
Daumé III, Langford, Marcu:
Search-based Structured Prediction

SEARN

Julia Kreutzer

Seminar „Algorithms for Learning and Search in Structured Prediction“

Institut für Computerlinguistik

Universität Heidelberg

May 12, 2015

Overview

1. Introduction

2. The SEARN algorithm

3. SEARN analysed

4. SEARN in experiments

5. Conclusion

2

Introduction
Recap: What is structured prediction? Why/where it is challenging?

3

Structured Prediction

 Structured Prediction Problem
𝑥, 𝒄 ~ 𝐷 with inputs 𝑥 ∈ 𝑋, cost vectors 𝑐 ∈ (ℝ+)

𝑘
, k labels

 Goal
Find ℎ: 𝑋 → 𝑌 that minimizes 𝐿 𝐷, ℎ = 𝔼 𝑥,𝒄 ~ 𝐷 𝑐ℎ 𝑥

4

Structured Prediction

 Structured Prediction Problem
𝑥, 𝒄 ~ 𝐷 with inputs 𝑥 ∈ 𝑋, cost vectors 𝑐 ∈ (ℝ+)

𝑘
, k labels

 Goal
Find ℎ: 𝑋 → 𝑌 that minimizes 𝐿 𝐷, ℎ = 𝔼 𝑥,𝒄 ~ 𝐷 𝑐ℎ 𝑥

 Challenges
Exact search is not always tractable
Loss functions are not decomposable
Complex feature functions

5

Structured Prediction

 Structured Prediction Problem
𝑥, 𝒄 ~ 𝐷 with inputs 𝑥 ∈ 𝑋, cost vectors 𝑐 ∈ (ℝ+)

𝑘
, k labels

 Goal
Find ℎ: 𝑋 → 𝑌 that minimizes 𝐿 𝐷, ℎ = 𝔼 𝑥,𝒄 ~ 𝐷 𝑐ℎ 𝑥

 Challenges
Exact search is not always tractable
Loss functions are not decomposable
Complex feature functions

 [5] Approximate search instead of exact search: „enqueue“

 [6] Under-generating vs. over-generating algorithms

6

Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels

7

fliegen fliegen

V

N

N

V

V

N

Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels

8

fliegen fliegen

V

N

N

V

V

N

Given: true labels

Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss

9

fliegen fliegen

V

N

N

V

V

N

0.0

0.4

0.05

0.9

Given: loss function,
not decomposable

Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss

10

fliegen fliegen

V

N

N

V

V

N

0.0

0.4

0.05

0.9

Missing: Cost
for actions

Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss

11

fliegen fliegen

V

N

N

V

V

N

0.0

0.4

0.05

0.9

How can we infer
costs for local

actions from global
losses?

The SEARN algorithm
What kind of algorithm is it? Which problem does it solve? What is special?

12

Structured Prediction in Context

13

Source: [7]

Characteristics

 SEARN:
 Meta-algorithm

How can we learn from a teacher?

 Search + Learn
View the problem as a search problem

Learn a classifier that walks through search space in a good way

Instead of training on true path: train on path that is actually taken in practice

 Any loss function

 Any class of features

14

Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴

 Training data: structured, labeled

 A loss function 𝐿(𝒚, 𝑓(𝒚))

 A good initial policy 𝜋 𝑠, 𝒄

15

Components

 A search space 𝑆
State in the search space: 𝑠 = 𝑥 × (𝑦1, … , 𝑦𝑇)

Final elements: sequence of choices 𝒚

Abstract: f 𝒚

Concrete: f 𝒚 = 𝒚

16

Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴
Multiclass classifier ℎ 𝑠 for location in search space 𝑠

Trained on cost-sensitive training data

„policy“ (→ reinforcement learning)

17

Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴

 Training data: structured, labeled
𝒙, 𝒚 ∈ 𝑆𝑆𝑃

𝒚 ∈ 𝑌 decompose into vectors 𝑦0, 𝑦1, … , 𝑦𝑇
Arbitrary set of labels

18

Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴

 Training data: structured, labeled

 A loss function 𝐿(𝒚, 𝑓(𝒚))
Computable for any full-length prediction sequence 𝑦0, 𝑦1, … , 𝑦𝑇
Does not have to be decomposable

19

Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴

 Training data: structured, labeled

 A loss function 𝐿(𝒚, 𝑓(𝒚))

