Adversarial Training of End-to-end Speech Recognition Using a Criticizing Language Model

Alexander H. Li et al., 2018

Siting Liang Institute for Computational Linguistics of University Heidelberg Seminar: Advances in Seq2Seq

- 1. Adversarial Training
- 2. Adversarial Training of ASR
- 3. Experiment
- 4. References

Adversarial Training

Generative Adversarial Networks

Figure 1: Generic Architecture of GAN (Goodfellow et al., 2014)

- Generator (G) predicts the associated features given a hidden representation.
- Discriminator (D) estimates the probability of the generated feature representation coming from the real dataset.

$$\begin{split} \min_{G} \max_{D} L(D,G) &= \mathbb{E}_{x \sim P_r(X)}[\log D(x)] + \mathbb{E}_{z \sim P_z(Z)}[\log(1 - D(G(Z)))] \\ &= \mathbb{E}_{x \sim P_r(X)}[\log D(X)] + \mathbb{E}_{x \sim P_g(X)}[\log(1 - D(X)]] \end{split}$$

- "min-max optimization" updates each model independently,
- G is trained to make discriminator to produce a high probability for a fake sample generated from G
- minimize $\mathbb{E}_{z \sim P_z(z)}[\log(1 D(G(z)))]$
- maximize $\mathbb{E}_{x \sim P_r(x)}[\log D(x)]$ through learning the real data distribution and has no impact on G

GAN's training obejctive

- Problems in training:
 - once trained, the gradient of the loss functions will be close to zero and *D*(*x*) gives no effective critic for updating G,
 - but if the discriminator is unable of distinguish fake from true, it couldn't pass accurate feedback to generator.

Figure 2: Discriminator gets better after 4000 iterations, the gradient norms vanishes fast (Lil'Log, 2017-08-20)

Improve GAN using Wasserstein Distance as Loss Function

 $GAN : \min_{G} \max_{D} L(D, G) = \mathbb{E}_{x \sim p_{r}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)} [\log(1 - D(G(z)))]$ WGAN : W(D, G) = $\frac{1}{K} \sup_{\|f\|_{L} \leq K} \mathbb{E}_{x \sim p_{r}(x)} [D(x)] - \mathbb{E}_{z \sim p_{z}(z)} [D(G(z))]$

Figure 3: Using a linear loss function is giving clean gradient everywhere (Arjovsky, Chintala, Bottou, 2017)

- $W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_L \leq K} \mathbb{E}_{x \sim p_r}[f(x)] \mathbb{E}_{x \sim p_g}[f(x)]$
- end up with $\max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] \mathbb{E}_{z \sim p_r(z)}[f_w(g_{\theta}(z))]$
- supremum is attained for w ∈ W,
 i.e. f_w depends on a compact space W, not individual weights anymore
- practical trick to enforce Lipschitz constraint: clamp w after every update to a range, such as set $w \in W = [-0.01, 0.01]$

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\rm critic} = 5$.

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. $n_{\rm critic}$, the number of iterations of the critic per generator iteration. **Require:** : w_0 , initial critic parameters. θ_0 , initial generator's parameters. 1: while θ has not converged do for $t = 0, ..., n_{\text{critic}}$ do 2: Sample $\{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r$ a batch from the real data. 3: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. 4: $g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^{m} f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$ 5: $w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)$ 6: $w \leftarrow \operatorname{clip}(w, -c, c)$ "Weight clipping is a clearly terrible way to 7: end for 8: enforce a Lipschitz constraint." Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. 9: $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_w(g_{\theta}(z^{(i)}))$ 10: $\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})$ 11: 12: end while

Figure 4: WGAN algorithm ([1] Arjovsky et al, 2017)

Improved WGAN with gradient penalty

Penalize the network if its gradient norm moves away from 1 (the gradient norm has a constant upper bound of 1)

Algorithm 1 WGAN with gradient penalty. We use default values of $\lambda = 10$, $n_{\text{critic}} = 5$, $\alpha = 0.0001$, $\beta_1 = 0$, $\beta_2 = 0.9$.

Require: The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α , β_1 , β_2 .

Require: initial critic parameters w_0 , initial generator parameters θ_0 .

