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Introduction
Recap: What is structured prediction? Why/where it is challenging?

3



Structured Prediction

 Structured Prediction Problem 
𝑥, 𝒄 ~ 𝐷 with inputs 𝑥 ∈ 𝑋, cost vectors 𝑐 ∈ (ℝ+)

𝑘
, k labels

 Goal
Find ℎ: 𝑋 → 𝑌 that minimizes 𝐿 𝐷, ℎ = 𝔼 𝑥,𝒄 ~ 𝐷 𝑐ℎ 𝑥
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 Challenges
Exact search is not always tractable
Loss functions are not decomposable
Complex feature functions
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Structured Prediction

 Structured Prediction Problem 
𝑥, 𝒄 ~ 𝐷 with inputs 𝑥 ∈ 𝑋, cost vectors 𝑐 ∈ (ℝ+)

𝑘
, k labels 

 Goal
Find ℎ: 𝑋 → 𝑌 that minimizes 𝐿 𝐷, ℎ = 𝔼 𝑥,𝒄 ~ 𝐷 𝑐ℎ 𝑥

 Challenges
Exact search is not always tractable
Loss functions are not decomposable
Complex feature functions

 [5] Approximate search instead of exact search: „enqueue“

 [6] Under-generating vs. over-generating algorithms

6



Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels
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Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels
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Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss
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Motivating Example
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 Simplest setting: two words, two possible labels
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Motivating Example

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss
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The SEARN algorithm
What kind of algorithm is it? Which problem does it solve? What is special?
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Structured Prediction in Context
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Characteristics

 SEARN:
 Meta-algorithm

How can we learn from a teacher?

 Search + Learn
View the problem as a search problem

Learn a classifier that walks through search space in a good way

Instead of training on true path: train on path that is actually taken in practice

 Any loss function

 Any class of features
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Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴

 Training data: structured, labeled

 A loss function 𝐿(𝒚, 𝑓( 𝒚))

 A good initial policy 𝜋 𝑠, 𝒄
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Components

 A search space 𝑆
State in the search space: 𝑠 = 𝑥 × (𝑦1, … , 𝑦𝑇)

Final elements: sequence of choices  𝒚

Abstract: f  𝒚

Concrete: f  𝒚 =  𝒚
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Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴
Multiclass classifier ℎ 𝑠 for location in search space 𝑠

Trained on cost-sensitive training data

„policy“ (→ reinforcement learning)
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Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴

 Training data: structured, labeled
𝒙, 𝒚 ∈ 𝑆𝑆𝑃

𝒚 ∈ 𝑌 decompose into vectors 𝑦0, 𝑦1, … , 𝑦𝑇
Arbitrary set of labels
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Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴

 Training data: structured, labeled

 A loss function 𝐿(𝒚, 𝑓( 𝒚))
Computable for any full-length prediction sequence 𝑦0, 𝑦1, … , 𝑦𝑇
Does not have to be decomposable
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Components

 A search space 𝑆

 A cost-sensitive learning algorithm 𝐴

 Training data: structured, labeled

 A loss function 𝐿(𝒚, 𝑓( 𝒚))

 A good initial policy 𝜋 𝑠, 𝒄
Achieves low loss on training data

„the teacher“
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Prediction

 At test time:
 Use returned policy

 Compute 𝑦0 on basis of 𝑥

Compute 𝑦1on basis of 𝑦0 and 𝑥

…

Compute 𝑦𝑇 on basis of 𝑥, 𝑦0 , 𝑦1 , … 𝑦𝑇−1
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Prediction

 At test time:
 Use returned policy

 Compute 𝑦0 on basis of 𝑥

Compute 𝑦1on basis of 𝑦0 and 𝑥

…

Compute 𝑦𝑇 on basis of 𝑥, 𝑦0 , 𝑦1 , … 𝑦𝑇−1

 No Markov assumption

 Feature function is essential
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Training

23

Source: [1]

Initialization with optimal policy

Convergence criterion

Generate path over training sample

Features for state at timestep t

Generate multiclass examples for possible
decisions and losses based on current policy

Train new classifier on examples

Combine old and new classifier



Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss
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Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss
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Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss Computing the regret

t=1

a=„N“ la = 0.2

a=„V“ la = 0.5

l1 = <0.2, 0.5>

t=2

a=„N“ la = 0.4

a=„V“ la = 0.0

l2 = <0.0, 0.4>
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Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels

Loss Creating cost-sensitive examples

l1 = <0.2, 0.5>

features for state: Φ1 = Φ(x) 

l2 = <0.0, 0.4>

features for state: Φ2 = Φ(x, y1)

add to S: 

{< Φ1, l1>, < Φ2 , l2>}
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Motivating Example re-visited

 POS-Tagging
 Simplest setting: two words, two possible labels
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Train classifier on 
these tuples!



Details

 Initial policy
 Takes full advantage of training data labels

 Use search to create the initial policy (if not available analytically):
 Given a node in the search space with cost vector, compute the best step to take

 = given a node in the search space, find the shortest way to a goal

 Optimal approximation: assume all further decisions will be made optimally

 „greedy“ search

 Choice of search algorithm influences bias in learning algorithm

𝜋 𝑠, 𝒄 = argmin
𝑦𝑡+1

min
𝑦𝑡+2,…,𝑦𝑇

𝑐 𝑦1, … , 𝑦𝑇

29



Details

 Cost-sensitive examples
 Run the given policy ℎ over the training data

 Prediction is sequence  𝒚 with loss 𝒄 𝒚
 Compute (arbitrary) features 𝜑 = 𝜑 𝑠 for state 𝑠 on sequence

 Compute cost („regret“) for each state 𝑠 and each action 𝑎: 

