Daumé III, Langford, Marcu: Search-based Structured Prediction

SEARN

Julia Kreutzer

Seminar "Algorithms for Learning and Search in Structured Prediction" Institut für Computerlinguistik Universität Heidelberg

May 12, 2015

Overview

- 1. Introduction
- 2. The SEARN algorithm
- 3. SEARN analysed
- 4. SEARN in experiments
- 5. Conclusion

Introduction

Recap: What is structured prediction? Why/where it is challenging?

Structured Prediction

Structured Prediction Problem

 $(x, c) \sim D$ with inputs $x \in X$, cost vectors $c \in (\mathbb{R}^+)^k$, k labels

• Goal

Find $h: X \to Y$ that minimizes $L(D, h) = \mathbb{E}_{(x,c) \sim D} \{c_h(x)\}$

Structured Prediction

Structured Prediction Problem

 $(x, c) \sim D$ with inputs $x \in X$, cost vectors $c \in (\mathbb{R}^+)^k$, k labels

• Goal

Find $h: X \to Y$ that minimizes $L(D, h) = \mathbb{E}_{(x,c) \sim D} \{c_h(x)\}$

Challenges

Exact search is not always tractable Loss functions are not decomposable Complex feature functions

Structured Prediction

Structured Prediction Problem

 $(x, c) \sim D$ with inputs $x \in X$, cost vectors $c \in (\mathbb{R}^+)^k$, k labels

• Goal

Find $h: X \to Y$ that minimizes $L(D, h) = \mathbb{E}_{(x,c) \sim D} \{c_h(x)\}$

Challenges

Exact search is not always tractable Loss functions are not decomposable Complex feature functions

- [5] Approximate search instead of exact search: "enqueue"
- [6] Under-generating vs. over-generating algorithms

- POS-Tagging
 - Simplest setting: two words, two possible labels

- POS-Tagging
 - Simplest setting: two words, two possible labels

- POS-Tagging
 - Simplest setting: two words, two possible labels

- POS-Tagging
 - Simplest setting: two words, two possible labels

- POS-Tagging
 - Simplest setting: two words, two possible labels

The SEARN algorithm

What kind of algorithm is it? Which problem does it solve? What is special?

Structured Prediction in Context

Source: [7]

Characteristics

• SEARN:

Meta-algorithm

How can we learn from a teacher?

• Search + Learn

View the problem as a search problem

Learn a classifier that walks through search space in a good way

Instead of training on true path: train on path that is actually taken in practice

- Any loss function
- Any class of features

- A search space S
- A cost-sensitive learning algorithm A
- Training data: structured, labeled
- A loss function $L(\mathbf{y}, f(\hat{\mathbf{y}}))$
- A good initial policy $\pi(s, c)$

• A search space S

State in the search space: $s = x \times (y_1, ..., y_T)$ Final elements: sequence of choices \hat{y} Abstract: $f(\hat{y})$ Concrete: $f(\hat{y}) = \hat{y}$

• A search space S

 A cost-sensitive learning algorithm A Multiclass classifier h(s) for location in search space s Trained on cost-sensitive training data "policy" (→ reinforcement learning)

- A search space S
- A cost-sensitive learning algorithm A
- Training data: structured, labeled $(x, y) \in S^{SP}$ $y \in Y$ decompose into vectors $(y_0, y_1, ..., y_T)$ Arbitrary set of labels

- A search space S
- A cost-sensitive learning algorithm A
- Training data: structured, labeled
- A loss function $L(\mathbf{y}, f(\hat{\mathbf{y}}))$

Computable for any full-length prediction sequence (y_0, y_1, \dots, y_T) Does not have to be decomposable

- A search space S
- A cost-sensitive learning algorithm A
- Training data: structured, labeled
- A loss function $L(\mathbf{y}, f(\hat{\mathbf{y}}))$
- A good initial policy π(s, c)
 Achieves low loss on training data "the teacher"

Prediction

- At test time:
 - Use returned policy

...

Compute y₀ on basis of x
 Compute y₁ on basis of y₀ and x

Compute y_T on basis of $x, y_0, y_1, \dots, y_{T-1}$

Prediction

- At test time:
 - Use returned policy
 - Compute y_0 on basis of xCompute y_1 on basis of y_0 and x

Compute y_T on basis of $x, y_0, y_1, \dots, y_{T-1}$

• No Markov assumption

...

