A Reduction of Imitation Learning and Structure Prediction to No-Regret Online Learning Stephane Ross, Geoffrey J. Gordon and J. Andrew Bagnell [1]

Dennis Aumiller

Heidelberg University Imitation Learning

October 12, 2018

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion

Table of Contents

2 Algorithm Descriptions

3 Analysis

- 4 Experimental Results
- 5 Limitations of the DAgger Algorithm

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion

Outline

2 Algorithm Descriptions

3 Analysis

- 4 Experimental Results
- 5 Limitations of the DAgger Algorithm

Motivation	Algorithms	Analysis 00000000000	Experiments	Limitations O	Conclusion 00000
Motivation					

"Standard Arguments" for Imitation Learning:

- Generally helpful in sequential prediction problems
- Learn a robust policy that can recover from failure (compare Supervised Learning)
- Efficiently learn such a policy (compare Reinforcement Learning)

Further, we have seen shortcomings of previous algorithms:

- Convergence might not be (or only weakly) guaranteed
 - SEARN: Grows quadratically in the number of errors
- Resulting policy might be a stochastic mixture of several policies, or non-stationary

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion

Application Examples

- Autonomous navigation
- POS tagging
- Handwriting recognition

Figure: SuperTux Cart racing game [1].

Motivation ●○	Algorithms	Analysis 00000000000	Experiments	Limitations O	Conclusion
Problem F	Formulation				

General notation:

- Π : Class of all possible policies, with $\pi \in \Pi$ an arbitrary policy.
- T: Task horizon, $t \in T$ a specific time step.
- d_{π}^{t} : Distribution of states in policy π at time step t.
- $d_{\pi} = \frac{1}{T} \sum_{t=1}^{T} d_{\pi}^{t}$: State distribution of policy π across all time steps.
- C(s, a): Immediate cost of an action *a* under a given state *s*. Note that *C* is bound by [0, 1].
- $C_{\pi}(s) = \mathbb{E}_{a \sim \pi(s)}[C(s, a)]$: Expected immediate cost in state s under policy π .
- $J(\pi) = \sum_{t=1}^{T} \mathbb{E}_{s \sim d_{\pi}^{t}}[C_{\pi}(s)] = T \mathbb{E}_{s \sim d_{\pi}}[C_{\pi}(s)]$: Total cost of one episode under policy π .
- $\ell(s,\pi)$: Surrogate loss function (possibly with respect to an expert policy).
- $Q_t^{\pi'}(s,\pi)$: *t*-step cost of executing π from the initial state *s* and then following π' after.

Motivation ⊙●	Algorithms	Analysis	Experiments	Limitations O	Conclusion
Goal					

- True cost of action C(s, a) is usually unknown. Thus, we use the surrogate loss $\ell(s, \pi)$ instead.
- Find a policy $\hat{\pi}$ that best approximates the expert policy π^* under the distribution of states

$$\hat{\pi} = \operatorname{argmin}_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi}}(\ell(s, \pi))$$
(1)

Shortcomings:

- Due to unknown system dynamics, cannot compute d_{π} .
 - \implies non-iid supervised learning problem, since representation of *d* depends on $\pi!$

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion

Outline

Motivation

2 Algorithm Descriptions

3 Analysis

4 Experimental Results

5 Limitations of the DAgger Algorithm

6 Conclusion

Motivation	Algorithms ●○○○○○○	Analysis 00000000000	Experiments	Limitations O	Conclusion
Reductio	n to Behaviora	al Cloning			

Train classifier \mathcal{D}_{sup} only on states encountered by expert (= d_{π^*}), which yields policy π_{sup} :

$$\hat{\pi}_{\sup} = \operatorname{argmin}_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi^*}} [\ell(s, \pi)]$$
(2)

Motivation	Algorithms ●0000000	Analysis 00000000000	Experiments	Limitations O	Conclusion
Reductio	n to Behaviora	al Cloning			

Train classifier \mathcal{D}_{sup} only on states encountered by expert $(= d_{\pi^*})$, which yields policy π_{sup} :

$$\hat{\pi}_{\mathsf{sup}} = \operatorname{argmin}_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi^*}}[\ell(s, \pi)]$$
(2)

Assume $\ell(s, \pi)$ is 0-1 loss, or upper bounded on 0-1 loss, implies:

Theorem (2.1 Error of Behavioral Cloning)

Let $\mathbb{E}_{s \sim d_{\pi^*}}[\ell(s,\pi)] = \epsilon$, then the resulting cost of the episode $J(\pi) \leq J(\pi^*) + T^2 \epsilon$.

