
ar
X

iv
:1

40
6.

59
79

v1
 [

cs
.L

G
]

23
 J

un
 2

01
4

Reinforcement and Imitation Learning
via Interactive No-Regret Learning

Stéphane Ross J. Andrew Bagnell
stephaneross@cmu.edu dbagnell@ri.cmu.edu

The Robotics Institute
Carnegie Mellon University,

Pittsburgh, PA, USA

Abstract

Recent work has demonstrated that problems– particularly imitation learning
and structured prediction– where a learner’s predictions influence the input-
distribution it is tested on can be naturally addressed by aninteractive approach
and analyzed using no-regret online learning. These approaches to imitation learn-
ing, however, neither require nor benefit from information about the cost of ac-
tions. We extend existing results in two directions: first, we develop an interactive
imitation learning approach that leverages cost information; second, we extend the
technique to address reinforcement learning. The results provide theoretical sup-
port to the commonly observed successes of online approximate policy iteration.
Our approach suggests a broad new family of algorithms and provides a unifying
view of existing techniques for imitation and reinforcement learning.

1 Introduction

Imitation learning has become increasingly important in fields– notably robotics and game AI–
where it is easier for an expert to demonstrate a behavior than to translate that behavior to code.
[1] Perhaps surprisingly, it has also become central in developing predictors for complex output
spaces, e.g. sets and lists [22], parse trees [10], image parsing [20, 25] and natural language
understanding[12]. In these domains, a policy is trained toimitate an oracle on ground-truthed
data. Iterative training procedures (e.g. DAGGER, SEARN, SMILE[24, 10, 21]) that interleave
policy execution and learning have demonstrated impressive practical performance and strong theo-
retical guarantees that were not possible with batch supervised learning. Most of these approaches to
imitation learning, however, neither require nor benefit from information about the cost of actions;
rather they leverage only information provided about “correct” actions by the demonstrator.

While iterative training corrects the compounding of erroreffect one sees in control and decision
making applications, it does not address all issues that arise. Consider, for instance, a problem of
learning to drive near the edge of a cliff: methods like DAGGER consider all errors from agreeing
with the expert driver equally. If driving immediately off the cliff makes the expert easy to imitate–
because the expert simply chooses the go straight from then on– these approaches may learn that
very poor policy. More generally, a method that only reasonsabout agreement with a demonstrator
instead of the long term costs of various errors may poorly trade-off inevitable mistakes. Even a
crude estimate of the cost-to-go (e.g. it’s very expensive to drive off the cliff)– may improve a
learned policy’s performance at the user’s intended task.

SEARN, by contrast,doesreason about cost-to-go, but uses rollouts from the currentpolicy which
can be impractical for imitation learning. SEARN additionally requires the use of stochastic policies.

We present a simple, general approach we term AGGREVATE (Aggregate Values to Imitate) that
leverages cost-to-go information in addition to correct demonstration, and establish that previous

1Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

http://arxiv.org/abs/1406.5979v1
artem
Highlight

artem
Underline

artem
Underline

artem
Highlight

artem
Highlight

artem
Highlight

artem
Highlight

methods can be understood as special cases of a more general no-regret strategy. The approach
provides much stronger guarantees than existing methods byproviding a statisticalregret rather
then statisticalerror reduction. [8]

This general strategy of leveraging cost-sensitive no-regret learners can be extended to Approximate
Policy Iteration (API) variants for reinforcement learning. We show that any no-regret learning al-
gorithm can be used to develop stable API algorithms with guarantees as strong as any available
in the literature. We denote the resulting algorithm NRPI. The results provide theoretical support
to the commonly observed success of online policy iteration[29] despite a paucity of formal re-
sults: such online algorithms often enjoy no-regret guarantees or share similar stability properties.
Our approach suggests a broad new family of algorithms and provides a unifying view of existing
techniques for both imitation and reinforcement learning.

2 Imitation Learning with Cost-To-Go

2.1 Preliminaries

We consider in this work finite horizon1 control problems in the form of a Markov Decision Process
with statess and actionsa. We assume the existence of a cost-functionC(s, a), bounded between
0 and1, that we are attempting to optimize over a horizon ofT decisions. We denote a class of
policiesΠ mapping states2 to actions.

We useQπ
t (s, a) to denote the expected future cost-to-go of executing actiona in states, followed by

executing policyπ for t− 1 steps. We denote bydπ = 1
T

∑T

t=1 d
t
π the time-averaged distribution

over states induced by executing policyπ in the MDP (dtπ is the distribution of states at timet
induced by executing policyπ). The overall performance metric of total cost of executingπ for T -
steps is denotedJ(π) =

∑T

t=1 Es∼dt
π
[C(s, π(s))] We assume system dynamics are either unknown

or complex enough that we typically have only sample access to them. The resulting setting for
learning policies by demonstration– or learning policies by approximate policy iteration– arenot
typical i.i.d. supervised learning problems as the learned policy strongly influences its own test
distribution rendering optimization difficult.

2.2 Algorithm: A GGREVATE

We describe here a simple extension of the DAGGERtechnique of [24] that learns to choose actions
to minimize the cost-to-go of the expert rather than the zero-one classification loss of mimicking its
actions. In simplest form, on the first iteration AGGREVATE collects data by simply observing the
expert perform the task, and in each trajectory, at a uniformly random timet, explores an actiona
in states, and observes the cost-to-goQ of the expert after performing this action. (See Algorithm
1 below.)3

Each of these steps generates a cost-weighted training example (s, t, a,Q) [19] and AGGREVATE
trains a policŷπ2 to minimize the expected cost-to-go on this dataset. At eachfollowing iterationn,
AGGREVATE collects data through interaction with the learner as follows: for each trajectory, begin
by using the current learner’s policŷπn to perform the task, interrupt at a uniformly random timet,
explore an actiona in the current states, after which control is provided back to the expert to con-
tinue up to time-horizonT . This results in new examples of the cost-to-go of the expert(s, t, a,Q),
under the distribution of states visited by the current policy π̂n. This new data is aggregated with
all previous data to train the next policŷπn+1; more generally, this data can be used by a no-regret
online learner to update the policy and obtainπ̂n+1. This is iterated for some number of iterations
N and the best policy found is returned. We optionally allow the algorithm to continue executing
the expert’s actions with small probabilityβn, instead of always executinĝπn, up to the random
time t where an action is explored and control is shifted to the expert. The general AGGREVATE is
detailed in Algorithm 1.

1All our results can be easily extended to the infinite discounted horizon setting.
2More generally features of the state (and potentially time)– our derivations do not require full observability

and hence carry over to featurized state of POMDPs.
3This cost-to-go may be estimated by rollout, or provided by the expert.

