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Introduction
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Researching Insulting Language

• enormous amount of text content generated on the internet each day

• insulting language is a pressing issue for social media etc.

• basic word filters cannot cover many types of insulting language

• manual filtering is time-consuming and psychologically demanding

for moderators

→ increasing demand for systems for insulting language detection
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Role of Task-specific Datasets

• datasets are the foundation of research:

• allow development of new classification approaches

• comparisons between different systems

• evaluation of performance

• analysis & directions of future research

• the field is (relatively) young and not all types of insulting language

have been documented in datasets

• creating datasets for insulting language is very time-consuming

• skewed distribution in random samples of data ( 3-4% on Twitter)1

→ creating a new dataset for a previously undocumented specific type of

insulting language opens new directions of research & insights into the

performance of existing systems

1Founta et al. (2018)
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Thesis Idea

The thesis aims to create a new dataset of implicitly insulting language

in the form of creative comparisons.

This dataset will be used to analyse this specific subtype of insulting

language.

Additionally, the performance of state-of-the-art classifiers for insulting

language will be tested on the dataset.
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Definition of Terms



Insulting Language

other terms used: hate speech, offensive/abusive/toxic language,

profanity, ... 2

Insult
= “disparages a person or a group on the basis of some characteristic.” 3

Explicit Insult
= individual words themselves have an unambiguously offensive nature

Implicit Insult
= does not contain offensive words but still perceived as insult → irony,

negative stereotypes, jokes, figurative language, comparisons

2Schmidt & Wiegand (2017)
3Nockleby (2000)
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Insulting Language: Examples

Explicit Insult

= You are a piece of scum.

He reminds me of a spoiled brat without a properly functioning brain.

Go away, you pervert sleazebag.

Implicit Insult
= I haven’t had an intelligent conversation with a woman in my whole

life. (Negative Stereotype)

Why aren’t there any Mexicans on Star Trek? Because they do not work

in the future either. (Joke + Stereotype)

You are as useful as an umbrella full of holes. (Comparison)
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Types of Comparisons

Comparison
= act of evaluating two or more things by determining the relevant

characteristics of each thing to be compared + which characteristics of

each are similar/different to the other, and to what degree

Simile: subset of comparisons which compare two very different things 4

Insulting Comparison
= expression which is disrespectful or scornful; may be accurate, but at

the same time abusive

Negative Comparison
= either contains words with negative meaning, or the wording

expresses negative meaning; for the purposes of this thesis also not

insulting.

4Niculae & Yeneva (2013), Qadir et al. (2015)
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Types of Comparisons: Examples

Comparison

= This person is as tall as a tree.

Insulting Comparison

= You are like an inbred.

Negative Comparison

= You are as pale as a ghost.
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Subject of the Thesis

Dataset: 2 Classes/Labels (disjoint sets)

1. Implicitly Insulting Comparisons

2. Non-insulting Negative Comparisons

Not in the Dataset: other types of insults or comparisons

• general insults

• explicitly insulting comparisons

• neutral comparisons

• positive comparisons

10



Subject of the Thesis: Examples

Dataset: 2 Classes/Labels (disjoint sets)

1. Implicitly Insulting Comparisons: You eat like a pig.

2. Non-insulting Negative Comparisons: You are as pale as a ghost.

Not in the Dataset: other types of insults or comparisons

• general insults: Shut up, you asshole.

• explicitly insulting comparisons: You look like a faggot.

• neutral comparisons: Your car is as green as an olive.

