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Introduction

What?
m The first fully convolutional model for sequence-to-sequence
learning

m gated linear units (GLUs)
m residual connections
m attention
m New state of the art results on several large benchmark
datasets
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Introduction

Why?
m Fixed size contexts, yet easily scalable through stacking of
layers
— control of maximum length of dependencies to be modeled
m Hierarchical representations over input sequence
— shorter path to capturing long-range dependencies

m Fixed number of non-linearities
— easier optimization

m Batching, kernels independent of previous output
— parallelizable, faster learning
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Embeddings
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Convolutional Block Structure

m A.k.a. multi-layer network
m Block/layer:

m one-dimensional convolution
m non-linearity Gaeg

Units

<p> They agree </s> <p>
Embeddings

Convolutions

m Kernel size k— fixed number of
input elements Atenton

Single block: output contains
information about k input elements oot procucts

Stacking several blocks: increases
the number of input elements
represented in the state
Output:

/ i

m Encoder: 2/ = (4, ...,2})
m Decoder: h' = (hl,....h)
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Convolutions

<> They agree </s> <p>

Embeddings

Convolutions

m Each convolution kernel of size k:

Gated
Linear

m takes as input X € R<*d e
m multiplies the input with weights
W e RZkad Attention

m adds a bias b,, € R%
m maps the k input elements to a
single output element Y € R?¢

Dot products

m Subsequent blocks iterate over the k

output elements of the previous
block

B I .
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Non-Linearities/GLUs

<> They agree </s> <p>

Embeddings

m Take the output of the convolution Gonvolsons
as input: Y = [A B] € R* -
m Gating mechanism: .
v([A B]) = A® o(B)
m Input [A B] is "split up” in two
parts A € R? and B € R
m Sigmoid activation function is
applied to B
m Pointwise multiplication of A and I
o(B)
m Output v([A B]) € R — half the
size of the input Y

Attention
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Residual connections

<> They agree </s> <p>

Embeddings

Attention

m input of the convolution added to
the output of the block

Dot products
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Block Structure

m Complete operation in one block:

/ 1— /-1 i /
= W[, k/z,...,h,.+k/%]+ bl, ) +h! —
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convolution

bias
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Embeddings
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Embeddings

m Deep network: stacking several
layers on top of each other

Convolutions

Gated
Linear

m Higher layer takes k output s
elements of lower layer as input CT T —al

Attention

m Input size to higher layers should
match the output size of lower
layers — padding!

Dot products

m Decoder: no future information —_—
must be available!

— Solution: Pad by k-1 elements
on both sides, then remove k

elements from the ends ECH:H:H: et
<s> Sie stimmen zu Sie stimmen zu <Is>
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Multi-step Attention

m Separate attention mechanism
for each decoder layer

m "Decoder state summary”:

m Combine current decoder state
h! with an embedding of the
previous target element g;
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Multi-step Attention

m Dot-product attention between:

m Decoder state summary d!

m Output of last encoder block
zY
J

;_ ep(dz!)

" 9T ST expldlzr)
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Conditional decoder input

m Weighted sum of encoder
outputs and input element
embeddings e;

m =3 Tal(z + )

I Difference to recurrent
approaches: calculate the

weighted sum over zJ-“ only
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Predictions
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WMT'16
Eng-Rum

2.8M sentence
pairs

WMT'14
Eng-Ger

4.5M sentence
pairs

WMT'14
Eng-Fre

35.5M
sentence pairs

Evaluation on
newstest2016

Evaluation on
newstest2014

Evaluation on
newstest2014

200/80K word
types

40K BPE types

Max. 175
words/sentence

40K BPE types

Convolutional Seq2Seq Learning

40K BPE types

Max. 175

words/sentence

Max. source/
target length
ratio 1.5

summarization
Gigaword:
3.8M training
examples
Evaluation on
DUC-2004 test
data

30K source/
target word
vocabulary

outputs at
least 14 words
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WMT’16 English-Romanian BLEU
Sennrich et al. (2016b) GRU (BPE 90K) 28.1
ConvS2S (Word 80K) 29.45
ConvS2S (BPE 40K) 30.02
WMT’14 English-German BLEU
Luong et al. (2015) LSTM (Word 50K) 20.9
Kalchbrenner et al. (2016) ByteNet (Char) 23.75
Wu et al. (2016) GNMT (Word 80K) 23.12
Wu et al. (2016) GNMT (Word pieces) 24.61
ConvS2S (BPE 40K) 25.16
WMT’14 English-French BLEU
Wu et al. (2016) GNMT (Word 80K) 37.90
Wu et al. (2016) GNMT (Word pieces) 38.95
Wu et al. (2016) GNMT (Word pieces) + RL 39.92
ConvS2S (BPE 40K) 40.51
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WMT’14 English-German BLEU
Wu et al. (2016) GNMT 26.20
Wuetal. (2016) GNMT + RL  26.30
ConvS2S 26.43
WMT’14 English-French BLEU
Zhou et al. (2016) 40.4
Wu et al. (2016) GNMT 40.35
Wuetal. (2016) GNMT + RL  41.16
ConvS2S 41.44
ConvS2S (10 models) 41.62
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Results: Generation speed