2

Otherwise
identical
to DAgger

Main
difference

Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

artem
Highlight

artem
Highlight

artem
Underline

artem
Highlight

artem
Arrow

Observing the expert’s cost-to-go indicates how much cost we might expect to incur in the future if
we take an action now and then can behave as well (or nearly so)as the expert henceforth. Under
the assumption that the expert is a good policy, and that the policy classΠ contains similarly good
policies, this provides a rough estimate of what good policies inΠ will be able to achieve at future
steps. By minimizing this cost-to-go at each step, we will choose policies that lead to situations
where incurring low future cost-to-go is possible. For instance, we will be able to observe that if
some actions put the expert in situations where falling off acliff or crash is inevitable then these
actions must be avoided at all costs in favor of those where the expert is still able to recover.

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

InitializeD ← ∅, π̂1 to any policy inΠ.
for i = 1 to N do

Let πi = βiπ
∗ + (1− βi)π̂i #Optionally mix in expert’s own behavior.

Collectm data points as follows:
for j = 1 to m do

Sample uniformlyt ∈ {1, 2, . . . , T }.
Start new trajectory in some initial state drawn from initial state distribution
Execute current policyπi up to timet− 1.
Execute some exploration actionat in current statest at timet
Execute expert from timet+ 1 to T , and observe estimate of cost-to-goQ̂ starting at timet

end for
Get datasetDi = {(s, t, a, Q̂)} of states, times, actions, with expert’s cost-to-go.
Aggregate datasets:D ← D

⋃

Di.
Train cost-sensitive classifier̂πi+1 onD

(Alternately: use any online learner on the data-setsDi in sequence to get̂πi+1)
end for
Return bestπ̂i on validation.

In AGGREVATE the problem of choosing the sequence of policiesπ̂1, π̂2, . . . , π̂N over iterations is
viewed as an online cost-sensitive classification problem.Our analysis below demonstrates that any
no-regret algorithm on such problems can be used to update the sequence of policies and provide
strong guarantees. To achieve this, when the policy classΠ is finite, randomized online learning
algorithms likeweighted majority[9] may be used. When dealing with infinite policy classes (e.g.
all linear classifiers), no-regret online cost-sensitive classification is not always computationally
tractable. Instead, typically reductions of cost-sensitive classification to regression or ranking prob-
lems as well as convex upper bounds [8] on the classification loss lead to efficient no-regret online
learning algorithms (e.g. gradient descent). The algorithm description suggests as the “default”
learning strategy a(Regularized)-Follow-The-Leaderonline learner: it attempts to learn a good clas-
sifier forall previous data. This strategy for certain loss function (notably strongly convex surrogates
to the cost-sensitive classification loss) [9] and any sufficiently stable batch learner [23, 27] ensures
the no-regret property. It also highlights why the approachis likely to be particularly stable across
rounds of interaction.

2.3 Training the Policy to Minimize Cost-to-Go

In standard “full-information” cost-sensitive classification, a cost vector is provided for each data-
point in the training data that indicates the cost of predicting each class or label for this input.
In our setting, that implies for each sampled state we recieve a cost-to-go estimate/rollout for all
actions. Training the policy at each iteration then simply corresponds to solving a cost-sensitive
classification problem. That is, if we collect a dataset ofm samples,{(si, ti, Q̂i)}

m
i=1, whereQ̂i

is a cost vector of cost-to-go estimates for each action in state si at time ti, then we solve the
cost-sensitive classification problem:argminπ∈Π

∑m

i=1 Q̂i(π(si, ti)). Reductions of cost-sensitive
classification to convex optimization problems can be used like weighted multi-class Support Vector
Machines or ranking[8], to obtain problems that can be optimized efficiently while still guaranteeing
good performance at this cost-sensitive classification task.

For instance, a simple approach is to transform this into anargmax regression prob-
lem: i.e., πn(s, t) = argmina∈A Qn(s, t, a), for Qn the learned regressor at itera-

3

?

Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

artem
Highlight

artem
Highlight

artem
Underline

artem
Highlight

artem
Highlight

artem
Highlight

artem
Highlight

artem
Highlight

artem
Underline

artem
Highlight

artem
Underline

artem
Underline

tion n that minimizes the squared loss at predicting the cost-to-go estimates: Qn =

argminQ∈Q

∑

(si,ti,ai,Q̂i)∈D
(Q(si, ti, ai)−Q̂i)

2, whereD is the dataset of all collected cost-to-go
estimates so far, andQ the class of regressors considered (e.g. linear regressors). This approach also
naturally handles the more common situation in imitation learning where we only havepartial infor-
mationfor a particular action chosen at a state. Alternate approaches include importance weighting
techniques to transform the problem into a standard cost-sensitive classification problem [14, 11]
and other online learning approaches meant to handle “bandit” feedback.

Local Exploration in Partial Information Setting In the partial informationsetting we must
also select which action to explore for an estimate of cost-to-go. The uniform strategy is simple
and effective but inefficient. The problem may be cast as acontextual bandit problem[2, 6] where
features of the current state define the context of exploration. These algorithms, by choosing more
carefully than at random, may be significantly more sample efficient. In our setting, in contrast with
traditional bandit settings, we care only about the final learned policy and not the cost of explored
actions along the way. Recent work [3] may be more appropriate for improving performance in this
case. Many contextual bandit algorithms require a finite setof policiesΠ [2] or full realizability
[18], and this is an open and very active area of research thatcould have many applications here.

2.4 Analysis

We analyze AGGREVATE, showing that the no-regret property of online learning procedures can
be leveraged in this interactive learning procedure to obtain strong performance guarantees. Our
analysis seeks to answer the following question: how well does the learned policy perform if we
can repeatedly identify good policies that incur cost-sensitive classification loss competitive with
the expert demonstrator on the aggregate dataset we collectduring training?

Our analysis of AGGREVATE relies on connecting the iterative learning procedure withthe (adver-
sarial) online learning problem [9] and using the no-regretproperty of the underlying cost-sensitive
classification algorithm choosing policieŝπ1:N . Here, the online learning problem is defined as
follows: at each iterationi, the learner chooses a policŷπi ∈ Π that incurs lossℓi chosen by the
adversary, and defined asℓi(π) = Et∼U(1:T),s∼dt

πi
[Q∗

T−t+1(s, π)] for U(1 : T) the uniform distri-
bution on the set{1, 2, . . . , T }, πi = βiπ

∗ + (1 − βi)π̂i andQ∗ the cost-to-go of the expert. We
can see that AGGREVATE at iterationi is exactly collecting a datasetDi, that provides an empirical
estimate of this lossℓi.

Let ǫclass= minπ∈Π
1
N

∑N

i=1 Et∼U(1:T),s∼dt
πi
[Q∗

T−t+1(s, a)−mina Q
∗
T−t+1(s, a)] denote the min-

imum expected cost-sensitive classification regret achieved by policies in the classΠ on all the data
over theN iterations of training. Denote the online learning averageregret of the sequence of
policies chosen by AGGREVATE, ǫregret=

1
N
[
∑N

i=1 ℓi(π̂i)−minπ∈Π

∑N

i=1 ℓi(π)].

