
Inverse Reinforcement Learning

Artem Sokolov

Institute for Computational Linguistics, Heidelberg University

15 October 2018

IL approach

Previously we saw that IL can be done by:

1 converting structured prediction into a search problem with specified
search space and actions;

2 defining structured features over each state to capture the
inter-dependency between output variables;

3 constructing a reference policy based on training data;

4 learning a policy that imitates the reference policy.

5 ‘imitates’ could mean:

á behavioral cloning
á cost-sensitive improvements to the policy (Searn)
á or correcting the student model with queries to the expert (DAgger)

Artem Sokolov | 15 October 2018 2 / 26

Alternative

[Ng&Russel’00]

[T]he entire field of reinforcement learning is founded on the
presupposition that the reward function,. . . is the most succinct, robust,
and transferable definition of the task.

In other words:

Reward Hypothesis

All goals can be described by the maximisation of expected cumulative
reward.

Artem Sokolov | 15 October 2018 3 / 26

Reward specification is hard

n real-world applications follow complex dynamics
(unknown or hard to specify exactly)

n often hard to specify what cost function should be minimized to
obtain the desired behavior

n so, it is hard to apply traditional RL methods to obtain a good
controller

n on the other hand, demonstrations of the desired behavior are easy

Idea of IRL

Let’s recover the reward first from demonstrations, and then use RL for
control/planning.

Implicit assumptions:

n it’s easier to learn the reward function than the policy directly

n the reward function generalizes better over states or similar tasks

Artem Sokolov | 15 October 2018 4 / 26

Tabular Rewards

Artem Sokolov | 15 October 2018 5 / 26

Preliminaries

n finite horizon MDP (S,A, P, C, ρ0, T)

á S – set of S states
á A – set of A actions
á Pt : S ×A× S → [0, 1] – transition distribution
á Ct : S ×A → [0, 1] – cost distribution
á R – unknown reward

n π∗ – expert policy we wish to mimic

n π : S ×A → [0, 1] – some policy (here, deterministic)

n γ – discount factor

n V ∗(s1) = E[R(s1) + γR(s2) + γ2R(s3) + . . . |π] – state-value function

n Q∗(s, a) = R(s) + γEs′∼Psa[V π(s′)] – action-value function

n V ∗(s) = maxπ V
π(s) – optimal state-value function

n Q∗(s, a) = maxπ Q
π(s, a) – optimal action-value function

Artem Sokolov | 15 October 2018 6 / 26

Bellman equation for expectations

Bellman Equations:

V (s) =E[R(s) + γ
∑
s′

Ps′π(s)(s
′)V π(s′)]

Q(s, a) =E[R(s) + γ
∑
s′

Ps′a(s
′)V π(s′)]

Optimal Policy:
π(s) = arg max

a∈A
Qπ(s, a)

IRL task

Find a set of possible reward functions R(s) such that the expert’s policy
π is the optimal policy in MDP (S,A, P, γ,R).

Artem Sokolov | 15 October 2018 7 / 26

Finite State Spaces

n assume that optimal π is π(s) ≡ a1, ∀s
n can rename action on every state if necessary

Thm.

Policy π(s) ≡ a1, ∀s iif

(Pa1 − Pa)(I − γPa1)−1 � R

Proof.
From Bellman equation: V π = (I − γPa1)−1R. From π optimality:

π(s) ≡ a1 ⇔∑
s′

Ps′a1(s)V π(s′) ≥
∑
s′

Ps′a(s)V
π(s′), ∀s, a⇔

Pa1(I − γPa1)−1R � Pa(I − γPa)−1R,∀a ∈ A \ a1

Artem Sokolov | 15 October 2018 8 / 26

Ill-posed problem

Pa1(I − γPa1)−1R � Pa(I − γPa)−1R,∀a ∈ A \ a1

n R = 0 would be a solution

n need additional restrictions on the solution

n One way to avoid ambiguity:∑
s∈S

Qπ(s, a1)− max
a∈A\a1

Qπ(s, a)→ max

á maximize the differences between the optimal quality and next best one
á similar in spirit to large-margin learning

n Another way - regularization:

