How to present a paper

Michael Wiegand

Institute for Computational Linguistics Heidelberg University

Introduction to Sentiment Analysis October 2nd, 2019

Motivation

This presentation is about how to give a good presentation

Why is this important?

- Sell your work
- ▶ Audience ≠ asleep
- Audience understands and remembers most important points

Overview

- 1 Preparation
- 2 Content
- 3 Style

Planning your talk

If someone remembers **one** thing from your talk, what should it be?

- Check the material
- Identify central topics and claims
- Outline the talk
- What story do you want to tell?

Planning your talk

Start your slides on paper

- ▶ No technical/design distractions
- Start messy, then simplify

Don't start at the beginning

- Start with the central point
- All further explanations should support this

The Audience

Who is your audience?

- Don't expect everyone to be an expert.
- Don't underestimate your audience either.

Attention Span

- Average adult: 20 minutes
- Prolong attention span periodically:
 - Give a demonstration or example
 - Change medium (e.g. use whiteboard)
 - ▶ Interact with the audience

Software

Powerpoint et cetera

- Pro: Easy to use, graphical tweaks easy
- ▶ Con: OS-limitations, must be installed on machine
- ▶ **Temptation:** Effects and transitions

LaTeX Beamer

- ▶ **Pro:** Clean, consistent, native formula support, OS-agnostic
- ▶ Con: Inflexible, graphical tweaks difficult
- ► **Temptation:** Long texts and lists

Practice

Practice your talk!

- Practice multiple times
- Use friends or family as audience
- When practising alone, speak in complete sentences

Time

Manage your time

- Better too short than too long
- Throw out anything you don't discuss
- ▶ Don't panic: First practice talk will take way too long

Checklist

When using your own computer

- Does it work with the projector? Check ahead of time!
- Bring monitor adapter
- Use charger cable
- Turn all messengers off (+ phone silent)
- Is the desktop presentable?

When using another computer

- Can it play your presentation format?
- ► Always bring PDF version as backup

Checklist: Miscellaneous

Aids

- ► Remote ⇒ More mobility
- ▶ Laser pointer ⇒ for large/high screens
- ► USB stick ⇒ FAT formatted, containing presentation and PDF backup.
- Water bottle

Checklist

Slides

- Proof read your slides
- Go through final version in presentation mode
 - ⇒ Find unintended transitions/animations

Overview

- 1 Preparation
- 2 Content
- 3 Style

Structure of a presentation

- 1. Introduction / Motivation
- 2. Background
- 3. Methods / Solution
- 4. Experiments / Results
- 5. Conclusion

Be flexible

Depending on your topic, the perfect structure might be different.

"The first thing we do, let's kill all the lawyers." Social justice in Shakespeare's plays

John Doe

Department of Conspiracy Theories Greendale Community College

based on
"The True Shakespeare"
by Christopher Marlowe

Credit your source!

Introduction & Motivation

What?

- ▶ What is your general topic?
- Why would we want to know about it?
- Why is the state of the art not sufficient?

How?

- Give a general intuition.
- Show a concrete example.
- Beware: Don't get too specific

Overview

- 1. Introduction / Motivation
- 2. Background
- 3. Methods / Solution
- 4. Experiments / Results
- 5. Conclusion

Section names

Give your sections meaningful names.

Background

What?

- ► Establish basic knowledge for your topic
- Put in context with related work

How?

- Is the paper based on existing works?
- How is paper different from standard approaches?
- ▶ Introduce work that will be used in the evaluation

Related work

Brevity

- Discuss related work only briefly
- Discuss only what helps to motivate/evaluate the paper

Location

You might move related work to the evaluation

- Pro: Just-in-time information
- Con: Disruptive if complicated to explain

Methods / Solution

What?

- Explain new approach and its advantages.
- Show how approach solves concrete problem.
- Does the approach generalize?

How?

- Examples!
- Diagrams

Examples

Examples are your main weapon!

- Use examples first, generalise afterwards
- Use short examples
- Even if short, examples must illustrate the concept
- Consider using the whiteboard
 - You might want to prepare this before the talk starts

Diagrams

When showing methods/structures, use diagrams (instead of lists) whenever possible.

Formulas

$$\begin{split} &-\frac{1}{2}\partial_{\nu}g_{\mu}^{a}\partial_{\nu}g_{\mu}^{a} - g_{s}f^{abc}\partial_{\mu}g_{\nu}^{a}g_{\mu}^{b}g_{\nu}^{c} - \frac{1}{4}g_{s}^{2}f^{abc}f^{ade}g_{\mu}^{b}g_{\nu}^{c}g_{\mu}^{d}g_{\nu}^{e} + \\ &\frac{1}{2}ig_{s}^{2}(\bar{q}_{i}^{\sigma}\gamma^{\mu}q_{j}^{\sigma})g_{\mu}^{a} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} - \\ &\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c_{\nu}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \\ &\frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \\ &\frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{\nu}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{2M}{g}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + \\ &2\phi^{+}\phi^{-})] + \frac{2M^{4}}{g^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - \\ &\frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \\ &\frac{1}{2}g\frac{1}{c_{w}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{w}}{g} - Z_{\mu}^{0}(W_{\nu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi) - As \text{ you can clearly see...}) - \\ &\frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) \end{array}$$

Formulas

Don't put (large) formulas on your slide!

- ► Try to explain methods without formulas
- If you have to use a formula, walk the audience through it step by step
 - Explain both verbally and on slides
 - Don't explain just What, but Why!