We provide guarantees for the “uniform mixture” policyπ, that at the beginning of any trajectory
samples a policyπ uniformly randomly among the policies{π̂i}Ni=1 and executes this policyπ
for the entire trajectory. This immediately implies good performance for the best policŷπ in the
sequencêπ1:N , i.e. J(π̂) = mini∈1:N J(π̂i) ≤ J(π), and the last policŷπN when the distribution
of visited states converges over the iterations of learning.

Assume the cost-to-go of the expertQ∗ is non-negative and bounded byQ∗
max, andβi ≤ (1−α)i−1

for all i for some constantα 4. Then the following holds in the infinite sample case (i.e. if at each
iteration of AGGREVATE we collected an arbitrarily large amount of data by running the current
policy):

Theorem 2.1. AfterN iterations of AGGREVATE:

J(π̂) ≤ J(π) ≤ J(π∗) + T [ǫclass+ ǫregret] +O

(

QmaxT logT

αN

)

.

Thus if a no-regret online algorithm is used to pick the sequence of policieŝπ1:N , then as the number
of iterationsN →∞:

lim
N→∞

J(π) ≤ J(π∗) + T ǫclass

4The default parameter-free version of AGGREVATE corresponds toα = 1, using00 = 1.

4

requires
expert
restarts

similar
to DAgger

Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

artem
Highlight

artem
Highlight

artem
Highlight

artem
Underline

artem
Highlight

artem
Highlight

artem
Underline

artem
Underline

artem
Underline

artem
Underline

The proof of this result is presented in the Appendix. This theorem indicates that after sufficient
iterations, AGGREVATE will find policies that perform the task nearly as well as the demonstrator
if there are policies inΠ that have small cost-sensitive classification regret on theaggregate dataset
(i.e. policies with cost-sensitive classification loss not much larger than that of the bayes-optimal
one on this dataset). Note that non-interactive supervisedlearning methods are unable to achieve a
similar bound which degrades only linearly withT and the cost-sensitive classification regret. [24].

The analysis above abstracts away the issue of action exploration and learning from finite data. These
issues come into play in a sample complexity analysis. Such analyses depend on many factors such
as the particular reduction and exploration method. When reductions of cost-sensitive classification
to simpler regression/ranking/classification [5] problems are used, our results can directly relate the
task performance of the learned policy to the performance onthe simpler problem. To illustrate
how such results may be derived, we provide a result for the special case where actions are explored
uniformly at random and the reduction of cost-sensitive classification to regression is used.

In particular, ifǫ̂regretdenotes the empirical average online learning regret on thetraining regression
examples collected over the iterations, andǫ̂classdenotes the empirical regression regret of the best
regressor in the class on the aggregate dataset of regression examples when compared to the bayes-
optimal regressor, we have that:

Theorem 2.2.N iterations ofAGGREVATE, collectingm regression examples(s, a, t, Q) per iter-
ation, guarantees that with probability at least 1-δ:

J(π̂) ≤ J(π) ≤ J(π∗) + 2
√

|A|T

√

ǫ̂class+ ǫ̂regret+O(
√

log(1/δ)/Nm) +O

(

QmaxT logT

αN

)

.

Thus if a no-regret online algorithm is used to pick the sequence of regressorŝQ1:N , then as the
number of iterationsN →∞, with probability1:

lim
N→∞

J(π) ≤ J(π∗) + 2
√

|A|T
√

ǫ̂class

The detailed proof is presented in the Appendix. This resultdemonstrates how the task perfor-
mance of the learned policies may be related all the way down to the regret on the regression loss
at predicting the observed cost-to-go during training. In particular, it relates task performance to the
square root of the online learning regret, on this regression loss, and the regression regret of the best
regressor in the class to the bayes-optimal regressor on this training data.5

2.5 Discussion

AGGREVATE as a reduction: AGGREVATE can be interpreted as aregret reduction of imitation
learning to no-regret online learning.6 We present a statistical regret reduction, as here, performance
is related directly to the online, cost-sensitive classification regret on the aggregate dataset. By
minimizing cost-to-go, we obtain regret reduction, ratherthan a weaker error reduction as in [24]
when simply minimizing immediate classification loss.

Limitations: As just mentioned, in cases where the expert is much better than any policy inΠ,
the expert’s cost-to-go may be a very optimistic estimate ofthe true future cost after taking a certain
action. The approach may fail to learn policies that performwell, even if policies that can perform
the task (albeit not as well as the expert) exist in the policyclass. Consider again the driving scenario,
where one may choose one of two roads to reach a goal: a shorterroute that involves driving on a
very narrow road next to cliffs on either side, and a longer route which is safer and risks no cliff. If
in this example, the expert takes the short route faster and no policy in the classΠ can drive without
falling on the narrow road, but there exists policies that can take the longer road and safely reach the

5The appearance of the square root is particular to the use of this reduction to squared-loss regression
and implies relative slow convergence to good performance.Other cost-sensitive classification reductions and
regression losses (e.g. [17, 7]) do not introduce this square root and still allow efficient learning.

6Unfortunatelyregrethere has two different meanings common in the literature: the first is in the statistical
sense of doing nearly as well as the Bayes-optimal predictor. [8] The second use is in the online, adversarial,
no-regret sense of competing against any hypothesis on a particular sequence without statistical assumptions.
[9]

5

behavioural
cloning

Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

artem
Highlight

artem
Highlight

artem
Underline

artem
Highlight

goal, this algorithm would fail to find these policies. The reason for this is that, as we minimize cost-
to-go of the expert, we would always favor policies that heads toward the shorter narrow road. But
once we are on that road, inevitably at some point we will encounter a scenario where no policies
in the class can predict the same low cost-to-go actions as the expert (i.e. makingǫ large in the
previous guarantee). The end result is that we may learn a policy that takes the short narrow road
and eventually falls off the cliff, in these pathological scenarios.

Comparison to SEARN: AGGREVATE shares deep commonalities with SEARN but by provid-
ing a reduction to online learning allows much more general schemes to update the policy at each
iteration that may be more convenient or efficient rather than the particular stochastic mixing update
of SEARN. These include deterministic ones that provide upper convex bounds on performance. In
fact, SEARN may be thought as a particular case of AGGREVATE, where the policy class is the set
of distributions over policies, and the online coordinate descent algorithm (Frank-Wolfe) of [13] is
used to update the distribution over policies at each iteration. Both collect data in a similar fashion
at each iteration by executing the current policy up to a random time and then collecting cost-to-go
estimates for explored actions in the current state. A distinction is that SEARN collects cost-to-go
of thecurrent policy after execution of the random action, instead of the cost-to-go of the expert.
Interestingly, SEARN is usually used in practice with the approximation of collecting cost-to-go of
the expert [10], rather than the current policy. Our approach can be seen as providing a theoretical
justification for what was previously a heuristic.

3 Reinforcement Learning via No-Regret Policy Iteration

A relatively simple modification of the above approach enables us to develop a family of sample-
based approximate policy iteration algorithms. Conceptually, we make a swap: from executing
the current policy and then switching to the expert to observe a cost-to-go; to, executing the expert
policy while collecting cost-to-go of the learner’s current policy. We denote this family of algorithms
No-Regret Policy IterationNRPI and detail and analyze it below.

