Deliberation Networks: Sequence Generation Beyond One-Pass Decoding

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, Tie-Yan Liu

Lisa Kuhn

Recent Advances In Sequence-To-Sequence Learning

- Deliberation: process of polishing (e.g. an essay) while looking at how a local element fits in its global environment
- Output of a neural network depends partly on what has been output already, not what will be output
- Extended encoder-decoder model with second decoder to do the deliberation process

• Encodes input sequence x to hidden states $H = \{h_1, h_2, ..., h_{T_x}\}$

$$h_i = \mathsf{RNN}(x_i, h_{i-1})$$

First-pass Decoder

- Generates hidden states $\hat{s},$ first-pass sequence \hat{y}
- Attention Model:

$$ctx_e = \sum_{i=1}^{I_x} \alpha_i h_i$$

$$\alpha_i \propto \exp(v_\alpha^T \tanh(W_{att,h}^c h_i + W_{att,\hat{s}}^c \hat{s}_{j-1}))$$

Hidden state calculation:

$$\hat{s}_j = \mathsf{RNN}([\hat{y}_{j-i}; ctx_e], \hat{s}_{j-1})$$

- Apply affine transformation on [ŝ_j; ctx_e; ŷ_{j-1}]
- Softmax layer ightarrow sample out \hat{y}_j from multinomial distribution

- Takes:
 - Previous hidden state s_{t-1}
 - Previously decoded word y_{t-1}
 - Source contextual information ctx'_e
 - First-pass contextual information ctx_c
- ctx'_e computed similarly to ctx_e , last hidden state of second-pass decoder is used $(s_{t-1} \text{ instead of } \hat{s}_{j-1})$

Second-pass Decoder

• Attention Model:

$$ctx_c = \sum_{j=1}^{I_{\hat{y}}} \beta_j[\hat{s}_j; \hat{y}_j]$$

$$\beta_j \propto \exp(v_{\beta}^{T} \tanh(W_{att,\hat{sy}}^d[\hat{s}_j; \hat{y}_j] + W_{att,st-1}^d))$$

• Hidden state calculation:

$$s_t = \mathsf{RNN}([y_{t-1}; ctx'_e; ctx_c], s_{t-1})$$

 To generate y_t further transform [s_t; ctx'_e; ctx_c; y_{t-1}] similar to sampling of ŷ_j

Training

• For this setting, data log likelihood specialized to

$$(1/n)\sum_{(x,y)\in D_{XY}}\mathcal{J}(x,y;\theta_e,\theta_1,\theta_2)$$

where

$$\mathcal{J}(x, y; \theta_e, \theta_1, \theta_2) = \log \sum_{y' \in \mathcal{Y}} P(y|y', E(x; \theta_e); \theta_2) P(y'|E(x; \theta_e); \theta_1)$$

 $\bullet \ \mathcal{Y}$ is the collection of all possible target sentences

• Derivation of \mathcal{J} w.r.t θ_1 :

$$\nabla_{\theta_1} \mathcal{J}(x, y; \theta_e, \theta_1, \theta_2) = \frac{\sum_{y' \in \mathcal{Y}} P(y|y', E(x; \theta_e); \theta_2) \nabla_{\theta_1} P(y'|E(x; \theta_e); \theta_1)}{\sum_{y' \in \mathcal{Y}} P(y|y', E(x; \theta_e); \theta_2) P(y'|E(x; \theta_e); \theta_1)}$$

- \bullet Computationally not feasible because of ${\mathcal Y}$
- Solution: Monte Carlo based method to optimize lower bound of ${\cal J}$ function $\to \tilde{{\cal J}}$

$$\tilde{\mathcal{J}}(x, y; \theta_e, \theta_1, \theta_2) = \sum_{y' \in \mathcal{Y}} P(y' | E(x; \theta_e); \theta_1) \log P(y | y', E(x; \theta_e); \theta_2)$$

Algorithm 1: Algorithm to train the deliberation network

Input: Training data corpus D_{XY} ; minibatch size m; optimizer $Opt(\cdots)$ with gradients as input ; while models not converged **do**

Randomly sample a mini-batch of m sequence pairs $\{x^{(i)}, y^{(i)}\} \forall i \in [m]$ from D_{XY} ; For any $x^{(i)}$ where $i \in [m]$, sample $y'^{(i)}$ according to distribution $P(\cdot|E(x^{(i)}; \theta_e); \theta_1);$ Perform parameter update: $\Theta \leftarrow \Theta + Opt(\frac{1}{m}\sum_{i=1}^m G(x^{(i)}, y'^{(i)}, y'^{(i)}; \Theta)).$

- Pre-train standard encoder-decoder based NMT models until convergence
- Deliberation network encoder initialized by encoder of standard model
- Both deliberation network decoders are initialized by the decoder of the pre-trained model
- Train deliberation network until convergence
- Use beam search to sample output by first decoder

Results

- English-to-French translation on WMT'14 and newstest datasets
- Chinese-to-English translation on n LDC corpus and NIST datasets
- Removed sentences with more than 50 words, limit source and target words
- Two models: shallow and deep model

- Based on single-layer GRU model RNNSearchch
- Baselines:
 - Standard NMT model RNNSearch
 - Standard NMT model with two stacked decoding layers
 - Review Network

Table 1: BLEU scores of En→Fr translation

Algorithm	$\mathcal{M}_{\mathrm{base}}$	$\mathcal{M}_{dec \times 2}$	$\mathcal{M}_{reviewer \times 4}$	\mathcal{M}_{delib}
BLEU	29.97	30.40	30.76	31.67

Table 2: BLEU scores of Zh→En translation

Algorithm	NIST04	NIST05	NIST06	NIST08
$\mathcal{M}_{\mathrm{base}}$	34.96	34.57	32.74	26.21
$\mathcal{M}_{ m delib}$	36.90	35.57	33.90	27.13

Translation Examples

Source Sentence

Aiji shuo, zhongdong heping xieyi yuqi jiang you yige xinde jiagou.

Reference Translation

Egypt says a new framework is expected to come into being for the Middle East peace agreement.

Translation Base Model

egypt's middle east peace agreement is expected to have a new framework, he said.

First-pass decoder output

egypt's middle east peace agreement is expected to have a new framework, egypt said.

Second-pass decoder Output

egypt says the middle east peace agreement is expected to have a new framework

- Deep LSTM model
- Only on En-Fr translation task
- Apply BPE techniques: split training sentences in sub-word units
- Restrict source and target sentence lengths within 64 subwords
- Encoder and Decoders are 4-layer LSTMs with residual connections

System	Configurations	BLEU
GNMT [31]	Stacked LSTM (8-layer encoder + 8 layer decoder) + RL finetune	39.92
FairSeq [4]	Convolution (15-layer) encoder and (15-layer) decoder	40.51
Transformer [26]	Self-Attention + 6-layer encoder + 6-layer decoder	41.0
	Stack LSTM (4-layer encoder and 4-layer decoder)	39.51
this work	Stack 4-layer NMT + Dual Learning	
	Stack 4-layer NMT + Dual Learning + Deliberation Network	

Algorithm	ROUGE-1	ROUGE-2	ROUGE-L
$\mathcal{M}_{\mathrm{base}}$	27.45	10.51	26.07
$\mathcal{M}_{dec \times 2}$	27.93	11.09	26.50
$\mathcal{M}_{\text{reviewer} \times 4}$	28.26	11.25	27.28
\mathcal{M}_{delib}	30.90	12.21	29.09

Questions