
Attention is all you need

Christoph Schneider

Universität Heidelberg

25.07.2019

Overview

General Info

Architecture

Experiments

Discussion

General Info

General Info

I RNNs process one input after the other → not parallelisable

I CNNs solve that, but require O(n) operations to relate two
input words that are n positions apart.

I The transformer is parallelizable and relates all inputs with
O(1) operations.

I → Fast training

I → Improved handling of LDDs.

I → Improved translation quality.

Architecture

Architecture

Positional Encodings

I ConvSeq2Seq used learned positional embeddings

I → only sequences of length <= the sequences seen during
training get meaningful positional embeddings

I Positional encodings can be used for sequences of any length

I Encoding values are calculated with:
PE(pos,2i) = sin(pos

10000
2i

dmodel

)

PE(pos,2i+1) = cos(pos

10000
2i

dmodel

)

Self-Attention

Self-Attention

Self Attention in Matrix Notation

I Attention(Q,K ,V) = softmax

(
Q∗KT
√
dk

)
∗ V

I for large embedding sizes d Q ∗ KT will contain large values.
This pushes the softmax into regions with a small gradient.
That’s why we divide by

√
d

Multi-Head Attention

I Calculate h (Q,K,V)
triples independently

I Q,K,V ∈ Rn× d
h

I Calculate attention over
each of them

I Concatenate the outputs

I And apply a linear layer

Multi-Head Attention

Complexity

Teacher Forcing

I During training the decoder doesn’t rely on it’s own output as
an input for the next time step.

I instead we feed the correct output sentence to the decoder.

I This allows the decoder to attend to words in future time
steps.

I Solution: Mask out future words, by setting their attention
weights to 1e−9

Experiments

Results

Results

Discussion

Questions

I What are some disadvantages of using a Transformer instead
of RNNs?

I How is the applied number of heads determined?

Questions

I I’m kind of thinking about the trade-off between training time
and results, especially after seeing XLNET’s training cost
without fine-tuning... Lies the computational benefit of
Transformer architectures only in being parallelizable, or is the
computational cost generally lower compared to the one of
Recurrent Architectures? Maybe you find some comparison
charts of training time with results, it would much be
appreciated

Questions

I Where does ’query’, ’key’ and ’values’ come from? What can
we imagine under that? How are they created?

I About section 3.5: Why are two functions formulated, one with sin
and one with cos? Where does i come from and why does it differ
from dmodel?

Questions

I - The more heads are used the more the embedding size is
reduced (multihead attention). This is done to keep a small
training time, but wouldn’t more attention heads be more
useful if the same or bigger embedding size were used? Or
more accurately, how do we know the reduction of the
embedding size doesn’t hurt the overall model performance to
the point that the improvement due to using more attention
layers is lost?

Questions

I The way I interpret the paper, the actual advantages of the
transformer architecture is the applicability to different tasks
with at most minimal tuning and the reduced training time,
because the increase in BLEU is rather small: 0.51 more
BLEU points for the EN-FR task as shown in table 2. But as
far as I know the transformer has become the de facto go to
architecture in seq2seq learning. Is this due to any further
improvements in the architecture itself, meaning that one such
improved transformer far outperforms the other models in the
table, or due to the possibility to build far bigger models
because of the reduced training time, meaning ”we use 24
transformer blocks and improve upon the state of the art
(which uses only 12 transformer blocks)”?

Questions

I Positional Embeddings The authors have this number 10000
in their positional embeddings formula. This seems to be
chosen so that even for long sentences, half of the word
embeddings stay untouched for sine and are just offset by 1
for cosine. My question is: Do we think the model can still
learn something if this number is set to 100 or even 10? Or is
all the word embedding information lost then? See
attachments for plots and a plotting script.

I Word Order in the Encoder Word order is not encoded at all
in the encoder’s structure. Can we still assume that the
output at “timestep” i corresponds in some way to token i in
the source sentence? Do the residual connections enforce this
in a way?

Questions

I how does the transformer architecture cope with varying
length sequences?

I Why is masking out ”illegal” connections from previous
output necessary? What would be the harm if the decoder
had access to the masked out values?

Questions

I Why is the layer normalization so important for the model?

I Transformers are notorious for being much more difficult to
train/fine-tune compared to recurrent models. Why might
that be? Is it just that they’re very large models or is there
more to it?

Questions

I Is there some intuition behind, of the augmentation of the
perplexity with the increasing of the label smoothing value?.
Table 3, (D)

I On table 3 (A), setting a fix number of parameters 65x1065.
The best BELU score, with a lower perplexity (PPL) is the
one using h = 16. Why is not considered like the base model
for the comparisons?

Questions

I How does the sinusoidal function help translate long
sentences?

I How relevant are each of three listed ways that multi-head
attention is used in the work? Is it possible that some affect
the performance more than others? (3.2.3)

Questions

I How does the sinusoidal function help translate long
sentences?

I How relevant are each of three listed ways that multi-head
attention is used in the work? Is it possible that some affect
the performance more than others? (3.2.3)

Questions

I What does this network want to figure out or the intuition of
the structure?

I It is applied to each position”, how is the input sequence
segmented into different positions and how is the output of
each network aggregated for obtaining the sequence
representation?

Questions

I Could you please clarify in your presentation why there should
be multiple attention heads in a layer?

I Is it possible to get reliable alignment informations out of
Transformer translation models like out of SMTs/RNNs?

I How does the performance of the Transformer system scale
with the number of used GPUs?

Questions

I I wonder why this masking is even neccessary? Wouldn’t the
right-shift prevent the model from seeing future outputs
anyway? Does the masking then not do the same thing the
right-shift does already, and so wouldn’t it then be
unneccessary? Would it not technically be impossible for the
model anyway, at least for the testing phase, to see future
outputs as they would not yet have been generated?

I The authors use scaled dot-product attention. Could be
perhaps talk about how the scaling works in the course? (...)
As far as I can see they do not report results on their system
with additive attention, so how do they know whether the
scaled dot-product attention *does* actually perform better
than additive attention? Isn’t it possible that scaling reduces
the effect described, but that additive attention might still
yield better results? Am I overlooking something here?

	General Info
	Architecture
	Experiments
	Discussion

