Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen

Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Ghazvininejad et al.

Presenter: Yoalli Rezepka García Ruprecht Karls Universität Heidelberg Recent Advances in Seq2Seq with Tsz Kin Lam

February 7, 2020

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen

Schedule

1 Motivation

2 Related Work

- 3 Conditional Masked Language Models (CMLMs)
- 4 Decoding with Mask-Predict

5 Experiments

6 Analysis

7 Conclusion

8 References

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referer
••							

Motivation

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
$\circ \bullet$							

Motivation

OLD

- Most machine translation systems use sequential decoding strategies
- Words are predicted one by one
- Entire sequence is predicted repeatedly

NEW

- Model which generates translations in a constant number of decoding iterations
- Conditional masked language models (CMLMs): encoder-decoder architectures trained with a masked language model objective
- Decoding algorithm: mask predict
- Only words that were predicted with low confidence are repredicted
- CMLMs offer a trade-off between speed and performance (2 BLEU for 3x speed-up)

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
	000						

Related Work

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
00	000	00000	000000	0000000000	000000	00	0

Related Work: Training Masked Language Models with Translation Data

- Lample and Conneau, Cross-lingual language model pretraining (2019)[5]
 - Training a masked model on translation data (pretraining step) can improve performance on cross-lingual tasks
 - Different goal: use CMLMs for pre-training vs. to generate text
 - Ghazvininejad et al. use separate model parameters for source and target texts (encoder + decoder)
 - Input tokens are replaced with noise vs. masking tokens
- Song et al., MASS: Masked Sequence to Sequence Pre-training for Language Generation (2019)[8]
 - Separate encoder decoder parameters (same)
 - Monolingual data
 - Autoregressive masked language modeling
 - No text generation

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
00	000	00000	000000	0000000000	000000	00	0

Related Work: Parallel Decoding for Machine Translation

- Non-autoregressive neural machine translation, Gu et al. (2018)[3]
 - Transformer-based approach
 - Non-autoregressive
 - Identify multi-modality problem
- End-to-End Non-Autoregressive Neural Machine Translation with Connectionist Temporal Classification, Libovický and Helcl (2018)[7]
 - collapse repititions with Connectionist Temporal Classification training objective
- Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement, Lee et al. (2018)[6]
 - very similar to Ghazvininejad et al.
 - Iterative refinement
 - Non-autoregressive prediction is corrected via denoising autoencoder
 - Main difference: application of stochastic corruption heuristics on training data

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
		00000					

Conditional Masked Language Models (CMLMs)

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referer
00	000	0000	000000	0000000000	000000	00	0

Conditional Masked Language Models (CMLMs)

Definition CMLM

Predicts a set of target tokens Y_{mask} given a source text X and part of the target text $Y_{obs}.$

- Assumption: tokens Y_{mask} are conditionally independent
- Predicts individual probabilities $P(y|X, Y_{obs})$ for each $y \in Y_{mask}$
- Model is implicitly conditioned on length of target sequence $N = |Y_{mask}| + |Y_{obs}|$

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
		00000					

Architecture

- Standard encoder-decoder transformer for machine translation (Vaswani et al., 2017[9])
- Deviation: no self-attention mask that prevents left-to-right decoders from attending on future tokens
- Decoder is bi-directional (uses both left and right contexts for prediction)

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referer
		00000					

Training Objective

- Sample number of masked tokens
- 2 Replace inputs of tokens Y_{mask} with a special MASK token
- 3 Optimize CMLM for cross-entropy loss over every token in Ymask
- Only compute loss for tokens in Ymask

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
00	000	00000	000000	0000000000	000000	00	0

Predicting Target Sequence Length

- Traditionally: predict EOS (end of sentence) token
- CMLMs: must know length in advance
- Prior work: length is predicted with a fertility model (Gu et al., 2018[4])
- Here: special LENGTH token is added to encoder (Devlin et al, 2018[1]
- Model is trained to predict length of target sequence N as the LENGTH token's output
- Loss of LENGTH token is added to the cross-entropy loss