1: while θ has not converged do 2: for $t = 1, ..., n_{\text{critic}}$ do 3: for i = 1, ..., m do Sample real data $\boldsymbol{x} \sim \mathbb{P}_r$, latent variable $\boldsymbol{z} \sim p(\boldsymbol{z})$, a random number $\epsilon \sim U[0, 1]$. 4: 5: $\tilde{\boldsymbol{x}} \leftarrow G_{\theta}(\boldsymbol{z})$ $\hat{\boldsymbol{x}} \leftarrow \epsilon \boldsymbol{x} + (1-\epsilon)\tilde{\boldsymbol{x}}$ 6: $L^{(i)} \leftarrow D_w(\tilde{x}) - D_w(x) + \lambda (\|\nabla_{\hat{x}} D_w(\hat{x})\|_2 - 1)^2$ "1-Lipschitz is 7: 8: end for enforced through the $w \leftarrow \operatorname{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)$ 9: penalty on the end for 10: gradient norm. " Sample a batch of latent variables $\{z^{(i)}\}_{i=1}^m \sim p(z)$. 11: $\theta \leftarrow \operatorname{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_w(G_{\theta}(\boldsymbol{z})), \theta, \alpha, \beta_1, \beta_2)$ 12: 13: end while

Figure 5: WGAN with gradient penalty([2] Gulrajani et al. 2017.)

Adversarial Training of ASR

- Motivation:
 - To utilize huge unpaired text data,
 - Language model as discriminator doesn't need to be pre-trained, no extra computation during testing,
- System:
 - (Seq2Seq) Encoder: VGG + BLSTM layers, Decoder: a single LSTM-RNN
 - Seq2Seq with CTC: Connectionist temporal classification (Graves et al., 2006)
 - Criticizing Language Model (CLM)
- Total loss: $L_{ASR} = \lambda_{s2s}L_{s2s} + (1 \lambda_{s2s})L_{ctc} \lambda_{CLM}CLM(\tilde{y})$

Criticizing Language Model

- Advantage: Real text doesn't have to be paired with audio
- Input: either real text (one hot vectors) or ASR transcriptions (soft distribution vectors)
- WGAN: estimates Wasserstein distance between real data sequence and ASR output
- Loss with gradient penalty:

$$L_{CLM} = \lambda_{CLM}L_D + \lambda_{gp}gp$$
 where:

$$\begin{split} L_D &= \mathbb{E}_{\tilde{y} \sim P_a}[CLM(\tilde{y})] - \mathbb{E}_{y \sim P_d}[CLM(y)] \\ \text{gradient penatly:} \\ gp &= \mathbb{E}_{\tilde{y} \sim P_v}[(\|\nabla_{\tilde{y}}CLM(\tilde{y})\| - 1)^2] \end{split}$$

CLM Architecture

CLM architecture: first CNN with window size 2 and stride 1, second CNN has window size 3 and stride 1

- Input: sequence of acoustic features
- Downsampling: 6-layer VGG extractor
- Sequence encoder: a 5-layer BLSTM with 320 units per direction, T output sequence length.
- Attention module: 300-dimension allocation-aware attention
- Sequence decoder: a single layer LSTM with 320 units.

ASR Architecture

- ASR outputs two character sequences
- Linear Transform:

"CTC network on top of the encoder and is jointly trained with the attention-based decoder. During the beam search process, we combine the CTC predictions."

(Hori et al., 2017)

Connectionist Temporal Classification

- Motivation: In case of lacking one-to-one correspondence, to train RNNs to label unsegmented sequences directly (2006)
- Introducing blanks to the original sequences

- Independence assumption,
- Left: calculates all possible paths from time step 1 to T,
- Right: unrolls and removes all blanks and duplicates,
- Summarize the probabilities by RNN on the remained paths.