This alternate has similar guarantees to the previous version, but may be preferred when no policy
in the class is as good as the expert or when only a distribution of “important states” is available.
In addition it can be seen to address a general model-free reinforcement learning setting where
we simply have a state exploration distribution we can sample from and from which we collect
examples of the current policy’s cost-to-go. This is similar in spirit to how Policy Search by Dynamic
Programming (PSDP) [4, 28] proceeds, and in some sense, the algorithm we present here provides a
generalization of PSDP. However, by learning a stationary policy instead of a non-stationary policy,
NRPI can generalize across time-steps and potentially leadto more efficient learning and practical
implementation in problems whereT is large or infinite.

Following [4, 15] we assume access to a state exploration distributionνt for all timest in 1, 2, . . . , T .
As will be justified by our theoretical analysis, these stateexploration distributions should ideally
be (close to) that of a (near-)optimal policy in the classΠ. In the context where an expert is present,
then this may simply be the distribution of states induced bythe expert policy, i.e.νt = dtπ∗ . In
general, this may be the state distributions induced by somebase policy we want to improve upon,
or be determined from prior knowledge of the task.

Given the exploration distributionsν1:T , NRPI proceeds as follows. At each iterationn, it collects
cost-to-go examples by sampling uniformly a timet ∈ {1, 2, . . . , T }, sampling a statest from νt,
and then executes an exploration actiona in st followed by execution of the current learner’s policy
πn for time t+ 1 to T , to obtain a cost-to-go estimate(s, a, t, Q) of executinga followed byπn in
states at timet. 7 Multiple cost-to-go estimates are collected this way and added in datasetDn.
After enough data has been collected, we update the learner’s policy, to obtainπn+1, using any no-
regret online learning procedure, on the loss defined by the cost-sensitive classification examples in
the new dataDn. This is iterated for a large number of iterationsN . Initially, we may start withπ1

to be any guess of a good policy from the classΠ, or use the expert’s cost-to-go at the first iteration,
to avoid having to specify an initial policy. This algorithmis detailed in Algorithm 2.

7In the particular case whereνt = dtπ of an exploration policyπ, then to samplest, we would simply
executeπ from time1 to t− 1, starting from the initial state distribution.

6

finite set?

Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

artem
Highlight

artem
Underline

artem
Highlight

artem
Highlight

Algorithm 2 NRPI Algorithm

InitializeD ← ∅, π̂1 to any policy inΠ.
for i = 1 to N do

Collectm data points as follows:
for j = 1 to m do

Sample uniformlyt ∈ {1, 2, . . . , T }.
Sample statest from exploration distributionνt.
Execute some exploration actionat in current statest at timet
Executêπi from timet+ 1 to T , and observe estimate of cost-to-goQ̂ starting at timet

end for
Get datasetDi = {(s, a, t, Q̂)} of states, actions, time, with current policy’s cost-to-go.
Aggregate datasets:D ← D

⋃

Di.
Train cost-sensitive classifierπ̂i+1 onD (Alternately: use any online learner on the data-sets
Di in sequence to get̂πi+1)

end for
Return bestπ̂i on validation.

3.1 Analysis

Consider the loss functionLn given to the online learning algorithm within NRPI at iteration n.
Assuming infinite data, it assigns the following loss to eachpolicy π ∈ Π:

Ln(π) = Et∼U(1:T),s∼νt [Q
π̂n

T−t+1(s, π)].

This loss represents the expected cost-to-go of executingπ immediately for one step followed by
current policyπ̂n, under the exploration distributionsν1:T .

This sequence of losses over the iterations of training corresponds to an online cost-sensitive classi-
fication problem, as in the previous AGGREVATE algorithm. Letǫregret be the average regret of the
online learner on this online cost-sensitive classification problem afterN iterations of NRPI:

ǫregret=
1

N

N
∑

i=1

Li(πi)−min
π∈Π

1

N

N
∑

i=1

Li(π).

For any policyπ ∈ Π, denote the averageL1 or variational distance betweenνt anddtπ over time
stepst asD(ν, π) = 1

T

∑T

t=1 ||νt − dtπ||1. Note that ifνt = dtπ for all t, thenD(ν, π) = 0.

Denote byQmax a bound on cost-to-go (which is always≤ TCmax). Denotêπ the best policy found
by NRPI over iterations, andπ the uniform mixture policy overπ1:N defined as before. Then NRPI
achieves the following guarantee:

Theorem 3.1. For any policyπ′ ∈ Π:

J(π̂) ≤ J(π) ≤ J(π′) + T ǫregret+ TQmaxD(ν, π′)

If a no-regret online cost-sensitive classification algorithm is used: limN→∞ J(π) ≤ J(π′) +
TQmaxD(ν, π′)

NRPI thus finds policies that are as good as any other policyπ′ ∈ Π whose state distributiondtπ′

is close toνt on average over timet. Importantly, if ν1:T corresponds to the state distribution of
an optimal policy in classΠ, then this theorem guarantees that NRPI will find an optimal policy
(within the classΠ) in the limit.

This theorem provides a similar performance guarantee to the results for PSDP presented in [4].
NRPI has the advantage of learning a single policy for test execution instead one at each time allow-
ing for improved generalization and more efficient learning. NRPI imposes stronger requirements:
it uses a no-regret online cost-sensitive classification procedure instead of simply a cost-sensitive
supervised learner. For finite policy classesΠ, or using reductions of cost-sensitive classification
as mentioned previously, we may still obtain convex online learning problems for which efficient
no-regret strategies exist or use the simple aggregation ofdata-sets with any sufficiently stable batch
learner. [23, 27]

7Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

The result presented here can be interpreted as a reduction of model-free reinforcement learning to
no-regret online learning. It is a regret reduction, as performance is related directly to the online re-
gret at the cost-sensitive classification task. However performance is strongly limited by the quality
of the exploration distribution.8

4 Discussion and Future Work

Contribution. The work here provides theoretical support for two seemingly unrelated empirical
observations. First, and perhaps most crucially, much anecdotal evidence suggests that approximate
policy iteration– and especially online variants [29]– is more effective and stable than theory and
counter-examples to convergence might suggest. This criesout for some explanation; we contend
that it can be understood as such online algorithms often enjoy no-regret guarantees or share similar
stability properties than can ensure relative performanceguarantees.

Similarly, practical implementation of imitation learning-for-structured-prediction methods like
SEARN rely on what was previously considered a heuristic of using the expert demonstrator as an es-
timate of the future cost-to-go. The resulting good performance can be understood as a consequence
of this heuristic being a special case of AGGREVATE where the online Frank-Wolfe algorithm [13]
is used to choose policies. Moreover, stochastic mixing is but one of several approaches to achieving
good online performance and deterministic variants have proven more effective in practice. [25]

The resulting algorithms make suggestions for batch approaches as well: they suggest, for instance,
that approximate policy iteration procedures (as well as imitation learning ones) are likely to be
more stable and effective if they train not only on the cost-to-go of the most recent policy but also on
previous policies. At first this may seem counter-intuitive, however, it prevents the oscillations and
divergences that at times plague batch approximate dynamicprogramming algorithms by ensuring
that each learned policy is good across many states.