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
			00000				

Decoding with Mask-Predict

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
			00000				

Decoding with Mask-Predict

- Target sequence's length N
- Target sequence $(y_1, ..., y_N)$
- Probability of each token $(p_1, ..., p_N)$
- Number of iterations T
 - 1 Mask
 - 2 Predict

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
00	000	00000	000000	0000000000	000000	00	0

Decoding with Mask-Predict: Mask

- 1 t = 0: mask all tokens
- **2** t > 0: mask *n* tokens with lowest probability scores:

$$Y_{mask}^{(t)} = \underset{i}{argmin}(p_i, n) \tag{1}$$

$$Y_{obs}^{(t)} = Y \setminus Y_{mask}^{(t)}$$
⁽²⁾

3 Number of masked tokens *n* depends on *t*

$$n = N \cdot \frac{T - t}{T} \tag{3}$$

15/39

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
00	000	00000	000000	0000000000	000000	00	0

Decoding with Mask-Predict: Predict

- **1** Predict masked tokens $Y_{mask}^{(t)}$
- **Z** Select prediction with highest probability for each masked token $y_i \epsilon Y_{mask}^{(t)}$
- Update probability score:

$$y_i^{(t)} = \underset{w}{\operatorname{argmax}} P(y_i = w | X, Y_{obs}^{(t)})$$
(4)

$$p_{i}^{(t)} = \max_{w} P(y_{i} = w | X, Y_{obs}^{(t)})$$
(5)

Values and probabilities of unmasked tokens Y^(t)_{obs} remain unchanged

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
			000000				

Example

src	Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen .
t = 0	The departure of the French combat completed completed on 20 November.
t = 1	The departure of French combat troops was completed on 20 November .
t=2	The withdrawal of French combat troops was completed on November 20th .

Figure: Illustration of text generation by mask-predict. Example from WMT'14 DE-EN corpus. [2]

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
00	000	00000	000000	0000000000	000000	00	0

Deciding Target Sequence Length

- First: compute CMLM's encoder
- Then: use LENGTH token's encoding to predict distribution over sequence's length
- Select top / length candidates with highest probabilities
- Decode same example with different lengths in parallel
- Select the sequence with highest average log-probability:

$$\frac{1}{N}\sum logp_i^{(T)} \tag{6}$$

-> Translating multiple candidates can improve performance

Mo	tivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referer
					•000000000			

Experiments

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
				000000000			

Experimental Setup

- Translation Benchmarks
- Hyperparameters
- Model Distillation

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
				00000000000000			

Translation Benchmarks

Evaluation on three standard datasets:

- WNT'14 EN-DE (4.5M sentence pairs)
- 2 WMT'16 EN-RO (610k pairs)
- WMT'17 EN-ZH (20M pairs)
- Data is tokenized
- Performance is evaluated with BLEU
- For EN-ZH: SacreBLEU

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
				0000000000			

Hyperparameters

- Mostly standard parameters for transformers for baseline
- Experiments with number of hidden dimensions
- Weight initialization according to BERT
- Detailed information can be found in their paper

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
				0000000000			

Model Distillation

- Train CMLMs on translations produced by a standard left-to-right transformer model
- For comparison, also train standard left-to-right base transformers (EN-DE and EN-ZH)

Motivatio	n Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
				0000000000			

Translation Quality

Approach is compared to three other parallel decoding translation methods:

- Fertility based sequence to sequence model of Gu et al. (2018)
- 2 CTC-loss transformer of Libovicky and Helcl (2018)
- 3 Iterative refinement approach of Lee et al. (2018)

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
00	000	00000	000000	000000000000	000000	00	0

