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Abstract

Recent work has demonstrated that problems— particularliation learning
and structured prediction— where a learner’s predictioriiénce the input-
distribution it is tested on can be naturally addressed bingmactive approach
and analyzed using no-regretonline learning. These appesdo imitation learn-
ing, however, neither require nor benefit from informatidroat the cost of ac-
tions. We extend existing results in two directions: firs¢, develop an interactive
imitation learning approach that leverages cost inforamecond, we extend the
technique to address reinforcement learning. The restdidge theoretical sup-
port to the commonly observed successes of online appreeip@icy iteration.
Our approach suggests a broad new family of algorithms aovges a unifying
view of existing techniques for imitation and reinforcernkearning.

1 Introduction

Imitation learning has become increasingly important itdféie notably robotics and game Al-
where it is easier for an expert to demonstrate a behavior tindranslate that behavior to code.
[1] Perhaps surprisingly, it has also become central in ldgueg predictors for complex output
spaces, e.g. sets and lists1[22], parse trees [10], imagenga20,[25] and natural language
understandin@g[12]. In these domains, a policy is trainedrtibate an oracle on ground-truthed
data. Iterative training procedures.§. DAGGER_SEARN, SMILE[24,[10,[21]) that interleave
policy execution and learning have demonstrated impregsigctical performance and strong theo-
retical guarantees that were not possible with batch sigehearning. Most of these approaches to
imitation learning, however, neither require nor benebnirinformation about the cost of actions;
rather they leverage only information provided about “eott actions by the demonstrator.

While iterative training corrects the compounding of ereffect one sees in control and decision
making applications, it does not address all issues ths¢ aConsider, for instance, a problem of
learning to drive near the edge of a cliff: methods like ®2€R consider all errors from agreeing
with the expert driver equally. If driving immediately ofié cliff makes the expert easy to imitate—
because the expert simply chooses the go straight from thenhese approaches may learn that
very poor policy. More generally, a method that only reasaivsut agreement with a demonstrator
instead of the long term costs of various errors may poodgedroff inevitable mistakes. Even a
crude estimate of the cost-to-ge.§. it's very expensive to drive off the cliff)— may improve a
learned policy’s performance at the user’s intended task.

SEARN, by contrastjoesreason about cost-to-go, but uses rollouts from the cupelity which
can be impractical for imitation learning. SEARN additilpaequires the use of stochastic policies.

We present a simple, general approach we te@GREVATE (Aggregate Values to Imitate) that
leverages cost-to-go information in addition to correaindestration, and establish that previous
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methods can be understood as special cases of a more geoeegrat strategy. The approach
provides much stronger guarantees than existing methogedading a statisticategret rather
then statisticaérror reduction. [[8]

This general strategy of leveraging cost-sensitive noetdgarners can be extended to Approximate
Policy Iteration (API) variants for reinforcement leargine show that any no-regret learning al-
gorithm can be used to develop stable API algorithms withrgnizes as strong as any available
in the literature. We denote the resulting algorithm NRFie Tesults provide theoretical support
to the commonly observed success of online policy iter§@@ndespite a paucity of formal re-
sults: such online algorithms often enjoy no-regret guesor share similar stability properties.
Our approach suggests a broad new family of algorithms aodges a unifying view of existing
techniques for both imitation and reinforcement learning.

2 Imitation Learning with Cost-To-Go

2.1 Preliminaries

We consider in this work finite horizBrcontrol problems in the form of a Markov Decision Process
with statess and actions:.. We assume the existence of a cost-functitia, a), bounded between

0 and1, that we are attempting to optimize over a horizorifbélecisions. We denote a class of
policiesII mapping state§ to actions.

We usel)] (s, a) to denote the expected future cost-to-go of executingaatip states, followed by
executing policyr for t — 1 steps. We denote by, = %Zle dt the time-averaged distribution
over states induced by executing policyin the MDP @ is the distribution of states at time
induced by executing policy). The overall performance metric of total cost of executirfgr 7-
steps is denoted(w) = Zthl Eswq [C(s,7(s))] We assume system dynamics are either unknown
or complex enough that we typically have only sample acae¢edm. The resulting setting for
learning policies by demonstration— or learning policigsapproximate policy iteration— amgot
typical i.i.d. supervised learning problems as the learned policy styoinfluences its own test
distribution rendering optimization difficult.

2.2 Algorithm: AGGREVATE

We describe here a simple extension of thed&Rtechnique of[24] that learns to choose actions
to minimize the cost-to-go of the expert rather than the zare classification loss of mimicking its
actions. In simplest form, on the first iteratiorGAREVATE collects data by simply observing the
expert perform the task, and in each trajectory, at a uniforandom timet, explores an action

in states, and observes the cost-to-goof the expert after performing this action. (See Algorithm

M below.)d Main

Each of these steps generates a cost-weighted t%ingmamt, a,Q) [19] and AcGReVATE  difference
trains a policyrs to minimize the expected cost-to-go on this dataset. At éaltdwing iterationn,

AGGREVATE collects data through interaction with the learner as fediofor each trajectory, begin

by using the current learner’s polidy, to perform the task, interrupt at a uniformly random time

explore an actiom in the current state, after which control is provided back to the expert to con-Otherwise
tinue up to time-horizof’. This results in new examples of the cost-to-go of the exett a, Q), identical
under the distribution of states visited by the currentqpofi,,. This new data is aggregated with
all previous data to train the next poligy,+1; more generally, this data can be used by a no-regret0 DAgger
online learner to update the policy and obtaijn, ;. This is iterated for some number of iterations

N and the best policy found is returned. We optionally allow #igorithm to continue executing

the expert’s actions with small probability,, instead of always executing,, up to the random

time ¢ where an action is explored and control is shifted to the gxfgée general SGREVATE is

detailed in AlgorithniIL.