From a broad point of view, this work forms a piece of a growingpicture that online algorithms and
no-regret analyses– in contrast with the traditionali.i.d. or batch analysis– are important for under-
standing learning with application to control and decisionmaking [26, 22, 25, 24]. At first glance,
online learning seems concerned with a very different adversarial setting. By understanding these
methods as attempting to ensure both good performance and robust, stable learning across iterations
[23, 27], they become a natural tool for understanding the dynamics of interleaving learning and
execution when our primary concern is generalization performance.

Limitations. It is important to note that any method relying on cost-to-goestimates can be im-
practical as collecting each estimate for a single state-action pair may involve executing an entire
trajectory. In many settings, minimizing imitation loss with DAGGER [24], is more practical as we
can observe the action chosen by the expert ineveryvisited state along a trajectory and thus collect
T data points per trajectory instead of single one. This is less crucial in structured prediction settings
where the cost-to-go of the expert may often be quickly computed which has lead to the success of
the heuristic analyzed here. A potential combination of thetwo approaches, where first simple im-
itation loss minimization provides a reasonable policy, and then this is refined using AGGREVATE
(e.g. through additional gradient descent steps) thus using fewer (expensive) iterations.

In the reinforcement learning setting, the bound provided is as strong as that provided by [4, 16] for
an arbitrary policy class. However, asTQmax is generallyO(T 2), this only provides meaningful
guarantees whendtπ′ is very close toνt (on average over timet). Previous methods like [4, 15, 28]
provide a much stronger,multiplicativeerror guarrantee when we consider competing against the
bayes optimal policy in a fully observed MDP. It is not obvious how the current algorithm and
analysis can extend to that variant of the bound.

Future Work. Much work remains to be done: there are a wide variety of no-regret learners and
their practical trade-offs are almost completely open. Future work must explore this set to identify
which methods are most effective in practice.

8One would naturally consider adapting the exploration distributionsν1:T over the iterations of training.
It can be shown that ifνi

1:T are the exploration distributions at iterationi, and we have a mechanism for
makingνi

1:T converge to the state distributions of an optimal policy inΠ asi → ∞, then we would always be
guaranteed to find an optimal policy inΠ. Unfortunately, no known method can guarantee this.

8Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

artem
Highlight

artem
Highlight

artem
Highlight

References

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 2009.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing, 2002.

[3] O. Avner, S. Mannor, and O. Shamir. Decoupling exploration and exploitation in multi-armed bandits. In
ICML, 2012.

[4] J. A. Bagnell, A. Y. Ng, S. Kakade, and J. Schneider. Policy search by dynamic programming. In
Advances in Neural Information Processing Systems, 2003.

[5] A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and B. Zadrozny. Error limiting reductions between
classification tasks. InICML, 2005.

[6] A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandit algorithms with
supervised learning guarantees. InAISTATS, 2011.

[7] A. Beygelzimer, J. Langford, and P. Ravikumar. Error-correcting tournaments. InALT, 2009.

[8] A. Beygelzimer, J. Langford, and B. Zadrozny. Machine learning techniquesreductions between predic-
tion quality metrics. InPerformance Modeling and Engineering, pages 3–28. Springer US, 2008.

[9] N. Cesa-Bianchi and G. Lugosi.Prediction, learning, and games. Cambridge University Press, 2006.

[10] H. Daumé III, J. Langford, and D. Marcu. Search-based structured prediction.Machine Learning, 2009.

[11] M. Dudik, J. Langford, and L. Li. Doubly robust policy evaluation and learning. InICML, 2011.

[12] F. Duvallet, T. Kollar, and A. Stentz. Imitation learning for natural language direction following through
unknown environments. InICRA, 2013.

[13] E. Hazan and S. Kale. Projection-free online learning.In Proceedings of the 29th International Confer-
ence on Machine Learning (ICML-12), pages 521–528, 2012.

[14] D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a finite
universe.Journal of American Statistics Association, 1952.

[15] S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. InProceedings
of the 19th International Conference on Machine Learning (ICML), 2002.

[16] S. M. Kakade. On the sample complexity of reinforcement learning. PhD thesis, University College
London, 2003.

[17] J. Langford and A. Beygelzimer. Sensitive error correcting output codes. InCOLT, 2005.

[18] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article
recommendation. InWWW, 2010.

[19] P. Mineiro. Error and regret bounds for cost-sensitivemulticlass classification reduction to regression,
2010.

[20] D. Munoz, J. A. Bagnell, and M. Hebert. Stacked hierarchical labeling. InECCV, 2010.

[21] S. Ross and J. A. Bagnell. Efficient reductions for imitation learning. InAISTATS, 2010.

[22] S. Ross and J. A. Bagnell. Agnostic system identification for model-based reinforcement learning. In
ICML, 2012.

[23] S. Ross and J. A. Bagnell. Stability conditions for online learnability. InUnder Review. 15th International
Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

[24] S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. InAISTATS, 2011.

[25] S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell. Learningmessage-passing inference machines for struc-
tured prediction. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011.

[26] S. Ross, J. Zhou, Y. Yue, D. Dey, and J. A. Bagnell. Learning policies for contextual submodular predic-
tion. In ICML, 2013.

[27] Ankan Saha, Prateek Jain, and Ambuj Tewari. The interplay between stability and regret in online learn-
ing. arXiv preprint arXiv:1211.6158, 2012.

[28] Bruno Scherrer. Approximate policy iteration schemes: A comparison. InProceedings of the Interna-
tional Conference on Machine Learning, 2014.

[29] R. Sutton. The right way to do reinforcement learning with function approximation. InApproximate
the Policy or the Value Function: Reinforcement Learning Workshop at Neural Information Processing
Systems (NIPS), 2000.

9Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

Appendix: Proofs and Detailed Bounds

In this appendix, we provide the proofs and detailed analysis of the algorithms for imitation learning and
reinforcement learning provided in the main document.

Lemmas

We begin with a classical and useful general lemma that is needed for bounding the expected loss under different
distributions. This will be used several times throughout.Here this will be useful for bounding the expected loss
under the state distribution of̂π (which optional queries the expert a fraction of the time during it’s execution)
in terms of the expected loss under the state distribution ofπi:

Lemma 4.1. LetP andQ be any distribution over elementsx ∈ X , andf : X → R, any bounded function
such thatf(x) ∈ [a, b] for all x ∈ X . Let the ranger = b − a. Then|Ex∼P [f(x)] − Ex∼Q[f(x)]| ≤
r
2
||P −Q||1

Proof. We provide the proof forX discrete, a similar argument can be carried forX continuous, using integrals
instead of sums.

|Ex∼P [f(x)]− Ex∼Q[f(x)]|
= |∑x P (x)f(x)−Q(x)f(x)|
= |∑x f(x)(P (x)−Q(x))|

Additionally, since for any realc ∈ R,
∑

x P (x)c =
∑

x Q(x)c, then we have for anyc:

|∑x f(x)(P (x)−Q(x))|
= |∑x(f(x)− c)(P (x)−Q(x))|
≤ ∑

x |f(x)− c||P (x)−Q(x)|
≤ maxx |f(x)− c|∑x |P (x)−Q(x)|
= maxx |f(x)− c|||P −Q||1

This holds for allc ∈ R. This upper bound is minimized forc = a + r
2
, makingmaxx |f(x) − c| ≤ r

2
. This

proves the lemma.

