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Goals of this Session

» Recapitulation on principles and
terminology which will occur in many of
the papers presented in this seminar.

» You should already learned this in some
previous lecture(s).

» | will not talk about specific learning
algorithms.
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Machine Learning

» Some way to build a classifier.

» Differences to rule-based approach:
» Do not write rules.

» Define a set of features and let a learning
algorithm find out automatically which set of
features (typically translated to feature
weights) are most suitable.

» This is a data-driven approach.

» Nowadays, most research problems are
coped with in a data-driven manner.
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Dots represent data instances in some
feature space. :
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The colours blue and red represent two
different classes to be distinguished. .
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world




How a classifier ,,sees® the
world

Most learning algorithms try to (linearly)
separate the data instances. .
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Noise in Training Data
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Classifier should learn the actual classes
and not the noise!
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Noiseless data are not feasible.




Impact of Feature
Engineering
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Impact of Feature
Engineering

Good feature engineering may bring about
a better separability of the data instanc




Document Vectors vs. Word
Vectors

» For many traditional classifiers in text
classification, a document is represented by a
document vector:

» Vector components represent words within
document (e.g. word presence or word count).

» More recent classifiers (particularly deep
learning algorithms) operate on word vectors:

» Avector represents a word.

» In order to represent a document: some
operation on word vectors representing words
in documents needs to be applied (e.g.
averaging).
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Document Vector and Word
Vectors for Mary is ugly
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Document Vector and Word
Vectors for Mary is ugly

“Mary is ugly” “Mary” “jg” “ugly”
1 “s” 0 1 0
0 0 0 0
1 “Mary” 1 0 0
0 0 0 0
1 “ugly” 0 0 1

0 0 0 0
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Word Vector Representations

» A standard vector representation of words is a
one-hot representation:

» Binary vector.

» Vector dimensionality represents an entire
word vocabulary.

» Each vector component represents one
unique word.

» For each word vector, only one component
has value 1, all other components are 0.

» Such word representation can be very
effective.
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Shortcomings of One-Hot
Representation

» Produces high-dimensional vectors.

» For small training sets, such vectors may be too
sparse.

» Produces too coarse-grained similarities:
» cosine(vec(apple), vec(apple)) = 1
» cosine(vec(apple), vec(pear)) =0
» cosine(vec(apple), vec(dog)) =0

» No means to generalize beyond the words
observed in the training data.
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Word Embeddings

» Induced from large unlabeled corpora (Mikolov et
al., 2013).

» Word vector represents contexts with which word
has been observed in corpus.

» Dense vectors (typically 100-500 dimensions).

» Vectors are non-binary, more than one component
can be non-zero.

» Produce more linguistically adequate similarities:
» cosine(vec(apple), vec(apple)) = 1.00
» cosine(vec(apple), vec(pear)) = 0.89
» cosine(vec(apple), vec(dog)) = 0.14




One-Hot vs. Word
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Document Vectors vs. Word
Vectors

» Much of very recent research just employs as features
word vectors encoding word embeddings - deep
learning.

» With respect to word vectors/word embeddings, we
cannot really encode much further explicit linguistic
knowledge.

» Document vectors, on the contrary, allow us to
incorporate much more linguistic knwoledge.

» The focus of this course is on linguistic modeling, so we
will consider feature engineering using document
vectors.
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Linguistic Feature
Engineering

» Not just encoding which words have been observed!
» Further features:
» What types of POS do we observe in a sentence?

» Count adjectives - subjective language.

» Being within the scope of a negation is an
important feature for classifying the polarity:

> [NO student likes our new instructor].

» What is the relation syntactic relation of
between words.

» [Peter];,,; loves Mary. > Being the subject is a
predictive cue for opinion holders.




Machine Learning - Some
Additional Remarks

» The previous illustration depicted a case
where all training data are labeled -
supervised learning.

» There are also scenarios in which only
some parts of the training data are
labeled - semi-supervised learning.

» Another possible setting is where all
training data are unlabeled -
unsupervised learning.




Examples of Supervised
Classifiers

» Naive Bayes

» Decision Trees

» Maximum Entropy Classifier

» Support Vector Machines

» Logistic Regression

» Conditional Random Fields

» Neural Networks (~Deep Learning)




Relevance of Machine
Learning in this Seminar

» Many approaches to solve some specific
task are based on learning algorithms.

» The actual algorithms are not the focus of
this seminar.

» Our focus is on:

» The actual task setting - how can the
problem be formalized?

» The information needed to solve the task
- feature design.
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The Most Common Setting of
Evaluation

Dataset consists of:
» training data
» test data

» development data for feature
exploration, parameter tuning (not
always used!)