𝑙ℎ 𝒄, 𝑠, 𝑎 = 𝔼  𝑦~ 𝑠,𝑎,ℎ 𝒄 𝒚 − min
𝑎′

𝔼  𝑦~ 𝑠,𝑎′,ℎ 𝒄 𝒚

→ 𝜑, 𝒍 ∈ 𝑆 is the input data structure for the learner
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SEARN analysed
What can we tell about SEARN from an analytical perspective?
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SEARN analysed

 Moving from initial policy to fully learned policy

 Each iteration „degrades“ current policy

 Analysis shows: the degradation is small
 Theorem 2: Upper bound on the loss of a learned classifier

 Lemma 1: Upper bound on the loss of a classifier after first iteration

 Lemma 2: Upper bound after several iterations
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SEARN analysed

 Proof for lemma 1:
 Interpolation 

ℎ𝑛𝑒𝑤  𝛽ℎ′ + 1 − 𝛽 ℎ
 Maximal cost:

𝑐𝑚𝑎𝑥 = 𝔼 𝑥,𝒄 ~𝐷 max
𝑖

𝑐𝑖

 Cases:
1. Learned policy is never called
2. Called once
3. Called more than once

 Assumption: 
𝛽 < 1/𝑇

33
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SEARN in comparison
Why/where is SEARN superior to other structured prediction algorithms?
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SEARN in comparison

 Independent models
 Ignore structure or constrain membership

No complex features, limited to Hamming loss

= SEARN with features independent of history

 Maximum Entropy Markov Model (MEMM)
Prediction on basis of 𝑘 previous predictions

Assumption: previous predictions are correct → can perform arbitrarily bad

Stacked MEMM‘s: SEARN with 𝛽 = 1 limited to sequence labeling
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SEARN in comparison

 Perceptron-based models
 Structured Perceptron

Assumption: argmax is tractable
SEARN in reverse: moving from incorrect towards true output

 Incremental Perceptron
Replace argmax with beam search
Limitations: beam-search applications, decomposable loss function

 Global models
 Conditional Random Field & Max-Margin Markov Network (M3N)

In application limited to linear chain models with Markov assumption
SEARN is more general
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Experiments
How can we apply SEARN to structured prediction tasks? Does it perform well?
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Experiments

1. Sequence Labeling
 Handwriting recognition
 Spanish NER
 Syntactic chunking
 Joint chunking and POS tagging

SEARN:
 Loss per label: Hamming loss 𝑙𝐻𝑎𝑚 𝑦,  𝑦 ≜  𝑛=1

𝑁 1 𝑦𝑛 ≠  𝑦𝑛

 Loss per chunk: F1 𝑙𝐹 𝑦,  𝑦 ≜
2 𝑦 ∩  𝑦

𝑦 +  𝑦

 Left-to-right greedy search
 Chunk-at-a-time decoding (BIO)
 Reduction to binary classification
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Experiments

1. Sequence Labeling
 Results

~: could not scale

−: not reported

F1 on Chunk, C+T

Hamming on Handwriting, NER
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Experiments

2. Automatic Document Summarization
 Greedily extract sentences of a document until word limit reached

 Vine-growth model on syntactic dependency parse tree

 Actions: add root of new tree or child of already added node

 Loss: Rouge

 Initial Policy: argmax intractable (constraints), beam search approximation
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Experiments

2. Automatic Document Summarization
 Results

Rouge score 
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Source: [1]



Conclusion
What did we learn about SEARN? What did we not learn?
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Summary

 Core idea: combining search and learning
„Instead of accounting for search in the process of learning, I treat the 
structured prediction problem as being defined by a search process.” [2]

 Meta-algorithm for structured prediction
 Minimal requirements for structure and loss function

 Start from good initial policy and generalize

 Competitive results for sequence labeling and summarization task
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Problems and Questions

 The algorithm
 Heavily relies on quality of initial policy

 Efficiency

 Bias

 Noise

 Definition of convergence criterion?

 Missing details for SEARN in test time

 Policy might be stochastic
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Problems and Questions

 The application
 Documented experiments lack interesting details

 Iteration numbers

 Observed speed of convergence

 Interpolation and storage of classifiers

 Use, integration and parametrization of base classifiers

 Only a few experiments (by the same person)

 (Un-)popularity in practice?

 Machine Translation?
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Problems and Questions

Your opinion! 
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Problems and Questions

Your opinion! 

Thank you!

48



References

[1] Hal Daumé III, John Langford, and Daniel Marcu, Search-Based Structured Prediction, 
Machine Learning 75, no. 3 (June 2009): 297–325.

[2] Hal Daumé III, Practical Structured Learning Techniques for Natural Language 
Processing (ProQuest, 2006), PhD thesis at the University of Southern California.

[3] Hal Daumé III, John Langford, and Daniel Marcu, Searn in Practice, Unpublished, 2006.

[4] Searn website: http://www.umiacs.umd.edu/~hal/searn/ (last visited: May 10, 2015)

[5] Hal Daumé III and Daniel Marcu, Learning as Search Optimization: Approximate Large 
Margin Methods for Structured Prediction, in Proceedings of the 22nd International 
Conference on Machine Learning (ACM, 2005), 169–76.

[6] Thomas Finley and Thorsten Joachims, Training Structural SVMs When Exact Inference 
Is Intractable, in Proceedings of the 25th International Conference on Machine Learning 
(ACM, 2008), 304–11.

[7] J. Kober, J. A. Bagnell, and J. Peters, Reinforcement Learning in Robotics: A Survey, The 
International Journal of Robotics Research 32, no. 11 (September 1, 2013).

49