For proof, see yesterday's slides, or [2].

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
	0000000				

Forward Training [1, 2]

- Iteratively trained policy
 - Non-stationary
 - π_t for each time step t
- π_t trained to mimic π* on state distribution induced by previous policies π₁,...π_{t-1}
- Thus guarantees expected loss to match average loss during training
- Each policy is only adopted on its specific time step!

Initialize π_1^0, \ldots, π_T^0 to query and execute π^* . for i = 1 to T do Sample T-step trajectories by following π^{i-1} . Get dataset $\mathcal{D} = \{(s_i, \pi^*(s_i))\}$ of states, actions taken by expert at step i. Train classifier $\pi_i^i = \operatorname{argmin}_{\pi \in \Pi} \mathbb{E}_{s \sim \mathcal{D}}(e_{\pi}(s))$. $\pi_j^i = \pi_j^{i-1}$ for all $j \neq i$ end for Return π_1^T, \ldots, π_T^T

Algorithm 3.1: Forward Training Algorithm.

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
	0000000				

Theorem (2.1 Error of Behavioral Cloning)

Let
$$\pi$$
 be such that $\mathbb{E}_{s \sim d_{\pi}}[\ell(s,\pi)] = \epsilon$, and
 $Q_{T-t+1}^{\pi^*}(s,a) - Q_{T-t+1}^{\pi^*}(s,\pi^*) \leq u, \ \forall a,t \in \{1,2,...,T\}, \ d_{\pi}^t(s) > 0$,
then it follows that $J(\pi) \leq J(\pi^*) + uT\epsilon$.

Also holds for any general policy π that can guarantee ϵ surrogate loss!

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
00	0000000	00000000000	000		00000

Proof: Consider π that executes learned policy for first *t* steps, then lets the expert policy π^* take over. Then

$$J(\pi) = J(\pi^*) + \sum_{t=0}^{T-1} [J(\pi_{1:T-t}) - J(\pi_{1:T-t-1})] \text{ (deviation cost per time step)}$$
(3)

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
00	0000000	00000000000	000		00000

Proof: Consider π that executes learned policy for first *t* steps, then lets the expert policy π^* take over. Then

$$J(\pi) = J(\pi^*) + \sum_{t=0}^{T-1} [J(\pi_{1:T-t}) - J(\pi_{1:T-t-1})] \text{ (deviation cost per time step)}$$
(3)
$$= J(\pi^*) + \sum_{t=1}^{T} \mathbb{E}_{s \sim d_{\pi}^t} [Q_{T-t+1}^{\pi^*}(s,\pi) - Q_{T-t+1}^{\pi^*}(s,\pi^*)] \text{ (per definition of } J(\pi))$$
(4)

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
00	0000000	00000000000	000		00000

Proof: Consider π that executes learned policy for first *t* steps, then lets the expert policy π^* take over. Then

$$J(\pi) = J(\pi^{*}) + \sum_{t=0}^{T-1} [J(\pi_{1:T-t}) - J(\pi_{1:T-t-1})] \text{ (deviation cost per time step)}$$
(3)
$$= J(\pi^{*}) + \sum_{t=1}^{T} \mathbb{E}_{s \sim d_{\pi}^{t}} [Q_{T-t+1}^{\pi^{*}}(s,\pi) - Q_{T-t+1}^{\pi^{*}}(s,\pi^{*})] \text{ (per definition of } J(\pi))$$
(4)
$$\leq J(\pi^{*}) + u \sum_{t=1}^{T} \mathbb{E}_{s \sim d_{\pi}^{t}} [\ell(s,\pi)] = J(\pi^{*}) + uT\epsilon \text{ (inequality from bounding on 0-1 loss)}.$$
(5)

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
	0000000				

Stochastic Mixing Iterative Learning (SMILe) [2]

- Strongly related to SEARN
- Start from expert policy π_0
- At step *i*, $\hat{\pi}_i$ is trained to mimic expert under previous policy π_{i-1}

Initialize $\pi^0 \leftarrow \pi^*$ to query and execute expert. for i = 1 to N do Execute π^{i-1} to get $\mathcal{D} = \{(s, \pi^*(s))\}$. Train classifier $\hat{\pi}^{*i} = \operatorname{argmin}_{\pi \in \Pi} \mathbb{E}_{s \sim \mathcal{D}}(e_{\pi}(s))$. $\pi^i = (1 - \alpha)^i \pi^* + \alpha \sum_{j=1}^i (1 - \alpha)^{j-1} \hat{\pi}^{*j}$. end for Remove expert queries: $\tilde{\pi}^N = \frac{\pi^N - (1 - \alpha)^N \pi^*}{1 - (1 - \alpha)^N}$ Return $\tilde{\pi}^N$

Algorithm 4.1: The SMILe Algorithm.