−λ ||R||1

á produces sparser rewards

Artem Sokolov | 15 October 2018 9 / 26

Putting it all together

Linear programming task:

Can be solved with LP for small state-spaces. [Ng and Russell, 2000]

Artem Sokolov | 15 October 2018 10 / 26

Linear Rewards

Artem Sokolov | 15 October 2018 11 / 26

Infinite State Space

[Ng and Russell, 2000]

n S = Rn
n assume there is a subroutine for approximating V π

n assume there is a finite set of fixed bounded basis functions φi(s)
('features)

n we will look for rewards that are a linear function of features

R(s) = α1φ1(s) + · · ·+ αdφd(s)

V π(s) = α1V
π

1 (s) + · · ·+ αdV
π
d (s)

n where V π
i is a value for π if the reward is φi

n from the requirements of optimality of π

Es′∼Psa1 [V π(s′)] ≥ Es′∼Psa [V π(s′)]

Artem Sokolov | 15 October 2018 12 / 26

So far

n IRL can be understood as linear programming

n ambiguous solutions require additional assumptions

n LP can be solved for small sets of states

n for large spaces can be reduced to LP again via assuming a functional
structure on R

Artem Sokolov | 15 October 2018 13 / 26

Feature-matching

µ(π) = Eπ[

∞∑
t=1

γtφ(st)] ∈ Rk

V π(s) = w · µ(π)

Observation

If ||w|| ≤ 1, φ(·) ∈ [0, 1], and ||µ(π)− µ(π∗)|| ≤ ε [Ng and Russell, 2000]∣∣∣V π − V π∗
∣∣∣ =

∣∣∣w>µ(π)− w>µ(π∗)
∣∣∣

≤ ||w|| ||µ(π)− µ(π∗)||
≤ 1 · ε = ε

Meaning: if we match features, we’ll get a policy not worse than the
expert’s one.

Artem Sokolov | 15 October 2018 14 / 26

Feature-matching algorithm

n start with some π0

n algorithm works by iteratively improving a mixture of policies

n∑
i=1

λiµ(πi), λi ≥ 0,
∑
i

λi = 1

n (randomization takes place once before the start)

n find the best weighting of features µ s.t.

max
t,w

t

s.t. w>µ(π∗) ≥ w>µi + t, j = 0, . . . , i− 1

||w|| ≤ 1

n after w is found, run an RL control algorithm to get a corresponding
policy πi

n add the πi to the set and repeat

Artem Sokolov | 15 October 2018 15 / 26

Guarantees

n if the algorithm terminates with tn+1 ≤ ξ

∀w, ||w|| ≤ 1 ∃i s.t. w>µ(πi) ≥ w>µ(π∗)− ξ

n one needs O(k ln k) samples of expert’s behavior in order to get
|V − V ∗| < ε

Artem Sokolov | 15 October 2018 16 / 26

IRL as Games

Artem Sokolov | 15 October 2018 17 / 26

IRL as Games

Artem Sokolov | 15 October 2018 18 / 26

IRL with Game Playing

n all we required is feature expectation match

n so the previous approach can be as good as the expert

n but also as bad as the expert

Artem Sokolov | 15 October 2018 19 / 26

Game-theoretic approach to IRL

Assumptions: [Syed and Schapire, 2008]

n ||w|| = 1 and w � 0, w ∈ Rk

n k-dim features φ(·) ∈ [−1, 1]k

n assume that the set of all (mixed) policies is fixed: Ψ

Objective:
V ∗ = max

ψ∈Ψ
min
w∈Rk

[w>µ(ψ)− w>µ(π∗)]

If we denote the game matrix G(i, j) = µj(i)− µ∗(i), where µj is the
vector of feature expectations for deterministic policy πj then

v∗ = max
ψ∈Ψ

min
w∈Rk

[w>Gψ] = min
w∈Rk

max
ψ∈Ψ

[w>Gψ]

