A Reduction of Imitation Learning and Structure Prediction to No-Regret Online Learning
Stephane Ross, Geoffrey J. Gordon and J. Andrew Bagnell [1]

Dennis Aumiller
Heidelberg University
Imitation Learning

October 12, 2018
Table of Contents

1. Motivation
2. Algorithm Descriptions
3. Analysis
4. Experimental Results
5. Limitations of the DAgger Algorithm
6. Conclusion
Outline

1 Motivation

2 Algorithm Descriptions

3 Analysis

4 Experimental Results

5 Limitations of the DAgger Algorithm

6 Conclusion
“Standard Arguments” for Imitation Learning:

- Generally helpful in sequential prediction problems
- Learn a robust policy that can recover from failure (compare Supervised Learning)
- *Efficiently* learn such a policy (compare Reinforcement Learning)

Further, we have seen shortcomings of previous algorithms:

- Convergence might not be (or only weakly) guaranteed
 - SEARN: Grows quadratically in the number of errors
- Resulting policy might be a stochastic mixture of several policies, or non-stationary
Application Examples

- Autonomous navigation
- POS tagging
- Handwriting recognition

Figure: SuperTux Cart racing game [1].
Problem Formulation

General notation:
- \(\Pi \): Class of all possible policies, with \(\pi \in \Pi \) an arbitrary policy.
- \(T \): Task horizon, \(t \in T \) a specific time step.
- \(d^t_\pi \): Distribution of states in policy \(\pi \) at time step \(t \).
- \(d_\pi = \frac{1}{T} \sum_{t=1}^{T} d^t_\pi \): State distribution of policy \(\pi \) across all time steps.
- \(C(s, a) \): Immediate cost of an action \(a \) under a given state \(s \). Note that \(C \) is bound by \([0, 1]\).
- \(C_\pi(s) = \mathbb{E}_{a \sim \pi(s)}[C(s, a)] \): Expected immediate cost in state \(s \) under policy \(\pi \).
- \(J(\pi) = \sum_{t=1}^{T} \mathbb{E}_{s \sim d^t_\pi}[C_\pi(s)] = T \mathbb{E}_{s \sim d_\pi}[C_\pi(s)] \): Total cost of one episode under policy \(\pi \).
- \(\ell(s, \pi) \): Surrogate loss function (possibly with respect to an expert policy).
- \(Q_t^{\pi'}(s, \pi) \): \(t \)-step cost of executing \(\pi \) from the initial state \(s \) and then following \(\pi' \) after.
True cost of action $C(s, a)$ is usually unknown. Thus, we use the surrogate loss $\ell(s, \pi)$ instead.

Find a policy $\hat{\pi}$ that best approximates the expert policy π^* under the distribution of states

$$\hat{\pi} = \arg\min_{\pi \in \Pi} \mathbb{E}_{s \sim d_\pi} (\ell(s, \pi))$$

(1)

Shortcomings:

- Due to unknown system dynamics, cannot compute d_π.

 \Rightarrow non-iid supervised learning problem, since representation of d depends on π!
Outline

1. Motivation
2. Algorithm Descriptions
3. Analysis
4. Experimental Results
5. Limitations of the DAgger Algorithm
6. Conclusion
Reduction to Behavioral Cloning

Train classifier D_{sup} only on states encountered by expert ($= d_{\pi^*}$), which yields policy π_{sup}:

$$\hat{\pi}_{\text{sup}} = \arg\min_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi^*}} [\ell(s, \pi)]$$ (2)
Motivation Algorithms Analysis Experiments Limitations Conclusion

Reduction to Behavioral Cloning

Train classifier D_{sup} only on states encountered by expert ($= d_{\pi^*}$), which yields policy π_{sup}:

$$\hat{\pi}_{sup} = \arg\min_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi^*}} [\ell(s, \pi)]$$ \hspace{1cm} (2)

Assume $\ell(s, \pi)$ is 0-1 loss, or upper bounded on 0-1 loss, implies:

Theorem (2.1 Error of Behavioral Cloning)

Let $\mathbb{E}_{s \sim d_{\pi^*}} [\ell(s, \pi)] = \epsilon$, then the resulting cost of the episode $J(\pi) \leq J(\pi^*) + T^2 \epsilon$.