LAll our results can be easily extended to the infinite distedtorizon setting.

2More generally features of the state (and potentially tinm)r derivations do not require full observability
and hence carry over to featurized state of POMDPs.

3This cost-to-go may be estimated by rollout, or providedHsyexpert.
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Observing the expert’s cost-to-go indicates how much cesiight expect to incur in the future if
we take an action now and then can behave as well (or nearlyssihle expert henceforth. Under
the assumption that the expert is a good policy, and thataheypclassII contains similarly good
policies, this provides a rough estimate of what good pediénII will be able to achieve at future
steps. By minimizing this cost-to-go at each step, we withate policies that lead to situations
where incurring low future cost-to-go is possible. For amste, we will be able to observe that if
some actions put the expert in situations where falling affifh or crash is inevitable then these
actions must be avoided at all costs in favor of those wherexipert is still able to recover.

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

Initialize D <« (), #; to any policy inIl.
for i =1to N do
Letm; = gin* + (1 — 5;)7; #Optionally mix in expert’s own behavior.
Collectm data points as follows:
for j =1tomdo
Sample uniformlyt € {1,2,...,T}.
Start new trajectory in some initial state drawn from ifiieate distribution
Execute current policy; up to timet — 1.
Execute some exploration actiopin current state, at timet
Execute expert from time+ 1 to 7", and observe estimate of cost-toQatarting at time:
end for A ?
Get dataseD; = {(s,t, a, @)} of states, times, actions, with expert’s cost-to-go.
Aggregate dataset® < D JD;.
Train cost-sensitive classifiét, onD
(Alternately: use any online learner on the data-sBtdn sequence to get; . ; )
end for
Return best#; on validation.

In AGGREVATE the problem of choosing the sequence of polidiests, . .., 7y over iterations is
viewed as an online cost-sensitive classification probt@ar.analysis below demonstrates that any
no-regret algorithm on such problems can be used to updatsetiiuence of policies and provide
strong guarantees. To achieve this, when the policy dlassfinite, randomized online learning
algorithms likeweighted majorityf9] may be used. When dealing with infinite policy classeg(

all linear classifiers), no-regret online cost-sensitilassification is not always computationally
tractable. Instead, typically reductions of cost-sewsitilassification to regression or ranking prob-
lems as well as convex upper bounds [8] on the classificatiss lead to efficient no-regret online
learning algorithms€.g. gradient descent). The algorithm description suggestbasdefault”
learning strategy éRegularized)-Follow-The-Leadenline learner: it attempts to learn a good clas-
sifier forall previous data. This strategy for certain loss functiongbbt strongly convex surrogates
to the cost-sensitive classification loss) [9] and any seffity stable batch learner [23,]27] ensures
the no-regret property. It also highlights why the approiadikely to be particularly stable across
rounds of interaction.

2.3 Training the Policy to Minimize Cost-to-Go

In standard “full-information” cost-sensitive classifiiga, a cost vector is provided for each data-
point in the training data that indicates the cost of pradictach class or label for this input.
In our setting, that implies for each sampled state we recéeost-to-go estimate/rollout for all
actions. Training the policy at each iteration then simpyresponds to solving a cost-sensitive
classification problem. That is, if we collect a datasetrro‘samples,{(si,ti,Qi) ”., Wherec:)i

is a cost vector of cost-to-go estimates for each actionatest at timet;, then we solve the
cost-sensitive classification problearg min ;>0 , Qi(w(s;,t;)). Reductions of cost-sensitive
classification to convex optimization problems can be ugedteighted multi-class Support Vector
Machines or rankin@|8], to obtain problems that can be olztih efficiently while still guaranteeing
good performance at this cost-sensitive classificatiok tas

For instance, a simple approach is to transform this into amgmax regression prob-
lem ie. mw,(s,t) = argmin,c,Qn(s,t,a), for @, the learned regressor at itera-
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tion n that minimizes the squared loss at predicting the coswitoegtimates: Q,, =
arg minge o Z(S“t“%@)eD(Q(si, ti,a;)— QZ—)Q, whereD is the dataset of all collected cost-to-go
estimates so far, ang the class of regressors considered (e.g. linear regr@s3bis approach also
naturally handles the more common situation in imitatiarhéng where we only hayvgartial infor-
mationfor a particular action chosen at a state. Alternate apeminclude importance weighting
techniques to transform the problem into a standard costitdee classification problem [14, 11]
and other online learning approaches meant to handle “Bdaddback.

Local Exploration in Partial Information Setting In the partial information setting we must
also select which action to explore for an estimate of cogjet. The uniform strategy is simple
and effective but inefficient. The problem may be cast aergtextual bandit problerf2, |6] where
features of the current state define the context of exptmrafrhese algorithms, by choosing more
carefully than at random, may be significantly more samgileieft. In our setting, in contrast with
traditional bandit settings, we care only about the finairled policy and not the cost of explored
actions along the way. Recent work [3] may be more apprapf@atimproving performance in this
case. Many contextual bandit algorithms require a finiteo$goliciesII [2] or full realizability
[18], and this is an open and very active area of researcltthad have many applications here.

2.4 Analysis

We analyze &GREVATE, showing that the no-regret property of online learningcedures can
be leveraged in this interactive learning procedure toinkgtiong performance guarantees. Our
analysis seeks to answer the following question: how wedisdine learned policy perform if we
can repeatedly identify good policies that incur cost-gmesclassification loss competitive with
the expert demonstrator on the aggregate dataset we adligng training?