• Feature function is essential

Training

Algorithm SEARN (S^{SP}, π, A)	Initialization with optimal policy
1: Initialize policy $h \leftarrow \pi$	
2: while h has a significant dependence on π do	Convergence criterion
3: Initialize the set of cost-sensitive examples $S \leftarrow \emptyset$	
4: for $(x, y) \in S^{SP}$ do	Concrete neth over training comple
5: Compute predictions under the current policy $\hat{y} \sim x, h$	Generate path over training sample
6: for $t = 1 \dots T_x$ do	
7: Compute features $\Phi = \Phi(s_t)$ for state $s_t = (x, y_1,, y_t)$	Features for state at timestep t
8: Initialize a cost vector $\boldsymbol{c} = \langle \rangle$	
9: for each possible action a do	
10: Let the cost ℓ_a for example x, c at state s be $\ell_h(c, s, a)$	Generate multiclass examples for possible
11: end for	decisions and losses based on current policy
12: Add cost-sensitive example (Φ, ℓ) to S	
13: end for	
14: end for	
15: Learn a classifier on $S: h' \leftarrow A(S)$	Train new classifier on examples
16: Interpolate: $h \leftarrow \beta h' + (1 - \beta)h$	
17: end while	Combine old and new classifier
18: return h_{last} without π	

Source: [1]

- POS-Tagging
 - Simplest setting: two words, two possible labels

- POS-Tagging
 - Simplest setting: two words, two possible labels

- POS-Tagging
 - Simplest setting: two words, two possible labels

- POS-Tagging
 - Simplest setting: two words, two possible labels

Loss

0.4

0.0

0.1

0.9

Creating cost-sensitive examples $I_1 = \langle 0.2, 0.5 \rangle$ features for state: $\Phi_1 = \Phi(x)$

 $I_2 = \langle 0.0, 0.4 \rangle$ features for state: $\Phi_2 = \Phi(x, y_1)$

add to S: {< Φ_1 , I_1 >, < Φ_2 , I_2 >}

- POS-Tagging
 - Simplest setting: two words, two possible labels

Details

- Initial policy
 - Takes full advantage of training data labels
 - Use search to create the initial policy (if not available analytically):
 - Given a node in the search space with cost vector, compute the best step to take
 - = given a node in the search space, find the shortest way to a goal
 - Optimal approximation: assume all further decisions will be made optimally
 - "greedy" search
 - Choice of search algorithm influences bias in learning algorithm

$$\pi(s, \boldsymbol{c}) = \arg\min_{y_{t+1}} \min_{y_{t+2}, \dots, y_T} c\langle y_1, \dots, y_T \rangle$$

Details

- Cost-sensitive examples
 - Run the given policy *h* over the training data
 - Prediction is sequence \widehat{y} with loss $c_{\widehat{y}}$
 - Compute (arbitrary) features $\varphi = \varphi(s)$ for state s on sequence
 - Compute cost ("regret") for each state s and each action a:

$$l_h(\boldsymbol{c}, \boldsymbol{s}, \boldsymbol{a}) = \mathbb{E}_{\hat{y} \sim (\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{h})} \boldsymbol{c}_{\hat{y}} - \min_{\boldsymbol{a}'} \mathbb{E}_{\hat{y} \sim (\boldsymbol{s}, \boldsymbol{a}', \boldsymbol{h})} \boldsymbol{c}_{\hat{y}}$$

 $\rightarrow (\varphi, \mathbf{l}) \in S$ is the input data structure for the learner

What can we tell about SEARN from an analytical perspective?