Motivation	Algorithms	Analysis	Experiments	Limitations O	Conclusion

Stochastic Mixing Iterative Learning (SMILe) [2]

- Update can be rewritten as $\pi_i = \pi_{i-1} + \alpha (1-\alpha)^{i-1} (\hat{\pi}_i \pi_0)$
- Generally $O(T^2)$ regret
- If parameter $\alpha \in O(\frac{1}{T^2})$ guarantees near-linear regret in T and ϵ
- Also needs less iterations than SEARN ($O(T^2(\ln T)^{\frac{3}{2}})$ instead of $O(T^3 \ln T)$)

Data Aggregation (DAgger)

- Choose arbitrary starting policy
- Let policy $\hat{\pi}_i$ run, and flip coin whether $\hat{\pi}_i$ or expert π^* execute current action
- But always record expert decision (in the background)
- Construct new dataset as aggregation of *all* previous samples
- Train new policy, and repeat

Initialize $\mathcal{D} \leftarrow \emptyset$. Initialize $\hat{\pi}_1$ to any policy in Π . for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$. Sample T-step trajectories using π_i . Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert. Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} . end for Return best $\hat{\pi}_i$ on validation.

Algorithm 3.1: DAGGER Algorithm.

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
	0000000				

Data Aggregation (DAgger)

- Avoid mixture of policies
- Follow-the-leader strategy avoids overfitting
- Mixture parameter β_i generally indicator function I(i = 1) or exponentially decaying value p⁽ⁱ⁻¹⁾

Initialize $\mathcal{D} \leftarrow \emptyset$. Initialize $\hat{\pi}_1$ to any policy in II. for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$. Sample T-step trajectories using π_i . Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert. Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} . end for Return best $\hat{\pi}_i$ on validation.

Algorithm 3.1: DAGGER Algorithm.

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion

Outline

Motivation

2 Algorithm Descriptions

3 Analysis

4 Experimental Results

5 Limitations of the DAgger Algorithm

6 Conclusion

Motivation	Algorithms	Analysis ●0000000000	Experiments	Limitations O	Conclusion

- Assumes infinte sample trajectories at each iteration
- $\epsilon_N = \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{s \sim d_{\pi_i}}[\ell(s, \pi)]$ true loss of best policy

Theorem (3.1 Existence of Optimal Policy for Infinte Sample Case)

For DAgger, if
$$N \in \tilde{O}(T)$$
 there exists a policy $\hat{\pi} \in {\{\hat{\pi}_1, ..., \hat{\pi}_N\}}$ s.t.
 $\mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \epsilon_N + O(\frac{1}{T}).$

Proof via analysis results in next part.

Motivation	Algorithms	Analysis o●ooooooooo	Experiments	Limitations O	Conclusion

- Holds for policy that performs best under its own distribution:
- $\hat{\pi} = \operatorname{argmin}_{\pi \in \{\hat{\pi}_1, \dots, \hat{\pi}_N\}} \mathbb{E}_{s \sim d_{\pi}}[\ell(s, \pi)]$
- Alternatively, pick uniformly at random from $\{\hat{\pi}_1,...,\hat{\pi}_N\}$

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		00000000000			

Combining Theorem 3.1 with Theorem 2.2 yields another result, important for the no-regret convergence. Only requirement is that ℓ upper bounds true cost *C*:

Theorem (3.2 Convergence with respect to Expert Policy)

For DAgger, if $N \in \tilde{O}(uT)$ there exists a policy $\hat{\pi} \in {\{\hat{\pi}_1, ..., \hat{\pi}_N\}}$ s.t. $J(\hat{\pi}) \leq J(\pi^*) + uT\epsilon_N + O(1)$.