• positive comparisons: You are as radiant as the sun.
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Related Work



Related Areas of Research

• Hate Speech Detection

• Linguistic Perspectives on Insulting Language

• (Ironic) Simile and Sarcasm Detection

• Polarity Detection in Similes

• Dataset Creation for Skewed Distributions

• Crowdsourcing Task Design

12



Learning to Recognize Affective Polarity in Similes (Qadir et al. 2015)

• build a classifier for recognising polarity in similes on Twitter

• create a dataset of 1,500 positive, neutral and negative similes

• labels annotated through crowdsourcing (Amazon Mechanical Turk)

• dataset contains 524 negative similes

• negative label also includes instances of insulting language

Label Dataset Instance Example Sentence

negative PERSON || look || crackhead You look like a crackhead.

negative PERSON || sound || die whale You sound like a dying whale.

negative PERSON || be || lose puppy You look like a lost puppy.

neutral IT || smell || pizza It smells like pizza.

positive PERSON || look || princess You look like a princess.
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Learning to Recognize Affective Polarity in Similes (Qadir et al. 2015)

Label Dataset Instance Example Sentence

negative PERSON || look || crackhead You look like a crackhead.

negative PERSON || sound || die whale You sound like a dying whale.

negative PERSON || be || lose puppy You look like a lost puppy.

Additional annotation in the context of this thesis:

• subset of 359 similes that relate to a person, a person’s belongings

or attributes

• manual annotation of existing data

• insulting: 274 (76.32%), of which 89 (24.79%) are explicitly insulting

• non-insulting negative: 86 (23.96%)

→ creating the new dataset represents existing phenomena
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Thesis Outline



Thesis Outline: Current Status

1. Development of Data Collection Methods

Decided on crowdsourcing for data collection, the design of the surveys

tasks (dev surveys) and the data to collect.

2. Data Collection

3 Step Annotation Procedure

1. annotators creatively invent comparisons (insulting & negative in

separate tasks) using patterns

2. invented instances are re-labelled by different annotators

3. a subset of similar / problematic instances are labelled again in a

consistency task

3. Data Analysis

4. Experiments & Evaluation

5. Writing
15



1. Data Collection for Creative Comparisons

• using crowdsourcing avoids problems of skewed distribution & biases

in existing data

• annotators are selected through Prolific Academic 5

• UK residents who are native speakers of English

• no linguistic background: clear & concise explanation of relevant

concepts needed

• annotators are asked to invent examples of natural language

5https://www.prolific.co/
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1. Crowdsourcing Creative Comparisons: Challenges

• task design needs to be compact & guidelines concise

• development phase showed improvements when separating insulting

and negative comparisons into different tasks

• free generation is too demanding, but annotators work well when

provided with patterns

• range of patterns iteratively developed throughout the development

phase, based on annotator responses

• initially multi-slot patterns: Your [X] is as [Y] as [Z].

• abandoned in favour of single-slot patterns, e.g.

• Your voice is like [X].

• You talk like [X].

• You are as polite as [X].
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1. Crowdsourcing Creative Comparisons: Challenges

• for generating non-insulting negative comparisons, providing a

’situational frame’ is helpful

• for generating insulting comparisons, avoiding explicit swearwords is

often a challenge

• noise phenomena: answers with no comparison structure,

nonsensical comparisons, context-dependent comparisons

• some comparisons are actually fixed expressions: when prompted, a

high number of annotators give similar answers
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1. Crowdsourcing Creative Comparisons: Design Example

Figure 1: Example for a task to generate negative comparisons
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2. Re-labelling Comparisons

• goal: each comparison in dataset should have the label INS

(insulting) or NEG (non-insulting negative)

• instances are generated in separate survey tasks, so they already

have an assigned label

• however, instances are generated by many different annotators with

inconsistent views on what constitutes INS/NEG boundary

• label assignment is difficult and somewhat inconsistent

→ all generated instances are re-labelled in manual classification

task performed by 5 different annotators

→ label assigned through majority vote of 3
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3. Checking Label Consistency for Similar Instances

• distinguishing between INS / NEG labels is a difficult task for

human annotators

• dataset was developed & labels assigned iteratively: decisions based

on single instance without any context

• semantically similar instances should receive the same label (label

consistency)

→ instances grouped by similarity

→ similarity groups annotated again in consistency task design

→ labels reassigned for selected instances
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3. Checking Label Consistency for Similar Instances: Example