TheL1 distance between the distribution of states encountered byπ̂i, the policy chosen by the online learner,
andπi, the policy used to collect data that continues to execute the expert’s actions with probabilityβi is
bounded as follows:

Lemma 4.2. ||dπi
− dπ̂i

||1 ≤ 2min(1, Tβi).

Proof. Let d the distribution of states overT steps conditioned onπi picking the expertπ∗ at least once overT
steps. Sinceπi always executeŝπi (never executes the expert action) overT steps with probability(1− βi)

T

we havedπi
= (1− βi)

Tdπ̂i
+ (1− (1− βi)

T)d. Thus

||dπi
− dπ̂i

||1
= (1− (1− βi)

T)||d− dπ̂i
||1

≤ 2(1− (1− βi)
T)

≤ 2Tβi

The last inequality follows from the fact that(1 − β)T ≥ 1 − βT for anyβ ∈ [0, 1]. Finally, since for any 2
distributionsp, q, we always have||p− q||1 ≤ 2, then||dπi

− dπ̂i
||1 ≤ 2min(1, Tβi).

Below we use theperformance difference lemma[4, 15, 16] that is useful to bound the change in total cost-to-
go. This general result bounds the difference in performance of any two policies. We present this results and
its proof here for completeness.

Lemma 4.3. Let π andπ′ be any two policy and denoteV ′
t andQ′

t the t-step value function andQ-value
function of policyπ′ respectively, then:

J(π)− J(π′) = T E
t∼U(1:T),s∼dtπ

[Q′
T−t+1(s, π)− V ′

T−t+1(s)]

for U(1 : T) the uniform distribution on the set{1, 2, . . . , T}.

10

same in
DAgger

Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

artem
Highlight

Proof. Let πt denote the non-stationary policy that executesπ in the firstt time steps, and then switches to
executeπ′ at timet+ 1 to T . Then we haveJ(π) = J(πT) andJ(π′) = J(π0). Thus:

J(π)− J(π′)

=
∑T

t=1[J(πt)− J(πt−1)]

=
∑T

t=1[Es∼dtπ
[Q′

T−t+1(s, π)− V ′
T−t+1(s)]]

= T Et∼U(1:T),s∼dtπ
[Q′

T−t+1(s, π)− V ′
T−t+1(s)]

AGGREVATE Reduction Analysis

Let ǫclass = minπ∈Π
1
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗
T−t+1(s, π) − mina Q

∗
T−t+1(s, a)] denote the minimum

expected cost-sensitive classification regret achieved bypolicies in the classΠ on all the data over theN it-
erations of training. Denote the online learning average regret on the cost-to-go examples of the sequence
of policies chosen by AGGREVATE, ǫregret = 1

N
[
∑N

i=1 ℓi(π̂i) − minπ∈Π

∑N
i=1 ℓi(π)], where ℓi(π) =

Et∼U(1:T),s∼dtπi
[Q∗

T−t+1(s, π)]. Assume the cost-to-go of the expertQ∗ is non-negative and bounded by

Q∗
max, and thatβi are chosen such thatβi ≤ (1− α)i−1 for someα. Then we have the following:

Theorem 4.4. AfterN iterations ofAGGREVATE:

J(π̂) ≤ J(π) ≤ J(π∗) + T [ǫclass+ ǫregret] +O

(

Q∗
maxT log T

αN

)

.

Thus if a no-regret online algorithm is used to pick the sequence of policiesπ̂1:N , then as the number of
iterationsN → ∞:

lim
N→∞

J(π) ≤ J(π∗) + Tǫclass

Proof. For every policŷπi, we have:

J(π̂i)− J(π∗)
= T Et∼U(1:T),s∼dt

π̂i

[Q∗
T−t+1(s, π̂i)− V ∗

T−t+1(s)]

=
∑T

t=1 Es∼dt
π̂i

[Q∗
T−t+1(s, π̂i)− V ∗

T−t+1(s)]

≤ ∑T
t=1 Es∼dtπi

[Q∗
T−t+1(s, π̂i)− V ∗

T−t+1(s)] +Q∗
max

∑T
t=1 ||dtπi

− dtπ̂i
||1

≤ ∑T
t=1 Es∼dtπi

[Q∗
T−t+1(s, π̂i)− V ∗

T−t+1(s)] + 2Q∗
max

∑T
t=1min(1, tβi)

≤ ∑T
t=1 Es∼dtπi

[Q∗
T−t+1(s, π̂i)− V ∗

T−t+1(s)] + 2TQ∗
max min(1, Tβi)

= T Et∼U(1:T),s∼dtπi
[Q∗

T−t+1(s, π̂i)− V ∗
T−t+1(s)] + 2TQ∗

max min(1, Tβi)

where we use lemma 4.3 in the first equality, lemma 4.1 in the first inequality, and a similar argument to lemma
4.2 for the second inequality.

Sinceβi are non-increasing, definenβ the largestn ≤ N such thatβn > 1/T . Then:

J(π)− J(π∗)

= 1
N

∑N
i=1[J(π̂i)− J(π∗)]

≤ 1
N

∑N
i=1[T Et∼U(1:T),s∼dtπi

[Q∗
T−t+1(s, π̂i)− V ∗

T−t+1(s)] + 2TQ∗
max min(1, Tβi)]

= T [minπ∈Π
1
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗
T−t+1(s, π)− V ∗

T−t+1(s)]] + Tǫregret

+
2TQ∗

max

N
[nβ + T

∑N
i=nβ+1 βi]

≤ T [minπ∈Π
1
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗
T−t+1(s, π)−mina Q

∗
T−t+1(s, a)] + Tǫregret

+
2TQ∗

max

N
[nβ + T

∑N
i=nβ+1 βi]

= Tǫclass+ Tǫregret+
2TQ∗

max

N
[nβ + T

∑N
i=nβ+1 βi]

Again,J(π̂) ≤ J(π) since the minimum is always better than the average, i.e.mini J(π̂i) ≤ 1
N

∑N
i=1 J(π̂i).

Finally, we have that whenβi = (1− α)i−1, [nβ + T
∑N

i=nβ+1 βi] ≤ log(T)+2
α

. This proves the first part of
the theorem.