Our analysis of AGREVATE relies on connecting the iterative learning procedure thith(adver-

sarial) online learning problern][9] and using the no-regreperty of the underlying cost-sensitive .
classification algorithm choosing policiés.. Here, the online learning problem is defined B&qulres
follows: at each iteratiori, the learner chooses a poliégy € II that incurs losg; chosen by theexpert
adversary, and defined 4gw) = EtNU(lzT),Sngri [Q%_, 1 (s,m)] for U(1 : T) the uniform distri- rastarts
bution on the sef1,2,...,T}, m; = gim* + (1 — f;)™; and@Q* the cost-to-go of the expert. We

can see that AGREVATE at iteration: is exactly collecting a datasét;, that provides an empirical

estimate of this loss;.

. N . . ” .
Let eclass= min e % Y oict EtNU(LT),SNd;i (Q7_y11(s,a)—ming QF_, (s, a)] denote the min-
imum expected cost-sensitive classification regret aelidy policies in the cladd on all the data
over theN iterations of training. Denote the online learning averaggret of the sequence of

policies chosen by BGREVATE, €regret = %[Zf\; 0;(7t;) — mingen Zfil £;(m)].

We provide guarantees for the “uniform mixture” poligy that at the beginning of any trajectory
samples a policyr uniformly randomly among the policiegt; }Y., and executes this policy
for the entire trajectory. This immediately implies goodfpamance for the best policy in the
sequenceé.y, i.e. J(#) = min;c1.n J(7;) < J(7), and the last policyty when the distribution
of visited states converges over the iterations of learning

Assume the cost-to-go of the expét is non-negative and bounded &, ., andg; < (1 —a)~!

for all i for some constant[I. Then the following holds in the infinite sample cage.(if at each

iteration of AGGREVATE we collected an arbitrarily large amount of data by runnimg turrent

policy):

Theorem 2.1. After N iterations of AGGREVATE: similar

QmaXTlogT) to DAgger

J(7) < J(7@) < J(77) + Tectass+ €regre + O < N

Thus if a no-regret online algorithm is used to pick the sexqeef policiest; .y, then as the number
of iterationsN — oc:
lim J(7) < J(7*) + Teclass

N —o0

“The default parameter-free version o6 AREVATE corresponds ter = 1, using0® = 1.
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The proof of this result is presented in the Appendix. Thiotlem indicates that after sufficient
iterations, AGGREVATE will find policies that perform the task nearly as well as tleendnstrator
if there are policies il that have small cost-sensitive classification regret oraggregate dataset
(i.e. policies with cost-sensitive classification loss not muafyér than that of the bayes-optimal .

one on this dataset). Note that non-interactive supenlésting methods are unable to achie e{,pa\./lou ral
similar bound which degrades only linearly withand the cost-sensitive classification regiet] [2a}.oning

The analysis above abstracts away the issue of action exjgloand learning from finite data. These
issues come into play in a sample complexity analysis. Snalyses depend on many factors such
as the particular reduction and exploration method. Whduna#ons of cost-sensitive classification
to simpler regression/ranking/classificatioh [5] probsesme used, our results can directly relate the
task performance of the learned policy to the performancéhersimpler problem. To illustrate
how such results may be derived, we provide a result for teeiapcase where actions are explored
uniformly at random and the reduction of cost-sensitivesifecation to regression is used.

In particular, iféegretdenotes the empirical average online learning regret otréi@ng regression
examples collected over the iterations, @pglsdenotes the empirical regression regret of the best
regressor in the class on the aggregate dataset of regressimples when compared to the bayes-
optimal regressor, we have that:

Theorem 2.2. N iterations of AGGREVATE, collectingm regression examplé€s, a, t, Q) per iter-
ation, guarantees that with probability at least1-

J(7) < J(7) < T(5%) + 2/ TAIT éctass+ éregret+ O(+/10g(1/0) [N ) + O <w> _

Thus if a no-regret online algorithm is used to pick the sempeeof regressorg):.n, then as the
number of iterationgV — oo, with probability1:

J\}iinm J(T) < J(7*) + 2/ |A|T\/ €class

The detailed proof is presented in the Appendix. This redefhonstrates how the task perfor-
mance of the learned policies may be related all the way dovthe regret on the regression loss
at predicting the observed cost-to-go during training.drtipular, it relates task performance to the
square root of the online learning regret, on this regredsiss, and the regression regret of the best
regressor in the class to the bayes-optimal regressor stréining datell

2.5 Discussion

AGGREVATE as areduction: AGGREVATE can be interpreted asregretreduction of imitation
learning to no-regret online learningWe present a statistical regret reduction, as here, pesioce

is related directly to the online, cost-sensitive clasatfan regret on the aggregate dataset. By
minimizing cost-to-go, we obtain regret reduction, rattiem a weaker error reduction as [in [24]
when simply minimizing immediate classification loss.

Limitations: As just mentioned, in cases where the expert is much beterdhy policy inIl,

the expert’s cost-to-go may be a very optimistic estimatdetrue future cost after taking a certain
action. The approach may fail to learn policies that perfarefi, even if policies that can perform
the task (albeit not as well as the expert) exist in the paliags. Consider again the driving scenario,
where one may choose one of two roads to reach a goal: a shauterthat involves driving on a
very narrow road next to cliffs on either side, and a longeteavhich is safer and risks no cliff. If
in this example, the expert takes the short route faster amqmblicy in the clas$l can drive without
falling on the narrow road, but there exists policies thattede the longer road and safely reach the

5The appearance of the square root is particular to the uskiofeduction to squared-loss regression
and implies relative slow convergence to good performafither cost-sensitive classification reductions and
regression lossee.Q.[17,[7]) do not introduce this square root and still allowaéit learning.

