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Intro

Intro

idea:
- improve RNN training
- integrate L2S into RNNs
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Intro

RNNs

- neural network
- works on sequences
- used for tagging, machine
translation
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Intro

Motivation

problems of RNN training:
- maximum likelihood estimation
- teacher forcing
- local loss
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Intro

MLE

- comes close to 0/1 loss
- only rewards reference
- not close to reference
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Intro

Teacher Forcing

- training on ground truth
- testing on predictions
- leads to compounding errors

M. Bacher (ICL HD) SeaRNN 18th of October 2018 7 / 41



Intro

Local Level Loss

- loss is “local”
- loss function doesn’t consider the full sequence
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SeaRNN

Searn

- roll-ins
- roll-outs
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SeaRNN

Searn

Figure 1: Leblond et al.
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SeaRNN

SeaRNN

- apply Searn to RNNs
- use rollouts
- rollouts enable new losses
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SeaRNN

SeaRNN Basic Idea

- roll-in the RNN
- at timestep t
- roll-out all actions
- calculate cost
- use cost for gradient update
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SeaRNN

SeaRNN

Figure 2: Leblond et al.M. Bacher (ICL HD) SeaRNN 18th of October 2018 13 / 41



SeaRNN

Policy choice

- follow LOLS [Chang et al.]

Figure 3: Chang et al.
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SeaRNN

New Losses

- use sequence information
- reward good, non-ground truth results
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SeaRNN

Log Loss

Lt(st ; ct) = −log(est(a
∗)/

A∑
i=1

est(i)) (1)

a∗ = argmina∈Act(a) (2)
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SeaRNN

Log Loss

- very similar to MLE
- maximize lowest cost action
- not ground truth action
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SeaRNN

Kullback Leibler

- see costs as probability distribution
- apply softmax to cost distribution
- PC = Cost distribution over actions
- PM = Model probability over actions
- similarity PC and PM
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SeaRNN

Kullback Leibler

Lt(st ; ct) = −
A∑

a=1

(PC (a) ∗ log(PM(a))) (3)
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SeaRNN

Kullback Leibler

- provides more information
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SeaRNN

Optimization

- use online variant of Searn
- taken from Chang et al.
- works on mini-batches
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SeaRNN 1st Experiment

First Experiment

- two datasets:
- OCR
- Corrupted Text Correction
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SeaRNN 1st Experiment

OCR

- English words
- sequence of hand written characters
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SeaRNN 1st Experiment

Corrupted Text

- 10 character sequence
- some characters randomly replaced
- random replacement of 30% or 50%
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SeaRNN 1st Experiment

Results

Figure 4: Leblond et al.
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Performance

Performance

- obvious problem
- for one gradient step
- roll-out over all actions
- OCR roll-out -> 26 actions
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Performance

Performance

- machine translation -> 100 000 actions
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Performance

Scaling Up

- don’t roll-out all actions
- sample actions
- 3 sampling techniques
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Performance

Scaling Up

- stochastic policy sampling
- biased policy sampling
- top-k sampling
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Performance

Adapted Losses

- LL and KL applied to the sampled tokens
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Performance 2nd experiment

2nd experiment

- use sampling techniques
- on OCR and Spelling
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Performance 2nd experiment

Results

- 5x computation time speedup

Figure 5: Leblond et al.
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Neural Machine Translation

NMT

- neural Machine Translation
- German - English
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Neural Machine Translation

NMT

- don’t use one of the sampling methods
- use “custom” sampling
- mixing of top-k and ground truth neighbors
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Neural Machine Translation

Policy Choice

“we use a reference roll-in and a mixed roll-out.”

Figure 6: Chang et al.
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Neural Machine Translation

Policy Choice

“One potential factor is that our reference policy is not
good enough to yield valuable signal when starting from a
poor roll-in. Another possibility is that the underlying
optimization problem becomes harder when using a learned
rather than a reference roll-in.”
[Leblond et al.]
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Neural Machine Translation

Results

Figure 7: Leblond et al.
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Conclusion | Critique

Conclusion

- “SEARNN is a full integration of the L2S ideas to RNN
training, whereas previous methods cannot be used for this
purpose directly. “[Leblond et al.]
- clear improvement over MLE
- mostly consistent results with LOLS
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Conclusion | Critique

Critique

Computational performance?
Improvement by sampling?
Performance comparison to other systems?

M. Bacher (ICL HD) SeaRNN 18th of October 2018 39 / 41



Conclusion | Critique

NMT Policy Choice

Choice of Reference Roll In?
Chang literally says “Roll-in with πref is bad.”
Is this somewhat teacher forcing?
Would this work with better learned policy?
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Conclusion | Critique
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