- $y = y_1, y_2, \dots, y_T$ is ground truth of O with length T
- inserting blank symbols into y
- obtaining set of all possible sequences $y^{'}$ and $\pi \in y^{'}$ after removing blanks and duplicates
- computing the posterior probability: $P(y|O) = -\sum_{\pi \in V'} P(\pi|O)$
- through approximating: $P(\pi|O) \approx \Pi_{t=1}^{T} P_{ctc} \left(\tilde{y_t}|O \right)$
- + $ilde{y_t}$ corresponds to the output of the RNN at time step t
- CTC Loss: $L_{ctc} \equiv -logP(y|O)$

- Total Loss: $L_{ASR} = \lambda_{s2s}L_{s2s} + (1 \lambda_{s2s})L_{ctc} \lambda_{CLM}CLM(\tilde{y})$
- both ASR and CLM are learned from scratch, no pre-training for CLM
- but during ASR model learning: fix CLM parameters,
- and L_{s2s} and/or L_{ctc} are evaluated with ground truth,
- during testing, drop CLM, and two outputs of ASR are integrated into one sequence.

Experiment

Setup

- Paired data set: LibriSpeech 100 hours of speech and transcriptions, clean
- Unpaired data set: texts from 360 hours clean speech, but 500 hours of noisy speech
- Framework: customize ESPnet toolkit¹ with adversarial training
- Acoustic features: 80-dimensional log Mel-filer bank and 3 dimensional pitch features (Kaldi feature extraction)
- Vocabulary: 5000 subwords
- · Hyperparameters: $\lambda_{gp} =$ 10, $\lambda_{S2S} =$ 0.5, $\lambda_{CLM} =$ 10⁻⁴

¹https://espnet.github.io/espnet/index.html

Benchmarks results

Data	Method	CER/WER (%)		WER Δ^{\dagger}
		Dev	Test	Test
(A)	(a) Baseline	10.5 / 21.6	10.5 / 21.7	-
w/o unpair text	(b) +LM	10.9 / 20.0	11.1 / 20.3	6.5%
	(c) +AT	9.5 / 19.9	9.6 / 20.1	7.4%
	(d) +Both	9.4 / 17.9	9.7 / 18.3	15.7%
(B) w/ 360hrs text	(e) +LM	10.5 / 19.6	10.6 / 19.6	9.7%
	(f) +AT	9.1 / 19.1	9.5 / 19.2	11.5%
	(g) +Both	9.0 / 17.1	9.1 / 17.3	20.3%
	(h) BT [‡]	10.3 / 23.5	10.3 / 23.6	6.3%
	(i) BT+LM [‡]	9.8 / 21.6	10.0 / 22.0	12.7%
(C) w/ 860hrs text	(j) +LM	9.9 / 18.6	10.2 / 18.8	13.4%
	(k) +AT	8.6 / 18.5	8.8 / 18.7	13.8%
	(l) +Both	7.9 / 15.3	8.2 / 15.8	27.2%

Figure 6: Speech recognition performance. Baseline: plain end-to-end ASR framework, "+LM" refers to shallow fusion decoding jointly with RNN-LM(Hori et al., 2017), "+AT" refers to the adversarial training, "+Both" indicates training with AT and joint decoding with RNN-LM, "BT" is the prior work of back-translation (Hayashi et al., 2018)

Advances in Joint CTC-Attention based End-to-End Speech Recognition witha Deep CNN Encoder and RNN-LM ((Hori et al., 2017)

- The RNN-LM information is combined at the logits level or pre-softmax.
- Pre-trained RNN-LM or jointly trained with other networks

Varying beam size

- AT consistently improved the performance
- \cdot in terms of utilizing extra text data: AT outperformed RNN-LM

References

References

- Martin Arjovsky, Soumith Chintala, and Léon Bottou. "Wasserstein GAN." arXiv preprint arXiv:1701.07875 (2017).
- - Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville.

"Improved training of wasserstein gans." arXiv preprint arXiv:1704.00028 (2017).

- Takaaki Hori, Shinji Watanabe, Yu Zhang, and WilliamChan. "Advances in joint ctc-attention based end-to-end speech recognition with a deep cnn encoder and rnn-lm". inInter-speech, 2017.

Alex Graves, Santiago Fern´andez, Faustino Gomez, and J¨urgen Schmidhube

"Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks," in Proceedings of the 23rd international conference on Machine learning. ACM, 2006, pp. 369–376. Questions?