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Figure: Dual Learning for Machine Translation. Taken from Xia
et al. (2019).
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Figure: Dual Learning for Speech Processing. Taken from Xia
et al. (2019).
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Semi-Supervised Sequence-to-sequence
ASR using Unpaired Speech and Text

(Baskar et al. 2019)

Simon Will

Department of Computational Linguistics
Heidelberg University

Seminar: Recent Advances in Sequence-to-sequence Learning
Instructor: Tsz Kin Lam

January 23, 2020
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Outline
Introduction

ASR and TTS Models

Cycle-Consistency Training
Speech Chain
Speech Chain with TTE
Baskar et al. 2019

Experiments of Baskar et al. (2019)

Conclusion

References

Questions
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End-to-End Automatic Speech Recognition (E2E
ASR)

In this paper: (Bi-)LSTM-based encoder-decoder setup.
Input Speech features 𝑋⃗ ∈ ℝ𝑇 ×𝑑𝑥

Output Character sequence ⃗𝑌 ∈ ℝ𝐶

Encoder Output States 𝐻⃗ ∈ ℝ𝑇 ×𝑑ℎ

Loss Cross-entropy loss
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End-to-End Text-to-Speech (E2E TTS)

In this paper: Tacotron2 (Shen et al. 2018)
Input Character sequence ⃗𝑌 ∈ ℝ𝐶

Output Speech features 𝑋⃗ ∈ ℝ𝑇 ×𝑑𝑥

Loss 𝐿TTS = 𝐿MSE + 𝐿𝐿1
+ 𝐿BCE

BCE Binary cross-entropy loss for EOS
prediction
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Tacotron2

Character 
Embedding

Location 
Sensitive 
Attention

3 Conv 
Layers

Bidirectional 
LSTMInput Text

2 Layer 
Pre-Net

2 LSTM 
Layers Linear 

Projection

Linear 
Projection

Stop Token

5 Conv Layer 
Post-Net

Mel Spectrogram

WaveNet 
MoL

Waveform 
Samples

Figure: Architecture of Tacotron2. Diagram by Shen et al. (2018).
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Speech Chain (Tjandra et al. 2017)

▶ Humans learn to speak and to understand at the same
time

→ Tjandra et al.: Let machines do the same
▶ Similar to Dual Learning for Machine Translation (He

et al. 2016)
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Speech Chain Algorithm (Tjandra et al. 2017)

▶ Use paired speech-text data to calculate losses 𝐿𝑃
TTS and

𝐿𝑃
ASR

▶ Use unpaired text and TTS to generate speech for ASR
input, calculate loss 𝐿𝑈

ASR
▶ Use unpaired speech and ASR to generate text for TTS

input, calculate loss 𝐿𝑈
TTS

▶ Final loss 𝐿 = 𝛼(𝐿𝑃
ASR + 𝐿𝑃

TTS) + 𝛽(𝐿𝑈
ASR + 𝐿𝑈

TTS)
▶ Calculate gradients for ASR and TTS separately
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Speech Chain with Straight Through Estimator
(Tjandra et al. 2019)

▶ Sampling from ASR’s character distribution not
differentiable

▶ Tjandra et al. (2017): Don’t backpropagate further than
nearest module

▶ Tjandra et al. (2019): Backpropagate via Gumbel
softmax trick
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Excursion: Gumbel Softmax Trick I
▶ Simultaneously introduced by Jang et al. (2017) and

Maddison et al. (2017) building on Gumbel (1954)
▶ Sample 𝑥 ∼ 𝒞𝑎𝑡(𝜋) not differentiable
▶ Reparameterize:

𝜖𝑖 ∼ 𝒢𝑢𝑚𝑏𝑒𝑙(0, 1) = − ln(− ln 𝑢𝑖) 𝑢𝑖 ∼ 𝒰𝑛𝑖𝑓𝑜𝑟𝑚(0, 1)
𝑥 = one hot(arg max

𝑖
(𝜖𝑖 + ln 𝜋𝑖))

▶ Approximate arg max with softmax with temperature 𝑇 :

̃𝑥𝑖 = exp( 𝜖𝑖+𝑙𝑜𝑔𝜋𝑖
𝑇 )

∑𝑗 exp( 𝜖𝑗+𝑙𝑜𝑔𝜋𝑗
𝑇 )

