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Adversarial Training



Generative Adversarial Networks

Figure 1: Generic Architecture of GAN
(Goodfellow et al., 2014)

• Generator (G) predicts the
associated features given a
hidden representation.

• Discriminator (D) estimates
the probability of the
generated feature
representation coming from
the real dataset.
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GAN’s training objective

min
G

max
D
L(D,G) = Ex∼Pr(x)[logD(x)] + Ez∼Pz(z)[log(1− D(G(z)))]

= Ex∼Pr(x)[logD(x)] + Ex∼Pg(x)[log(1− D(x)]

• ”min-max optimization” updates each model independently,
• G is trained to make discriminator to produce a high probability
for a fake sample generated from G

• minimize Ez∼Pz(z)[log(1− D(G(z)))
• maximize Ex∼Pr(x)[logD(x)] through learning the real data
distribution and has no impact on G
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GAN’s training obejctive

• Problems in training:
• once trained, the gradient of the loss functions will be close to
zero and D(x) gives no effective critic for updating G,

• but if the discriminator is unable of distinguish fake from true, it
couldn’t pass accurate feedback to generator.

Figure 2: Discriminator gets better after 4000 iterations, the gradient
norms vanishes fast (Lil’Log, 2017-08-20) 4



Improve GAN using Wasserstein Distance as Loss Function

GAN : minGmaxD L(D,G) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))]
WGAN : W(D,G) = 1

K sup∥f∥L≤K Ex∼pr(x)[D(x)]− Ez∼pz(z)[D(G(z))]

Figure 3: Using a linear loss function is giving clean gradient everywhere
(Arjovsky, Chintala, Bottou, 2017)
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WGAN changes

• W(pr,pg) = 1
K sup∥f∥L≤K Ex∼pr [f(x)]− Ex∼pg [f(x)]

• end up with maxw∈W Ex∼pr [fw(x)]− Ez∼pr(z)[fw(gθ(z))]
• supremum is attained for w ∈ W,
i.e. fw depends on a compact space W, not individual weights
anymore

• practical trick to enforce Lipschitz constraint: clamp w after
every update to a range, such as
set w ∈ W = [−0.01, 0.01]
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WGAN algorithm

Figure 4: WGAN algorithm ([1] Arjovsky et al, 2017)
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Improved WGAN with gradient penalty

Penalize the network if its gradient norm moves away from 1 (the
gradient norm has a constant upper bound of 1)

Figure 5: WGAN with gradient penalty( [2] Gulrajani et al. 2017.) 8



Adversarial Training of ASR



Apply WGAN to ASR

• Motivation:
• To utilize huge unpaired text data,
• Language model as discriminator doesn’t need to be pre-trained,
no extra computation during testing,

• System:
• (Seq2Seq) Encoder: VGG + BLSTM layers, Decoder: a single
LSTM-RNN

• Seq2Seq with CTC: Connectionist temporal classification (Graves et
al., 2006)

• Criticizing Language Model (CLM)

• Total loss: LASR = λs2sLs2s + (1− λs2s)Lctc − λCLMCLM(ỹ)
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Criticizing Language Model

• Advantage: Real text doesn’t have to be paired with audio
• Input: either real text (one hot vectors) or ASR transcriptions
(soft distribution vectors)

• WGAN: estimates Wasserstein distance between real data
sequence and ASR output

• Loss with gradient penalty:
LCLM = λCLMLD + λgpgp
where:
LD = Eỹ∼Pa [CLM(ỹ)]− Ey∼Pd [CLM(y)]
gradient penatly:
gp = Eỹ∼Pỹ [(∥∇ỹCLM(ỹ)∥ − 1)2]
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CLM Architecture

CLM architecture: first CNN with
window size 2 and stride 1,
second CNN has window size 3
and stride 1
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Automatic Speech Recognition System

• Input: sequence of acoustic features
• Downsampling: 6-layer VGG extractor
• Sequence encoder: a 5-layer BLSTM with 320 units per direction,
T output sequence length.

• Attention module: 300-dimension allocation-aware attention
• Sequence decoder: a single layer LSTM with 320 units.
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ASR Architecture

• ASR outputs two character
sequences

• Linear Transform:
”CTC network on top
of the encoder and is
jointly trained with the
attention-based decoder.
During the beam search
process, we combine the
CTC predictions.”

(Hori et al., 2017)

13



Connectionist Temporal Classification

• Motivation: In case of lacking one-to-one correspondence, to
train RNNs to label unsegmented sequences directly (2006)

• Introducing blanks to the original sequences

• Independence assumption,
• Left: calculates all possible
paths from time step 1 to T,

• Right: unrolls and removes all
blanks and duplicates,

• Summarize the probabilities
by RNN on the remained
paths.
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CTC Loss

• y = y1, y2, ...yT is ground truth of O with length T
• inserting blank symbols into y
• obtaining set of all possible sequences y′ and π ∈ y′ after
removing blanks and duplicates

• computing the posterior probability: P(y|O) = −Σπ∈y′ P(π|O)
• through approximating: P(π|O) ≈ ΠT

t=1 Pctc (ỹt|O)
• ỹt corresponds to the output of the RNN at time step t
• CTC Loss: Lctc ≡ −logP(y|O)
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ASR learning

• Total Loss: LASR = λs2sLs2s +
(1− λs2s)Lctc − λCLMCLM(ỹ)

• both ASR and CLM are
learned from scratch, no
pre-training for CLM

• but during ASR model
learning: fix CLM parameters,

• and Ls2s and/or Lctc are
evaluated with ground truth,

• during testing, drop CLM, and
two outputs of ASR are
integrated into one sequence.
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Experiment



Setup

• Paired data set: LibriSpeech 100 hours of speech and
transcriptions, clean

• Unpaired data set: texts from 360 hours clean speech, but 500
hours of noisy speech

• Framework: customize ESPnet toolkit1 with adversarial training
• Acoustic features: 80-dimensional log Mel-filer bank and 3
dimensional pitch features (Kaldi feature extraction)

• Vocabulary: 5000 subwords
• Hyperparameters: λgp = 10, λs2s = 0.5, λCLM = 10−4

1https://espnet.github.io/espnet/index.html
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Benchmarks results

Figure 6: Speech recognition performance. Baseline: plain end-to-end ASR
framework, ”+LM” refers to shallow fusion decoding jointly with RNN-LM(Hori
et al., 2017), ”+AT” refers to the adversarial training, ”+Both” indicates training
with AT and joint decoding with RNN-LM, ”BT” is the prior work of
back-translation (Hayashi et al., 2018)
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Separately trained RNN-LM

Advances in Joint CTC-Attention based End-to-End Speech
Recognition witha Deep CNN Encoder and RNN-LM ((Hori et al., 2017)

• The RNN-LM information is
combined at the logits level
or pre-softmax.

• Pre-trained RNN-LM or jointly
trained with other networks
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Varying beam size

• AT consistently improved the performance
• in terms of utilizing extra text data: AT outperformed RNN-LM
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Questions?
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