- Moving from initial policy to fully learned policy
- Each iteration "degrades" current policy
- Analysis shows: the degradation is small
 - Theorem 2: Upper bound on the loss of a learned classifier
 - Lemma 1: Upper bound on the loss of a classifier after first iteration
 - Lemma 2: Upper bound after several iterations

- Proof for lemma 1:
 - Interpolation

$$h^{new} \leftarrow \beta h' + (1 - \beta)h$$

• Maximal cost:

$$c_{max} = \mathbb{E}_{(x,c)\sim D} \max_{i} c_{i}$$

- Cases:
 - 1. Learned policy is never called
 - 2. Called once
 - 3. Called more than once
- Assumption:

 $\beta < 1/T$

$$L(\mathcal{D}, h^{\text{new}}) = Pr(c = 0)L(\mathcal{D}, h^{\text{new}} \mid c = 0)$$

+ $Pr(c = 1)L(\mathcal{D}, h^{\text{new}} \mid c = 1)$
+ $Pr(c \ge 2)L(\mathcal{D}, h^{\text{new}} \mid c \ge 2)$ (6)

$$\leq (1-\beta)^{T} L(\mathcal{D}, h) + T\beta (1-\beta)^{T-1} \Big[L(\mathcal{D}, h) + \ell_{h}^{\mathrm{CS}}(h') \Big]$$
(7)
+ $\Big[1 - (1-\beta)^{T} - T\beta (1-\beta)^{T-1} \Big] c_{\mathrm{max}}$

$$=L(\mathcal{D},h)+T\beta(1-\beta)^{T-1}\ell_h^{\mathrm{CS}}(h')+\left(\sum_{i=2}^T(-1)^i\beta^i\binom{T}{i}\right)L(\mathcal{D},h)$$
$$+\left[1-(1-\beta)^T-T\beta(1-\beta)^{T-1}\right]c_{\mathrm{max}}$$
(8)

Source: [1]

- Proof for lemma 1:
 - Interpolation

$$h^{new} \leftarrow \beta h' + (1 - \beta)h$$

• Maximal cost:

$$c_{max} = \mathbb{E}_{(x,c)\sim D} \max_{i} c_{i}$$

- Cases:
 - 1. Learned policy is never called
 - 2. Called once
 - 3. Called more than once
- Assumption:

 $\beta < 1/T$

$$\leq L(\mathcal{D},h) + T\beta \ell_h^{\mathrm{CS}}(h')$$

$$+ \left[1 - (1-\beta)^T - T\beta (1-\beta)^{T-1}\right] (c_{\max} - L(\mathcal{D},h))$$
(9)

$$\leq L(\mathcal{D},h) + T\beta \ell_h^{\mathrm{CS}}(h') + \left[1 - (1-\beta)^T - T\beta(1-\beta)^{T-1}\right] c_{\mathrm{max}}$$
(10)

$$=L(\mathcal{D},h) + T\beta\ell_h^{\mathrm{CS}}(h') + \left(\sum_{i=2}^T (-1)^i \beta^i \binom{T}{i}\right) c_{\mathrm{max}}$$
(11)

$$\leq L(\mathcal{D},h) + T\beta \ell_h^{\mathrm{CS}}(h') + \frac{1}{2}T^2\beta^2 c_{\mathrm{max}}$$
(12)

Source: [1]

SEARN in comparison

Why/where is SEARN superior to other structured prediction algorithms?

SEARN in comparison

- Independent models
 - Ignore structure or constrain membership No complex features, limited to Hamming loss
 = SEARN with features independent of history
 - Maximum Entropy Markov Model (MEMM)

Prediction on basis of k previous predictions Assumption: previous predictions are correct \rightarrow can perform arbitrarily bad Stacked MEMM's: SEARN with $\beta = 1$ limited to sequence labeling

SEARN in comparison

- Perceptron-based models
 - Structured Perceptron
 - Assumption: argmax is tractable
 - SEARN in reverse: moving from incorrect towards true output
 - Incremental Perceptron
 - Replace argmax with beam search
 - Limitations: beam-search applications, decomposable loss function

Global models

 Conditional Random Field & Max-Margin Markov Network (M³N) In application limited to linear chain models with Markov assumption SEARN is more general

How can we apply SEARN to structured prediction tasks? Does it perform well?