Formulas

feature paths can have different importance

$$p(w|w_h) = \sum_{f \in F(w)} p(w|f) \sum_{f_h \in F_{\times}(w_h)} p(f|f_h) \prod_{w_{h_i}} p(f_{h_i}|w_{h_i})$$
word is mixture of features
normalization

Thanks to Andrea Fischer for this LaTeX solution.

Overview Redux

Summarise

Periodically remind the audience where we are in the big picture.

- 1. Introduction / Motivation
- 2. Background
- 3. Methods / Solution
- 4. Experiments / Results
- 5. Conclusion

Experiments / Results

What?

- ▶ Evaluate the method's performance
- Compare against baseline and/or state of the art

How?

- Evaluate only aspects that you have introduced already
- Explain what the results mean

Presenting results: Tables

- First decribe what information the table actually contains
- Highlight important numbers.
- Show only what is necessary (but no less)
- ► Explain the numbers (≠ reading numbers aloud)

	English		German		Arabic	
	Acc	CER	Acc	CER	Acc	CER
Baseline Filter	75.8 91.7	0.26 0.20	84.4 74.6	0.16 0.26	50.5 81.7	0.51 0.25
CRF CRF+Filter	82.9 92.9		90.3 83.1			

Wiegand

How to present a paper

28 / 47

Presenting results: Graphs

Use graphs (instead of tables) whenever possible.

Conclusion

Conclusion

What have we learned? Sum up in three sentences.

Discussion

What is your own opinion of the paper? Critically reflect.

Future Work

Follow-up questions? Improvements?

Appendix

"Thank you" /" Questions?"

A stop sign. Not really necessary.

References

Required for archiving/later reference. Don't discuss.

Backup Slides

Did you cut something because it was too complicated? Are you expecting requests for more details on something? Hide it here.

Q & A

Types of Questions

- ► **Clarification:** Something in your talk was unclear.
- ► **Content:** Something in the paper was unclear/questionable.
- Extension: A new idea that goes beyond what the paper covered.

How to present a paper

Overview

- 1 Preparation
- 2 Content
- 3 Style

Slides: An aid by any other name

Slides **support** your talk, not the other way around.

- Visual aid
- Summary of what you say
- Queue cards for you to keep talk on track.
- ▶ Only put things on a slide if you will actually discuss them.

Style

Slide Design

Less is more

Slide Design

Clean Design

- ► Use slide numbers ⇒ Will help in Q&A
- No fancy transitions/effects ⇒ Distracts audience

Unveiling content

Show what you want your audience to think about at any given time. No more, no less

- ► Too much: Audience distracted by trying to read slides
- ▶ Too little: Too many rapid changes are also distracting

Brevity

- Keep lists short
- ▶ Limit text to no more than 2 lines at a time
- No full sentences
 - It is unnecessary to write full sentences in slides, especially auxiliary words like determiners. Long texts make it hard to find the central point of a message and distract the audience from your speech.

Font Size

- Make sure the text is readable to your audience.
- Don't turn your presentation into an eyesight test.
- ▶ If you need small font sizes, your slides are too full.
- Use font sizes 18-36 points.

Font Type

- AVOID WRITING FULL SENTENCES IN CAPITALS. IT IS LESS READABLE.
- Avoid serif fonts:
 - Serif fonts are used for print media.
 - ▶ Sans serif fonts are more readable on screen.

Colour

This is good for small rooms.

This is good for large rooms.

Never ever do this.

Colour

- ► Many projectors have weak contrasts ⇒ use strong colours
- Beware of coloured/patterned backgrounds
- ► Think of people with red-green colour blindness
 - ▶ 8% of men, 0.4% of women
- Opinions on black background differ.
 To play it safe, use white background.

Images

- Use images wherever they help to illustrate a point.
- ▶ Never use images that have nothing to do with your talk.
- Should have a good resolution and be readable on projector.

Advice for Speech

Now that your slides are ready, let's make sure you present them well

- Don't rush: Speak slowly and clearly
- Look at your audience, not your slides
- Physically point out things on slides
 use hands, laser pointer, mouse cursor
- Keep your remaining time in mind

Advice for Speech

Flow of Speech

- ▶ You don't need to learn the entire talk by heart.
- Memorise your first two sentences.
- Memorise the transitions between topics.

Reading is a sin

- ▶ Do not read from slides ⇒ causes monotonous fast speech
- Stand while you talk ⇒ Sitting tempts you to read
- Treat your slides like queue cards

Disclaimer

Do not apply any of this blindly

- ▶ Break any rule if it makes your presentation better ≠ easier for you
- Find your style. There is no single right way.

Conclusion

- ► Think about content first (important points)
- ► Think about how to present it (slides, board, exercise)
- Entertain your audience (to a certain degree)
- Don't worry :-)

References

This presentation was mainly based on the slides by **Marc Schulder** who used it for the Proseminar on sentiment analysis in summer semester 2015. Those slides reuse material from:

 A. Friedrich & A. Palmer: "Scientific Presentations: Expectations" (http://www.coli.uni-saarland.de/courses/discourse-13/contents/slides/scientific-presentations-handout.pdf)

Further sources:

- M. Püschel: "Small Guide to Making Nice Tables" (http://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-tables.pdf)
- S. McConell: "Designing effective scientific presentations" (http://www.youtube.com/watch?v=Hp7Id3Yb9XQ)