SUnfortunatelyregrethere has two different meanings common in the literaturefitit is in the statistical
sense of doing nearly as well as the Bayes-optimal predif@pMhe second use is in the online, adversarial,
no-regret sense of competing against any hypothesis ontiaiyar sequence without statistical assumptions.

]
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goal, this algorithm would fail to find these policies. Thasen for this is that, as we minimize cost-
to-go of the expert, we would always favor policies that eetmsvard the shorter narrow road. But
once we are on that road, inevitably at some point we will @nter a scenario where no policies
in the class can predict the same low cost-to-go actionseagxpert (i.e. making large in the
previous guarantee). The end result is that we may learnieyptblat takes the short narrow road
and eventually falls off the cliff, in these pathologicaésarios.

Comparison to SEARN: AGGREVATE shares deep commonalities with SEARN but by provid-
ing a reduction to online learning allows much more genethémes to update the policy at each
iteration that may be more convenient or efficient rathen tha particular stochastic mixing updte
of SEARN. These include deterministic ones that provideaugpnvex bounds on performance| In
fact, SEARN may be thought as a particular case 6GREVATE, where the policy class isthe sefinite set?
of distributions over policies, and the online coordinatsaknt algorithm (Frank-Wolfe) df [13]fis
used to update the distribution over policies at each itmraBoth collect data in a similar fashion
at each iteration by executing the current policy up to a camtime and then collecting cost-to-go
estimates for explored actions in the current state. Ardititin is that SEARN collects cost-to-go
of the current policy after execution of the random action, instead of tbst-¢to-go of the expert.
Interestingly, SEARN is usually used in practice with th@m@ximation of collecting cost-to-go of
the expertl[10], rather than the current policy. Our appinozan be seen as providing a theoretical
justification for what was previously a heuristic.

3 Reinforcement Learning via No-Regret Policy Iteration

A relatively simple modification of the above approach erahls to develop a family of sample-
based approximate policy iteration algorithms. Concdptua'e make a swap: from executing
the current policy and then switching to the expert to obsereost-to-go; to, executing the expert
policy while collecting cost-to-go of the learner’s curtenlicy. We denote this family of algorithms
No-Regret Policy Iteratio™NRPI and detail and analyze it below.

This alternate has similar guarantees to the previousorerbut may be preferred when no policy
in the class is as good as the expert or when only a distribatidimportant states” is available.

In addition it can be seen to address a general model-freéoreement learning setting where
we simply have a state exploration distribution we can sanfigim and from which we collect

examples of the current policy’s cost-to-go. This is simitespirit to how Policy Search by Dynamic
Programming (PSDP) [4, 28] proceeds, and in some sensdgttritlam we present here provides a
generalization of PSDP. However, by learning a stationaticp instead of a non-stationary policy,
NRPI can generalize across time-steps and potentiallytteatbre efficient learning and practical
implementation in problems wheféis large or infinite.

Following [4,[15] we assume access to a state exploratidritaliion v, for all timestin1,2,...,T.

As will be justified by our theoretical analysis, these s&tploration distributions should ideally
be (close to) that of a (near-)optimal policy in the clékdn the context where an expert is present,
then this may simply be the distribution of states inducedHeyexpert policy, i.er, = d... In
general, this may be the state distributions induced by dmase policy we want to improve upon,
or be determined from prior knowledge of the task.

Given the exploration distributions ., NRPI proceeds as follows. At each iterationit collects
cost-to-go examples by sampling uniformly a time {1,2,...,7T}, sampling a state; from v,
and then executes an exploration actian s, followed by execution of the current learner’s policy
m, fortimet¢ + 1 to T', to obtain a cost-to-go estimate, a, ¢, Q) of executing: followed by, in
states at timet. [1 Multiple cost-to-go estimates are collected this way andeddn dataseD,,.
After enough data has been collected, we update the leag@ity, to obtainr,, .1, using any no-
regret online learning procedure, on the loss defined bydkesensitive classification examples in
the new datad),,. This is iterated for a large number of iteratiaNs Initially, we may start withr,

to be any guess of a good policy from the clils®r use the expert's cost-to-go at the first iteration,
to avoid having to specify an initial policy. This algoritiindetailed in Algorithni .

’In the particular case whene = d‘. of an exploration policyr, then to samples;, we would simply
executer from time1l to ¢ — 1, starting from the initial state distribution.
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Algorithm 2 NRPI Algorithm

Initialize D <« (), 7, to any policy inII.
for i =1to N do
Collectm data points as follows:
for j =1tomdo
Sample uniformlyt € {1,2,...,T}.
Sample state; from exploration distribution, .
Execute some exploration actiopin current state, at timet
Executer; from timet + 1 to 7', and observe estimate of cost-togatarting at timet
end for
Get dataseD; = {(s,a,t,Q)} of states, actions, time, with current policy’s cost-ta-go
Aggregate dataset® < D JD;.
Train cost-sensitive classifiét,; onD  (Alternately: use any online learner on the data-sets
D; in sequence to get; 1 )
end for
Return bestw; on validation.

3.1 Analysis

Consider the loss functioh,, given to the online learning algorithm within NRP1 at itécat n.
Assuming infinite data, it assigns the following loss to epalicy 7 € II:

Ly (ﬂ—) = EtNU(lzT),swut [Q;"_Hl(s, 7T)]

This loss represents the expected cost-to-go of executingmediately for one step followed by
current policyr,,, under the exploration distributions..