For proof, see yesterday’s slides, or [2].
Iteratively trained policy
- Non-stationary
- π_t for each time step t

π_t trained to mimic π^* on state distribution induced by previous policies π_1, \ldots, π_{t-1}

Thus guarantees expected loss to match average loss during training

Each policy is only adopted on its specific time step!
Theorem (2.1 Error of Behavioral Cloning)

Let π be such that $\mathbb{E}_{s \sim d_\pi}[\ell(s, \pi)] = \epsilon$, and

$$Q^*_t(s, a) - Q^*_T(s, \pi^*) \leq u, \quad \forall a, t \in \{1, 2, \ldots, T\}, \quad d^*_t(s) > 0,$$

then it follows that $J(\pi) \leq J(\pi^*) + uT\epsilon$.

Also holds for any general policy π that can guarantee ϵ surrogate loss!
Forward Training Guarantee

Proof: Consider π that executes learned policy for first t steps, then lets the expert policy π^* take over. Then

$$J(\pi) = J(\pi^*) + \sum_{t=0}^{T-1} [J(\pi^*_{1:T-t}) - J(\pi^*_{1:T-t-1})] \text{ (deviation cost per time step)}$$ \hspace{1cm} (3)
Forward Training Guarantee

Proof: Consider π that executes learned policy for first t steps, then lets the expert policy π^* take over. Then

$$J(\pi) = J(\pi^*) + \sum_{t=0}^{T-1} [J(\pi_{1:T-t}) - J(\pi_{1:T-t-1})] \quad \text{(deviation cost per time step)}$$ \hfill (3)

$$= J(\pi^*) + \sum_{t=1}^{T} \mathbb{E}_{s \sim d_T} [Q_{T-t+1}^*(s, \pi) - Q_{T-t+1}^*(s, \pi^*)] \quad \text{(per definition of } J(\pi))$$ \hfill (4)
Forward Training Guarantee

Proof: Consider \(\pi \) that executes learned policy for first \(t \) steps, then lets the expert policy \(\pi^* \) take over. Then

\[
J(\pi) = J(\pi^*) + \sum_{t=0}^{T-1} [J(\pi_{1:T-t}) - J(\pi_{1:T-t-1})] \quad \text{(deviation cost per time step)} \quad (3)
\]

\[
= J(\pi^*) + \sum_{t=1}^{T} E_{s \sim d_t}[Q^{\pi^*}_{T-t+1}(s, \pi) - Q^{\pi^*}_{T-t+1}(s, \pi^*)] \quad \text{(per definition of } J(\pi) \text{)} \quad (4)
\]

\[
\leq J(\pi^*) + u \sum_{t=1}^{T} E_{s \sim d_t}[\ell(s, \pi)] = J(\pi^*) + uT \epsilon \quad \text{(inequality from bounding on 0-1 loss)}.
\]

(5)
Stochastic Mixing Iterative Learning (SMILe) [2]

- Strongly related to SEARN
- Start from expert policy π_0
- At step i, $\hat{\pi}_i$ is trained to mimic expert under previous policy π_{i-1}

```
Initialize $\pi^0 \leftarrow \pi^*$ to query and execute expert.
for $i = 1$ to $N$ do
    Execute $\pi^{i-1}$ to get $D = \{(s, \pi^*(s))\}$.
    Train classifier $\hat{\pi}^i = \arg\min_{\pi \in \Pi} \mathbb{E}_{s \sim D}(e_\pi(s))$.
    $\pi^i = (1 - \alpha)^i \pi^* + \alpha \sum_{j=1}^{i} (1 - \alpha)^{j-1} \hat{\pi}^j$.
end for
Remove expert queries: $\tilde{\pi}^N = \frac{\pi^N - (1 - \alpha)^N \pi^*}{1 - (1 - \alpha)^N}$
```