- 1. Sequence Labeling
 - Handwriting recognition
 - Spanish NER
 - Syntactic chunking
 - Joint chunking and POS tagging

SEARN:

- Loss per label: Hamming loss
- Loss per chunk: F1
- Left-to-right greedy search
- Chunk-at-a-time decoding (BIO)
- Reduction to binary classification

$$l^{Ham}(y,\hat{y}) \triangleq \sum_{n=1}^{N} \mathbb{1}[y_n \neq \hat{y}_n]$$
$$l^F(y,\hat{y}) \triangleq \frac{2|y \cap \hat{y}|}{|y|+|\hat{y}|}$$

1. Sequence Labeling

• Results

ALGORITHM	Handy	vriting	NER		Chunk	C+T
	\mathbf{Small}	Large	Small	Large		
CLASSIFICATION						
Perceptron	65.56	70.05	91.11	94.37	83.12	87.88
${ m Log}$ ${ m Reg}$	68.65	72.10	93.62	96.09	85.40	90.39
SVM-Lin	75.75	82.42	93.74	97.31	86.09	93.94
SVM-Quad	82.63	82.52	85.49	85.49	\sim	\sim
STRUCTURED						
Str. Perc.	69.74	74.12	93.18	95.32	92.44	93.12
\mathbf{CRF}	—	_	94.94	\sim	94.77	96.48
$\mathbf{SVM}^{\mathrm{struct}}$		_	94.90	\sim	_	
M^3 N-Lin	81.00	\sim	_	_	_	
M^3N -Quad	87.00	\sim	—	—	—	—
SEARN						
Perceptron	70.17	76.88	95.01	97.67	94.36	96.81
Log Reg	73.81	79.28	95.90	98.17	94.47	96.95
SVM-Lin	82.12	90.58	95.91	98.11	94.44	96.98
SVM-Quad	87.55	90.91	89.31	90.01	\sim	\sim

~: could not scale
-: not reported
F1 on Chunk, C+T
Hamming on Handwriting, NER

Source: [1]

2. Automatic Document Summarization

- Greedily extract sentences of a document until word limit reached
- Vine-growth model on syntactic dependency parse tree
- Actions: add root of new tree or child of already added node
- Loss: Rouge
- Initial Policy: argmax intractable (constraints), beam search approximation

2. Automatic Document Summarization

• Results

Rouge score

	ORACLE		SEARN		BAYESUM			
	Vine	Extr	Vine	Extr	D05	D03	Base	Best
100 w	.0729	.0362	.0415	.0345	.0340	.0316	.0181	-
250 w	.1351	.0809	.0824	.0767	.0762	.0698	.0403	.0725

Source: [1]

Conclusion

What did we learn about SEARN? What did we not learn?

Summary

Core idea: combining search and learning

"Instead of accounting for search in the process of learning, I treat the structured prediction problem as being defined by a search process." [2]

- Meta-algorithm for structured prediction
 - Minimal requirements for structure and loss function
 - Start from good initial policy and generalize
- Competitive results for sequence labeling and summarization task

• The algorithm

- Heavily relies on quality of initial policy
 - Efficiency
 - Bias
 - Noise
- Definition of convergence criterion?
- Missing details for SEARN in test time
- Policy might be stochastic

- The application
 - Documented experiments lack interesting details
 - Iteration numbers
 - Observed speed of convergence
 - Interpolation and storage of classifiers
 - Use, integration and parametrization of base classifiers
 - Only a few experiments (by the same person)
 - (Un-)popularity in practice?
 - Machine Translation?

Your opinion! 😳

Your opinion! 😳

Thank you!

References

[1] Hal Daumé III, John Langford, and Daniel Marcu, **Search-Based Structured Prediction**, Machine Learning 75, no. 3 (June 2009): 297–325.

[2] Hal Daumé III, **Practical Structured Learning Techniques for Natural Language Processing** (ProQuest, 2006), PhD thesis at the University of Southern California.

[3] Hal Daumé III, John Langford, and Daniel Marcu, Searn in Practice, Unpublished, 2006.

[4] Searn website: http://www.umiacs.umd.edu/~hal/searn/ (last visited: May 10, 2015)

[5] Hal Daumé III and Daniel Marcu, Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction, in Proceedings of the 22nd International Conference on Machine Learning (ACM, 2005), 169–76.

[6] Thomas Finley and Thorsten Joachims, **Training Structural SVMs When Exact Inference Is Intractable,** in Proceedings of the 25th International Conference on Machine Learning (ACM, 2008), 304–11.

[7] J. Kober, J. A. Bagnell, and J. Peters, **Reinforcement Learning in Robotics: A Survey**, The International Journal of Robotics Research 32, no. 11 (September 1, 2013).