Translation Quality

Model	Dimensions	Iterations	WM	T'14	WMT'16	
	(Model/Hidden)		EN-DE	DE-EN	EN-RO	RO-EN
NAT w/ Fertility (Gu et al., 2018)	512/512	1	19.17	23.20	29.79	31.44
CTC Loss (Libovický and Helcl, 2018)	512/4096	1	17.68	19.80	19.93	24.71
Iterative Refinement (Lee et al., 2018)	512/512	1	13.91	16.77	24.45	25.73
	512/512	10	21.61	25.48	29.32	30.19
(Dynamic #Iterations)	512/512	?	21.54	25.43	29.66	30.30
Small CMLM with Mask-Predict	512/512	1	15.06	19.26	20.12	20.36
	512/512	4	24.17	28.55	30.00	30.43
	512/512	10	25.51	29.47	31.65	32.27
Base CMLM with Mask-Predict	512/2048	1	18.05	21.83	27.32	28.20
	512/2048	4	25.94	29.90	32.53	33.23
	512/2048	10	27.03	30.53	33.08	33.31
Base Transformer (Vaswani et al., 2017)	512/2048	N	27.30			
Base Transformer (Our Implementation)	512/2048	N	27.74	31.09	34.28	33.99
Base Transformer (+Distillation)	512/2048	N	27.86	31.07		
Large Transformer (Vaswani et al., 2017)	1024/4096	N	28.40			
Large Transformer (Our Implementation)	1024/4096	N	28.60	31.71		

Figure: Performance (BLEU) of CMLMs with mask-predict, compared to other parallel decoding machine translation models. [2]

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
				00000000000	000000		

Translation Quality

Model	Dimensions	Iterations	WM	T'17
	(Model/Hidden)		EN-ZH	ZH-EN
Base CMLM with Mask-Predict	512/2048	1	24.23	13.64
	512/2048	4	32.63	21.90
	512/2048	10	33.19	23.21
Base Transformer (Our Implementation)	512/2048	N	34.31	23.74
Base Transformer (+Distillation)	512/2048	N	34.44	23.99
Large Transformer (Our Implementation)	1024/4096	N	35.01	24.65

Figure: Performance (BLEU) of CMLMs with mask-predict, compared to the standard (sequential) transformer on WMT'17 EN-ZH. [2]

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
				0000000000			

Decoding Speed

Since CMLMs predict in parallel, mask-predict can translate in a constant number of decoding iterations.

Setup

- Base transformer for baseline system with beam search (EN-DE)
- Also use greedy search for faster but less accurate baseline
- Varied number of mask-predict iterations (*T* = 4, ...10)
- Varied number of length candidates (I = 1, 2, 3)
- Measure performance (BLEU) and wall time (seconds)
- Calculate relative decoding speed-up (CMLM time / baseline time)

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
				000000000			

Decoding Speed

Figure: Trade-off between speed-up and translation quality of a base CMLM with mask-predict, compared to the standard sequentially-decoded base transformer on WMT'14 EN-DE test set. [2]

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referer
					•00000		

Analysis

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
					00000		

Qualitative Analysis

- Why are multiple iterations necessary?
- 2 Do longer sequences need more iterations?
- 3 Do more length candidates help?
- Is model distillation necessary?

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
					000000		

Why are multiple iterations necessary?

Iterations	WMT'1	4 EN-DE	WMT'1	6 EN-RO
	BLEU	Reps	BLEU	Reps
T = 1	18.05	16.72%	27.32	9.34%
T=2	22.91	5.40%	31.08	2.82%
T = 3	24.99	2.03%	32.19	1.26%
T = 4	25.94	1.07%	32.53	0.87%
T = 5	26.30	0.72%	32.62	0.61%

Figure: Percentage of repeating tokens and performance for varying number of iterations (T) [2]

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
					000000		

Do longer sequences need more iterations?

	T = 4	T = 10	T = N
$1 \le N < 10$	21.8	22.4	22.4
$10 \le N < 20$	24.6	25.9	26.0
$20 \le N < 30$	24.9	26.7	27.1
$30 \le N < 40$	24.9	26.7	27.6
$40 \le N$	25.0	27.5	28.1

Figure: Performance with different number of iterations T, grouped by target sequence length N. [2]

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
00	000	00000	000000	0000000000	000000	00	0

Do more length candidates help?