The second part follows immediately from the fact thatǫregret→ 0 asN → ∞, and similarly for the extra term

O
(

Q∗

max
T log T

αN

)

.

11Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

Finite Sample AGGREVATE with Q-function approximation

We here consider the finite sample case where actions are explored uniformly randomly and the reduction
of cost-sensitive classification to squared loss regression is used. We consider learning an estimate Q-value
function Q̂ of the expert’s cost-to-go, and we consider a general case where the cost-to-go predictions may
depend on featuresf(s, a, t) of the states, action a and timet, e.g. Q̂ could be a linear regressor s.t.
Q̂T−t+1(s, a) = w⊤f(s, a, t) is the estimate of the cost-to-goQ∗

T−t+1(s, a), andw are the parameters of
the linear regressor we learn. Given such estimatesQ̂, we consider executing the policŷπ, such that in states
at timet, π̂(s, t) = mina∈A Q̂T−t+1(s, a).

Theorem 4.5. AfterN iterations ofAGGREVATE, collectingm regression examples(s, a, t,Q) per iteration,
guarantees that with probability at least 1-δ:

J(π̂) ≤ J(π) ≤ J(π∗) + 2
√

|A|T
√

ǫ̂class+ ǫ̂regret +O(
√

log(1/δ)/Nm) +O

(

QmaxT log T

αN

)

.

Thus if a no-regret online algorithm is used to pick the sequence of regressorŝQ1:N , then as the number of
iterationsN → ∞, with probability 1:

lim
N→∞

J(π) ≤ J(π∗) + 2
√

|A|T
√

ǫ̂class

Proof. Considerπ̃, the bayes-optimal non-stationary policy that minimizes loss on the cost-to-go examples.
That is, π̃(s, t) = mina∈A Q∗

T−t+1(s, a), i.e. it picks the action with minimum expected expert cost-to-go
conditioned on being in states and timet. Additionally, given the observed noisy Q-values from eachtrajectory,
the bayes-optimal regressor is simply the Q-value functionQ∗ of the expert that predicts the expected cost-to-
go.

At each iterationi, we execute a policŷπi, such that̂πi(s, t) = argmina∈A Q̂i
T−t+1(s, a), whereQ̂i is the

current regressor at iterationi from the base online learner. The cost-sensitive regret of policy π̂i, compared to
π̃, can be related to the regression regret ofQ̂i as follows:

Consider any states and timet. Let âi = π̂i(s, t) and consider the actiona′ of any other policy. We have that:

Q∗
T−t+1(s, âi)−Q∗

T−t+1(s, a)

≤ Q̂i
T−t+1(s, âi)− Q̂i

T−t+1(s, a
′) +Q∗

T−t+1(s, âi)− Q̂i
T−t+1(s, âi) + Q̂i

T−t+1(s, a
′)−Q∗

T−t+1(s, a
′)

≤ Q∗
T−t+1(s, âi)− Q̂i

T−t+1(s, âi) + Q̂i
T−t+1(s, a

′)−Q∗
T−t+1(s, a

′)

≤ 2maxa∈A |Q∗
T−t+1(s, a)− Q̂i

T−t+1(s, a)|

Additionally, for any joint distributionD over(s, t), andU(A) the uniform distribution over actions, we have
that:

(E(s,t)∼D[maxa∈A |Q∗
T−t+1(s, a)− Q̂i

T−t+1(s, a)|])2
≤ E(s,t)∼D[maxa∈A |Q∗

T−t+1(s, a)− Q̂i
T−t+1(s, a)|2]

≤ E(s,t)∼D[
∑

a∈A |Q∗
T−t+1(s, a)− Q̂i

T−t+1(s, a)|2]
= |A|E(s,t)∼D,a∼U(A)[|Q∗

T−t+1(s, a)− Q̂i
T−t+1(s, a)|2]

Thus we obtain that for everŷπi:

Et∼U(1:T),s∼dtπi
[Q∗

T−t+1(s, π̂i)−Q∗
T−t+1(s, π̃)]

≤ 2Et∼U(1:T),s∼dtπi
[maxa∈A |Q∗

T−t+1(s, a)− Q̂i
T−t+1(s, a)|]

≤ 2
√

|A|
√

Et∼U(1:T),s∼dtπi
,a∼U(A)[|Q∗

T−t+1(s, a)− Q̂i
T−t+1(s, a)|2]

Thus

12Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

J(π)− J(π∗)

= T
N

∑N
i=1 Et∼U(1:T),s∼dt

π̂i

[Q∗
T−t+1(s, π̂i)−Q∗

T−t+1(s, π
∗)]

≤ T
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗
T−t+1(s, π̂i)−Q∗

T−t+1(s, π
∗)] +

2TQ∗

max

N
[nβ + T

∑N
i=nβ+1 βi]

≤ T
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗
T−t+1(s, π̂i)−Q∗

T−t+1(s, π̃)] +
2TQ∗

max

N
[nβ + T

∑N
i=nβ+1 βi]

≤ 2
√

|A|T

N

∑N
i=1

√

Et∼U(1:T),s∼dtπi
,a∼U(A)[|Q∗

T−t+1(s, a)− Q̂i
T−t+1(s, a)|2]

+
2TQ∗

max

N
[nβ + T

∑N
i=nβ+1 βi]

≤ 2
√

|A|T
√

1
N

∑N
i=1 Et∼U(1:T),s∼dtπi

,a∼U(A)[|Q∗
T−t+1(s, a)− Q̂i

T−t+1(s, a)|2]
+

2TQ∗

max

N
[nβ + T

∑N
i=nβ+1 βi]

Now in states at timet, when performinga and then following the expert, consider the distributionds,a,t over
observed cost-to-goQ, such thatEQ∼ds,a,t [Q] = Q∗

T−t+1(s, a).

For any regressor̂Q, define the expected squared loss in predictions of the observed cost-to-go at iterationi
asℓi(Q̂) = Et∼U(1:T),s∼dtπi

,a∼U(A),Q∼ds,t,a [|Q − Q̂T−t+1(s, a)|2]. Then since for any random variableX

with meanµ, if we have an estimatêµ of the mean,|µ̂− µ|2 = Ex[(x− µ̂)2 − (x− µ)2], we have that:

1

N

N
∑

i=1

Et∼U(1:T),s∼dtπi
,a∼U(A)[|Q∗

T−t+1(s, a)− Q̂i
T−t+1(s, a)|2] =

1

N

N
∑

i=1

ℓi(Q̂
i)− ℓi(Q

∗)

Now, in the finite sample case, consider collectingm samples at each iterationi: {(sij , aij , tij , Qij)}mj=1. The
expected squared lossℓi is estimated aŝℓi(Q̂) = 1

m

∑m
j=1(Q̂T−tij+1(sij , aij) − Qij)

2, and the no-regret

algorithm is run on the estimated lossℓ̂i.