This sequence of losses over the iterations of trainingespands to an online cost-sensitive classi-
fication problem, as in the previouss&REVATE algorithm. Leteregretbe the average regret of the
online learner on this online cost-sensitive classificafiooblem afterV iterations of NRPI:

1 1
Eregret = 77 Z Li(m;) — glellr_[l N Z Li(m).
i=1 =1

For any policyr € II, denote the average, or variational distance between andd?. over time
stepst asD(v,7) = % Zthl [lve — d%||:. Note that ifv, = d', for all ¢, thenD (v, 7) = 0.

Denote byQ,ax @ bound on cost-to-go (which is alwaysT C.,.x). Denoter the best policy found
by NRPI over iterations, ard the uniform mixture policy over,.y defined as before. Then NRPI
achieves the following guarantee:

Theorem 3.1. For any policyr’ € II:
J(/ﬁ-) S J(f) S J(7T/) + Teregret+ TQmaxD(V7 7TI)

If a no-regret online cost-sensitive classification algiom is used:limy_, . J(7) < J(«') +
TQIIIB.XD(V7 Trl)

NRPI thus finds policies that are as good as any other paficy II whose state distributiod’,

is close tov; on average over time Importantly, if 1.7 corresponds to the state distribution of
an optimal policy in clas$l, then this theorem guarantees that NRPI will find an optinwdicp
(within the clasdl) in the limit.

This theorem provides a similar performance guaranteedadhbults for PSDP presented lin [4].
NRPI has the advantage of learning a single policy for testetion instead one at each time allow-
ing for improved generalization and more efficient learniNgRP1 imposes stronger requirements:
it uses a no-regret online cost-sensitive classificatiamtguure instead of simply a cost-sensitive
supervised learner. For finite policy clasdésor using reductions of cost-sensitive classification
as mentioned previously, we may still obtain convex onleerhing problems for which efficient
no-regret strategies exist or use the simple aggregatidatafsets with any sufficiently stable batch
learner.[[23, 2/7]



The result presented here can be interpreted as a reduttioodz|-free reinforcement learning to
no-regret online learning. It is a regret reduction, asqrenfince is related directly to the online re-
gret at the cost-sensitive classification task. Howeveiopaance is strongly limited by the quality
of the exploration distributiorfl

4 Discussion and Future Work

Contribution.  The work here provides theoretical support for two seeryingrelated empirical
observations. First, and perhaps most crucially, muchduotatevidence suggests that approximate
policy iteration— and especially online variants|[29]- isnm effective and stable than theory and
counter-examples to convergence might suggest. This adefor some explanation; we contend
that it can be understood as such online algorithms oftevyem-regret guarantees or share similar
stability properties than can ensure relative performaguegantees.

Similarly, practical implementation of imitation leargifor-structured-prediction methods like
SEARN rely on what was previously considered a heuristicofgithe expert demonstrator as an es-
timate of the future cost-to-go. The resulting good perfamnge can be understood as a consequence
of this heuristic being a special case a6 BREVATE where the online Frank-Wolfe algorithimn [13]

is used to choose policies. Moreover, stochastic mixingi®he of several approaches to achieving
good online performance and deterministic variants haweear more effective in practice. [25]

The resulting algorithms make suggestions for batch agbesas well: they suggest, for instance,
that approximate policy iteration procedures (as well aisaition learning ones) are likely to be
more stable and effective if they train not only on the cosgit of the most recent policy but also on
previous policies. At first this may seem counter-intuitirewever, it prevents the oscillations and
divergences that at times plague batch approximate dynamgramming algorithms by ensuring
that each learned policy is good across many states.

From a broad point of view, this work forms a piece of a growpigure that online algorithms and
no-regret analyses— in contrast with the traditidnal. or batch analysis— are important for under-
standing learning with application to control and decisioaking [26] 22| 25, 24]. At first glance,
online learning seems concerned with a very different eghréal setting. By understanding these
methods as attempting to ensure both good performance bosdtrstable learning across iterations
[23,[27], they become a natural tool for understanding theadyics of interleaving learning and
execution when our primary concern is generalization parémce.

Limitations. It is important to note that any method relying on cost-toegtimates can be im-
practical as collecting each estimate for a single statierapair may involve executing an entire
trajectory. In many settings, minimizing imitation losstivDAGGER[24], is more practical as we
can observe the action chosen by the expeetieryvisited state along a trajectory and thus collect
T data points per trajectory instead of single one. This sdescial in structured prediction settings
where the cost-to-go of the expert may often be quickly caeghwhich has lead to the success of
the heuristic analyzed here. A potential combination oftthe approaches, where first simple im-
itation loss minimization provides a reasonable policy #ren this is refined using @GREVATE
(e.g. through additional gradient descent steps) thugdsimer (expensive) iterations.

In the reinforcement learning setting, the bound provideaki strong as that provided by[[4] 16] for
an arbitrary policy class. However, @%),,. is generallyO(7?), this only provides meaningful
guarantees whed, is very close ta, (on average over timg. Previous methods like [4,15,128]
provide a much strongemultiplicative error guarrantee when we consider competing against the
bayes optimal policy in a fully observed MDP. It is not obwioliow the current algorithm and
analysis can extend to that variant of the bound.

Future Work.  Much work remains to be done: there are a wide variety of igoetdearners and
their practical trade-offs are almost completely openuFaitvork must explore this set to identify
which methods are most effective in practice.

80ne would naturally consider adapting the explorationriistions 1.7 over the iterations of training.
It can be shown that it are the exploration distributions at iterationand we have a mechanism for
makingv;. converge to the state distributions of an optimal policylias: — oo, then we would always be
guaranteed to find an optimal policy ih Unfortunately, no known method can guarantee this.
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Appendix: Proofs and Detailed Bounds

In this appendix, we provide the proofs and detailed anslg$ithe algorithms for imitation learning and
reinforcement learning provided in the main document.