BLEU Time (s)

GNMT GPU (K80) 31.20 3,028
GNMT CPU 88 cores 31.20 1,322
GNMT TPU 31.21 384
ConvS2S GPU (K40)b =1 33.45 327
ConvS2S GPU (M40)b =1 33.45 221
ConvS2S GPU (GTX-1080t) b = 1 33.45 142
ConvS2S CPU 48 cores b = 1 33.45 142
ConvS2S GPU (K40)b =5 34.10 587
ConvS2S CPU 48 cores b = 5 34,10 482
ConvS2S GPU (M40)b =5 34.10 406

ConvS2S GPU (GTX-1080t1) b =5 34.10 256
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Results: Positional Embeddings

PPL BLEU
ConvS2S 6.64 21.7
-source position 6.69 21.3
-target position 6.63 21.5

-source & target position  6.68 21.2
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Results: Attention

Attn Layers PPL BLEU

1,2.3.4.,5 6.65  21.63
1,234 6.70  21.54
1,2.3 6.95  21.36
1,2 6.92  21.47
1.3.5 6.97  21.10
1 7.15  21.26
2 7.09  21.30
3 7.1 21.19
! 7.19  21.31
5 7.66  20.24
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Results: Number of layers
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Results: Kernel sizes

Kernel width Encoder layers

5 9 13
3 20.61 21.17 21.63
5 20.80  21.02 21.42
7 20.81 21.30 21.09
Kernel width Decoder layers

3 5 7
3 21.10  21.71  21.62
5 21.09 21.63 21.24
7 21.40 2131 2133
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Results: Summarization

DUC-2004 Gigaword
RG-1(R) RG-2(R) RG-L(R) RG-1(F) RG-2(F) RG-L (F)
RNN MLE (Shen et al., 2016) 24.92 8.60 22.25 32.67 15.23 30.56
RNN MRT (Shen et al., 2016) 30.41 10.87 26.79 36.54 16.59 33.44
WEFE (Suzuki & Nagata, 2017) 32.28 10.54 27.80 36.30 17.31 33.88
ConvS2S 30.44 10.84 26.90 35.88 17.48 33.29
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Discussion

Thank you for your attention!

Any questions?
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Discussion

m [Original question in German]
The input to the kernel has a dimension of k x d. Then how
can the kernel itself have dimensions of 2d x kd? (Section
3.2)

m [Original question in German]
"We compute a distribution over the T possible next target
elements” (Section 3.2).
— Does this mean that for translations, for example, T elements
are created "at once”, and then the next T elements?
— How is the output created?
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Discussion

m "We proceed similarly for output elements that were already
generated by the decoder network to yield output element
representations that are being fed back into the decoder
network g= (gl,...,gn).” (Section 3.1)

— Does it here mean that the outputs from lower blocks/layers
and fed into the higher blocks/layers, or there are two different
computation process with the same decoder network?

m According to the authors, removing the position features in
both encoder and decoder doesn't affect the result a lot, and
the model with convolutional block structure is able to
capture the sequence information. (Section 5.4)

— Why is this? Residual connections? Because every state
output results from k continuous input elements?
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Discussion

m | noticed that the whole structure of the model resembles the
transformer, but with convolution doing the self-attention job.
Are there even more similarities?

m Could we discuss where in the model the Gated Linear Units
are exactly used? | am just not sure if | understood correctly
what A and B is.

m s there a special reason why the output kernel size is 2d,
meaning that a size o d times k inputs is mapped to a single
vector of 2d?

November 07, 201 Convolutional Seq2Seq Learning Katharina Korfhage



Discussion
0000@0000

Discussion

m Judging from paragraph 3.1 to me it reads like these are
simple one-hot vectors. However, later on the authors write
"the models can learn relative position information” (Section
5.4). This suggest that they far more complex. [...]

— How exactly are those positional embeddings created or even
learned?

m The authors find that encoders and to a smaller degree
decoders work better with narrow kernels and many layers
than with wider kernels (Section 5.6).

— Why do the encoders (and decoders) work better with these
parameters?
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Discussion

m What are the advantages of using GLUs in this work?

m Why are deeper architectures more beneficial for the encoder
than for the decoder?
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Discussion

m What's the justification for using the gated linear unit? Isn't it
linear in terms of it's input Av([AB]) = A® o(B) or am |
missing something?

m This paper doesn't really seem to describe the structure of the
decoder network, how does it work? Are the convolutions
transposed?
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Discussion

m Why are residual connections able to allow deep convolutional
networks? (Section 3.2)

m " Multi-layer convolutional neural networks create hierarchical
representations over the input sequence in which nearby input
elements interact at lower layers while distant elements
interact at higher layers.” (Section 1)

— Are there approaches which exploit these hierarchical
representations to improve the translation?
— Have these representations been used on other tasks?
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@ Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N. Dauphin.

Convolutional sequence to sequence learning, 2017.
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