Length	WMT'1	4 EN-DE	WMT'1	6 EN-RO
Candidates	BLEU	LP	BLEU	LP
$\ell = 1$	26.56	16.1%	32.75	13.8%
$\ell = 2$	27.03	30.6%	33.06	26.1%
$\ell = 3$	27.09	43.1%	33.11	39.6%
$\ell = 4$	27.09	53.1%	32.13	49.2%
$\ell = 5$	27.03	62.2%	33.08	57.5%
$\ell = 6$	26.91	69.5%	32.91	64.3%
$\ell=7$	26.71	75.5%	32.75	70.4%
$\ell = 8$	26.59	80.3%	32.50	74.6%
$\ell = 9$	26.42	83.8%	32.09	78.3%
Gold	27.27		33.20	

Figure: Performance with 10 iterations varied by the number of length candidates *I*. Length precision (LP) is the percentage of examples that contain the correct length as one of their candidates.[2]

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
					000000		

Is model distillation necessary?

Iterations	WMT'14 EN-DE		WMT'1	6 EN-RO
	Raw	Dist	Raw	Dist
T = 1	10.64	18.05	21.22	27.32
T = 4	22.25	25.94	31.40	32.53
T = 10	24.61	27.03	32.86	33.08

Figure: Performance trained with raw data (Raw) or knowledge distillation from an autoregressive model (Dist)[2]

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referer
						••	

Conclusion

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
						$\circ \bullet$	

Conclusion

- Approach outperforms previous parallel decoding methods
- Approaches the performance of sequential autoregressive models (decoding faster)
- Problem: need to condition on the target's length
- Problem: dependence on knowledge distillation
- Significant step forward in non-autoregressive and parallel decoding approaches to machine translation
- Also useful for generating text efficiently

Motivation	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referer
							•

References

Motivation Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments 0000000000	Analysis 000000	Conclusion	Referen O

References I

- Jacob Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. URL: http://arxiv.org/abs/1810.04805.
- Marjan Ghazvininejad et al. "Constant-Time Machine Translation with Conditional Masked Language Models". In: CoRR abs/1904.09324 (2019). arXiv: 1904.09324. URL: http://arxiv.org/abs/1904.09324.
 - Jiatao Gu et al. "Non-Autoregressive Neural Machine Translation". In: CoRR abs/1711.022 (2017). arXiv: 1711.02281. URL: http://arxiv.org/abs/1711.02281.
 - Jiatao Gu et al. "Non-Autoregressive Neural Machine Translation". In: CoRR abs/1711.022 (2017). arXiv: 1711.02281. URL: http://arxiv.org/abs/1711.02281.
 - Guillaume Lample and Alexis Conneau. "Cross-lingual Language Model Pretraining". In: CoRR abs/1901.07291 (2019). arXiv: 1901.07291. URL: http:// arxiv.org/abs/1901.07291.

wouvation P	Related Work	Conditional Masked Language Models (CMLMs)	Decoding with Mask-Predict	Experiments	Analysis	Conclusion	Referen
	000						

References II

Jason Lee, Elman Mansimov, and Kyunghyun Cho. "Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement". In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, Oct. 2018, pp. 1173– 1182. DOI: 10.18653/v1/D18-1149. URL: https://www.aclweb.org/ anthology/D18-1149.

Jindrich Libovický and Jindrich Helcl. "End-to-End Non-Autoregressive Neural Machine Translation with Connectionist Temporal Classification". In: CoRR abs/1811.04719 (2018). arXiv: 1811.04719. URL: http://arxiv.org/abs/1811.04719.

Kaitao Song et al. "MASS: Masked Sequence to Sequence Pre-training for Language Generation". In: CoRR abs/1905.02450 (2019). arXiv: 1905.02450. URL: http://arxiv.org/abs/1905.02450.

Ashish Vaswani et al. "Attention Is All You Need". In: CoRR abs/1706.03762 (2017). arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.