Maximum Entropy Inverse Reinforcement Learning

Michael Staniek & Philipp Wiesenbach & Marvin Koss

University of Heidelberg
Imitation Learning

October 16, 2018
Overview

1. Maximum Entropy Inverse Reinforcement Learning
2. Global Normalization
3. Our Project
Expert optimizes reward value of trajectory ζ, which is the reward applied to the path’s feature counts, $f_\zeta = \sum_{s_j \in \zeta} f_{s_i}$

$$\text{reward}(f_\zeta) = \theta^T f_\zeta = \sum_{s_j \in \zeta} \theta^T f_{s_j}$$

demonstrated by single trajectories $\tilde{\zeta}_i$

m ζs provide expected empirical f count $\tilde{f} = \frac{\sum_i f_{\tilde{\zeta}_i}}{m}$
Maximum Entropy IRL

- We match feature expectations between observed policy and the learners behavior:

\[
\sum_{Path_{\zeta_i}} P(\zeta_i) f_{\zeta_i} = \tilde{f}
\]

- Two ambiguities:
 - Each policy can be optimal for many reward functions
 - Many policies lead to same feature counts

Maximum Entropy

\(\rightarrow\) chooses distribution that only matches feature expectations and doesn't have additional preferences

\[
P(\zeta_i|\theta) = \frac{1}{Z(\theta)} e^{\theta^T f_{\zeta_i}} = \frac{1}{Z(\theta)} e^{\sum_{s_j \in \zeta_i} \theta^T f_{s_j}}
\]
Learning from Demonstrated Behavior

Maximizing the distribution’s entropy while matching feature constraints means maximizing likelihood of observed data

\[\theta^* = \arg\max_{\theta} L(\theta) = \arg\max_{\theta} \sum_{\text{examples}} (\tilde{\zeta}|\theta) \]

Convex loss, use gradient descent:

\[\nabla L(\theta) = \tilde{f} - \sum_{\zeta} P(\tilde{\zeta}|\theta)f_\zeta \]
Global Normalization

Daniel Andor et al. (2016). “Globally Normalized Transition-Based Neural Networks”. In: CoRR abs/1603.06042

Main Idea

Use globally normalized sequence probabilities and beam search during inference to enhance results on structured NLP tasks.

- Global normalization counteracts the Label Bias Problem (higher expressiveness of the model)
- Beam Search can be used as a function approximator (reducing calculation costs)
- Early updates (faster learning?)
Global Normalization

- **Scoring function:**

\[\rho(s, d; \theta) = \rho(d_{1:j-1}, d; \theta) = \phi(s; \theta^{(l)}) \cdot \theta^{(d)} \]

 - \(\theta^{(l)} \) being network parameters without last layer
 - \(\theta^{(d)} \) being parameters of last layer
 - \(\phi(s; \theta^{(l)}) \) being representation of state \(s \)
 - the score is *linear* under \(\theta^{(d)} \)

- **Conditional probabilities:**

\[p(d_j | d_{1:j-1}; \theta) = \frac{e^{\rho(d_{1:j-1}, d_j; \theta)}}{Z_L(d_{1:j-1}, d'; \theta)} \]

 - with partition function:

\[Z_L(d_{1:j-1}, d'; \theta) = \sum_{d' \in A(d_{i:j-1})} e^{\rho(d_{1:j-1}, d_j; \theta)} \]
Global Normalization

- **Sequence probability (locally normalized):**

\[
p_L(d_1:n) = \prod_{j=1}^{n} p(d_j|d_{1:j-1}; \theta) = \frac{\exp \sum_{j=1}^{n} \rho(d_{1:j-1}, d_j; \theta)}{\prod_{j=1}^{n} Z_L(d_{1:j-1}, d'; \theta)}
\]

- **Sequence probability (globally normalized):**

\[
p_G(d_1:n) = \frac{\exp \sum_{j=1}^{n} \rho(d_{1:j-1}, d_j; \theta)}{Z_G(\theta)}
\]

with \(Z_G(\theta) = \sum_{d_{1:n} \in \mathcal{D}_n} \exp \sum_{j=1}^{n} \rho(d_{1:j-1}, d_j; \theta)\)

\[\rightarrow \text{ inference: only have to calculate } \text{argmax} \sum_{j=1}^{n} \rho(d_{1:j-1}, d_j; \theta)\]
Global Normalization

Training objectives:

■ Negative log-likelihood (locally normalized):

\[
L_{local}(d_{1:n}^*; \theta) = - \ln p_L(d_{1:n}^*; \theta) \\
= - \sum_{j=1}^{n} \rho(d_{1:j-1}, d_j; \theta) + \sum_{j=1}^{n} \ln Z_L(d_{1:n}^*; \theta)
\]

■ Negative log-likelihood (globally normalized):

\[
L_{global}(d_{1:n}^*; \theta) = - \ln p_G(d_{1:n}^*; \theta) \\
= - \sum_{j=1}^{n} \rho(d_{1:j-1}, d_j; \theta) + \ln Z_G(\theta)
\]
Global Normalization

- Approximating Partition Function $Z_G(\theta)$ using beam search
- If the goldpath falls out of the beam at step j, SGD is taken on the following objective:

$$L_{\text{global-beam}}(d^*_{1:n}; \theta) =$$

$$- \sum_{j=1}^{n} \rho(d_{1:j-1}, d_j; \theta) + \ln \sum_{d'_{1:j} \in B_j} \exp \sum_{i=1}^{j} \rho(d'_{1:i-1}, d'_i; \theta)$$
What is our goal?

- We want to use the Andor et al. (2016) model for a recurrent encoder decoder NMT system to learn the reward function of humans

- Straightforward: Use the same beam search algorithm
Approaches

- $\rho(s, d; \theta) = \phi(s; \theta^{(l)}) \cdot \theta^{(d)}$

- backpropagate through everything a la Andor et al. (2016)
 Encoder \rightarrow Decoder

- only backpropagate through last layer of the Decoder a la Ziebart et al. (2008) (linear model)
 Encoder \rightarrow Decoder
Approaches

- Andor et al. (2016) gives two options: start from scratch or use pretrained model.

- Ziebart et al. (2008) has to be pretrained.
Alternatives for beam search

- NCE (maybe)
- MC sampling (no)
Framework of Choice

- Any framework that is based on PyTorch
- For example joey-nmt
Afterwards

- As soon as we have a trained reward estimator:
 - Use the trained reward estimator as is
 - Use it to train a deeper model with policy gradient and see what we can reach
- Here we will try both, hopefully
Literatur

Andor, Daniel et al. (2016). “Globally Normalized Transition-Based Neural Networks”. In: CoRR abs/1603.06042.
