

2
||w||2

n driving the trajectories to be similar

n deviations are penalized using the task loss

n convex loss ⇒ FTL (SGD) applies

[Ratliff et al., 2006]
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Maximum Entropy
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The max-entropy approach

n again, match the feature expectations
(this way the state-values are close to the expert’s)

n maximizing the entropy of a distribution under constraints of feature
expectations = maximizing the likelihood of demonstrations under the

exponential distribution over trajectories P (τ) = ew
>∑

s∈τ φ(s)

Z(w)

w∗ = arg max
w

L(w) = arg max
w

∑
D

logP (τ |w)

n gradient has simple form

∇wL(w) =
∑
s∈τ

φ(s)− E[
∑
s∈τ

φ(s)|w]

n calculating the expectations in practice
á small finite spaces:

value-iteration (backward/outside algorithm) for chains/trees

á continuous spaces:
MC sampling
beam search
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