Algorithm 4.1: The SMILe Algorithm.
Stochastic Mixing Iterative Learning (SMILe) [2]

- Update can be rewritten as $\pi_i = \pi_{i-1} + \alpha(1 - \alpha)^{i-1}(\hat{\pi}_i - \pi_0)$
- Generally $O(T^2)$ regret
- If parameter $\alpha \in O\left(\frac{1}{T^2}\right)$ guarantees near-linear regret in T and ϵ
- Also needs less iterations than SEARN ($O(T^2(\ln T)^{3/2})$ instead of $O(T^3 \ln T)$)
Choose arbitrary starting policy

Let policy $\hat{\pi}_i$ run, and flip coin whether $\hat{\pi}_i$ or expert π^* execute current action

But always record expert decision (in the background)

Construct new dataset as aggregation of all previous samples

Train new policy, and repeat

Initialize $\mathcal{D} \leftarrow \emptyset$.
Initialize $\hat{\pi}_1$ to any policy in Π.

$\textbf{for } i = 1 \textbf{ to } N \textbf{ do}$

Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$.
Sample T-step trajectories using π_i.
Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert.
Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i$.
Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D}.

$\textbf{end for}$

Return best $\hat{\pi}_i$ on validation.

Algorithm 3.1: DAGGER Algorithm.
Data Aggregation (DAgger)

- Avoid mixture of policies
- Follow-the-leader strategy avoids overfitting
- Mixture parameter β_i generally indicator function $I(i = 1)$ or exponentially decaying value $p^{(i-1)}$

```
Initialize $\mathcal{D} \leftarrow \emptyset$.
Initialize $\hat{\pi}_1$ to any policy in $\Pi$.
for $i = 1$ to $N$ do
    Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$.
    Sample $T$-step trajectories using $\pi_i$.
    Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by $\pi_i$ and actions given by expert.
    Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i$.
    Train classifier $\hat{\pi}_{i+1}$ on $\mathcal{D}$.
end for
Return best $\hat{\pi}_i$ on validation.
```

Algorithm 3.1: DAGGER Algorithm.
1 Motivation

2 Algorithm Descriptions

3 Analysis

4 Experimental Results

5 Limitations of the DAgger Algorithm

6 Conclusion
Guarantee of Bounds to No-Regret Learning

- Assumes infinite sample trajectories at each iteration
- \(\epsilon_N = \min_{\pi} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s \sim d_{\pi_i}}[\ell(s, \pi)] \) true loss of best policy

Theorem (3.1 Existence of Optimal Policy for Infinite Sample Case)

For DAgger, if \(N \in \tilde{O}(T) \) there exists a policy \(\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\} \) s.t.

\[
\mathbb{E}_{s \sim d_{\hat{\pi}}} [\ell(s, \hat{\pi})] \leq \epsilon_N + O\left(\frac{1}{T}\right).
\]

Proof via analysis results in next part.
Guarantee of Bounds to No-Regret Learning

- Holds for policy that performs best under its own distribution:
 \[\hat{\pi} = \arg\min_{\pi \in \{\hat{\pi}_1, \ldots, \hat{\pi}_N\}} \mathbb{E}_{s \sim d_\pi} [\ell(s, \pi)] \]

- Alternatively, pick uniformly at random from \{\hat{\pi}_1, \ldots, \hat{\pi}_N\}
Guarantee of Bounds to No-Regret Learning

Combining Theorem 3.1 with Theorem 2.2 yields another result, important for the no-regret convergence. Only requirement is that ℓ upper bounds true cost C:

Theorem (3.2 Convergence with respect to Expert Policy)

For DAgger, if $N \in \tilde{O}(uT)$ there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, \ldots, \hat{\pi}_N\}$ s.t.

$$J(\hat{\pi}) \leq J(\pi^*) + uT\epsilon_N + O(1).$$
Combining Theorem 3.1 with Theorem 2.2 yields another result, important for the no-regret convergence. Only requirement is that ℓ upper bounds true cost C:

Theorem (3.2 Convergence with respect to Expert Policy)

