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Introduction

What?

The first fully convolutional model for sequence-to-sequence
learning

gated linear units (GLUs)
residual connections
attention

New state of the art results on several large benchmark
datasets
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Introduction

Why?

Fixed size contexts, yet easily scalable through stacking of
layers

→ control of maximum length of dependencies to be modeled

Hierarchical representations over input sequence

→ shorter path to capturing long-range dependencies

Fixed number of non-linearities

→ easier optimization

Batching, kernels independent of previous output

→ parallelizable, faster learning
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Overview
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Embeddings

input elements

x = (x1, ..., xm)

positions of input
elements

↓ ↓

word embeddings

w = (w1, ...,wm)

positional emb.

p = (p1, ..., pm)

↘ ↙

input element representations

e = (w1 + p1, ...wm + pm)
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Convolutional Block Structure

A.k.a. multi-layer network

Block/layer:

one-dimensional convolution
non-linearity

Kernel size k→ fixed number of
input elements

Single block: output contains
information about k input elements

Stacking several blocks: increases
the number of input elements
represented in the state

Output:

Encoder: z l = (z l1, ..., z
l
m)

Decoder: hl = (hl1, ..., h
l
n)
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Convolutions

Each convolution kernel of size k :

takes as input X ∈ Rk×d

multiplies the input with weights
W ∈ R2d×kd

adds a bias bw ∈ R2d

maps the k input elements to a
single output element Y ∈ R2d

Subsequent blocks iterate over the k
output elements of the previous
block
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Non-Linearities/GLUs

Take the output of the convolution
as input: Y = [A B] ∈ R2d

Gating mechanism:
v([A B]) = A⊗ σ(B)

Input [A B] is ”split up” in two
parts A ∈ Rd and B ∈ Rd

Sigmoid activation function is
applied to B
Pointwise multiplication of A and
σ(B)

Output v([A B]) ∈ Rd → half the
size of the input Y
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Residual connections

input of the convolution added to
the output of the block
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Block Structure

Complete operation in one block:

hli =v( W l︸︷︷︸
weight

[hl−1
i−k/2, ..., h

l−1
i+k/2︸ ︷︷ ︸

input

]+ blw︸︷︷︸
bias︸ ︷︷ ︸

convolution

)

︸ ︷︷ ︸
gating

+hli − 1

︸ ︷︷ ︸
residual connection
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Padding

Deep network: stacking several
layers on top of each other

Higher layer takes k output
elements of lower layer as input

Input size to higher layers should
match the output size of lower
layers → padding!

Decoder: no future information
must be available!

→ Solution: Pad by k-1 elements
on both sides, then remove k
elements from the ends
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Multi-step Attention

Separate attention mechanism
for each decoder layer

”Decoder state summary”:

Combine current decoder state
hli with an embedding of the
previous target element gi
d l
i = W l

dh
l
i + bld + gi
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Multi-step Attention

Dot-product attention between:

Decoder state summary d l
i

Output of last encoder block
zuj

alij =
exp(d l

i ż
u
j )∑m

t=1 exp(d
l
i ż

u
t )
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Conditional decoder input

Weighted sum of encoder
outputs and input element
embeddings ej

c li =
∑

j
m
1 a

l
ij(z

u
j + ej)

! Difference to recurrent
approaches: calculate the
weighted sum over zuj only
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Predictions

Probability distribution over the
T possible next target elements
yi+1

Transforming the top decoder
output hLi with weights Wo and
bias bo :

p(yi+1|y1, ...,yi,x)=softmax(Woh
L
i +bo)
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Datasets

WMT’16
Eng-Rum

2.8M sentence
pairs

Evaluation on
newstest2016

200/80K word
types

40K BPE types

Max. 175
words/sentence

WMT’14
Eng-Ger

4.5M sentence
pairs

Evaluation on
newstest2014

40K BPE types

WMT’14
Eng-Fre

35.5M
sentence pairs

Evaluation on
newstest2014

40K BPE types

Max. 175
words/sentence

Max. source/
target length
ratio 1.5

Abstractive
summarization

Gigaword:
3.8M training
examples

Evaluation on
DUC-2004 test
data

30K source/
target word
vocabulary

outputs at
least 14 words
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Results
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Results: Ensembling
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Results: Generation speed
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Results: Positional Embeddings
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Results: Attention
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Results: Number of layers
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Results: Kernel sizes
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Results: Summarization
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Discussion

Thank you for your attention!

Any questions?
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Discussion

[Original question in German]
The input to the kernel has a dimension of k × d . Then how
can the kernel itself have dimensions of 2d × kd? (Section
3.2)

[Original question in German]
”We compute a distribution over the T possible next target
elements” (Section 3.2).

→ Does this mean that for translations, for example, T elements
are created ”at once”, and then the next T elements?

→ How is the output created?
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Discussion

”We proceed similarly for output elements that were already
generated by the decoder network to yield output element
representations that are being fed back into the decoder
network g= (g1,...,gn).” (Section 3.1)

→ Does it here mean that the outputs from lower blocks/layers
and fed into the higher blocks/layers, or there are two different
computation process with the same decoder network?

According to the authors, removing the position features in
both encoder and decoder doesn’t affect the result a lot, and
the model with convolutional block structure is able to
capture the sequence information. (Section 5.4)

→ Why is this? Residual connections? Because every state
output results from k continuous input elements?
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Discussion

I noticed that the whole structure of the model resembles the
transformer, but with convolution doing the self-attention job.
Are there even more similarities?

Could we discuss where in the model the Gated Linear Units
are exactly used? I am just not sure if I understood correctly
what A and B is.

Is there a special reason why the output kernel size is 2d,
meaning that a size o d times k inputs is mapped to a single
vector of 2d?
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Discussion

Judging from paragraph 3.1 to me it reads like these are
simple one-hot vectors. However, later on the authors write
”the models can learn relative position information” (Section
5.4). This suggest that they far more complex. [...]

→ How exactly are those positional embeddings created or even
learned?

The authors find that encoders and to a smaller degree
decoders work better with narrow kernels and many layers
than with wider kernels (Section 5.6).

→ Why do the encoders (and decoders) work better with these
parameters?
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Discussion

What are the advantages of using GLUs in this work?

Why are deeper architectures more beneficial for the encoder
than for the decoder?
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Discussion

What’s the justification for using the gated linear unit? Isn’t it
linear in terms of it’s input Av([AB]) = A⊗ σ(B) or am I
missing something?

This paper doesn’t really seem to describe the structure of the
decoder network, how does it work? Are the convolutions
transposed?
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Discussion

Why are residual connections able to allow deep convolutional
networks? (Section 3.2)

”Multi-layer convolutional neural networks create hierarchical
representations over the input sequence in which nearby input
elements interact at lower layers while distant elements
interact at higher layers.” (Section 1)

→ Are there approaches which exploit these hierarchical
representations to improve the translation?

→ Have these representations been used on other tasks?
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Paper

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N. Dauphin.
Convolutional sequence to sequence learning, 2017.
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