▶ Use 𝑥 or ̃𝑥 for forward pass, but ∇ ̃𝑥 for backpropagation
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Excursion: Gumbel Softmax Trick II
ex

p
ec

ta
ti

ona) Categorical

category

sa
m

pl
e

b)

τ = 0.1 τ = 0.5 τ = 1.0 τ = 10.0

Figure: Categorical distribution and Gumbel softmax at different
temperatures. Taken from Jang et al. (2017).
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s/TTS/TTE/ (Hori et al. 2019)

▶ Problem with ASR output: No speaker characteristics
and prosody information

→ TTS cannot faithfully reconstruct original speech
𝑋⃗ ∈ ℝ𝑇 ×𝑑𝑥

▶ Hori et al. (2019): Train Tacotron2 to reconstruct ASR
encoder states 𝐻⃗ ∈ ℝ𝑇 ×𝑑ℎ

▶ Disadvantage: No TTS model is trained
→ Only usable for ASR training
▶ Use policy gradient to overcome backpropagation problem
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Cycle-Consistency with TTE

Figure: Cycle-consistency with TTE. Taken from Hori et al. (2019).
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Explicitly Modeling Speaker Information

▶ Problems with TTE-CC:
▶ Training useless TTE model
▶ Encoded speech 𝐻⃗ ∈ ℝ𝑇 ×𝑑ℎ may already eliminate

many speech characteristics
→ Use TTS again, but incorporate speech characteristics via

x-vectors (Snyder, Garcia-Romero, Sell, et al. 2018)
▶ With x-vector 𝑓(𝑋⃗), Tacotron2 output probability

changes from
𝑝TTS(𝑋⃗∗| ⃗𝑌 )

to
𝑝TTS(𝑋⃗∗| ⃗𝑌 , 𝑓(𝑋⃗))
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Excursion: Speaker Verification and Recognition

“[E]ach speaker has his or her unique way of speaking, accent,
pronunciation, pitch, rhythm, emotional state, etc. and there
are differences even in the physical characteristics like vocal
tract shapes or other sound production organs.” (Verma and
Das 2015, p. 529)

▶ Can be used for “verifying” a speaker’s claimed identity
▶ Or for finding out (“recognizing”) a speaker’s identity
▶ Traditional approach: i-vectors (for “identity”) based on

Gaussian-Mixture-Model-based Universal Background
Model and Joint Factor Analysis
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Excursion: x-Vectors as speaker embeddings
▶ Snyder, Garcia-Romero, Sell, et al. (2018) and Snyder,

Garcia-Romero, Povey, et al. (2017)
▶ Train DNN to predict speaker from speech signal
▶ Use layer near end as embedding

Figure: x-Vector DNN. Taken from Snyder, Garcia-Romero, Povey,
et al. (2017).
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CC Training with ASR and TTS

���
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Figure: TTS-ASR-CC. Taken from Baskar et al. (2019)
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ASR →TTS

���

���

�
��
�
	

�
�


Use policy gradient (with bias 𝐵(𝑋⃗)) for
backpropagation into ASR model

𝐿ASR→TTS = 𝔼𝑝ASR( ⃗𝑌 |𝑋⃗) 𝐿TTS

∇𝐿ASR→TTS = ∑
⃗𝑌 𝑛∼𝑝ASR

1
𝑁 𝑅( ⃗𝑌 𝑛, 𝑋⃗)∇ log 𝑝ASR( ⃗𝑌 𝑛|𝑋⃗)

𝑅( ⃗𝑌 𝑛, 𝑋⃗) = 𝐿TTS − 𝐵(𝑋⃗)
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TTS →ASR

▶ Goal only training ASR
→ No need to backpropagate into

TTS model
𝐿TTS→ASR = − log 𝑝ASR( ⃗𝑌 ∗|𝑋⃗)

���

���

�
� �
�
	

�
� 
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Loss and Kind of Data

▶ With unpaired speech and text:

𝐿both = 𝛼𝐿ASR→TTS + (1 − 𝛼)𝐿TTS→ASR
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Experimental Setup

▶ Librispeech and WSJ for training
▶ WSJ eval92 as test set
▶ 83-dimensional log-Mel filterbank as speech features
▶ Five samples from 𝑝ASR (i.e., 𝑁 = 5)
▶ Paired and unpaired data used for training
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Paired Data Baseline