Lemmas

We begin with a classical and useful general lemma that idettfor bounding the expected loss under different
distributions. This will be used several times throughdigre this will be useful for bounding the expected loss
under the state distribution &f (which optional queries the expert a fraction of the timemiyit's execution)

in terms of the expected loss under the state distribution of

Lemma 4.1. Let P and @ be any distribution over elementse X, and f : X — R, any bounded function
such thatf(z) € [a,b] for all z € X. Lettheranger = b — a. Then|E.~p[f(z)] — Eznolf(z)]| <
51P = Qlh

Proof. We provide the proof fo/’ discrete, a similar argument can be carriedocontinuous, using integrals
instead of sums.

122, [(@)(P(z) — Q(x))

= |22, (f(z) = o)(P(z) — Q(x))

< 2 f(@) —dllP(z) — Q()]

< maxe |f(z) — | 32, [P(x) - Q=
= maxg|f(z) - c|[[P = Q[

This holds for allc € R. This upper bound is minimized fer= o + %, makingmax, |f(z) — c| < 5. This
proves the lemma. |

The L; distance between the distribution of states encounteret kthe policy chosen by the online learner,
and ;, the policy used to collect data that continues to executeettpert’s actions with probabilitg; is
bounded as follows:

Lemma 4.2. ||dr, — dz,|]1 < 2min(1,Tf;).

Proof. Letd the distribution of states ovér steps conditioned on; picking the expertr™ at least once over
steps. Sincer; always executes; (never executes the expert action) offesteps with probability(1 — 8;)”
we haved,, = (1 — 8;)Tds, + (1 — (1 — 8;)T)d. Thus

|dﬂ'1: _dﬁ'iHl

(1= @1 =8)")ld - ds |
21— (1-8:)")

2T B

INIA

The last inequality follows from the fact thét — 3)” > 1 — BT for any 8 € [0, 1]. Finally, since for any 2
distributionsp, ¢, we always havélp — q||1 < 2, then||d, — dz,|]1 < 2min(1,T3;). |

Below we use the@erformance difference lemnfié, [15,16] that is useful to bound the change in total cost-to
go. This general result bounds the difference in perforraariany two policies. We present this results and
its proof here for completeness.

Lemma 4.3. Let r and 7’ be any two policy and denoté’ and Q; the t-step value function an@-value
function of policyr’ respectively, then:

J(m) = J(x') =T E [Qr—t11(5,m) = Vr_s11(5)]

t~U(1:T),s~db

for U(1 : T') the uniform distribution on the s¢t., 2,...,7T}.

10
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Proof. Let 7; denote the non-stationary policy that executeis the firstt time steps, and then switches to
executer’ at timet + 1to T. Then we have/(n) = J(rr) andJ(x') = J(mo). Thus:

J(m) = J(n')

= Y U(m) = J(me)]

ZtT:l[ESNd; [QlT—tJrl(Sv ™) — VTCtH(S)]]

= TEivar)sca [Qr—t+1(5,7) = Vi1 (s)]

AGGREVATE Reduction Analysis

Let €class = minren & Zfil Eivvairy,smat [QT—441(8, ™) — ming Q7_441(s, a)] denote the minimum
expected cost-sensitive classification regrei achieveplotigies in the clas$I on all the data over thé/ it-
erations of training. Denote the online learning averaggeteon the cost-to- go examples of the sequence
of policies chosen by BGREVATE, eregret = ~ [, £i(7i) — mingen 3 i, £i(m)], where t;(r) =
]EtNU(LT)’SNd;i [QT_¢41(s,m)]. Assume the cost-to-go of the expépt is non-negative and bounded by
Qt.ax, and that3; are chosen such that < (1 — «)*~" for somea. Then we have the following:

Theorem 4.4. After N iterations of AGGREVATE:

m T . max T log T
J(ﬂ-) < J(Tr) < J(ﬂ' ) + T[Eclass+ Eregret] +0 <Q(17N()g> )

Thus if a no-regret online algorithm is used to pick the seqeeof policiesr.n, then as the number of
iterations N — oo:
lim J(7) < J(7") + Teclass

N—o0

Proof. For every policyr;, we have:

J(#i) — J (")
= TEtNU(LT),SNd;i [Q;—t+1(37ﬁ'i) - Vifft+1(8)]

= ZtT 1 s~dt [Q?F t41(8,76) = Vr_i11(8)]

< ST Bt (@42 (5, 71) = Vi1 (3)] F Qe Sy |1, — i, |1
< Zt 1 s~df [QT t11(8, i) = Vi1 11(8)] + 2Qnax 23:1 min(1,¢5;)
< YiiEenar [QTft+1(57 i) = Vi_111(8)] + 27°Qrnax min(1, T'8;)

TEtNU(lzT),swdﬁri [Q;‘—t+1(87 i) — Vif—t+1(8)] + 2T Qax min(1, T'8;)

where we use lemnia4.3 in the first equality, lenima 4.1 in teeifiequality, and a similar argument to lemma
[4:2 for the second inequality.

Sinceg; are non-increasing, defing; the largests < N such that3, > 1/T. Then:
J(m) = J(r")
¥ ZZ [ (7)) = J (7))

IA

~ ZZ 1[TEt~U(1 ) sl QT _¢11(8,7i) = Vi_y11(8)] + 2T Qax min(1, T5;))
= Tminren + Yi, IEt~U(1 ) smdty [QT—t41(5, ™) = Vi_i41()]] + Teregret

+ 2 Cmax [y 4 T Zi:nﬁl Bi
< Tlmingen % Y0, Eiv@irysmar [Qr—er1(s,7) — ming Q¢ 11(s, a)] + Teregret

2TQY .
= dex [ng + TZfV ng+1 Bi
= Tﬁclass+ Tﬁregret+ max [n +T Zl ng+1 /Bz]

Again, J () < J() since the minimum is always better than the averageriie; J(#;) < + Zf’:l J (7).
Finally, we have that whefl; = (1 — a)' ™", [ns + T 201, Bi] < Ls(M+2 This proves the first part of
the theorem.