 A good initial policy 𝜋 𝑠, 𝒄
Achieves low loss on training data

„the teacher“

20

Prediction

 At test time:
 Use returned policy

 Compute 𝑦0 on basis of 𝑥

Compute 𝑦1on basis of 𝑦0 and 𝑥

…

Compute 𝑦𝑇 on basis of 𝑥, 𝑦0 , 𝑦1 , … 𝑦𝑇−1

21

Prediction

 At test time:
 Use returned policy

 Compute 𝑦0 on basis of 𝑥

Compute 𝑦1on basis of 𝑦0 and 𝑥

…

Compute 𝑦𝑇 on basis of 𝑥, 𝑦0 , 𝑦1 , … 𝑦𝑇−1

 No Markov assumption

 Feature function is essential

22

Training

23

Source: [1]

Initialization with optimal policy

Convergence criterion

Generate path over training sample

Features for state at timestep t

Generate multiclass examples for possible
decisions and losses based on current policy

Train new classifier on examples

Combine old and new classifier

Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss

24

fliegen fliegen

V

N

N

V

V

N

0.0

0.4

0.1

0.9

How can we infer
costs for local

actions from global
losses?

Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss

25

fliegen fliegen

V

N

N

V

V

N

0.0

0.4

0.1

0.9

We assume that all
following choices will
be made optimally.

Follow the local regret.

Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss Computing the regret

t=1

a=„N“ la = 0.2

a=„V“ la = 0.5

l1 = <0.2, 0.5>

t=2

a=„N“ la = 0.4

a=„V“ la = 0.0

l2 = <0.0, 0.4>

26

fliegen fliegen

V

N

N

V

V

N

0.0

0.4

0.1

0.9
t=1 t=2

Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss Creating cost-sensitive examples

l1 = <0.2, 0.5>

features for state: Φ1 = Φ(x)

l2 = <0.0, 0.4>

features for state: Φ2 = Φ(x, y1)

add to S:

{< Φ1, l1>, < Φ2 , l2>}

27

fliegen fliegen

V

N

N

V

V

N

0.0

0.4

0.1

0.9
t=1 t=2

Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss Creating cost-sensitive examples

l1 = <0.2, 0.5>

features for state: Φ1 = Φ(x)

l2 = <0.0, 0.4>

features for state: Φ2 = Φ(x, y1)

add to S:

{<Φ1, l1>, <Φ2 , l2>}

28

fliegen fliegen

V

N

N

V

V

N

0.0

0.4

0.1

0.9
t=1 t=2

Train classifier on
these tuples!

Details

 Initial policy
 Takes full advantage of training data labels

 Use search to create the initial policy (if not available analytically):
 Given a node in the search space with cost vector, compute the best step to take

 = given a node in the search space, find the shortest way to a goal

 Optimal approximation: assume all further decisions will be made optimally

 „greedy“ search

 Choice of search algorithm influences bias in learning algorithm

𝜋 𝑠, 𝒄 = argmin
𝑦𝑡+1

min
𝑦𝑡+2,…,𝑦𝑇

𝑐 𝑦1, … , 𝑦𝑇

29

Details

 Cost-sensitive examples
 Run the given policy ℎ over the training data

 Prediction is sequence 𝒚 with loss 𝒄 𝒚
 Compute (arbitrary) features 𝜑 = 𝜑 𝑠 for state 𝑠 on sequence

 Compute cost („regret“) for each state 𝑠 and each action 𝑎:

𝑙ℎ 𝒄, 𝑠, 𝑎 = 𝔼 𝑦~ 𝑠,𝑎,ℎ 𝒄 𝒚 − min
𝑎′

𝔼 𝑦~ 𝑠,𝑎′,ℎ 𝒄 𝒚

→ 𝜑, 𝒍 ∈ 𝑆 is the input data structure for the learner

30

SEARN analysed
What can we tell about SEARN from an analytical perspective?

31

SEARN analysed

 Moving from initial policy to fully learned policy

 Each iteration „degrades“ current policy

 Analysis shows: the degradation is small
 Theorem 2: Upper bound on the loss of a learned classifier

 Lemma 1: Upper bound on the loss of a classifier after first iteration

 Lemma 2: Upper bound after several iterations

32

SEARN analysed

 Proof for lemma 1:
 Interpolation

ℎ𝑛𝑒𝑤 𝛽ℎ′ + 1 − 𝛽 ℎ
 Maximal cost:

𝑐𝑚𝑎𝑥 = 𝔼 𝑥,𝒄 ~𝐷 max
𝑖

𝑐𝑖

 Cases:
1. Learned policy is never called
2. Called once
3. Called more than once

 Assumption:
𝛽 < 1/𝑇

33

Source: [1]

SEARN analysed

 Proof for lemma 1:
 Interpolation

ℎ𝑛𝑒𝑤 𝛽ℎ′ + 1 − 𝛽 ℎ
 Maximal cost:

𝑐𝑚𝑎𝑥 = 𝔼 𝑥,𝒄 ~𝐷 max
𝑖

𝑐𝑖

 Cases:
1. Learned policy is never called
2. Called once
3. Called more than once

 Assumption:
𝛽 < 1/𝑇

34

Source: [1]

SEARN in comparison
Why/where is SEARN superior to other structured prediction algorithms?