For DAgger, if $N \in \tilde{O}(uT)$ there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\}$ s.t.

$$J(\hat{\pi}) \leq J(\pi^*) + uT\epsilon_N + O(1).$$

Proof:

- 3.1 guarantees policy that satisfies prerequisites for 2.1
- Additional error bound of $O\left(\frac{1}{T}\right)$ over T time steps is in $O(1)$.
Guarantees for Finite Sample Case

- Usually only limited samples available
- Still guaranteed to find converging policy with certain probability
- Let m be the samples per iteration
- Make use of a special case of the Azuma-Hoeffding inequality
Azuma-Hoeffding Inequality

- Gives probability that mean of samples from distribution are ϵ-close to the actual mean of the distribution
- The more samples we have, the closer we can get

It states:

$$X_N = \sum_{i=1}^{N} Y_i, \quad \mathbb{E}[Y] = \mu$$

$$P[X_N/N - \mu > \epsilon/N] \leq e^{-\frac{\epsilon^2}{2N}} = \delta \quad (6)$$

$$\implies \epsilon = \sqrt{\log \frac{1}{\delta} \cdot 2N} \quad (7)$$

$$\implies P[X_N/N - \mu \leq \sqrt{\frac{2N \log \frac{1}{\delta}}{N}}] \geq 1 - \delta \quad (8)$$
Theorem (3.3 Convergence for Finite Sample Case)

For DAgger, if $N \in \tilde{O}(T^2 \log(1/\delta))$ and $m \in O(1)$, then with probability of at least $1 - \delta$ there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\}$ s.t. $\mathbb{E}_{s \sim d_{\hat{\pi}}} [\ell(s, \hat{\pi})] \leq \hat{\epsilon}_N + O\left(\frac{1}{T}\right)$.

Theorem (3.4 Convergence for Finite Sample Case with respect to Expert)

For DAgger, if $N \in \tilde{O}(u^2 T^2 \log(1/\delta))$ and $m \in O(1)$, then with probability at least $1 - \delta$ there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\}$ s.t. $J(\hat{\pi}) \leq J(\pi^*) + u^T \hat{\epsilon}_N + O(1)$.

Theorems for Finite Sample Case
Theorem (3.3 Convergence for Finite Sample Case)

For DAgger, if \(N \in \tilde{O}(T^2 \log(1/\delta)) \) and \(m \in O(1) \), then with probability of at least \(1 - \delta \) there exists a policy \(\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\} \) s.t.

\[
\mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \hat{\epsilon}_N + O\left(\frac{1}{T}\right).
\]

Theorem (3.4 Convergence for Finite Sample Case with respect to Expert)

For DAgger, if \(N \in \tilde{O}(u^2 T^2 \log(1/\delta)) \) and \(m \) in \(O(1) \) then with probability at least \(1 - \delta \) there exists a policy \(\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\} \) s.t.

\[
J(\hat{\pi}) \leq J(\pi^*) + u T \hat{\epsilon}_N + O(1).
\]
No-Regret Algorithms Guarantees

- Hold for any no-regret algorithm, not just Follow-the-leader
Further assumptions:

- β_i is non-increasing
- $\ell_{\text{max}} \geq \ell_t(s, \hat{\pi}_t), \forall t \in \{1, \ldots, T\}$
- n_β is largest n s.t. $\beta_n > \frac{1}{T}$
Limitation of Average Regret

Further assumptions:

- β_i is non-increasing
- $\ell_{\text{max}} \geq \ell_t(s, \hat{\pi}_t)$, $\forall t \in \{1, \ldots, T\}$
- n_β is largest n s.t. $\beta_n > \frac{1}{T}$

Lemma (4.1 Bound on Total Variation)

\[\|d_{\pi_t} - d_{\hat{\pi}_t}\|_1 \leq 2T \beta_i, \text{ especially for } \beta_i \leq 1/T. \]
Limitation of Average Regret

Further assumptions:
- β_i is non-increasing
- $\ell_{\text{max}} \geq \ell_t(s, \hat{\pi}_t), \forall t \in \{1, \ldots, T\}$
- n_β is largest n s.t. $\beta_n > \frac{1}{T}$