The second part follows immediately from the fact thaget — 0 asN — oo, and similarly for the extra term

QT log T
o) (7QN g ) 0
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Finite Sample AGGREVAT E with Q-function approximation

We here consider the finite sample case where actions areregpliniformly randomly and the reduction
of cost-sensitive classification to squared loss regrassiased. We consider learning an estimate Q-value
function Q of the expert's cost-to-go, and we consider a general caseenthe cost-to-go predictions may
depend on featureg(s, a,t) of the states, actiona and timet, e.g. O could be a linear regressor s.t.
QT—t+1(37 a) = w' f(s,a,t) is the estimate of the cost-to-g@7_;,(s,a), andw are the parameters of
the linear regressor we learn. Given such estim@tese consider executing the poliéy, such that in state
attimet, 7(s,t) = mingea QT—t+1(37 a).

Theorem 4.5. After N iterations of AGGREVATE, collectingm regression examplgs, a, t, Q) per iteration,
guarantees that with probability at leastdt-

J(#) < J@) < J(n") + 29/ TAIT ecass + egrei+ O(v/og(1/8)/Nm) + O <%) .

Thus if a no-regret online algorithm is used to pick the seqeeof regressors):., then as the number of
iterations N — oo, with probability 1:

lim J(7) < J(Tl'*) + 2+/|A|T/ éclass

N—o0

Proof. Considerr, the bayes-optimal non-stationary policy that minimizesslon the cost-to-go examples.
That is,7(s,t) = mineca Q7_;11(s, a), i.e. it picks the action with minimum expected expert dosgo
conditioned on being in stateand timet. Additionally, given the observed noisy Q-values from etafectory,
the bayes-optimal regressor is simply the Q-value funaf)érof the expert that predicts the expected cost-to-

go.
At each iteratiori, we execute a policyt;, such thatr;(s,t) = argmin, 4 Q%,Hl(s, a), whereQ' is the
current regressor at iteratiorirom the base online learner. The cost-sensitive regreblidyp7;, compared to
7, can be related to the regression regrefofas follows:

Consider any stateand timet. Leta, = 7;(s,t) and consider the actiarf of any other policy. We have that:

Q;‘—t;k_l(& ai) — Q;‘—t;r_l(& a) . .

< Q%‘—t«rl(& &i) - erftjq(& ‘1/) + Q}ftjq(sv dz‘) - Q%‘—t«rl(&di) + Q%‘—t«rl(& ‘1/) - Q;Lt+1(57 ‘1/)
< Qr_pqa (s 04) — QZT7t+1('97Ad_i) +Qr_iq1(s,0") = Q7 _y41(s,a")

< 2maxaea |Q7_i11(s,a) — Qr_iy1(s,0)]

Additionally, for any joint distributionD over (s, t), andU (A) the uniform distribution over actions, we have
that:

(E(s,t)~D[maXaeA |Q§‘—t+1(57 ‘1) - Qé‘itﬂ(sv ‘1)”)2
< E(s,t)~D[maXaeA |Q;Lt+1(57 a) _AQ%‘—t+1(87a)|2]
< ]E(Svt)ND[ZaEA |Q:}—t+1(37a) - QZT—t+1(37a)|2]

[A[E (s 1y~ amt () |QT—t41(5,0) — Q7 _r11(s, )]
Thus we obtain that for every;:
EtNU(LT),SNd;i [Q}7t+1(37 i) — Q}7t+1(37 7))

< 2Et~U(1:T),s~d$ri [maxeea |Q7—¢41(s,a) — Qé“ftjq(sv a)l]

2y |A|\/EtNU(lzT),SNd’gri,aNU(A)HQ?F—tJrl(Sv a) — Qé"—t+1(s7 a)l?]

IN

Thus
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J(@) — J(*)

N * * *
= % Zizl EtNU(lzT),SNd% [QT7t+1('97 i) — QT7t+l('97 )]

>

< XL Eeviryscag [QT—e41(s, %) = Q7 —pya(s, 7)) + %[nﬁ + TZf\r:"BH o1

< Iy Eov ey omdt, [QF_141(5, i) — Qr—y41(5, )] + % [ng + TZf\r:nBﬂ Bi]

< 2 ]‘\TA‘T > \/EMU(LT),SNdE,,MU(A)“Q;*Hl(s’ W = Qa5
+£%mmﬂ+TZ£WH@]

< VAT E SN By amat, amo ) [Qi i1 (5:0) = Qe (5, )]

2TQI]]&X
+—F" [n5+TZz n5+162]

Now in states at timet, when performing: and then following the expert, consider the distributiQn, ; over
observed cost-t0-g@, such thafq~a, ,, , [Q] = QT—;+1(s,a).