35

SEARN in comparison

 Independent models
 Ignore structure or constrain membership

No complex features, limited to Hamming loss

= SEARN with features independent of history

 Maximum Entropy Markov Model (MEMM)
Prediction on basis of 𝑘 previous predictions

Assumption: previous predictions are correct → can perform arbitrarily bad

Stacked MEMM‘s: SEARN with 𝛽 = 1 limited to sequence labeling

36

SEARN in comparison

 Perceptron-based models
 Structured Perceptron

Assumption: argmax is tractable
SEARN in reverse: moving from incorrect towards true output

 Incremental Perceptron
Replace argmax with beam search
Limitations: beam-search applications, decomposable loss function

 Global models
 Conditional Random Field & Max-Margin Markov Network (M3N)

In application limited to linear chain models with Markov assumption
SEARN is more general

37

Experiments
How can we apply SEARN to structured prediction tasks? Does it perform well?

38

Experiments

1. Sequence Labeling
 Handwriting recognition
 Spanish NER
 Syntactic chunking
 Joint chunking and POS tagging

SEARN:
 Loss per label: Hamming loss 𝑙𝐻𝑎𝑚 𝑦, 𝑦 ≜ 𝑛=1

𝑁 1 𝑦𝑛 ≠ 𝑦𝑛

 Loss per chunk: F1 𝑙𝐹 𝑦, 𝑦 ≜
2 𝑦 ∩ 𝑦

𝑦 + 𝑦

 Left-to-right greedy search
 Chunk-at-a-time decoding (BIO)
 Reduction to binary classification

39

Experiments

1. Sequence Labeling
 Results

~: could not scale

−: not reported

F1 on Chunk, C+T

Hamming on Handwriting, NER

40

Source: [1]

Experiments

2. Automatic Document Summarization
 Greedily extract sentences of a document until word limit reached

 Vine-growth model on syntactic dependency parse tree

 Actions: add root of new tree or child of already added node

 Loss: Rouge

 Initial Policy: argmax intractable (constraints), beam search approximation

41

Experiments

2. Automatic Document Summarization
 Results

Rouge score

42

Source: [1]

Conclusion
What did we learn about SEARN? What did we not learn?

43

Summary

 Core idea: combining search and learning
„Instead of accounting for search in the process of learning, I treat the
structured prediction problem as being defined by a search process.” [2]

 Meta-algorithm for structured prediction
 Minimal requirements for structure and loss function

 Start from good initial policy and generalize

 Competitive results for sequence labeling and summarization task

44

Problems and Questions

 The algorithm
 Heavily relies on quality of initial policy

 Efficiency

 Bias

 Noise

 Definition of convergence criterion?

 Missing details for SEARN in test time

 Policy might be stochastic

45

Problems and Questions

 The application
 Documented experiments lack interesting details

 Iteration numbers

 Observed speed of convergence

 Interpolation and storage of classifiers

 Use, integration and parametrization of base classifiers

 Only a few experiments (by the same person)

 (Un-)popularity in practice?

 Machine Translation?

46

Problems and Questions

Your opinion! 

47

Problems and Questions

Your opinion! 

Thank you!

48

References

[1] Hal Daumé III, John Langford, and Daniel Marcu, Search-Based Structured Prediction,
Machine Learning 75, no. 3 (June 2009): 297–325.

[2] Hal Daumé III, Practical Structured Learning Techniques for Natural Language
Processing (ProQuest, 2006), PhD thesis at the University of Southern California.

[3] Hal Daumé III, John Langford, and Daniel Marcu, Searn in Practice, Unpublished, 2006.

[4] Searn website: http://www.umiacs.umd.edu/~hal/searn/ (last visited: May 10, 2015)

[5] Hal Daumé III and Daniel Marcu, Learning as Search Optimization: Approximate Large
Margin Methods for Structured Prediction, in Proceedings of the 22nd International
Conference on Machine Learning (ACM, 2005), 169–76.

[6] Thomas Finley and Thorsten Joachims, Training Structural SVMs When Exact Inference
Is Intractable, in Proceedings of the 25th International Conference on Machine Learning
(ACM, 2008), 304–11.

[7] J. Kober, J. A. Bagnell, and J. Peters, Reinforcement Learning in Robotics: A Survey, The
International Journal of Robotics Research 32, no. 11 (September 1, 2013).

49