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		0000000000			

Combining Theorem 3.1 with Theorem 2.2 yields another result, important for the no-regret convergence. Only requirement is that ℓ upper bounds true cost *C*:

Theorem (3.2 Convergence with respect to Expert Policy)

For DAgger, if $N \in \tilde{O}(uT)$ there exists a policy $\hat{\pi} \in {\{\hat{\pi}_1, ..., \hat{\pi}_N\}}$ s.t. $J(\hat{\pi}) \leq J(\pi^*) + uT\epsilon_N + O(1)$.

Proof:

- 3.1 guarantees policy that satisfies prerequisites for 2.1
- Additional error bound of $O(\frac{1}{T})$ over T time steps is in O(1).

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		000000000000000000000000000000000000000			

Guarantees for Finite Sample Case

- Usually only limited samples available
- Still guaranteed to find converging policy with certain probability
- Let *m* be the samples per iteration
- Make use of a special case of the Azuma-Hoeffding inequality

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		000000000			

Azuma-Hoeffding Inequality

- Gives probability that mean of samples from distribution are ϵ -close to the actual mean of the distribution
- The more samples we have, the closer we can get

It states:

$$X_{N} = \sum_{i=1}^{N} Y_{i} , \mathbb{E}[Y] = \mu$$

$$P[X_{N}/N - \mu > \epsilon/N] \le e^{-\frac{\epsilon^{2}}{2N}} = \delta \qquad (6)$$

$$\implies \epsilon = \sqrt{\log \frac{1}{\delta} \cdot 2N} \qquad (7)$$

$$\implies P[X_{N}/N - \mu \le \frac{\sqrt{2N\log \frac{1}{delta}}}{N}] \ge 1 - \delta \qquad (8)$$

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		000 00 000000			

Theorems for Finite Sample Case

Theorem (3.3 Convergence for Finite Sample Case)

For DAgger, if $N \in \tilde{O}(T^2 \log(1/\delta))$ and $m \in O(1)$, then with probability of at least $1 - \delta$ there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\}$ s.t. $\mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \hat{\epsilon}_N + O(\frac{1}{T})$.

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		000 00 000000			

Theorems for Finite Sample Case

Theorem (3.3 Convergence for Finite Sample Case)

For DAgger, if $N \in \tilde{O}(T^2 \log(1/\delta))$ and $m \in O(1)$, then with probability of at least $1 - \delta$ there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\}$ s.t. $\mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \hat{\epsilon}_N + O(\frac{1}{T})$.

Theorem (3.4 Convergence for Finite Sample Case with respect to Expert)

For DAgger, if $N \in \tilde{O}(u^2 T^2 \log(1/\delta))$ and m in O(1) then with probability at least $1 - \delta$ there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\}$ s.t. $J(\hat{\pi}) \leq J(\pi^*) + uT\hat{\epsilon}_N + O(1)$.

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		0000000000			

No-Regret Algorithms Guarantees

• Hold for any no-regret algorithm, not just Follow-the-leader

00	Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
	00	0000000	00000000000	000		00000

Further assumptions:

- β_i is non-increasing
- $\ell_{\mathsf{max}} \geq \ell_t(s, \hat{\pi}_t), \ \forall t \in \{1, ..., T\}$
- n_{β} is largest n s.t. $\beta_n > \frac{1}{T}$

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
00	0000000	00000000000	000		00000

Further assumptions:

- β_i is non-increasing
- $\ell_{\mathsf{max}} \geq \ell_t(s, \hat{\pi}_t), \ \forall t \in \{1, ..., T\}$
- n_{β} is largest n s.t. $\beta_n > \frac{1}{T}$

Lemma (4.1 Bound on Total Variation)

 $||d_{\pi_t} - d_{\hat{\pi}_t}||_1 \leq 2T\beta_i$, especially for $\beta_i \leq 1/T$.

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
00	0000000	00000000000	000		00000

Further assumptions:

- β_i is non-increasing
- $\ell_{\mathsf{max}} \geq \ell_t(s, \hat{\pi}_t), \ \forall t \in \{1, ..., T\}$
- n_{β} is largest n s.t. $\beta_n > \frac{1}{T}$

Lemma (4.1 Bound on Total Variation)

 $||d_{\pi_t} - d_{\hat{\pi}_t}||_1 \leq 2T\beta_i$, especially for $\beta_i \leq 1/T$.