Figure 2: Example of a Similarity Group in the Consistency Task
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Removing Instances

Instances were removed from the dataset for the following reasons:

1. Explicit Insult: instances contains offensive words

2. No Comparison Structure: colloquial usages of like as

hedge/quotative

3. (Near-)Duplicate: (near-)duplicates of existing instances

4. Context-Dependent: comparison requires knowledge about the

speaker or specific world knowledge

5. Other Label: no majority agreement on label or agreement that

comparison is positive/neutral
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Removing Instances: Examples

Instances were removed from the dataset for the following reasons:

1. Explicit Insult: You seem like a demented idiot.

2. No Comparison Structure: Your progress is like glacial.

Your clothes are like less beautiful.

3. (Near-)Duplicate: You are as thin as a rake.

4. Context-Dependent: Your reaction reminds me of how I felt.

Your progress is like Brexit.

5. Other Label: Your smile is like spring sunshine.
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Pattern Distributions

• comparisons are generated using pattern prompts

• to ensure distribution of instances across patterns, each pattern is

limited to 20 instances total (max. 10 for each label)

• during the data collection process some patterns show a strong bias

towards only one label

→ biased patterns are removed from the dataset

• fixed range of unbiased patterns for controlled dataset design:

prevent classifiers from only learning patterns instead of INS/NEG

labels
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Examples of Removed Patterns

Biased towards negative comparisons:

• You are as sad as

... a wilted lettuce. / ... a weeping willow / ... a rain cloud.

• You are as organised as

• You are as pale as

Biased towards insulting comparisons:

• Your make-up reminds me of

... a clown. / ...an old lady. / ...crayons.

• You are as useful as

• You are as intelligent as
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Dataset Version 11

Feature

Instances 1004

Patterns 71

Annotators 98

Surveys Used 18 (+ 8 Annotation Tasks)

Average Length of Comparison 22.53

Total Tokens 9372

Total Tokens (without Pattern) 5302

Most frequent tokens

’old’: 26, ’person’: 18, ’child’: 14, ’day’: 13, ’man’: 12, ’dog’: 12, ’car’:

11, ’night’: 10, ’cat’: 9, ’seen’: 9, ’time’: 9, ’monkey’: 8, ’white’: 8,

’paper’: 8, ’shop’: 8, ’need’: 8, ’clown’: 8, ’pig’: 8, ’got’: 7, ’ghost’: 7
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Dataset Version 11: Examples

ID Survey Label Text

0093 NEG INS/5 You talk like a monkey with a mouth full of nuts.

0574 NEG NEG/5 You talk like an express train.

0162 INS INS/5 Your face is like a squashed tomato.

1593 NEG NEG/4 Your face is like a white sheet of paper.

0015 INS NEG/5 You reacted like a child who lost a balloon.

1614 INS INS/5 You reacted like a virgin.

0357 INS INS/5 Your voice is like nails on a chalkboard.

1994 NEG NEG/5 Your voice is like a whisper.

Additional Information: Annotator ID, Survey ID, Unedited input text

28



Thesis Outline: Future Work

1. Development of Data Collection Methods

2. Data Collection

2. Data Analysis – 2 weeks

Analyse created dataset to identify biases and distribution of patterns,

labels, specific semantic fields.

3. Experiments & Evaluation – 5 weeks

Choose classifier(s) that represent state-of-the-art performance for

insulting language.

Implement & evaluate performance on dataset.

4. Writing – 5 weeks + 2 weeks corrections/buffer

Write the thesis.

Planned deadline: 17.02.2020.

29



Summary

• the aim of the thesis is to create and analyse a dataset of implicitly

insulting comparisons and non-insulting negative comparisons

• data has been collected through crowdsourcing in a 3-step

annotation procedure

• the new dataset contains 1004 creative comparisons collected from

almost 100 annotators

• the remaining steps are a thorough analysis of the data, experiments

for the performance of classifiers and the writing process
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Thank you for your attention.

Questions and feedback are very welcome.
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