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Motivation

• Learning to Search (L2S) is nice when the reference policy is
good

• But what happens when the refernce policy is sub-optimal?
Can’t we improve upon it?
• “Yes, we can” [Obama, 2008]

• Locally Optimal L2S as one approach to be better than the
teacher
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Locally Optimal Learning to Search (LOLS)

Learning to Search Better Than Your Teacher
[Chang et al., 2015]

• Roll-in with learned policy, mixture policy for roll-out
• If in one-step deviation there is a better solution than the

expert’s, use this
• Guarantees locally optimal policy
• Outperforms SEARN [Daumé III et al., 2009] on POS

tagging and dependency parsing tasks
• Useful for other NLP tasks as well
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Algorithm
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Analysis: What NOT to do

• Roll-in and roll-out with learned policy
• Roll-in with reference policy

Figure: Effect of different roll-in/roll-out strategies [Chang et al., 2015].
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Analysis: What to do instead

• Roll-in with learned policy, roll-out with mixture of learned and
reference policy

• “a policy is locally optimal if changing any one decision it
makes never improves its performance”
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Analysis: What to do instead

• Minimizes a combination of regret to reference policy and
regret to its own one-step deviations

• When reference is optimal, first term is non-negative;
competes with one-step deviations in this case

• When reference is sub-optimal, first term can be negative ->
learned policy has improved upon the reference policy
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Analysis

Figure: Effect of different roll-in/roll-out strategies [Chang et al., 2015].



Motivation Locally Optimal Learning to Search (LOLS) Performance in NLP Contexts Conclusion

Contents

1 Motivation

2 Locally Optimal Learning to Search (LOLS)

3 Performance in NLP Contexts
POS tagging
Dependency parsing
Timeline summarization

4 Conclusion



Motivation Locally Optimal Learning to Search (LOLS) Performance in NLP Contexts Conclusion

POS tagging

• Train on 38k sentences, test on 11k from Penn Treebank
• Best SEARN performance: 94.88 accuracy
• Performance of LOLS:



Motivation Locally Optimal Learning to Search (LOLS) Performance in NLP Contexts Conclusion

Dependency parsing

• Shift-reduce parser with three actions
• Three reference policies

• Optimal : “non-deterministic oracle”
[Goldberg and Nivre, 2013]

• Sub-optimal : action that leads to good end state when
obvious (?), else arbitrary

• Bad : Arbitrary action
• Performance of SEARN:

• 84.0
• 81.1
• 63.4



Motivation Locally Optimal Learning to Search (LOLS) Performance in NLP Contexts Conclusion

Dependency parsing

• Performance of LOLS:
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Results

• Roll-in with reference is bad
• When reference is optimal, doing roll-outs with reference is a

good idea
• When reference is sub-optimal or bad, mixture rollouts perform

better
• LOLS also significantly outperforms SEARN on all tasks
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Timeline summarization

Real-time web scale event summarization using sequential de-
cision making [Kedzie et al., 2016]

• Implementation of a streaming summarization system on
sentence level

• Uses LOLS

• Evaluation on TREC TS data with TREC metrics
• Best F1 score, particularly in combintation with sentence

similarity filter
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Timeline summarization

• Input: query (“eruption of Eyjafjallajökull’), category (“natural
disaster”), sentence stream:
• For every new sentence, decision whether to include it in

summary or ignore it must be made
• Loss function is complement of Dice coefficient (F1 score)
• Greedy reference policy
• SGD classifier for updating π̃
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Timeline summarization

• Data from TREC TS task
[Aslam et al., 2013, Aslam et al., 2014]
• Web-crawled between 10/2011 and 02/2013, 1.2 billion

docs
• Only considered news section: 7.6 million docs
• 44 categorized events, 73.35 nuggets per event on average

• Stream size 100
• 5 events dev, 39 evaluated using leave-one-out
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Timeline summarization

Figure: Average performance and number of updates (i.e. summary
length) [Kedzie et al., 2016].
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Conclusion

• SEARN: batch learning, LOLS: online learning
• During training, LOLS needs just last policy for roll-in
• Distinguishing feature is mixture roll-out policy
• Even when the reference is bad, LOLS improves upon it

• Or does it? Cf. [Sharaf and Daumé III, 2017]
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