N-fold Crossvalidation

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5




N-fold Crossvalidation

An alternative setting to a fixed training and test set.
There is only one labeled data set.

Dataset

Fold 1

Fold 2 Fold 3 Fold 4

Fold b

Train Train Train

Train




N-fold Crossvalidation

« Dataset is divided into n folds.
« We have n different experiments; each time a different fold
is the test fold; the remaining folds are training data.

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Train

Train Train Train




N-fold Crossvalidation

In each experiment we carry out supervised
learning/classification.

As a final result, we average the scores obtained
from the different folds.

Dataset

Fold 1

Fold 2 Fold 3 Fold 4

Fold b

Train Train Train

Train




N-fold Crossvalidation

Example of 5-fold crossvalidation

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Train

Train Train Train




Evaluation Measure: Accuracy

number of correct classifications

> Accuracy B number of all instances

» Just one score telling how many instances
are correctly classified.




Evaluation Measures -
Precision, Recall, F-score

» For these measures, we focus on one
class!

» True positives (TP): prediction and actual
label are positive

» False positives (FP): prediction label is
positive but actual label negative

» False negatives (FN): prediction label is
negative but actual label positive




Evaluation Measures -
Precision, Recall, F-score

» Precision =
FP+TP

» Recall = PR

2xPrecisionxRecall

> F-score = Precision+Recall




Evaluation Measures -
Precision, Recall, F-score

» Precision: how good are the positive
predictions that are made.

» Recall: how good is the general
coverage.

» F-score: combined score for
Precision and Recall




Accuracy vs. F-score

» Accuracy: one score summarizing all
predictions for all classes.

» F-score: one score for the prediction of
one class

» Can also average F-scores for the
different classes.

» Accuracy may not be very telling in case
of very imbalanced class distributions:

Given a two-class problem with class A occurring
95% of the time, is an accuracy of 95 really good?

57




Evaluation - How to decide
whether some score is good?

» Just producing one isolated score is not
really meaningful:

» My method produces on my (new) gold
standard an F-score of 0.81.

» Need to compare against other methods
(baselines):

» other previously published methods for the
same task

» some trivial methods: majority-class classifier,
randomly guessing




Statistical Significance

» In NLP, performance differences
produced by different methods are
often small.

» Example:
» method A produces an F-score of 82.3
» method B produces an F-score of 83.6

» One needs to establish whether the
difference is meaningful or just
happened by chance.




Statistical Significance
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* Imagine these results being the individual results from a
5-fold crossvalidation

The differences between method B and method A are
very systematic - the improvement suggested by
average scores are likely to be statistically significant.

60




Statistical Significance
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In this other case, there is a high fluctuation between the
different results - the improvement suggested by
average scores are unlikely to be statistically significant




Statistical Significance

» Solution: statistical significance testing

» |ldea: estimate the probability p that the
differences of scores have been caused by
chance.

» We typically regard results as statistically
significant, if p < 0.05

» Remember: if you encounter the word
significant in a paper, it typically means
statistically significant.




Evaluation of a Gold Standard

» In order to be able to do a quantitative
evaluation, a dataset with manual
annotation has to be created (commonly
referred to as gold standard).

» Need some form of proof that those
human labels are meaningful.

» This is typically achieved by measuring
interannotation agreement.




Interannotation Agreement
(IAA)

» At least some subset of the gold standard
needs to be annotated by 2 different
annotators.

» Interannotation agreement: checks in how
far two (or more) manual annotations of
the same data agree.

» Only if 1AA is sufficiently high, the gold
standard is useful.




Cohen’s Kappa K

A common measure for IAA (with two annotators).
P(A) = proportion of times judges agree
P(E) = what agreement would we get by chance

K — P(A)_P(E)
1-P(E)

What Kk values are acceptable?
poor agreement = Less than 0.20

vV v v VY

fair agreement = 0.20 to 0.40
moderate agreement = 0.40 to 0.60

v vvyy

good agreement = 0.60 to 0.80
» very good agreement = 0.80 to 1.00

» There are different interpretations!




Further Reading

» Christopher Manning and Hinrich Schutze:
Foundations of Statistical Natural Language
Processing, MIT Press. 1999.

» Christopher Manning, Prabhakar Raghavan and
Hinrich Schutze: Introduction to Information
Retrieval, Cambridge University Press. 2008.

» Tomas Mikoloy, Ilya Sutskever, Kai Chen, Greg
Corrado, Jeffrey Dean: Distributed
Representations of Words and Phrases and
their Compositionality, NIPS, 2013.