Lemma (4.1 Bound on Total Variation)
$$||d_{\pi_t} - d_{\hat{\pi}_t}||_1 \leq 2T\beta_i, \text{ especially for } \beta_i \leq \frac{1}{T}.$$

Theorem (4.1 Average Regret)
For DAgger, there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, \ldots, \hat{\pi}_N\}$ s.t.
$$\mathbb{E}_{s \sim d_{\hat{\pi}}} [\ell(s, \hat{\pi})] \leq \hat{\epsilon}_N + \gamma_N + \frac{2\ell_{\text{max}}}{N} [n_\beta + T \sum_{i=n_\beta+1}^N \beta_i], \text{ for } \gamma_N \text{ the average regret of } \{\hat{\pi}_1, \ldots, \hat{\pi}_N\}$$
Limitation of Average Regret

\[
\begin{align*}
\min_{\pi \in \Pi_{1:N}} \mathbb{E}_{s \sim d_{\pi}} [\ell(s, \hat{\pi})] \\
\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s \sim d_{\hat{\pi}_i}} (\ell(s, \hat{\pi}_i)) \\
\leq \frac{1}{N} \sum_{i=1}^{N} \left[\mathbb{E}_{s \sim d_{\pi_i}} (\ell(s, \hat{\pi}_i)) + 2\ell_{\max} \min(1, T\beta_i) \right] \\
\leq \gamma_N + \frac{2\ell_{\max}}{N} [n_\beta + T \sum_{i=n_\beta+1}^{N} \beta_i] + \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \ell_i(\pi) \\
= \gamma_N + \epsilon_N + \frac{2\ell_{\max}}{N} [n_\beta + T \sum_{i=n_\beta+1}^{N} \beta_i]
\end{align*}
\]
Theorem (4.2 Average Regret in Finite Sampling Case)

For DAgger, with probability at least $1 - \delta$, there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, \ldots, \hat{\pi}_N\}$ s.t.

$$\mathbb{E}_{s \sim d_{\hat{\pi}}} [\ell(s, \hat{\pi})] \leq \hat{\epsilon}_N + \gamma_N + \frac{2\ell_{\text{max}}}{N} \left[n_\beta + T \sum_{i=n_\beta+1}^N \beta_i \right] + \ell_{\text{max}} \sqrt{\frac{2 \log(1/\delta)}{mN}},$$

for γ_N the average regret of $\{\hat{\pi}_1, \ldots, \hat{\pi}_N\}$.

Average Regret of Finite Sampling Case

\[
\begin{align*}
\min_{\hat{\pi} \in \hat{\pi}_{1:N}} \mathbb{E}_{s \sim d_{\hat{\pi}}} [\ell(s, \hat{\pi})] \\
\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s \sim d_{\hat{\pi}_i}} [\ell(s, \hat{\pi}_i)] \\
\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s \sim d_{\hat{\pi}_i}} [\ell(s, \hat{\pi}_i)] + \frac{2\ell_{\max}}{N} \left[n_\beta + T \sum_{i=n_\beta+1}^{N} \beta_i \right] \\
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s \sim D_i} [\ell(s, \hat{\pi}_i)] + \frac{1}{mN} \sum_{i=1}^{N} \sum_{j=1}^{m} Y_{ij} \\
+ \frac{2\ell_{\max}}{N} \left[n_\beta + T \sum_{i=n_\beta+1}^{N} \beta_i \right] \\
\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s \sim D_i} [\ell(s, \hat{\pi}_i)] + \ell_{\max} \sqrt{\frac{2\log(1/\delta)}{mN}} \\
+ \frac{2\ell_{\max}}{N} \left[n_\beta + T \sum_{i=n_\beta+1}^{N} \beta_i \right] \\
\leq \hat{\epsilon}_N + \gamma_N + \ell_{\max} \sqrt{\frac{2\log(1/\delta)}{mN}} + \frac{2\ell_{\max}}{N} \left[n_\beta + T \sum_{i=n_\beta+1}^{N} \beta_i \right]
\end{align*}
\]
Comparison to SEARN [3]