For any regressof), define the expected squared loss in predictions of the wdd@ost-to-go at iteration
asl;(Q) = Eiot(1:7) smdt amU(A),Qrda.t.a [1Q — Qr—t+1(s, a)|?]. Then since for any random variahle
with meany, if we have an estimatg of the mean|j — u|*> = E.[(z — )% — (z — p)?], we have that:

N N

1 " A

N ZEtNU(lzT),SNdﬁri,aNU(A)“QTftJﬁl(sya) Qr—t41(s,a) Z (@) — 4:i(Q7)
i—1 Pt

Now, in the finite sample case, consider coIIecbing;ampIes at each iteration{(si;, a:;, tij, Qij)}j=1. The
expected squared logs is estimated a$;(Q) = = Y7 (Qr—+,;+1(si5, ai;) — Qi;)*, and the no-regret
algorithm is run on the estimated lo&s

DefineYi; = £i(Q") — (Qir—i,,41(si5,ai5) — Qiz)* — Li(Q") + (Qr—i,,41 (515, ai5) — Qi)°, the dif-

ference between the expected squared loss and the empiicale loss at each sample for bathand Q*.
Conditioned on previous trajectories, each; has expectation 0. Then the sequence of random variables

Ximar = iy iy Yig 4 5y Yisn)go fork € {0,1,2,...,N — 1} andl € {1,2,...,m}, forms a
martingale, and if the squared loss at any sample is boundéd.h, we obtain thatX; — X;11]| < 2¢max. By

Azuma-Hoeffding’s inequality, this implies that with prattility at leastl — 4, —XNm < 2, \/21%(”11/‘5).

Denote the empificgl average online regret on the trainiggaed 10SSéregret = %Zf;lé}(@i) —
mingc o % Zi’il 2;(Q). Let Q" be the bayes-optimal regressor on the finite training datd,define the
empirical regression regret of the best regressor in thes @etciass = min . o = Zf\r:l[éi(Q) —£;(Q")].

Then we obtain that with probability at lealst- 4:

NZ()K()

L3N Q) — (Q) + 5= X
< AN Q) — 6(Q7) + 2y 2B
< mingeg § L Q) — Li(Q7)] + éregrett 2lmax ) HEELD
< Eclasst Eregret+ 20max 4/ 21%(,}/5)

where the last inequality follows from the fact tHa}" , 7:(Q*) < SN | 2:(Q*).
Combining with the above, we obtain that with probabilityesstl — §:

N
. R R 2log(1/6) | 2TQmax 3

J(f) — J(ﬂ' ) <2 |A|T\/€class+ €regret 1 2lmax O]%f(nl/ ) + ?\f [n,ﬁ‘ +T . » /Bl]
’L:nB
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NRPI Reduction Analysis

We here provide the proof of the result for NRPI, sampled fetate exploration distributions ..
To analyze this version, we begin with an alternate versfaghe performance difference lemma (lemimal 4.3)
presented before:

Lemma 4.6. Let r and =’ be any two policy and denoté, and QQ; the t-step value function an@)-value
function of policyr respectively, then:

J(r) = J(x')=T E [Vr—i11(s) = Qr—t+1(s,7)]
t~U(1:T),s~d;,

for U(1 : T') the uniform distribution on the sé¢t, 2,...,7}.

Proof. By applying lemm&413 to'(x’) — J(m), we obtain:
J(r') = J(m) =T E [Qr—t+1(s,7") = Vr—141(5)]

tNU(ltT),SNdzr/

This proves the lemma. |

Now denote the loss,, used by the online learner at iterations.t.:

L () = Eomv (1:7) 50w [QF 41 (8, )]
anderegretthe average regret after tiié iterations of NRPI:
1 < 1 X
Eregret = N Z LZ(TFZ) — 17}}5111_11 N ;Lz(ﬂ)

i=1

For any policyr € II, denote the averagk,; distance between, andd’. over time steps as:
T
1 ¢
D = — —d4 .
() = 3 v = el

Assume the cost-to-go of the learned policigsm, ..., mx are non-negative and bounded Qy..x, for any
states, actiona and timet (in the worst case this i5Chax). Denoter the best policy found by NRP1 over the
iterations, andr the uniform mixture policy over.n defined as before. Then we have to following guarantee
with this version of NRP1 with learner’s cost-to-go:

Theorem 4.7. For any«’ € II:
J(7) < J(T) < J(7') + Teregret + TQumax D(v, ')
Thus, if a no-regret online cost-sensitive classificatitgodthm is used, then:
Nhj)noo J(@) < J(") + TQuaxD(v, ")

Proof. Let Q! denote the-stepQ-value function of policyf;. Then for everyr; we have:
J(7:) — J(7")
= T]EtNU(l:T),srver/ [Qintﬂ(Sﬂi'i) - Qintﬂ(Sﬂ"/)]
= 3:1 Es~djr, [QiT—tJrl(S?ﬁ-i) - Q%“—tJrl(S?ﬂ-l)]
Z;l ESNW [QiT—tJr.l (57 7?rl) - QiT—tJr_l (57 Wl)] + Qmax 23:1 ||Vt - dﬁr’ ||1
T]EtNU(ltT),SNVt [QZT—t+1(57 7ATz) - Qletﬂ(S’ W’)] + TQmaxD(% 7Tl)
where we use lemnia4.6 in the first equality, and lefamia 4. 1dfitst inequality.

I IA

Thus:
s
= yzﬁl[(}(m) = J(7)] ) _
< ~ Zi:&r[T]Eth(lzT),SNVt [Q_ZTftjq(Sv ﬁb) - QZT7t+1(57 7",)] + TQmaxD(% 7",)] )
< T% Zizl EtNU/(l:T),SNVt [Qletﬂ(S’ 7ATz)] — T minzen % Zi:l EtNU(lzT),SNVt [QZT—tH(S: W)]

F+T Qmax D (v, ")
TEregret+ TQmaxD(V7 7T/)

Again, J(#) < J() since the minimum is always better than the averageriie; J(#;) < + SN J(#).
This proves the first part of the theorem.

The second part follows immediately from the fact thajret— 0 aSN — oo. a
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