Theorem (4.1 Average Regret)

For DAgger, there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\}$ s.t. $\mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \hat{\epsilon}_N + \gamma_N + \frac{2\ell_{\max}}{N}[n_\beta + T\sum_{i=n_\beta+1}^N \beta_i], \text{ for } \gamma_N \text{ the average regret of } \{\hat{\pi}_1, ..., \hat{\pi}_N\}$

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		00000000000			

$$\begin{split} \min_{\hat{\pi}\in\hat{\pi}_{1:N}} \mathbb{E}_{s\sim d_{\hat{\pi}}}[\ell(s,\hat{\pi})] \\ &\leq \frac{1}{N}\sum_{i=1}^{N} \mathbb{E}_{s\sim d_{\hat{\pi}_{i}}}(\ell(s,\hat{\pi}_{i})) \\ &\leq \frac{1}{N}\sum_{i=1}^{N} [\mathbb{E}_{s\sim d_{\pi_{i}}}(\ell(s,\hat{\pi}_{i})) + 2\ell_{\max}\min(1,T\beta_{i})] \\ &\leq \gamma_{N} + \frac{2\ell_{\max}}{N} [n_{\beta} + T\sum_{i=n_{\beta}+1}^{N}\beta_{i}] + \min_{\pi\in\Pi} \frac{1}{N}\sum_{i=1}^{N}\ell_{i}(\pi) \\ &= \gamma_{N} + \epsilon_{N} + \frac{2\ell_{\max}}{N} [n_{\beta} + T\sum_{i=n_{\beta}+1}^{N}\beta_{i}] \end{split}$$

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
00	0000000	000000000000000000000000000000000000000	000		00000

Average Regret of Finite Sampling Case

Theorem (4.2 Average Regret in Finite Sampling Case)

For DAgger, with probability at least $1 - \delta$, there exists a policy $\hat{\pi} \in \{\hat{\pi}_1, ..., \hat{\pi}_N\}$ s.t. $\mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \hat{\epsilon}_N + \gamma_N + \frac{2\ell_{\max}}{N}[n_\beta + T\sum_{i=n_\beta+1}^N \beta_i] + \ell_{\max}\sqrt{\frac{2\log(1/\delta)}{mN}}, \text{ for } \gamma_N \text{ the average regret of } \{\hat{\pi}_1, ..., \hat{\pi}_N\}$

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
		000000000000			

Average Regret of Finite Sampling Case

$$\begin{split} \min_{\hat{\pi}\in\hat{\pi}_{1:N}} \mathbb{E}_{s\sim d_{\hat{\pi}}} [\ell(s,\hat{\pi})] \\ &\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s\sim d_{\hat{\pi}_{i}}} [\ell(s,\hat{\pi}_{i})] \\ &\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s\sim d_{\pi_{i}}} [\ell(s,\hat{\pi}_{i})] + \frac{2\ell_{\max}}{N} [n_{\beta} + T \sum_{i=n_{\beta}+1}^{N} \beta_{i}] \\ &= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s\sim D_{i}} [\ell(s,\hat{\pi}_{i})] + \frac{1}{mN} \sum_{i=1}^{N} \sum_{j=1}^{m} Y_{ij} \\ &+ \frac{2\ell_{\max}}{N} [n_{\beta} + T \sum_{i=n_{\beta}+1}^{N} \beta_{i}] \\ &\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{s\sim D_{i}} [\ell(s,\hat{\pi}_{i})] + \ell_{\max} \sqrt{\frac{2\log(1/\delta)}{mN}} \\ &+ \frac{2\ell_{\max}}{N} [n_{\beta} + T \sum_{i=n_{\beta}+1}^{N} \beta_{i}] \\ &\leq \hat{\epsilon}_{N} + \gamma_{N} + \ell_{\max} \sqrt{\frac{2\log(1/\delta)}{mN}} + \frac{2\ell_{\max}}{N} [n_{\beta} + T \sum_{i=n_{\beta}+1}^{N} \beta_{i}] \end{split}$$

Comparison to SEARN [3]

SEARN

- Requires large number of iterations to converge
 - Both in theory and practice
- Mixture of policies
- [2] mention O(T² log T) instead of linear scaling in T as presented in [3]

DAgger

- Stronger guarantees due to No-Regret approach
- Follow-the-leader returns single policy
- Requires less queries to expert (although still a lot)

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion

Outline

Motivation

2 Algorithm Descriptions

3 Analysis

4 Experimental Results

5 Limitations of the DAgger Algorithm

6 Conclusion

Motivation	Algorithms	Analysis 00000000000	Experiments ●○○	Limitations O	Conclusion
	_				

Super Tux Cart

• Continuous action space (steering angle between [-1,1])

• DAgger performed best with $\beta_i = I(i = 1)$

Figure: Convergence of various methods for Super Tux Cart [1].