Two observations:

n v∗ ≥ 0 (for any w the optimal policy has a non-negative v∗:
G is defined w.r.t the the π∗)

n could be even v∗ > 0 if µ(φ) � µ(π∗), because w � 0

n ⇒ we can improve over the expert (provided a sufficiently large Ψ)

Artem Sokolov | 15 October 2018 20 / 26

Expert Advice for IRL

Sketch of the algorithm

1: init: w0(i) = 1
2: G(i, µ) = ((1− γ)(µ(i)− µ∗(i)) + 2)/4
3: for t = 0, . . . do
4: ρ(i) = wt(i)∑

i wt(i)

5: compute the optimal policy πt w.r.t. R(s) = w>φ(s)
6: compute feature expectations µt = µ(πt)
7: wt+1(i) = wt · elnβG(i,µt)

8: return: mixed policy ψ that assign prob. 1
T to all πt

n similar in spirit to expert advice
n adversarial losses are the game values relative to the expert
n can be solved with online convex optimization
n sample complexity O(ln k) (for feature matching it was O(k ln k))
n can also be applied to the case of no expert (set µ∗ = 0)
n potentially can produce policies that are better than the expert

Artem Sokolov | 15 October 2018 21 / 26

Summary so far

Several ways to find ambiguity in reward recovery:

n maximizing the difference to the next-best action-values
[Ng and Russell, 2000]

n matching feature expectations with a max-margin on rewards
[Abbeel and Ng, 2004]

n formulating an adversarial game [Syed and Schapire, 2008]

n global decisions (a departure from a local, state-action, decision
making)

á minimizing trajectory disagreement with a task-dependent margin
[Ratliff et al., 2006]

á another way: maximize the entropy of trajectory distribution
[Ziebart et al., 2008]

Artem Sokolov | 15 October 2018 22 / 26

Max-Margin Reward Learning

Artem Sokolov | 15 October 2018 23 / 26

Maximum Entropy

The structured SVM model from a previous lecture

StructSVM Objective

R(w) =
1

N

N∑
i=1

(
max
y∈Y

(w>φ(xt, y) + `(yt, y))− w>φ(xt, yt)
)

+
λ

2
||w||2

n driving the trajectories to be similar

n deviations are penalized using the task loss

n convex loss ⇒ FTL (SGD) applies

[Ratliff et al., 2006]

Artem Sokolov | 15 October 2018 24 / 26

Maximum Entropy

Artem Sokolov | 15 October 2018 25 / 26

The max-entropy approach

n again, match the feature expectations
(this way the state-values are close to the expert’s)

n maximizing the entropy of a distribution under constraints of feature
expectations = maximizing the likelihood of demonstrations under the

exponential distribution over trajectories P (τ) = ew
>∑

s∈τ φ(s)

Z(w)

w∗ = arg max
w

L(w) = arg max
w

∑
D

logP (τ |w)

n gradient has simple form

∇wL(w) =
∑
s∈τ

φ(s)− E[
∑
s∈τ

φ(s)|w]

n calculating the expectations in practice
á small finite spaces:

value-iteration (backward/outside algorithm) for chains/trees

á continuous spaces:
MC sampling
beam search

Artem Sokolov | 15 October 2018 26 / 26

Abbeel, P. and Ng, A. Y. (2004).

Apprenticeship learning via inverse reinforcement learning.
In ICML.

Ng, A. Y. and Russell, S. J. (2000).

Algorithms for inverse reinforcement learning.
In ICML, pages 663–670.

Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. (2006).

Maximum margin planning.
In ICML.

Syed, U. and Schapire, R. E. (2008).

A game-theoretic approach to apprenticeship learning.
In NIPS.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008).

Maximum entropy inverse reinforcement learning.
In AAAI.

Artem Sokolov | 15 October 2018 26 / 26

	IRL as Games