DefineYi,j = ℓi(Q̂
i) − (Q̂i

T−tij+1(sij , aij) − Qij)
2 − ℓi(Q

∗) + (Q∗
T−tij+1(sij , aij) − Qij)

2, the dif-

ference between the expected squared loss and the empiricalsquare loss at each sample for bothQ̂i andQ∗.
Conditioned on previous trajectories, eachYi,j has expectation 0. Then the sequence of random variables
Xkm+l =

∑k
i=1

∑m
j=1 Yi,j +

∑l
j=1 Y(k+1),j , for k ∈ {0, 1, 2, . . . , N − 1} andl ∈ {1, 2, . . . ,m}, forms a

martingale, and if the squared loss at any sample is bounded by ℓmax, we obtain that|Xi−Xi+1| ≤ 2ℓmax. By

Azuma-Hoeffding’s inequality, this implies that with probability at least1−δ, 1
Nm

XNm ≤ 2ℓmax

√

2 log(1/δ)
Nm

.

Denote the empirical average online regret on the training squared lossǫ̂regret = 1
N

∑N
i=1 ℓ̂i(Q̂

i) −
minQ̂∈Q

1
N

∑N
i=1 ℓ̂i(Q̂). Let Q̃∗ be the bayes-optimal regressor on the finite training data, and define the

empirical regression regret of the best regressor in the class aŝǫclass= minQ̂∈Q
1
N

∑N
i=1[ℓ̂i(Q̂)− ℓ̂i(Q̃

∗)].

Then we obtain that with probability at least1− δ:

1
N

∑N
i=1 ℓi(Q̂

i)− ℓi(Q
∗)

= 1
N

∑N
i=1 ℓ̂i(Q̂

i)− ℓ̂i(Q
∗) + 1

Nm
XNm

≤ 1
N

∑N
i=1 ℓ̂i(Q̂

i)− ℓ̂i(Q
∗) + 2ℓmax

√

2 log(1/δ)
Nm

≤ minQ̂∈Q
1
N

∑N
i=1[ℓ̂i(Q̂)− ℓ̂i(Q

∗)] + ǫ̂regret+ 2ℓmax

√

2 log(1/δ)
Nm

≤ ǫ̂class+ ǫ̂regret+ 2ℓmax

√

2 log(1/δ)
Nm

where the last inequality follows from the fact that
∑N

i=1 ℓ̂i(Q̃
∗) ≤ ∑N

i=1 ℓ̂i(Q
∗).

Combining with the above, we obtain that with probability atleast1− δ:

J(π)− J(π∗) ≤ 2
√

|A|T

√

ǫ̂class+ ǫ̂regret+ 2ℓmax

√

2 log(1/δ)

Nm
+

2TQ∗
max

N
[nβ + T

N
∑

i=nβ+1

βi]

13Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

NRPI Reduction Analysis

We here provide the proof of the result for NRPI, sampled fromstate exploration distributionsν1:T .

To analyze this version, we begin with an alternate version of the performance difference lemma (lemma 4.3)
presented before:
Lemma 4.6. Let π and π′ be any two policy and denoteVt andQt the t-step value function andQ-value
function of policyπ respectively, then:

J(π)− J(π′) = T E
t∼U(1:T),s∼dt

π′

[VT−t+1(s)−QT−t+1(s, π
′)]

for U(1 : T) the uniform distribution on the set{1, 2, . . . , T}.

Proof. By applying lemma 4.3 toJ(π′)− J(π), we obtain:

J(π′)− J(π) = T E
t∼U(1:T),s∼dt

π′

[QT−t+1(s, π
′)− VT−t+1(s)]

This proves the lemma.

Now denote the lossLn used by the online learner at iterationn, s.t.:

Ln(π) = Et∼U(1:T),s∼νt [Q
π̂n
T−t+1(s, π)].

andǫregret the average regret after theN iterations of NRPI:

ǫregret=
1

N

N
∑

i=1

Li(πi)−min
π∈Π

1

N

N
∑

i=1

Li(π).

For any policyπ ∈ Π, denote the averageL1 distance betweenνt anddtπ over time stepst as:

D(ν, π) =
1

T

T
∑

t=1

||νt − dtπ||1.

Assume the cost-to-go of the learned policiesπ1, π2, . . . , πN are non-negative and bounded byQmax, for any
states, actiona and timet (in the worst case this isTCmax). Denoteπ̂ the best policy found by NRPI over the
iterations, andπ the uniform mixture policy overπ1:N defined as before. Then we have to following guarantee
with this version of NRPI with learner’s cost-to-go:
Theorem 4.7. For anyπ′ ∈ Π:

J(π̂) ≤ J(π) ≤ J(π′) + Tǫregret + TQmaxD(ν, π′)

Thus, if a no-regret online cost-sensitive classification algorithm is used, then:

lim
N→∞

J(π) ≤ J(π′) + TQmaxD(ν, π′)

Proof. LetQi
t denote thet-stepQ-value function of policŷπi. Then for everŷπi we have:

J(π̂i)− J(π′)
= T Et∼U(1:T),s∼dt

π′

[Qi
T−t+1(s, π̂i)−Qi

T−t+1(s, π
′)]

=
∑T

t=1 Es∼dt
π′

[Qi
T−t+1(s, π̂i)−Qi

T−t+1(s, π
′)]

≤ ∑T
t=1 Es∼νt [Q

i
T−t+1(s, π̂i)−Qi

T−t+1(s, π
′)] +Qmax

∑T
t=1 ||νt − dtπ′ ||1

= T Et∼U(1:T),s∼νt [Q
i
T−t+1(s, π̂i)−Qi

T−t+1(s, π
′)] + TQmaxD(ν, π′)

where we use lemma 4.6 in the first equality, and lemma 4.1 in the first inequality.

Thus:
J(π)− J(π′)

= 1
N

∑N
i=1[J(π̂i)− J(π′)]

≤ 1
N

∑N
i=1[T Et∼U(1:T),s∼νt [Q

i
T−t+1(s, π̂i)−Qi

T−t+1(s, π
′)] + TQmaxD(ν, π′)]

≤ T 1
N

∑N
i=1 Et∼U(1:T),s∼νt [Q

i
T−t+1(s, π̂i)]− T minπ∈Π

1
N

∑N
i=1 Et∼U(1:T),s∼νt [Q

i
T−t+1(s, π)]

+TQmaxD(ν, π′)
= Tǫregret+ TQmaxD(ν, π′)

Again,J(π̂) ≤ J(π) since the minimum is always better than the average, i.e.mini J(π̂i) ≤ 1
N

∑N
i=1 J(π̂i).

This proves the first part of the theorem.

The second part follows immediately from the fact thatǫregret→ 0 asN → ∞.

14Cre
at
ed

 in
 M

as
te
r P

DF
Ed

ito
r

	1 Introduction
	2 Imitation Learning with Cost-To-Go
	2.1 Preliminaries
	2.2 Algorithm: AggreVaTe
	2.3 Training the Policy to Minimize Cost-to-Go
	2.4 Analysis
	2.5 Discussion

	3 Reinforcement Learning via No-Regret Policy Iteration
	3.1 Analysis

	4 Discussion and Future Work