SEARN
- Requires large number of iterations to converge
 - Both in theory and practice
- Mixture of policies
- [2] mention $O(T^2 \log T)$ instead of linear scaling in T as presented in [3]

DAgger
- Stronger guarantees due to No-Regret approach
- Follow-the-leader returns single policy
- Requires less queries to expert (although still a lot)
Super Tux Cart

- Continuous action space (steering angle between [-1,1])

- DAgger performed best with $\beta_i = I(i = 1)$

Figure: Convergence of various methods for Super Tux Cart [1].
Super Mario Bros.

- Expert is near-optimal planning algorithm (expensive to query)
- Discrete action space (four buttons to press)
- Very simple levels!

Figure: Performance in Super Mario Bros. for various methods [1].
Handwriting Recognition

- Expert is supervised training data
- Discrete action space (predicted character)
- Probably sub-optimal compared to state-of-the-art neural architectures (RNN/LSTM)

Figure: Performance for handwriting recognition [1].
Outline

1. Motivation
2. Algorithm Descriptions
3. Analysis
4. Experimental Results
5. Limitations of the DAgger Algorithm
6. Conclusion
Limitations of DAgger

Main problem:

- DAgger still relies extremely heavily on the oracle/expert
- Each query can potentially be expensive, or make the collection of training samples hard
Limitations of DAgger

Main problem:
- DAgger still relies extremely heavily on the oracle/expert
- Each query can potentially be expensive, or make the collection of training samples hard
- Only guaranteed to work for convex loss functions
- Potentially a stronger bound can be given under the assumption of strong convexity
Limitations of DAgger

Main problem:

- DAgger still relies extremely heavily on the oracle/expert
- Each query can potentially be expensive, or make the collection of training samples hard
- Only guaranteed to work for convex loss functions
- Potentially a stronger bound can be given under the assumption of strong convexity
- Instability issues [4]
Limitations of DAgger

Main problem:

- DAgger still relies extremely heavily on the oracle/expert
- Each query can potentially be expensive, or make the collection of training samples hard
- Only guaranteed to work for convex loss functions
- Potentially a stronger bound can be given under the assumption of strong convexity
- Instability issues [4]

Still only at most performance on par with teacher!
Conclusion

- Presented various methods that are within $O(T^2)$ or lower bounds of an expert solution:
 - Forward Training
 - SMILe / SEARN
- Presented DAgger, a deterministic and stationary solution that alleviates several problems of previous methods by aggregating data across several episodes and querying an oracle/expert
- Provided extensive analysis of bounds for finite and infinite sample case for DAgger, which show nice properties
- Analyzed experiments, and showed some of DAgger’s limitations
Possible Extensions

Backplay curriculum learning [5, 6]:

- Instead of starting from initial starting state s_0, run the first iterations from an inverse policy $p_{t:T}$ that runs the expert for iterations $1:t$, and then the policy π.
- Potentially avoids distribution shift towards uncommon failure cases that appear in first iterations.
- Stabler training even with mixed policy for later episodes?
- Building a dense search tree from the bottom up could help to relinquish some queries: Instead of querying the expert, use surrogate loss as distance between expert replay and prediction (without expert).

Use with Deep Neural architectures:

- Experimental setup was conducted with linear SVM classifiers.
Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
A reduction of imitation learning and structured prediction to no-regret online learning.

Stéphane Ross and Drew Bagnell.
Efficient reductions for imitation learning.

Hal Daumé, John Langford, and Daniel Marcu.
Search-based structured prediction.
Hal Daumé.
A Course in Machine Learning.
http://ciml.info/.

Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alex Peysakhovich, Kyunghyun Cho, and Joan Bruna.
Backplay:” Man muss immer umkehren”.

Tim Salimans and Richard Chen.
Learning Montezuma’s Revenge from a single demonstration.
https://blog.openai.com/
learning-montezumas-revenge-from-a-single-demonstration/.
Thank you for your attention!