Motivation	Algorithms	Analysis 00000000000	Experiments ○●○	Limitations O	Conclusion
- · · ·	_				

Super Mario Bros.

• Expert is near-optimal planning algorithm (expensive to query)

• Discrete action space (four buttons to press)

• Very simple levels!

Figure: Performance in Super Mario Bros. for various methods [1].

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
			000		

Handwriting Recognition

• Expert is supervised training data

• Discrete action space (predicted character)

 Probably sub-optimal compared to state-of-the-art neural architectures (RNN/LSTM)

Figure: Performance for handwriting recognition [1].

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion

Outline

Motivation

2 Algorithm Descriptions

3 Analysis

4 Experimental Results

(5) Limitations of the DAgger Algorithm

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
				•	

Main problem:

- DAgger still relies extremely heavily on the oracle/expert
- Each query can potentially be expensive, or make the collection of training samples hard

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
				•	

Main problem:

- DAgger still relies extremely heavily on the oracle/expert
- Each query can potentially be expensive, or make the collection of training samples hard
- Only guaranteed to work for convex loss functions
- Potentially a stronger bound can be given under the assumption of strong convexity

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
				•	

Main problem:

- DAgger still relies extremely heavily on the oracle/expert
- Each query can potentially be expensive, or make the collection of training samples hard
- Only guaranteed to work for convex loss functions
- Potentially a stronger bound can be given under the assumption of strong convexity
- Instability issues [4]

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
				•	

Main problem:

- DAgger still relies extremely heavily on the oracle/expert
- Each query can potentially be expensive, or make the collection of training samples hard
- Only guaranteed to work for convex loss functions
- Potentially a stronger bound can be given under the assumption of strong convexity
- Instability issues [4]

Still only at most performance on par with teacher!

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion

Outline

Motivation

2 Algorithm Descriptions

3 Analysis

- 4 Experimental Results
- 5 Limitations of the DAgger Algorithm

Motivation	Algorithms 00000000	Analysis 00000000000	Experiments	Limitations O	Conclusion ●○○○○
Conclusion					

- Presented various methods that are within $O(T^2)$ or lower bounds of an expert solution:
 - Forward Training
 - SMILe / SEARN
- Presented DAgger, a deterministic and stationary solution that alleviates several problems of previous methods by aggregating data across several episodes and querying an oracle/expert
- Provided extensive analysis of bounds for finite and infinite sample case for DAgger, which show nice properties
- Analyzed experiments, and showed some of DAgger's limitations

Motivation	Algorithms	Analysis	Experiments	Limitations O	Conclusion ○●○○○
Possible I	Extensions				

Backplay curriculum learning [5, 6]:

- Instead of starting from initial starting state s₀, run the first iterations from an inverse policy p_{t:T} that runs the expert for iterations 1:t, and then the policy π.
- Potentially avoids distribution shift towards uncommon failure cases that appear in first iterations
- Stabler training even with mixed policy for later episodes?
- Building a dense search tree from the bottom up could help to relinquish some queries: Instead of querying the expert, use surrogate loss as distance between expert replay and prediction (without expert)

Use with Deep Neural architectures:

• Experimental setup was conducted with linear SVM classifiers

Motivation	Algorithms	Analysis 00000000000	Experiments	Limitations O	Conclusion ○○●●○
Bibliography	/				

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.

A reduction of imitation learning and structured prediction to no-regret online learning.

In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages 627–635, 2011.

- Stéphane Ross and Drew Bagnell.
 Efficient reductions for imitation learning.
 In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 661–668, 2010.
- Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. Machine learning, 75(3):297–325, 2009.

Motivation	Algorithms	Analysis	Experiments	Limitations	Conclusion
					00000

Bibliography II

📄 Hal Daumé.

A Course in Machine Learning. http://ciml.info/.

 Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alex Peysakhovich, Kyunghyun Cho, and Joan Bruna.
 Backplay:" Man muss immer umkehren". arXiv preprint arXiv:1807.06919, 2018.

Tim Salimans and Richard Chen.

Learning Montezuma's Revenge from a single demonstration.

https://blog.openai.com/

learning-montezumas-revenge-from-a-single-demonstration/.

Motivation	Algorithms	Analysis 00000000000	Experiments	Limitations O	Conclusion ○○○○●
Questions					

Thank you for your attention!