Name Hours % CER % WER
WSJ 2 27.7 68.2
WSJ 5 13.2 41.5
WSJ 10 10.8 33.7
WSJ 14 10.2 31.5
Librispeech 100 8.9 21.0

Table: Results on WSJ eval-92 and Librispeech test-clean for
different amounts of paired data.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Varying Amount of Paired Data

Table: % WER on eval-92 for varying amounts of paired data.
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Comparison with Other Systems

Table: Results of different systems in the literature. Only unpaired
data used (except oracles).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Critique

▶ Good overview of existing CC methods
▶ Overall plausible results and improvement over previous

models
▶ Lack of plausible theories for how the results come about
▶ What about loss of variance of speech inputs?
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Questions I
Question
How is the loss 𝐿ASR→TTE end-to-end differentiable?This
question is effectively aimed at the straight-through estimation
defined in reference 8 (Tjandra et al. 2019). Why is this
approximation valid?

Answer
Baskar et al. (2019) use policy gradient, Tjandra et al. (2019)
use straight-through-Gumbel-softmax approximation.
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Questions II
Question
“A central problem to the ASR->TTS pipeline is the fact that
the text bottleneck eliminates a lot of information from speech
e.g. speaker identity.” Why is preserving “information from
speech” desirable?

Answer
If it is lost, the TTS cannot reasonably be expected to
accurately reconstruct the original speech because information
is missing.
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Questions III
Question
I found that there was quite a lack of qualitative results. Since
the code is openly available, do they somewhere provide
qualitative results/examples?

Answer
Didn’t find the code.
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Questions IV
Question
What is WER and CER? Maybe it is something obvious I am
not grasping, but I did not find an explanation in the paper.

Answer
Character Error Rate, Word Error Rate.
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Questions V
Question
What is the Tacotron2 architecture and why was it chosen?

Answer
Shown above. Seems to be popular. Also, it provides
mel-spectrograms as opposed to directly outputting a
waveform



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Questions VI
Question
What is a x-vector network?

Answer
Explained above.
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Questions VII
Question
Section 4.2: It is stated that the performance on WSJ-S1284 is
inferior to the previously reported baseline due to architecture
changes to fit the model into the GPU. Question if you have
taken a look into their github codebase (or this is written
somewhere in the paper and I missed it): Any idea what these
changes were and why they reduced the performance to this
extent (4.8 to 20.3 seems to be a quite large gap)?

Answer
???
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Questions VIII
Question
The authors state that “the text bottleneck eliminates a lot of
information from speech e.g. speaker identity”. Not having a
lot of experience in speech processing: What exactly does
speaker identity mean - voice, intonation? How can this be
modeled through vectors? Also: “e.g. speaker identity”, what
else could be an issue? (Section 2.2)

Answer
Shown above.
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Questions IX
Question
I am confused about the TTE approach: So you compare
encodings H to Ĥ, right? Thus, I understand that you start
with a text and only model the encodings H, but not the final
speech sequence - Then where does the ASR system come
from which apparently transforms from speech back to
encodings Ĥ for comparison? Do you still generate the speech,
but just don’t compare at speech level? If so, would the
encodings Ĥ not still carry speaker charakteristics “on the way
back”?

Answer
TTE-CC can only be used for starting with the speech signal,
not for starting with some text.
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Questions X
Question
what is the concrete trick to propagate the gradient from TTS
to ASR? Do they have the same target?

Answer
Policy gradient for 𝐿ASR→TTS, normal backpropagation with
cross-entropy for 𝐿TTS→ASR
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Questions XI
Question
After Eq. (9) the authors state: “Note that x-vectors are
designed to retain speaker characteristics but not general
structure of the speech signal. In that sense, the model can
not learn to copy directly X from input to output.” What does
this mean? Is 𝑓(𝑋) used as kind of regularization?

Answer
Not a regularization. It’s modeling speech characteristics that
are present in the ASR input, but not its output.
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Questions XII
Question
What color does a Smurf turn if you choke it?

Answer
I assume, it depends on their latent ethnicity. E.g. white for
caucasian smurfs, red for native American smurfs, etc.
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Questions XIII
Question
What can we understand under a pitch feature?

Answer
Different values for deep and high voice?
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Questions XIV
Question
What are some speaker characteristics and how are they
represented?

Answer
Shown above.
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Questions XV
Question
Section 4.1: Why does performance drop with high amounts of
unpaired speech, but not with high amounts of unpaired text?

Answer
???
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