Maximum Entropy Inverse Reinforcement Learning

Michael Staniek & Philipp Wiesenbach & Marvin Koss

University of Heidelberg Imitation Learning

October 16, 2018

Overview

1 Maximum Entropy Inverse Reinforcement Learning

2 Global Normalization

3 Our Project

Maximum Entropy IRL

■ Expert optimizes reward value of trajectory ζ , which is the reward applied to the path's feature counts, $f_{\zeta} = \sum_{s_j \in \zeta} f_{s_i}$

$$reward(f_{\zeta}) = \theta^{T} f_{\zeta} = \sum_{s_{i} \in \zeta} \theta^{T} f_{s_{i}}$$

- lacksquare demonstrated by single trajectories $\widetilde{\zeta}_i$
- lacksquare m ζ s provide expected empirical f count $\widetilde{f} = rac{\sum_i f_{\widetilde{\zeta_i}}}{m}$

Maximum Entropy IRL

We match feature expectations between observed policy and the learners behavior:

$$\sum_{Path\zeta_i}\!\!P(\zeta_i)f_{\zeta_i}= ilde{f}$$

- Two ambiguities:
 - Each policy can be optimal for many reward functions
 - Many policies lead to same feature counts

Maximum Entropy

 \rightarrow chooses distribution that only matches feature expectations and doesnt have additional preferences

$$P(\zeta_i|\theta) = \frac{1}{Z(\theta)} e^{\theta^T f_{\zeta_i}} = \frac{1}{Z(\theta)} e^{\sum_{s_j \in \zeta_i} \theta^T f_{s_j}}$$

Maximum Entropy IRL

Learning from Demonstrated Behavior

Maximizing the distribution's entropy while matching feature constraints means maximizing likelihood of observed data

$$\theta^* = \operatorname*{argmax}_{\theta} \mathit{L}(\theta) = \operatorname*{argmax}_{\theta} \sum_{examples} (\tilde{\zeta}|\theta)$$

Convex loss, use gradient descent:

$$abla L(heta) = ilde{f} - \sum_{\zeta} P(ilde{\zeta}| heta) f_{\zeta}$$

Daniel Andor et al. (2016). "Globally Normalized Transition-Based Neural Networks". In: CoRR abs/1603.06042

Main Idea

Use globally normalized sequence probabilities and beam search during inference to enhance results on structured NLP tasks.

- Global normalization counteracts the Label Bias Problem (higher expressiveness of the model)
- Beam Search can be used as a function approximator (reducing calculation costs)
- Early updates (faster learning?)

Scoring function:

$$\rho(s,d;\theta) = \rho(d_{1:j-1},d;\theta) = \phi(s;\theta^{(l)}) \cdot \theta^{(d)}$$

- lacksquare $\theta^{(I)}$ being network parameters without last layer
- ullet $\theta^{(d)}$ being parameters of last layer
- $\phi(s; \theta^{(l)})$ being representation of state s
- the score is *linear* under $\theta^{(d)}$
- Conditional probabilities:

$$p(d_j|d_{1:j-1};\theta) = \frac{e^{\rho(d_{1:j-1},d_j;\theta)}}{Z_L(d_{1:j-1},d';\theta)}$$

with partition function:

$$Z_L(d_{1:j-1},d'; heta) = \sum\limits_{d' \in \mathcal{A}(d_{i:j-1})} e^{
ho(d_{1:j-1},d_j; heta)}$$

Sequence probability (locally normalized):

$$p_{L}(d_{1:n}) = \prod_{j=1}^{n} p(d_{j}|d_{1:j-1};\theta) = \frac{exp \sum_{j=1}^{n} \rho(d_{1:j-1},d_{j};\theta)}{\prod\limits_{j=1}^{n} Z_{L}(d_{1:j-1},d';\theta)}$$

■ Sequence probability (globally normalized):

$$p_{G}(d_{1:n}) = \frac{\exp \sum_{j=1}^{n} \rho(d_{1:j-1}, d_{j}; \theta)}{Z_{G}(\theta)}$$
with $Z_{G}(\theta) = \sum_{d'_{1:n} \in \mathcal{D}_{n}} \exp \sum_{j=1}^{n} \rho(d_{1:j-1}, d_{j}; \theta)$

 \rightarrow inference: only have to calculate argmax $\sum_{j=1}^{n} \rho(d_{1:j-1}, d_j; \theta)$

Training objectives:

Negative log-likelihood (locally normalized):

$$L_{local}(d_{1:n}^*; \theta) = -\ln p_L(d*_{1:n}; \theta)$$

$$= -\sum_{j=1}^n \rho(d_{1:j-1}, d_j; \theta) + \sum_{j=1}^n \ln Z_L(d_{1:n}^*; \theta)$$

Negative log-likelihood (globally normalized):

$$\begin{aligned} L_{global}(d_{1:n}^*;\theta) &= -\ln p_G(d*_{1:n};\theta) \\ &= -\sum_{j=1}^n \rho(d_{1:j-1},d_j;\theta) + \ln Z_G(\theta) \end{aligned}$$

- Approximating Partition Function $Z_G(\theta)$ using beam search
- If the *goldpath* falls out of the beam at step j, SGD is taken on the following objective:

$$\begin{split} &L_{global-beam}(d_{1:n}^*;\theta) = \\ &- \sum_{j=1}^n \rho(d_{1:j-1},d_j;\theta) + \ln \sum_{d_{1:j}' \in \mathcal{B}_j} \exp \sum_{i=1}^j \rho(d_{1:i-1}',d_i';\theta) \end{split}$$

What is our goal?

- We want to use the Andor et al. (2016) model for a recurrent encoder decoder NMT system to learn the reward function of humans
- Straightforward: Use the same beam search algorithm

Approaches

- $\rho(s,d;\theta) = \phi(s;\theta^{(l)}) \cdot \theta^{(d)}$
- backpropagate through everything a la Andor et al. (2016) Encoder → Decoder
- only backpropagate through last layer of the Decoder a la Ziebart et al. (2008) (linear model) Encoder \rightarrow Decoder

Approaches

- Andor et al. (2016) gives two options: start from scratch or use pretrained model
 - Encoder → Decoder
- Ziebart et al. (2008) has to be pretrained
 - $\mathsf{Encoder} \to \mathsf{Decoder}$

- NCE (maybe)
- MC sampling (no)

Framework of Choice

- Any framework thats based on PyTorch
- For example joey-nmt

Afterwards

- As soon as we have a trained reward estimator:
 - Use the trained reward estimator as is
 - Use it to train a deeper model with policy gradient and see what we can reach
- Here we will try both, hopefully

Literatur

- Andor, Daniel et al. (2016). "Globally Normalized Transition-Based Neural Networks". In: CoRR abs/1603.06042.
- Ng, Andrew Y. and Stuart J. Russell (2000). "Algorithms for Inverse Reinforcement Learning". In: *Proceedings of the Seventeenth International Conference on Machine Learning*. ICML '00. San Francisco, CA, USA, pp. 663–670.
- Ziebart, Brian D. et al. (2008). "Maximum entropy inverse reinforcement learning". In: *Proceedings of the National Conference on Artificial Intelligence*. Vol. 3, pp. 1433–1438.